#if defined (HAVE_CONFIG_H) # include "config.h" #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include // Integer values. class octave_integer : public octave_base_value { public: octave_integer (void) : octave_base_value (), scalar (0) { } octave_integer (int i) : octave_base_value (), scalar (i) { } octave_integer (const octave_integer& s) : octave_base_value (), scalar (s.scalar) { } ~octave_integer (void) = default; octave_base_value * clone (void) { return new octave_integer (*this); } #if 0 void *operator new (std::size_t size); void operator delete (void *p, std::size_t size); #endif idx_vector index_vector (bool) const { return idx_vector ((double) scalar); } int rows (void) const { return 1; } int columns (void) const { return 1; } bool is_constant (void) const { return true; } bool is_defined (void) const { return true; } bool is_real_scalar (void) const { return true; } octave_value all (void) const { return (double) (scalar != 0); } octave_value any (void) const { return (double) (scalar != 0); } bool is_real_type (void) const { return true; } bool is_scalar_type (void) const { return true; } bool isnumeric (void) const { return true; } bool valid_as_scalar_index (void) const { return scalar == 1; } bool valid_as_zero_index (void) const { return scalar == 0; } bool is_true (void) const { return (scalar != 0); } double double_value (bool = false) const { return (double) scalar; } int integer_value (bool = false) const { return scalar; } Matrix matrix_value (bool = false) const { return Matrix (1, 1, scalar); } Complex complex_value (bool = false) const { return scalar; } ComplexMatrix complex_matrix_value (bool = false) const { return ComplexMatrix (1, 1, Complex (scalar)); } octave_value gnot (void) const { return octave_value ((double) ! scalar); } octave_value uminus (void) const { return new octave_integer (- scalar); } octave_value transpose (void) const { return new octave_integer (scalar); } octave_value hermitian (void) const { return new octave_integer (scalar); } void increment (void) { ++scalar; } void decrement (void) { --scalar; } void print (std::ostream& os, bool pr_as_read_syntax = false); private: int scalar; DECLARE_OV_TYPEID_FUNCTIONS_AND_DATA }; void octave_integer::print (std::ostream& os, bool pr_as_read_syntax) { os << scalar; newline (os); } #if defined (DEFUNOP_OP) #undef DEFUNOP_OP #endif #define DEFUNOP_OP(name, t, op) \ static octave_value \ CONCAT2(oct_unop_, name) (const octave_base_value& a) \ { \ const octave_ ## t& v = dynamic_cast (a); \ return octave_value (new octave_integer (op v.t ## _value ())); \ } DEFUNOP_OP (gnot, integer, !) DEFUNOP_OP (uminus, integer, -) DEFUNOP_OP (transpose, integer, /* no-op */) DEFUNOP_OP (hermitian, integer, /* no-op */) DEFNCUNOP_METHOD (incr, integer, increment) DEFNCUNOP_METHOD (decr, integer, decrement) #if defined (DEFBINOP_OP) #undef DEFBINOP_OP #endif #define DEFBINOP_OP(name, t1, t2, op) \ static octave_value \ CONCAT2(oct_binop_, name) (const octave_base_value& a1, \ const octave_base_value& a2) \ { \ const octave_ ## t1& v1 = dynamic_cast (a1); \ const octave_ ## t2& v2 = dynamic_cast (a2); \ return octave_value \ (new octave_integer (v1.t1 ## _value () op v2.t2 ## _value ())); \ } // integer by integer ops. DEFBINOP_OP (add, integer, integer, +) DEFBINOP_OP (sub, integer, integer, -) DEFBINOP_OP (mul, integer, integer, *) DEFBINOP (div, integer, integer) { const octave_integer& v1 = dynamic_cast (a1); const octave_integer& v2 = dynamic_cast (a2); return new octave_integer (v1.integer_value () / v2.integer_value ()); } DEFBINOP (i_s_div, integer, scalar) { const octave_integer& v1 = dynamic_cast (a1); const octave_scalar& v2 = dynamic_cast (a2); return new octave_scalar (v1.double_value () / v2.double_value ()); } DEFBINOP (ldiv, integer, integer) { const octave_integer& v1 = dynamic_cast (a1); const octave_integer& v2 = dynamic_cast (a2); return new octave_integer (v2.integer_value () / v1.integer_value ()); } DEFBINOP_OP (lt, integer, integer, <) DEFBINOP_OP (le, integer, integer, <=) DEFBINOP_OP (eq, integer, integer, ==) DEFBINOP_OP (ge, integer, integer, >=) DEFBINOP_OP (gt, integer, integer, >) DEFBINOP_OP (ne, integer, integer, !