//////////////////////////////////////////////////////////////////////// // // Copyright (C) 1995-2021 The Octave Project Developers // // See the file COPYRIGHT.md in the top-level directory of this // distribution or . // // This file is part of Octave. // // Octave is free software: you can redistribute it and/or modify it // under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // Octave is distributed in the hope that it will be useful, but // WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with Octave; see the file COPYING. If not, see // . // //////////////////////////////////////////////////////////////////////// #if defined (HAVE_CONFIG_H) # include "config.h" #endif #include "lo-regexp.h" #include "str-vec.h" #include "defun.h" #include "interpreter.h" #include "interpreter-private.h" #include "oct-map.h" #include "ov.h" #include "ov-fcn.h" #include "ov-fcn-handle.h" #include "ov-usr-fcn.h" #include "pager.h" #include "parse.h" #include "pt-eval.h" #include "stack-frame.h" #include "syminfo.h" #include "symrec.h" #include "symscope.h" #include "variables.h" namespace octave { class compiled_fcn_stack_frame : public stack_frame { public: compiled_fcn_stack_frame (void) = delete; compiled_fcn_stack_frame (tree_evaluator& tw, octave_function *fcn, std::size_t index, const std::shared_ptr& parent_link, const std::shared_ptr& static_link) : stack_frame (tw, index, parent_link, static_link, static_link->access_link ()), m_fcn (fcn) { } compiled_fcn_stack_frame (const compiled_fcn_stack_frame& elt) = default; compiled_fcn_stack_frame& operator = (const compiled_fcn_stack_frame& elt) = delete; ~compiled_fcn_stack_frame (void) = default; bool is_compiled_fcn_frame (void) const { return true; } symbol_scope get_scope (void) const { return m_static_link->get_scope (); } octave_function * function (void) const { return m_fcn; } symbol_record lookup_symbol (const std::string& name) const { return m_static_link->lookup_symbol (name); } symbol_record insert_symbol (const std::string& name) { return m_static_link->insert_symbol (name); } stack_frame::scope_flags scope_flag (const symbol_record& sym) const { // Look in closest stack frame that contains values (either the // top scope, or a user-defined function or script). return m_static_link->scope_flag (sym); } void set_auto_fcn_var (auto_var_type avt, const octave_value& val) { m_static_link->set_auto_fcn_var (avt, val); } octave_value get_auto_fcn_var (auto_var_type avt) const { return m_static_link->get_auto_fcn_var (avt); } // We only need to override one of each of these functions. The // using declaration will avoid warnings about partially-overloaded // virtual functions. using stack_frame::varval; using stack_frame::varref; octave_value varval (const symbol_record& sym) const { // Look in closest stack frame that contains values (either the // top scope, or a user-defined function or script). return m_static_link->varval (sym); } octave_value& varref (const symbol_record& sym) { // Look in closest stack frame that contains values (either the // top scope, or a user-defined function or script). return m_static_link->varref (sym); } void mark_scope (const symbol_record& sym, scope_flags flag) { // Look in closest stack frame that contains values (either the // top scope, or a user-defined function or script). m_static_link->mark_scope (sym, flag); } void display (bool follow = true) const; void accept (stack_frame_walker& sfw); private: // Compiled function object associated with this stack frame. // Should always be a built-in, .oct or .mex file function and // should always be valid. octave_function *m_fcn; }; // Scripts have a symbol_scope object to store the set of variables // in the script, but values for those variables are stored in the // stack frame corresponding to the nearest calling function or in // the top-level scope (the evaluation stack frame). // // Accessing values in a scope requires a mapping from the index of // the variable for the script scope to the list of values in the // evaluation frame(s). The frame offset tells us how many access // links we must follow to find the stack frame that holds the // value. The value offset is the index into the vector of values // in that stack frame that we should use to find the value. // // Frame and value offsets are set in this stack frame when it is // created using information from the script and enclosing