/* Copyright 1999-2001,2003,2005-2006,2009-2010,2012-2014,2017-2019 Free Software Foundation, Inc. This file is part of Guile. Guile is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Guile is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with Guile. If not, see . */ /* Original Author: Mikael Djurfeldt */ #ifdef HAVE_CONFIG_H # include #endif #include #include #include #include #include #include "scm.h" #if SCM_ENABLE_MINI_GMP #include "mini-gmp.h" #else #include #endif #include "arrays.h" #include "feature.h" #include "generalized-arrays.h" #include "generalized-vectors.h" #include "gsubr.h" #include "list.h" #include "modules.h" #include "numbers.h" #include "numbers.h" #include "pairs.h" #include "smob.h" #include "srfi-4.h" #include "stime.h" #include "strings.h" #include "symbols.h" #include "variable.h" #include "vectors.h" #include "random.h" /* * A plugin interface for RNGs * * Using this interface, it is possible for the application to tell * libguile to use a different RNG. This is desirable if it is * necessary to use the same RNG everywhere in the application in * order to prevent interference, if the application uses RNG * hardware, or if the application has special demands on the RNG. * * Look in random.h and how the default generator is "plugged in" in * scm_init_random(). */ scm_t_rng scm_the_rng; /* * The prepackaged RNG * * This is the MWC (Multiply With Carry) random number generator * described by George Marsaglia at the Department of Statistics and * Supercomputer Computations Research Institute, The Florida State * University (http://stat.fsu.edu/~geo). * * It uses 64 bits, has a period of 4578426017172946943 (4.6e18), and * passes all tests in the DIEHARD test suite * (http://stat.fsu.edu/~geo/diehard.html) */ typedef struct scm_t_i_rstate { scm_t_rstate rstate; uint32_t w; uint32_t c; } scm_t_i_rstate; #define A 2131995753UL #ifndef M_PI #define M_PI 3.14159265359 #endif static uint32_t scm_i_uniform32 (scm_t_rstate *state) { scm_t_i_rstate *istate = (scm_t_i_rstate*) state; uint64_t x = (uint64_t) A * istate->w + istate->c; uint32_t w = x & 0xffffffffUL; istate->w = w; istate->c = x >> 32L; return w; } static void scm_i_init_rstate (scm_t_rstate *state, const char *seed, int n) { scm_t_i_rstate *istate = (scm_t_i_rstate*) state; uint32_t w = 0L; uint32_t c = 0L; int i, m; for (i = 0; i < n; ++i) { m = i % 8; if (m < 4) w += seed[i] << (8 * m); else c += seed[i] << (8 * (m - 4)); } if ((w == 0 && c == 0) || (w == -1 && c == A - 1)) ++c; istate->w = w; istate->c = c; } static scm_t_rstate * scm_i_copy_rstate (scm_t_rstate *state) { scm_t_rstate *new_state; new_state = scm_gc_malloc_pointerless (state->rng->rstate_size, "random-state"); return memcpy (new_state, state, state->rng->rstate_size); } SCM_SYMBOL(scm_i_rstate_tag, "multiply-with-carry"); static void scm_i_rstate_from_datum (scm_t_rstate *state, SCM value) #define FUNC_NAME "scm_i_rstate_from_datum" { scm_t_i_rstate *istate = (scm_t_i_rstate*) state; uint32_t w, c; long length; SCM_VALIDATE_LIST_COPYLEN (SCM_ARG1, value, length); SCM_ASSERT (length == 3, value, SCM_ARG1, FUNC_NAME); SCM_ASSERT (scm_is_eq (SCM_CAR (value), scm_i_rstate_tag), value, SCM_ARG1, FUNC_NAME); SCM_VALIDATE_UINT_COPY (SCM_ARG1, SCM_CADR (value), w); SCM_VALIDATE_UINT_COPY (SCM_ARG1, SCM_CADDR (value), c); istate->w = w; istate->c = c; } #undef FUNC_NAME static SCM scm_i_rstate_to_datum (scm_t_rstate *state) { scm_t_i_rstate *istate = (scm_t_i_rstate*) state; return scm_list_3 (scm_i_rstate_tag, scm_from_uint32 (istate->w), scm_from_uint32 (istate->c)); } /* * Random number library functions */ scm_t_rstate * scm_c_make_rstate (const char *seed, int n) { scm_t_rstate *state; state = scm_gc_malloc_pointerless (scm_the_rng.rstate_size, "random-state"); state->rng = &scm_the_rng; state->normal_next = 0.0; state->rng->init_rstate (state, seed, n); return state; } scm_t_rstate * scm_c_rstate_from_datum (SCM datum) { scm_t_rstate *state; state = scm_gc_malloc_pointerless (scm_the_rng.rstate_size, "random-state"); state->rng = &scm_the_rng; state->normal_next = 0.0; state->rng->from_datum (state, datum); return state; } scm_t_rstate * scm_c_default_rstate () #define FUNC_NAME "scm_c_default_rstate" { SCM state = SCM_VARIABLE_REF (scm_var_random_state); if (!SCM_RSTATEP (state)) SCM_MISC_ERROR ("*random-state* contains bogus random state", SCM_EOL); return SCM_RSTATE (state); } #undef FUNC_NAME double scm_c_uniform01 (scm_t_rstate *state) { double x = (double) state->rng->random_bits (state) / (double) 0xffffffffUL; return ((x + (double) state->rng->random_bits (state)) / (double) 0xffffffffUL); } double scm_c_normal01 (scm_t_rstate *state) { if (state->normal_next != 0.0) { double ret = state->normal_next; state->normal_next = 0.0; return ret; } else { double r, a, n; r = sqrt (-2.0 * log (scm_c_uniform01 (state))); a = 2.0 * M_PI * scm_c_uniform01 (state); n = r * sin (a); state->normal_next = r * cos (a); return n; } } double scm_c_exp1 (scm_t_rstate *state) { return - log (scm_c_uniform01 (state)); } unsigned char scm_masktab[256]; static inline uint32_t scm_i_mask32 (uint32_t m) { return (m < 0x100 ? scm_masktab[m] : (m < 0x10000 ? scm_masktab[m >> 8] << 8 | 0xff : (m < 0x1000000 ? scm_masktab[m >> 16] << 16 | 0xffff : ((uint32_t) scm_masktab[m >> 24]) << 24 | 0xffffff))); } uint32_t scm_c_random (scm_t_rstate *state, uint32_t m) { uint32_t r, mask = scm_i_mask32 (m); while ((r = state->rng->random_bits (state) & mask) >= m); return r; } uint64_t scm_c_random64 (scm_t_rstate *state, uint64_t m) { uint64_t r; uint32_t mask; if (m <= UINT32_MAX) return scm_c_random (state, (uint32_t) m); mask = scm_i_mask32 (m >> 32); while ((r = ((uint64_t) (state->rng->random_bits (state) & mask) << 32) | state->rng->random_bits (state)) >= m) ; return r; } /* SCM scm_c_random_bignum (scm_t_rstate *state, SCM m) Takes a random state (source of random bits) and a bignum m. Returns a bignum b, 0 <= b < m. It does this by allocating a bignum b with as many base 65536 digits as m, filling b with random bits (in 32 bit chunks) up to the most significant 1 in m, and, finally checking if the resultant b is too large (>= m). If too large, we simply repeat the process again. (It is important to throw away all generated random bits if b >= m, otherwise we'll end up with a distorted distribution.) */ SCM scm_c_random_bignum (scm_t_rstate *state, SCM m) { SCM result = scm_i_mkbig (); const size_t m_bits = mpz_sizeinbase (SCM_I_BIG_MPZ (m), 2); /* how many bits would only partially fill the last uint32_t? */ const size_t end_bits = m_bits % (sizeof (uint32_t) * SCM_CHAR_BIT); uint32_t *random_chunks = NULL; const uint32_t num_full_chunks = m_bits / (sizeof (uint32_t) * SCM_CHAR_BIT); const uint32_t num_chunks = num_full_chunks + ((end_bits) ? 