/* Scott's AKE Client/Server testbed See http://eprint.iacr.org/2002/164 Compile as cl /O2 /GX /DZZNS=5 ake6mntt.cpp zzn6.cpp ecn3.cpp zzn3.cpp big.cpp zzn.cpp ecn.cpp miracl.lib using COMBA build MNT Curve - Tate pairing The required file mnt.ecs is created from a curve generated by the mnt utility, and created by the cm utility. For convenience the value of (p^2-p+1)/q and the 6th root of unity (cnr^(p-1)/6) have been manually calculated and appended to this file (replacing the x,y values in the original .ecs file) NOTE: Irreducible polynomial MUST be of the form x^6+CNR. This excludes many of the curves found using the mnt utility! Use the irred utility Modified to prevent sub-group confinement attack NOTE: Key exchange bandwidth could be reduced further using ideas from "Doing more with Fewer Bits", Brouwer, Pellikaan & Verheul, Asiacrypt '99 Speeded up using ideas from "Efficient Computation of Tate Pairing in Projective Coordinate over General Characteristic Fields" by Sanjit Chatterjee1, Palash Sarkar1 and Rana Barua1 */ #include #include #include #include "ecn.h" #include #include "ecn3.h" #include "zzn6.h" // fix a couple of things for this particular curve // cofactor - number of points on curve=CF.q // Cubic non-residue mod p #define CF 2 #define CNR 2 // irreducible is x^6-2 using namespace std; Miracl precision(5,0); #ifdef MR_COUNT_OPS extern "C" { int fpc,fpa,fpx,fpm2,fpi2; } #endif // Using SHA-1 as basic hash algorithm #define HASH_LEN 20 // // Define one or the other of these // // Which is faster depends on the I/M ratio - See imratio.c // Roughly if I/M ratio > 16 use PROJECTIVE, otherwise use AFFINE // #ifdef MR_AFFINE_ONLY #define AFFINE #else #define PROJECTIVE #endif // // Tate Pairing Code // // Extract ECn point in internal ZZn format // void extract(ECn& A,ZZn& x,ZZn& y) { x=(A.get_point())->X; y=(A.get_point())->Y; } #ifdef PROJECTIVE void extract(ECn& A,ZZn& x,ZZn& y,ZZn& z) { big t; x=(A.get_point())->X; y=(A.get_point())->Y; t=(A.get_point())->Z; if (A.get_status()!=MR_EPOINT_GENERAL) z=1; else z=t; } #endif // // Line from A to destination C. Let A=(x,y) // Line Y-slope.X-c=0, through A, so intercept c=y-slope.x // Line Y-slope.X-y+slope.x = (Y-y)-slope.(X-x) = 0 // Now evaluate at Q -> return (Qy-y)-slope.(Qx-x) // ZZn6 line(ECn& A,ECn& C,ECn& B,int type,ZZn& slope,ZZn& ex1,ZZn& ex2,ZZn3& Qx,ZZn3& Qy) { ZZn6 w; #ifdef AFFINE ZZn3 nn=Qx; ZZn x,y; extract(A,x,y); nn-=x; nn*=slope; nn+=y; w.set(-nn,Qy); #endif #ifdef PROJECTIVE if (type==MR_ADD) { ZZn x2,y2,x3,z3; extract(B,x2,y2); extract(C,x3,x3,z3); w.set(slope*(Qx-x2)+z3*y2,-z3*Qy); } if (type==MR_DOUBLE) { ZZn x,y,x3,z3; extract(A,x,y); extract(C,x3,x3,z3); w.set((slope*ex2)*Qx-slope*x+ex1,-(z3*ex2)*Qy); } /* extract(A,x,y,z); x*=z; t=z; z*=z; z*=t; x*=slope; t=slope*z; nn*=t; nn-=x; t=z; extract(C,x,x,z); nn+=(z*y); t*=z; w.set(nn,-Qy*t); */ #endif return w; } // // Add A=A+B (or A=A+A) // Return line function value // ZZn6 g(ECn& A,ECn& B,ZZn3& Qx,ZZn3& Qy) { ZZn lam,extra1,extra2; int type; ZZn6 u; big ptr,ex1,ex2; ECn P=A; // Evaluate line from A type=A.add(B,&ptr,&ex1,&ex2); if (!type) return (ZZn6)1; lam=ptr; extra1=ex1; extra2=ex2; return line(P,A,B,type,lam,extra1,extra2,Qx,Qy); } // // Tate Pairing - note denominator elimination has been applied // // P is a point of order q. Q(x,y) is a point of order m.q. // Note that P is a point on the curve over Fp, Q(x,y) a point on the // twisted curve over the extension field Fp^3 // BOOL fast_tate_pairing(ECn& P,ZZn3& Qx,ZZn3& Qy,Big& q,Big &cf,ZZn6& res) { int i,j,n,nb,nbw,nzs; ECn A,P2,t[8]; ZZn6 