=) DEFBINOP_OP (el_mul, integer, integer, !=) DEFBINOP (el_div, integer, integer) { const octave_integer& v1 = dynamic_cast (a1); const octave_integer& v2 = dynamic_cast (a2); return new octave_integer (v1.integer_value () / v2.integer_value ()); } DEFBINOP (el_ldiv, integer, integer) { const octave_integer& v1 = dynamic_cast (a1); const octave_integer& v2 = dynamic_cast (a2); return new octave_integer (v2.integer_value () / v1.integer_value ()); } DEFBINOP_OP (el_and, integer, integer, &&) DEFBINOP_OP (el_or, integer, integer, ||) DEFMETHOD_DLD (make_int, interp, args, , "int_val = make_int (val)\n\ \n\ Creates an integer variable from VAL.") { static bool type_loaded = false; if (! type_loaded) { octave_integer::register_type (); interp.mlock (); octave_stdout << "installing integer type at type-id = " << octave_integer::static_type_id () << "\n"; octave::type_info& ti = interp.get_type_info (); INSTALL_UNOP_TI (ti, op_not, octave_integer, gnot); INSTALL_UNOP_TI (ti, op_uminus, octave_integer, uminus); INSTALL_UNOP_TI (ti, op_transpose, octave_integer, transpose); INSTALL_UNOP_TI (ti, op_hermitian, octave_integer, hermitian); INSTALL_NCUNOP_TI (ti, op_incr, octave_integer, incr); INSTALL_NCUNOP_TI (ti, op_decr, octave_integer, decr); INSTALL_BINOP_TI (ti, op_add, octave_integer, octave_integer, add); INSTALL_BINOP_TI (ti, op_sub, octave_integer, octave_integer, sub); INSTALL_BINOP_TI (ti, op_mul, octave_integer, octave_integer, mul); INSTALL_BINOP_TI (ti, op_div, octave_integer, octave_integer, div); INSTALL_BINOP_TI (ti, op_ldiv, octave_integer, octave_integer, ldiv); INSTALL_BINOP_TI (ti, op_lt, octave_integer, octave_integer, lt); INSTALL_BINOP_TI (ti, op_le, octave_integer, octave_integer, le); INSTALL_BINOP_TI (ti, op_eq, octave_integer, octave_integer, eq); INSTALL_BINOP_TI (ti, op_ge, octave_integer, octave_integer, ge); INSTALL_BINOP_TI (ti, op_gt, octave_integer, octave_integer, gt); INSTALL_BINOP_TI (ti, op_ne, octave_integer, octave_integer, ne); INSTALL_BINOP_TI (ti, op_el_mul, octave_integer, octave_integer, el_mul); INSTALL_BINOP_TI (ti, op_el_div, octave_integer, octave_integer, el_div); INSTALL_BINOP_TI (ti, op_el_ldiv, octave_integer, octave_integer, el_ldiv); INSTALL_BINOP_TI (ti, op_el_and, octave_integer, octave_integer, el_and); INSTALL_BINOP_TI (ti, op_el_or, octave_integer, octave_integer, el_or); INSTALL_BINOP_TI (ti, op_div, octave_integer, octave_scalar, i_s_div); type_loaded = true; } octave_value retval; if (args.length () == 1) { double d = args(0).double_value (); retval = octave_value (new octave_integer (octave::math::nint (d))); } else print_usage (); return retval; } DEFUN_DLD (doit, args, , "doit (I)") { octave_value_list retval; if (args.length () != 1) { print_usage (); return retval; } if (args(0).type_id () == octave_integer::static_type_id ()) { // At this point, we know we have a handle for an octave_integer // object, so we can peek at the representation and extract the // data. const octave_base_value& rep = args(0).get_rep (); int my_value = ((const octave_integer&) rep) . integer_value (); message ("doit", "your lucky number is: %d", my_value); } else err_wrong_type_arg ("doit", args(0)); return retval; } DEFINE_OV_TYPEID_FUNCTIONS_AND_DATA (octave_integer, "integer", "integer");