1 : 0); /* we know the result will be this big */ mpz_realloc2 (SCM_I_BIG_MPZ (result), m_bits); random_chunks = (uint32_t *) scm_gc_calloc (num_chunks * sizeof (uint32_t), "random bignum chunks"); do { uint32_t *current_chunk = random_chunks + (num_chunks - 1); uint32_t chunks_left = num_chunks; mpz_set_ui (SCM_I_BIG_MPZ (result), 0); if (end_bits) { /* generate a mask with ones in the end_bits position, i.e. if end_bits is 3, then we'd have a mask of ...0000000111 */ const uint32_t rndbits = state->rng->random_bits (state); int rshift = (sizeof (uint32_t) * SCM_CHAR_BIT) - end_bits; uint32_t mask = ((uint32_t)-1) >> rshift; uint32_t highest_bits = rndbits & mask; *current_chunk-- = highest_bits; chunks_left--; } while (chunks_left) { /* now fill in the remaining uint32_t sized chunks */ *current_chunk-- = state->rng->random_bits (state); chunks_left--; } mpz_import (SCM_I_BIG_MPZ (result), num_chunks, -1, sizeof (uint32_t), 0, 0, random_chunks); /* if result >= m, regenerate it (it is important to regenerate all bits in order not to get a distorted distribution) */ } while (mpz_cmp (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (m)) >= 0); scm_gc_free (random_chunks, num_chunks * sizeof (uint32_t), "random bignum chunks"); return scm_i_normbig (result); } /* * Scheme level representation of random states. */ scm_t_bits scm_tc16_rstate; static SCM make_rstate (scm_t_rstate *state) { SCM_RETURN_NEWSMOB (scm_tc16_rstate, state); } /* * Scheme level interface. */ SCM_GLOBAL_VARIABLE_INIT (scm_var_random_state, "*random-state*", scm_seed_to_random_state (scm_from_utf8_string ("URL:http://stat.fsu.edu/~geo/diehard.html"))); SCM_DEFINE (scm_random, "random", 1, 1, 0, (SCM n, SCM state), "Return a number in [0, N).\n" "\n" "Accepts a positive integer or real n and returns a\n" "number of the same type between zero (inclusive) and\n" "N (exclusive). The values returned have a uniform\n" "distribution.\n" "\n" "The optional argument @var{state} must be of the type produced\n" "by @code{seed->random-state}. It defaults to the value of the\n" "variable @var{*random-state*}. This object is used to maintain\n" "the state of the pseudo-random-number generator and is altered\n" "as a side effect of the random operation.") #define FUNC_NAME s_scm_random { if (SCM_UNBNDP (state)) state = SCM_VARIABLE_REF (scm_var_random_state); SCM_VALIDATE_RSTATE (2, state); if (SCM_I_INUMP (n)) { scm_t_bits m = (scm_t_bits) SCM_I_INUM (n); SCM_ASSERT_RANGE (1, n, SCM_I_INUM (n) > 0); #if SCM_SIZEOF_UINTPTR_T <= 4 return scm_from_uint32 (scm_c_random (SCM_RSTATE (state), (uint32_t) m)); #elif SCM_SIZEOF_UINTPTR_T <= 8 return scm_from_uint64 (scm_c_random64 (SCM_RSTATE (state), (uint64_t) m)); #else #error "Cannot deal with this platform's scm_t_bits size" #endif } if (SCM_REALP (n)) return scm_from_double (SCM_REAL_VALUE (n) * scm_c_uniform01 (SCM_RSTATE (state))); if (!SCM_BIGP (n)) SCM_WRONG_TYPE_ARG (1, n); return scm_c_random_bignum (SCM_RSTATE (state), n); } #undef FUNC_NAME SCM_DEFINE (scm_copy_random_state, "copy-random-state", 0, 1, 0, (SCM state), "Return a copy of the random state @var{state}.") #define FUNC_NAME s_scm_copy_random_state { if (SCM_UNBNDP (state)) state = SCM_VARIABLE_REF (scm_var_random_state); SCM_VALIDATE_RSTATE (1, state); return make_rstate (SCM_RSTATE (state)->rng->copy_rstate (SCM_RSTATE (state))); } #undef FUNC_NAME SCM_DEFINE (scm_seed_to_random_state, "seed->random-state", 1, 0, 0, (SCM seed), "Return a new random state using @var{seed}.") #define FUNC_NAME s_scm_seed_to_random_state { SCM res; char *c_str; size_t len; if (SCM_NUMBERP (seed)) seed = scm_number_to_string (seed, SCM_UNDEFINED); SCM_VALIDATE_STRING (1, seed); if (scm_i_is_narrow_string (seed)) /* This special case of a narrow string, where latin1 is used, is for backward compatibility during the 2.2 stable series. In