scopes. // // If a script is invoked in a nested function context, the frame // offsets for individual values may be different. Some may be // accessed from the invoking function and some may come from a // parent function. class script_stack_frame : public stack_frame { public: script_stack_frame (void) = delete; script_stack_frame (tree_evaluator& tw, octave_user_script *script, std::size_t index, const std::shared_ptr& parent_link, const std::shared_ptr& static_link); script_stack_frame (const script_stack_frame& elt) = default; script_stack_frame& operator = (const script_stack_frame& elt) = delete; ~script_stack_frame (void) { delete m_unwind_protect_frame; } bool is_user_script_frame (void) const { return true; } static std::shared_ptr get_access_link (const std::shared_ptr& static_link); static std::size_t get_num_symbols (octave_user_script *script); void set_script_offsets (void); void set_script_offsets_internal (const std::map& symbols); void resize_and_update_script_offsets (const symbol_record& sym); symbol_scope get_scope (void) const { return m_script->scope (); } octave_function * function (void) const { return m_script; } unwind_protect * unwind_protect_frame (void); symbol_record lookup_symbol (const std::string& name) const; symbol_record insert_symbol (const std::string&); std::size_t size (void) const { return m_lexical_frame_offsets.size (); } void resize (std::size_t size) { m_lexical_frame_offsets.resize (size, 0); m_value_offsets.resize (size, 0); } void get_val_offsets_with_insert (const symbol_record& sym, std::size_t& frame_offset, std::size_t& data_offset); bool get_val_offsets_internal (const symbol_record& sym, std::size_t& frame_offset, std::size_t& data_offset) const; bool get_val_offsets (const symbol_record& sym, std::size_t& frame_offset, std::size_t& data_offset) const; scope_flags scope_flag (const symbol_record& sym) const; void set_auto_fcn_var (auto_var_type avt, const octave_value& val) { m_access_link->set_auto_fcn_var (avt, val); } octave_value get_auto_fcn_var (auto_var_type avt) const { return m_access_link->get_auto_fcn_var (avt); } // We only need to override one of each of these functions. The // using declaration will avoid warnings about partially-overloaded // virtual functions. using stack_frame::varval; using stack_frame::varref; octave_value varval (const symbol_record& sym) const; octave_value& varref (const symbol_record& sym); void mark_scope (const symbol_record& sym, scope_flags flag); void display (bool follow = true) const; void accept (stack_frame_walker& sfw); private: // Script object associated with this stack frame. Should always // be valid. octave_user_script *m_script; // The nearest unwind protect frame that was active when this // stack frame was created. Should always be valid. unwind_protect *m_unwind_protect_frame; // Mapping between the symbols in the symbol_scope object of the // script to the stack frame in which the script is executed. The // frame offsets may be greater than one if the script is executed // in a nested function context. std::vector m_lexical_frame_offsets; std::vector m_value_offsets; }; // Base class for values and offsets shared by user_fcn and scope // frames. class base_value_stack_frame : public stack_frame { public: base_value_stack_frame (void) = delete; base_value_stack_frame (tree_evaluator& tw, std::size_t num_symbols, std::size_t index, const std::shared_ptr& parent_link, const std::shared_ptr& static_link, const std::shared_ptr& access_link) : stack_frame (tw, index, parent_link, static_link, access_link), m_values (num_symbols, octave_value ()), m_flags (num_symbols, LOCAL), m_auto_vars (NUM_AUTO_VARS, octave_value ()) { } base_value_stack_frame (const base_value_stack_frame& elt) = default; base_value_stack_frame& operator = (const base_value_stack_frame& elt) = delete; ~base_value_stack_frame (void) = default; std::size_t size (void) const { return m_values.size (); } void resize (std::size_t size) { m_values.resize (size, octave_value ()); m_flags.resize (size, LOCAL); } stack_frame::scope_flags get_scope_flag (std::size_t data_offset) const { return m_flags.at (data_offset); } void set_scope_flag (std::size_t data_offset, scope_flags flag) { m_flags.at (data_offset) = flag; } octave_value get_auto_fcn_var (auto_var_type avt) const { return m_auto_vars.at (avt); } void set_auto_fcn_var (auto_var_type avt, const