w,hc,z2n,zn[8]; res=zn[0]=1; t[0]=P2=A=P; z2n=g(P2,P2,Qx,Qy); normalise(P2); // // Build windowing table // for (i=1;i<8;i++) { hc=g(A,P2,Qx,Qy); t[i]=A; zn[i]=z2n*zn[i-1]*hc; } multi_norm(8,t); // make t points Affine A=P; // reset A nb=bits(q); for (i=nb-2;i>=0;i-=(nbw+nzs)) { n=window(q,i,&nbw,&nzs,4); // standard MIRACL windowing for (j=0;j0) { res*=zn[n/2]; res*=g(A,t[n/2],Qx,Qy); } for (j=0;j=p) break; } h%=p; return h; } Big H2(ZZn3 x) { // Hash an Fp3 to a big number sha sh; ZZn u,v,w; Big a,h,p,xx[3]; char s[HASH_LEN]; int i,j,m; shs_init(&sh); x.get(u,v,w); xx[0]=u; xx[1]=v; xx[2]=w; for (i=0;i<3;i++) { a=xx[i]; while (a>0) { m=a%256; shs_process(&sh,m); a/=256; } } shs_hash(&sh,s); h=from_binary(HASH_LEN,s); return h; } // Hash and map a Server Identity to a curve point E_(Fp3) ECn3 hash_and_map3(char *ID) { int i; ECn3 S; ZZn3 X; Big x0=H1(ID); forever { x0+=1; X.set2((ZZn)x0); if (!S.set(X)) continue; break; } // cout << "S= " << S << endl; return S; } // Hash and map a Client Identity to a curve point E_(Fp) of order q ECn hash_and_map(char *ID) { ECn Q; Big x0=H1(ID); while (!Q.set(x0,x0)) x0+=1; Q*=CF; return Q; } // Use Galbraith & Scott Homomorphism idea ZZn3 mypow(ZZn6& res,Big &e,Big &T) { ZZn6 w=res; ZZn3 ra,rp,r=real(res); Big e0,e1; e0=e%T; e1=e/T; w.powq(); rp=real(w); w/=res; ra=real(w); // Use GLV method, and double exponentiation a la Lucas (see ZZn3.cpp) return powl(rp,e1,r,e0,ra); } int main() { ifstream common("mnt.ecs"); // MNT elliptic curve parameters miracl* mip=&precision; ECn Alice,Bob,sA,sB; ECn3 B6,Server,sS; ZZn3 sp,ap,bp; ZZn6 res; Big a,b,s,ss,p,q,x,y,B,cf,cfp,t,sru,T; int i,bits,A; time_t seed; common >> bits; mip->IOBASE=16; common >> p; common >> A; common >> B >> q >> cf >> sru; T=p-q*CF; time(&seed); irand((long)seed); #ifdef AFFINE ecurve(A,B,p,MR_AFFINE); #endif #ifdef PROJECTIVE ecurve(A,B,p,MR_PROJECTIVE); #endif set_zzn3(CNR,sru); cfp=cf-CF*p; // ~ (t-1) mip->IOBASE=16; mip->TWIST=MR_QUADRATIC; // map Server to point on twisted curve E(Fp3) ss=rand(q); // TA's super-secret cout << "Mapping Server ID to point" << endl; Server=hash_and_map3((char *)"Server"); sS=ss*Server; cout << "Mapping Alice & Bob ID's to points" << endl; Alice=hash_and_map((char *)"Alice"); Bob= hash_and_map((char *)"Robert"); cout << "Alice, Bob and the Server visit Trusted Authority" << endl; sA=ss*Alice; sB=ss*Bob; cout << "Alice and Server Key Exchange" << endl; a=rand(q); // Alice's random number s=rand(q); // Server's random number if (!ecap(sA,Server,q,cfp,res)) cout << "Trouble" << endl; if (powl(real(res),q)!=(ZZn3)1) { cout << "Wrong group order - aborting" << endl; exit(0); } // ap=powl(real(res),a); ap=mypow(res,a,T); //for (i=0;i<10000;i++) if (!ecap(Alice,sS,q,cfp,res)) cout << "Trouble" << endl; if (powl(real(res),q)!=(ZZn3)1) { cout << "Wrong group order - aborting" << endl; exit(0); } // sp=powl(real(res),s); sp=mypow(res,s,T); cout << "Alice Key= " << H2(powl(sp,a)) << endl; cout << "Server Key= " << H2(powl(ap,s)) << endl; cout << "Bob and Server Key Exchange" << endl; b=rand(q); // Bob's random number s=rand(q); // Server's random number if (!ecap(sB,Server,q,cfp,res)) cout << "Trouble" << endl; if (powl(real(res),q)!=(ZZn3)1) { cout << "Wrong group order - aborting" << endl; exit(0); } bp=powl(real(res),b); if (!ecap(Bob,sS,q,cfp,res)) cout << "Trouble" << endl; if (powl(real(res),q)!=(ZZn3)1) { cout << "Wrong group order - aborting" << endl; exit(0); } sp=powl(real(res),s); cout << "Bob's Key= " << H2(powl(sp,b)) << endl; cout << "Server Key= " << H2(powl(bp,s)) << endl; return 0; }