future major releases, we should use UTF-8 uniformly. */ c_str = scm_to_latin1_stringn (seed, &len); else c_str = scm_to_utf8_stringn (seed, &len); /* 'scm_to_*_stringn' returns a 'size_t' for the length in bytes, but 'scm_c_make_rstate' accepts an 'int'. Make sure the length fits in an 'int'. */ if (len > INT_MAX) { free (c_str); SCM_OUT_OF_RANGE (1, seed); } res = make_rstate (scm_c_make_rstate (c_str, len)); free (c_str); scm_remember_upto_here_1 (seed); return res; } #undef FUNC_NAME SCM_DEFINE (scm_datum_to_random_state, "datum->random-state", 1, 0, 0, (SCM datum), "Return a new random state using @var{datum}, which should have\n" "been obtained from @code{random-state->datum}.") #define FUNC_NAME s_scm_datum_to_random_state { return make_rstate (scm_c_rstate_from_datum (datum)); } #undef FUNC_NAME SCM_DEFINE (scm_random_state_to_datum, "random-state->datum", 1, 0, 0, (SCM state), "Return a datum representation of @var{state} that may be\n" "written out and read back with the Scheme reader.") #define FUNC_NAME s_scm_random_state_to_datum { SCM_VALIDATE_RSTATE (1, state); return SCM_RSTATE (state)->rng->to_datum (SCM_RSTATE (state)); } #undef FUNC_NAME SCM_DEFINE (scm_random_uniform, "random:uniform", 0, 1, 0, (SCM state), "Return a uniformly distributed inexact real random number in\n" "[0,1).") #define FUNC_NAME s_scm_random_uniform { if (SCM_UNBNDP (state)) state = SCM_VARIABLE_REF (scm_var_random_state); SCM_VALIDATE_RSTATE (1, state); return scm_from_double (scm_c_uniform01 (SCM_RSTATE (state))); } #undef FUNC_NAME SCM_DEFINE (scm_random_normal, "random:normal", 0, 1, 0, (SCM state), "Return an inexact real in a normal distribution. The\n" "distribution used has mean 0 and standard deviation 1. For a\n" "normal distribution with mean m and standard deviation d use\n" "@code{(+ m (* d (random:normal)))}.") #define FUNC_NAME s_scm_random_normal { if (SCM_UNBNDP (state)) state = SCM_VARIABLE_REF (scm_var_random_state); SCM_VALIDATE_RSTATE (1, state); return scm_from_double (scm_c_normal01 (SCM_RSTATE (state))); } #undef FUNC_NAME static void vector_scale_x (SCM v, double c) { scm_t_array_handle handle; scm_t_array_dim const * dims; ssize_t i, inc, ubnd; scm_array_get_handle (v, &handle); dims = scm_array_handle_dims (&handle); if (1 == scm_array_handle_rank (&handle)) { ubnd = dims[0].ubnd; inc = dims[0].inc; if (handle.element_type == SCM_ARRAY_ELEMENT_TYPE_F64) { double *elts = (double *)(handle.writable_elements) + handle.base; for (i = dims[0].lbnd; i <= ubnd; ++i, elts += inc) *elts *= c; return; } else if (handle.element_type == SCM_ARRAY_ELEMENT_TYPE_SCM) { SCM *elts = (SCM *)(handle.writable_elements) + handle.base; for (i = dims[0].lbnd; i <= ubnd; ++i, elts += inc) SCM_REAL_VALUE (*elts) *= c; return; } } scm_array_handle_release (&handle); scm_misc_error (NULL, "must be a rank-1 array of type #t or 'f64", scm_list_1 (v)); } static double vector_sum_squares (SCM v) { double x, sum = 0.0; scm_t_array_handle handle; scm_t_array_dim const * dims; ssize_t i, inc, ubnd; scm_array_get_handle (v, &handle); dims = scm_array_handle_dims (&handle); if (1 == scm_array_handle_rank (&handle)) { ubnd = dims[0].ubnd; inc = dims[0].inc; if (handle.element_type == SCM_ARRAY_ELEMENT_TYPE_F64) { const double *elts = (const double *)(handle.elements) + handle.base; for (i = dims[0].lbnd; i <= ubnd; ++i, elts += inc) { x = *elts; sum += x * x; } return sum; } else if (handle.element_type == SCM_ARRAY_ELEMENT_TYPE_SCM) { const SCM *elts = (const SCM *)(handle.elements) + handle.base; for (i = dims[0].lbnd; i <= ubnd; ++i, elts += inc) { x = SCM_REAL_VALUE (*elts); sum += x * x; } return sum; } } scm_array_handle_release (&handle); scm_misc_error (NULL, "must be an array of type #t or 'f64", scm_list_1 (v)); } /* For the uniform distribution on the solid sphere, note that in * this distribution the length r of the vector has cumulative * distribution r^n; i.e., u=r^n is uniform [0,1], so r can be * generated as r=u^(1/n). */ SCM_DEFINE (scm_random_solid_sphere_x, "random:solid-sphere!", 1, 1, 0, (SCM v, SCM state), "Fills @var{vect} with inexact real random numbers the sum of\n" "whose squares is less than 1.0. Thinking of @var{vect} as\n" "coordinates in space of dimension @var{n} @math{=}\n" "@code{(vector-length @var{vect})}, the coordinates are\n" "uniformly distributed within the unit @var{n}-sphere.") #define FUNC_NAME s_scm_random_solid_sphere_x { if (SCM_UNBNDP (state)) state = SCM_VARIABLE_REF (scm_var_random_state); SCM_VALIDATE_RSTATE (2, state); scm_random_normal_vector_x (v, state); vector_scale_x (v, pow (scm_c_uniform01 (SCM_RSTATE (state)), 1.0 / scm_c_array_length (v)) / sqrt (vector_sum_squares (v))); return SCM_UNSPECIFIED; } #undef FUNC_NAME SCM_DEFINE (scm_random_hollow_sphere_x, "random:hollow-sphere!", 1, 1, 0, (SCM v, SCM state), "Fills vect with inexact real random numbers\n" "the sum of whose squares is equal to 1.0.\n" "Thinking of vect as coordinates in space of\n" "dimension n = (vector-length vect), the coordinates\n" "are uniformly distributed over the surface of the\n" "unit n-sphere.") #define FUNC_NAME s_scm_random_hollow_sphere_x { if (SCM_UNBNDP (state)) state = SCM_VARIABLE_REF (scm_var_random_state); SCM_VALIDATE_RSTATE (2, state); scm_random_normal_vector_x (v, state); vector_scale_x (v, 1 / sqrt (vector_sum_squares (v))); return SCM_UNSPECIFIED; } #undef FUNC_NAME SCM_DEFINE (scm_random_normal_vector_x, "random:normal-vector!", 1, 1, 0, (SCM v, SCM state), "Fills vect with inexact real random numbers that are\n" "independent and standard normally distributed\n" "(i.e., with mean 0 and variance 1).") #define FUNC_NAME s_scm_random_normal_vector_x { scm_t_array_handle handle; scm_t_array_dim const * dims; ssize_t i; if (SCM_UNBNDP (state)) state = SCM_VARIABLE_REF (scm_var_random_state); SCM_VALIDATE_RSTATE (2, state); scm_array_get_handle (v, &handle); if (1 != scm_array_handle_rank (&handle)) { scm_array_handle_release (&handle); scm_wrong_type_arg_msg (NULL, 0, v, "rank 1 array"); } dims = scm_array_handle_dims (&handle); if (handle.element_type == SCM_ARRAY_ELEMENT_TYPE_SCM) { SCM *elts = scm_array_handle_writable_elements (&handle); for (i = dims->lbnd; i <= dims->ubnd; i++, elts += dims->inc) *elts = scm_from_double (scm_c_normal01 (SCM_RSTATE (state))); } else { /* must be a f64vector. */ double *elts = scm_array_handle_f64_writable_elements (&handle); for (i = dims->lbnd; i <= dims->ubnd; i++, elts += dims->inc) *elts = scm_c_normal01 (SCM_RSTATE (state)); } scm_array_handle_release (&handle); return SCM_UNSPECIFIED; } #undef FUNC_NAME SCM_DEFINE (scm_random_exp, "random:exp", 0, 1, 0, (SCM state), "Return an inexact real in an exponential distribution with mean\n" "1. For an exponential distribution with mean u use (* u\n" "(random:exp)).") #define FUNC_NAME s_scm_random_exp { if (SCM_UNBNDP (state)) state = SCM_VARIABLE_REF (scm_var_random_state); SCM_VALIDATE_RSTATE (1, state); return scm_from_double (scm_c_exp1 (SCM_RSTATE (state))); } #undef FUNC_NAME /* Return a new random-state seeded from the time, date, process ID, an address from a