octave_value& val) { m_auto_vars.at (avt) = val; } // We only need to override one of each of these functions. The // using declaration will avoid warnings about partially-overloaded // virtual functions. using stack_frame::varval; using stack_frame::varref; octave_value varval (std::size_t data_offset) const { return m_values.at (data_offset); } octave_value& varref (std::size_t data_offset) { return m_values.at (data_offset); } void display (bool follow = true) const; protected: // Variable values. This array is indexed by the data_offset // value stored in the symbol_record objects of the scope // associated with this stack frame. std::vector m_values; // The type of each variable (local, global, persistent) of each // value. This array is indexed by the data_offset value stored // in the symbol_record objects of the scope associated with this // stack frame. Local values are found in the M_VALUES array. // Global values are stored in the tree_evaluator object that contains // the stack frame. Persistent values are stored in the function // scope corresponding to the stack frame. std::vector m_flags; // A fixed list of Automatic variables created for this function. // The elements of this vector correspond to the auto_var_type // enum. std::vector m_auto_vars; }; // User-defined functions have a symbol_scope object to store the set // of variables in the function and values are stored in the stack // frame corresponding to the invocation of the function or one of // its parents. The frame offset tells us how many access links we // must follow to find the stack frame that holds the value. The // value offset is the index into the vector of values in that stack // frame that we should use to find the value. // // Frame and value offsets are determined when the corresponding // function is parsed. class user_fcn_stack_frame : public base_value_stack_frame { public: user_fcn_stack_frame (void) = delete; user_fcn_stack_frame (tree_evaluator& tw, octave_user_function *fcn, std::size_t index, const std::shared_ptr& parent_link, const std::shared_ptr& static_link, const std::shared_ptr& access_link = std::shared_ptr ()) : base_value_stack_frame (tw, get_num_symbols (fcn), index, parent_link, static_link, (access_link ? access_link : get_access_link (fcn, static_link))), m_fcn (fcn), m_unwind_protect_frame (nullptr) { } user_fcn_stack_frame (tree_evaluator& tw, octave_user_function *fcn, std::size_t index, const std::shared_ptr& parent_link, const std::shared_ptr& static_link, const local_vars_map& local_vars, const std::shared_ptr& access_link = std::shared_ptr ()) : base_value_stack_frame (tw, get_num_symbols (fcn), index, parent_link, static_link, (access_link ? access_link : get_access_link (fcn, static_link))), m_fcn (fcn), m_unwind_protect_frame (nullptr) { // Initialize local variable values. for (const auto& nm_ov : local_vars) assign (nm_ov.first, nm_ov.second); } user_fcn_stack_frame (const user_fcn_stack_frame& elt) = default; user_fcn_stack_frame& operator = (const user_fcn_stack_frame& elt) = delete; ~user_fcn_stack_frame (void) { delete m_unwind_protect_frame; } bool is_user_fcn_frame (void) const { return true; } static std::shared_ptr get_access_link (octave_user_function *fcn, const std::shared_ptr& static_link); static std::size_t get_num_symbols (octave_user_function *fcn) { symbol_scope fcn_scope = fcn->scope (); return fcn_scope.num_symbols (); } void clear_values (void); symbol_scope get_scope (void) const { return m_fcn->scope (); } octave_function * function (void) const { return m_fcn; } unwind_protect * unwind_protect_frame (void); symbol_record lookup_symbol (const std::string& name) const; symbol_record insert_symbol (const std::string&); scope_flags scope_flag (const symbol_record& sym) const; // We only need to override one of each of these functions. The // using declaration will avoid warnings about partially-overloaded // virtual functions. using base_value_stack_frame::varval; using base_value_stack_frame::varref; octave_value varval (const symbol_record& sym) const; octave_value& varref (const symbol_record& sym); void mark_scope (const symbol_record& sym, scope_flags flag); void display (bool follow = true) const; void accept (stack_frame_walker& sfw); void break_closure_cycles (const std::shared_ptr& frame); private: // User-defined object associated with this stack frame. Should // always be