/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Thu Dec 10 07:04:40 EST 2020 */ #include "dft/codelet-dft.h" #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) /* Generated by: ../../../genfft/gen_notw_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -n 5 -name n1fv_5 -include dft/simd/n1f.h */ /* * This function contains 16 FP additions, 11 FP multiplications, * (or, 7 additions, 2 multiplications, 9 fused multiply/add), * 18 stack variables, 4 constants, and 10 memory accesses */ #include "dft/simd/n1f.h" static void n1fv_5(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) { DVK(KP559016994, +0.559016994374947424102293417182819058860154590); DVK(KP250000000, +0.250000000000000000000000000000000000000000000); DVK(KP618033988, +0.618033988749894848204586834365638117720309180); DVK(KP951056516, +0.951056516295153572116439333379382143405698634); { INT i; const R *xi; R *xo; xi = ri; xo = ro; for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(10, is), MAKE_VOLATILE_STRIDE(10, os)) { V T1, T8, Td, Ta, Tc; T1 = LD(&(xi[0]), ivs, &(xi[0])); { V T2, T3, T4, T5, T6, T7; T2 = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)])); T3 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0])); T4 = VADD(T2, T3); T5 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0])); T6 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)])); T7 = VADD(T5, T6); T8 = VADD(T4, T7); Td = VSUB(T5, T6); Ta = VSUB(T4, T7); Tc = VSUB(T2, T3); } ST(&(xo[0]), VADD(T1, T8), ovs, &(xo[0])); { V Te, Tg, Tb, Tf, T9; Te = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), Td, Tc)); Tg = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), Tc, Td)); T9 = VFNMS(LDK(KP250000000), T8, T1); Tb = VFMA(LDK(KP559016994), Ta, T9); Tf = VFNMS(LDK(KP559016994), Ta, T9); ST(&(xo[WS(os, 1)]), VFNMSI(Te, Tb), ovs, &(xo[WS(os, 1)])); ST(&(xo[WS(os, 3)]), VFNMSI(Tg, Tf), ovs, &(xo[WS(os, 1)])); ST(&(xo[WS(os, 4)]), VFMAI(Te, Tb), ovs, &(xo[0])); ST(&(xo[WS(os, 2)]), VFMAI(Tg, Tf), ovs, &(xo[0])); } } } VLEAVE(); } static const kdft_desc desc = { 5, XSIMD_STRING("n1fv_5"), { 7, 2, 9, 0 }, &GENUS, 0, 0, 0, 0 }; void XSIMD(codelet_n1fv_5) (planner *p) { X(kdft_register) (p, n1fv_5, &desc); } #else /* Generated by: ../../../genfft/gen_notw_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 5 -name n1fv_5 -include dft/simd/n1f.h */ /* * This function contains 16 FP additions, 6 FP multiplications, * (or, 13 additions, 3 multiplications, 3 fused multiply/add), * 18 stack variables, 4 constants, and 10 memory accesses */ #include "dft/simd/n1f.h" static void n1fv_5(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) { DVK(KP250000000, +0.250000000000000000000000000000000000000000000); DVK(KP587785252, +0.587785252292473129168705954639072768597652438); DVK(KP951056516, +0.951056516295153572116439333379382143405698634); DVK(KP559016994, +0.559016994374947424102293417182819058860154590); { INT i; const R *xi; R *xo; xi = ri; xo = ro; for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(10, is), MAKE_VOLATILE_STRIDE(10, os)) { V T8, T7, Td, T9, Tc; T8 = LD(&(xi[0]), ivs, &(xi[0])); { V T1, T2, T3, T4, T5, T6; T1 = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)])); T2 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0])); T3 = VADD(T1, T2); T4 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0])); T5 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)])); T6 = VADD(T4, T5); T7 = VMUL(LDK(KP559016994), VSUB(T3, T6)); Td = VSUB(T4, T5); T9 = VADD(T3, T6); Tc = VSUB(T1, T2); } ST(&(xo[0]), VADD(T8, T9), ovs, &(xo[0])); { V Te, Tf, Tb, Tg, Ta; Te = VBYI(VFMA(LDK(KP951056516), Tc, VMUL(LDK(KP587785252), Td))); Tf = VBYI(VFNMS(LDK(KP587785252), Tc, VMUL(LDK(KP951056516), Td))); Ta = VFNMS(LDK(KP250000000), T9, T8); Tb = VADD(T7, Ta); Tg = VSUB(Ta, T7); ST(&(xo[WS(os, 1)]), VSUB(Tb, Te), ovs, &(xo[WS(os, 1)])); ST(&(xo[WS(os, 3)]), VSUB(Tg, Tf), ovs, &(xo[WS(os, 1)])); ST(&(xo[WS(os, 4)]), VADD(Te, Tb), ovs, &(xo[0])); ST(&(xo[WS(os, 2)]), VADD(Tf, Tg), ovs, &(xo[0])); } } } VLEAVE(); } static const kdft_desc desc = { 5, XSIMD_STRING("n1fv_5"), { 13, 3, 3, 0 }, &GENUS, 0, 0, 0, 0 }; void XSIMD(codelet_n1fv_5) (planner *p) { X(kdft_register) (p, n1fv_5, &desc); } #endif