freshly allocated heap cell, an address from the local stack frame, and a high-resolution timer if available. This is only to be used as a last resort, when no better source of entropy is available. */ static SCM random_state_of_last_resort (void) { SCM state; SCM time_of_day = scm_gettimeofday (); SCM sources = scm_list_n (scm_from_unsigned_integer (SCM_UNPACK (time_of_day)), /* heap addr */ /* Avoid scm_getpid, since it depends on HAVE_POSIX. */ scm_from_unsigned_integer (getpid ()), /* process ID */ scm_get_internal_real_time (), /* high-resolution process timer */ scm_from_unsigned_integer ((scm_t_bits) &time_of_day), /* stack addr */ scm_car (time_of_day), /* seconds since midnight 1970-01-01 UTC */ scm_cdr (time_of_day), /* microsecond component of the above clock */ SCM_UNDEFINED); /* Concatenate the sources bitwise to form the seed */ SCM seed = SCM_INUM0; while (scm_is_pair (sources)) { seed = scm_logxor (seed, scm_ash (scm_car (sources), scm_integer_length (seed))); sources = scm_cdr (sources); } /* FIXME The following code belongs in `scm_seed_to_random_state', and here we should simply do: return scm_seed_to_random_state (seed); Unfortunately, `scm_seed_to_random_state' only preserves around 32 bits of entropy from the provided seed. I don't know if it's okay to fix that in 2.0, so for now we have this workaround. */ { int i, len; unsigned char *buf; len = scm_to_int (scm_ceiling_quotient (scm_integer_length (seed), SCM_I_MAKINUM (8))); buf = (unsigned char *) malloc (len); for (i = len-1; i >= 0; --i) { buf[i] = scm_to_int (scm_logand (seed, SCM_I_MAKINUM (255))); seed = scm_ash (seed, SCM_I_MAKINUM (-8)); } state = make_rstate (scm_c_make_rstate ((char *) buf, len)); free (buf); } return state; } /* Attempt to fill buffer with random bytes from /dev/urandom. Return 1 if successful, else return 0. */ static int read_dev_urandom (unsigned char *buf, size_t len) { size_t res = 0; FILE *f = fopen ("/dev/urandom", "r"); if (f) { res = fread(buf, 1, len, f); fclose (f); } return (res == len); } /* Fill a buffer with random bytes seeded from a platform-specific source of entropy. /dev/urandom is used if available. Note that this function provides no guarantees about the amount of entropy present in the returned bytes. */ void scm_i_random_bytes_from_platform (unsigned char *buf, size_t len) { if (read_dev_urandom (buf, len)) return; else /* FIXME: support other platform sources */ { /* When all else fails, use this (rather weak) fallback */ SCM random_state = random_state_of_last_resort (); int i; for (i = len-1; i >= 0; --i) buf[i] = scm_to_int (scm_random (SCM_I_MAKINUM (256), random_state)); } } SCM_DEFINE (scm_random_state_from_platform, "random-state-from-platform", 0, 0, 0, (void), "Construct a new random state seeded from a platform-specific\n\ source of entropy, appropriate for use in non-security-critical applications.") #define FUNC_NAME s_scm_random_state_from_platform { unsigned char buf[32]; if (read_dev_urandom (buf, sizeof(buf))) return make_rstate (scm_c_make_rstate ((char *) buf, sizeof(buf))); else return random_state_of_last_resort (); } #undef FUNC_NAME void scm_init_random () { int i, m; /* plug in default RNG */ scm_t_rng rng = { sizeof (scm_t_i_rstate), scm_i_uniform32, scm_i_init_rstate, scm_i_copy_rstate, scm_i_rstate_from_datum, scm_i_rstate_to_datum }; scm_the_rng = rng; scm_tc16_rstate = scm_make_smob_type ("random-state", 0); for (m = 1; m <= 0x100; m <<= 1) for (i = m >> 1; i < m; ++i) scm_masktab[i] = m - 1; #include "random.x" scm_add_feature ("random"); }