/* Use the variational method to estimate the eigenvalues of -f'' + (x^2 + epsilon * x^4) * f = mu * f for epsilon near zero. The hamiltonian is */ ham (e) := -diff(e, x, 2) + (x^2 + epsilon * x^4 ) * e; /* Assume a trial solution psi that is a linear combination of n+1 even order Hermite polynomials times a Gaussian function. We'll need to assign a value to n, load orthopoly, and assign psi. */ n : 3; if get('orthopoly,'version) = 'false then load("orthopoly")$ psi : sum(c[2*k] * hermite(2*k,x) * exp(-x^2 / 2),k,0,n) / %pi^(1/4)$ /* The denominator %pi^(1/4) makes the computation easier. Let vars be a list of the unknown c's. Although the c's really aren't positive, we'll set assume_pos to true; doing so prevents Maxima from asking lots of questions about the signs of the c's. */ vars : makelist(c[ 2*i ],i,0,n)$ assume_pos : true; /* Define the L2 inner product with the match fix operator << , >>. Everything is real, so we don't need a conjugate. */ matchfix("<<", ">>")$ "<<" (f, g) := integrate(expand (f * g), x,-inf, inf)$ /* Minimize << psi, ham(psi) >> subject to the constraint << psi, psi >> =1; let mu be the Lagrange multiplier. */ min_this : << psi, ham(psi) >> - mu * << psi, psi >>; eqs : makelist(diff(min_this,vars[ i ]),i,1,n+1)$ /* The equations are linear and homogeneous in the c's. Demand that the coefficient matrix is singular. */ m_det : determinant(coefmatrix(eqs, vars))$ m_det : ratsimp(m_det)$ /* Solve for mu as power series in epsilon. Thus assume mu = cf[ 0] + cf[1] * epsilon + ... + cf[solve_ord] epsilon^solve_ord. */ solve_ord : 3; pows : makelist(epsilon^i,i,0,solve_ord)$ unks : makelist(cf[ i ],i,0,solve_ord)$ eq : ev(m_det, mu = unks . pows)$ eq : taylor(eq, epsilon, 0, solve_ord)$ eq : expand(eq)$ eq : makelist(coeff(eq,epsilon,i),i,0,solve_ord)$ ans : algsys(eq, unks)$ for i : 1 thru length(ans) do ( ans[ i ] : map(rhs, ans[ i ]) . pows)$ ans : reverse(ans); /* Look at the solution graphically.*/ plot2d(ans, [epsilon,0,0.25]); /* Let's solve the equations using allroots instead of the series method. */ f(x,k) := part(sort(map('rhs, allroots(subst('epsilon=x,m_det)))),k); /* Compare the allroots solution to the series solution. */ plot2d([ans[1], '(f(epsilon,1))], [epsilon,0.0,0.4]); plot2d([ans[2], '(f(epsilon,2))], [epsilon,0.0,0.4]); plot2d([ans[3], '(f(epsilon,3))], [epsilon,0.0,0.4]); plot2d([ans[4], '(f(epsilon,4))], [epsilon,0.0,0.4]); plot2d(['(f(epsilon,1)),'(f(epsilon,2)),'(f(epsilon,3)),'(f(epsilon,4))],[epsilon,0,0.4]); remfunction(ham,"<<",f); remvalue(n,psi,vars,min_this,eqs,m_det,solve_ord,pows,unks,eq,ans); assume_pos : false; /* Let's apply a variational method to the potential x^2 / 2 + x^4. We'll assume a trial wavefuction of the form qo * exp(-%alpha * abs(x)^(2*n) / 2) where the parameters are %alpha and n. See "Post-Gaussian variational method for quantum anharmonic oscillator," by Akihiro Ogura." */ kill(all)$ assume(qo > 0, %alpha > 0, n > 1/2)$ f : qo * exp(-%alpha * abs(x)^(2*n) / 2); 1 = integrate(f^2,x,minf,inf); solve(%,qo); f : subst(second(%), f); v : x^2 / 2 + x^4$ ham(f) := -diff(f,x,2) / 2 + v * f$ energy : integrate(f * ham(f),x,minf,inf); eqs : [diff(energy,n), diff(energy,%alpha)]$ load(mnewton)$ newtonepsilon : 1.0e-15$ sol : mnewton(eqs,[n,%alpha],[1.1, 2.0]); subst(sol, energy);