valid. octave_user_function *m_fcn; // The nearest unwind protect frame that was active when this // stack frame was created. Should always be valid. unwind_protect *m_unwind_protect_frame; }; // Pure scope stack frames (primarily the top-level workspace) have // a set of variables and values are stored in the stack frame. All // variable accesses are direct as there are no parent stack frames. // // Value offsets are determined when the corresponding variable is // entered into the symbol_scope object corresponding to the frame. class scope_stack_frame : public base_value_stack_frame { public: scope_stack_frame (void) = delete; scope_stack_frame (tree_evaluator& tw, const symbol_scope& scope, std::size_t index, const std::shared_ptr& parent_link, const std::shared_ptr& static_link) : base_value_stack_frame (tw, scope.num_symbols (), index, parent_link, static_link, nullptr), m_scope (scope) { } scope_stack_frame (const scope_stack_frame& elt) = default; scope_stack_frame& operator = (const scope_stack_frame& elt) = delete; ~scope_stack_frame (void) = default; bool is_scope_frame (void) const { return true; } symbol_scope get_scope (void) const { return m_scope; } symbol_record lookup_symbol (const std::string& name) const { return m_scope.lookup_symbol (name); } symbol_record insert_symbol (const std::string&); scope_flags scope_flag (const symbol_record& sym) const; // We only need to override one of each of these functions. The // using declaration will avoid warnings about partially-overloaded // virtual functions. using base_value_stack_frame::varval; using base_value_stack_frame::varref; octave_value varval (const symbol_record& sym) const; octave_value& varref (const symbol_record& sym); void mark_scope (const symbol_record& sym, scope_flags flag); void display (bool follow = true) const; void accept (stack_frame_walker& sfw); private: // The scope object associated with this stack frame. symbol_scope m_scope; }; // FIXME: There should probably be a display method for the script, // fcn, and scope objects and the script and function objects should // be responsible for displaying the scopes they contain. static void display_scope (std::ostream& os, const symbol_scope& scope) { if (scope) { os << "scope: " << scope.name () << std::endl; if (scope.num_symbols () > 0) { os << "name (frame offset, data offset, storage class):" << std::endl; std::list symbols = scope.symbol_list (); for (auto& sym : symbols) { os << " " << sym.name () << " (" << sym.frame_offset () << ", " << sym.data_offset () << ", " << sym.storage_class () << ")" << std::endl; } } } } class stack_frame_walker { protected: stack_frame_walker (void) { } virtual ~stack_frame_walker (void) = default; public: // No copying! stack_frame_walker (const stack_frame_walker&) = delete; stack_frame_walker& operator = (const stack_frame_walker&) = delete; virtual void visit_compiled_fcn_stack_frame (compiled_fcn_stack_frame&) = 0; virtual void visit_script_stack_frame (script_stack_frame&) = 0; virtual void visit_user_fcn_stack_frame (user_fcn_stack_frame&) = 0; virtual void visit_scope_stack_frame (scope_stack_frame&) = 0; }; class symbol_cleaner : public stack_frame_walker { public: symbol_cleaner (const std::string& pattern, bool have_regexp = false) : stack_frame_walker (), m_patterns (pattern), m_clear_all_names (false), m_clear_objects (false), m_have_regexp (have_regexp), m_cleared_names () { } symbol_cleaner (const string_vector& patterns, bool have_regexp = false) : stack_frame_walker (), m_patterns (patterns), m_clear_all_names (false), m_clear_objects (false), m_have_regexp (have_regexp), m_cleared_names () { } symbol_cleaner (bool clear_all_names = true, bool clear_objects = false) : stack_frame_walker (), m_patterns (), m_clear_all_names (clear_all_names), m_clear_objects (clear_objects), m_have_regexp (false), m_cleared_names () { } symbol_cleaner (const symbol_cleaner&) = delete; symbol_cleaner& operator = (const symbol_cleaner&) = delete; ~symbol_cleaner (void) = default; void visit_compiled_fcn_stack_frame (compiled_fcn_stack_frame& frame) { // This one follows static link always. Hmm, should the access // link for a compiled_fcn_stack_frame be the same as the static // link? std::shared_ptr slink = frame.static_link (); if (slink) slink->accept (*this); } void visit_script_stack_frame (script_stack_frame& frame) { std::shared_ptr alink = frame.access_link (); if (alink) alink->accept (*this); } void visit_user_fcn_stack_frame (user_fcn_stack_frame& frame) { clean_frame (frame); std::shared_ptr alink = frame.access_link (); if (alink) alink->accept (*this); } void visit_scope_stack_frame (scope_stack_frame& frame) { clean_frame (frame); std::shared_ptr alink = frame.access_link (); if (alink) alink->accept (*this); } private: void maybe_clear_symbol (stack_frame& frame, const symbol_record& sym) { std::string name = sym.name (); if (m_cleared_names.find (name) == m_cleared_names.end ()) { // FIXME: Should we check that the name is defined and skip if // it is not? Is it possible for another symbol with the same // name to appear in a later stack frame? // FIXME: If we are clearing objects and a symbol is found, // should we add it to the list of cleared names (since // we did find a symbol) but skip clearing the object? if (m_clear_objects && ! frame.is_object (sym)) return; m_cleared_names.insert (name); frame.clear (sym); } } // FIXME: It would be nice to avoid the duplication in the following // function. void clear_symbols (stack_frame& frame, const std::list& symbols) { if (m_clear_all_names) { for (const auto& sym : symbols) maybe_clear_symbol (frame, sym); } else if (m_have_regexp) { octave_idx_type npatterns = m_patterns.numel (); for (octave_idx_type j = 0; j < npatterns; j++) { std::string pattern = m_patterns[j]; regexp pat (pattern); for (const auto& sym : symbols) { if (pat.is_match (sym.name ())) maybe_clear_symbol (frame, sym); } } } else { octave_idx_type npatterns = m_patterns.numel (); for (octave_idx_type j = 0; j < npatterns; j++) { std::string pattern = m_patterns[j]; glob_match pat (pattern); for (const auto& sym : symbols) { if (pat.match (sym.name ())) maybe_clear_symbol (frame, sym); } } } } void clean_frame (stack_frame& frame) { symbol_scope scope = frame.get_scope (); std::list symbols = scope.symbol_list (); if (m_clear_all_names || ! m_patterns.empty ()) clear_symbols (frame, symbols); } string_vector m_patterns; bool m_clear_all_names; bool m_clear_objects; bool m_have_regexp; std::set m_cleared_names; }; class symbol_info_accumulator : public stack_frame_walker { public: symbol_info_accumulator (const std::string& pattern, bool have_regexp = false) : stack_frame_walker (), m_patterns (pattern), m_match_all (false), m_first_only (false), m_have_regexp (have_regexp), m_sym_inf_list (), m_found_names () { } symbol_info_accumulator (const string_vector& patterns, bool have_regexp = false) : stack_frame_walker (), m_patterns (patterns), m_match_all (false), m_first_only (false), m_have_regexp (have_regexp), m_sym_inf_list (), m_found_names () { } symbol_info_accumulator (bool match_all = true, bool first_only = true) : stack_frame_walker (), m_patterns (), m_match_all (match_all), m_first_only (first_only), m_have_regexp (false), m_sym_inf_list (), m_found_names () { } symbol_info_accumulator (const symbol_info_accumulator&) = delete; symbol_info_accumulator& operator = (const symbol_info_accumulator&) = delete; ~symbol_info_accumulator (void) = default; bool is_empty (void) const { for (const auto& nm_sil : m_sym_inf_list) { const symbol_info_list& lst = nm_sil.second; if (! lst.empty ()) return false; } return true; } std::list names (void) const { std::list retval; for (const auto& nm_sil : m_sym_inf_list) { const symbol_info_list& lst = nm_sil.second; std::list nm_list = lst.names (); for (const auto& nm : nm_list) retval.push_back (nm); } return retval; } symbol_info_list symbol_info (void) const { symbol_info_list retval; for (const auto& nm_sil : m_sym_inf_list) { const symbol_info_list& lst = nm_sil.second; for (const auto& syminf : lst) retval.push_back (syminf); } return retval; } octave_map map_value (void) const { octave_map retval; // FIXME: is there a better way to concatenate structures? std::size_t n_frames = m_sym_inf_list.size (); OCTAVE_LOCAL_BUFFER (octave_map, map_list, n_frames); std::size_t j = 0; for (const auto& nm_sil : m_sym_inf_list) { std::string scope_name = nm_sil.first; const symbol_info_list& lst = nm_sil.second; map_list[j] = lst.map_value (scope_name, n_frames-j); j++; } return octave_map::cat (-1, n_frames, map_list); } void display (std::ostream& os, const std::string& format) const { for (const auto& nm_sil : m_sym_inf_list) { os << "\nvariables in scope: " << nm_sil.first << "\n\n"; const symbol_info_list& lst = nm_sil.second; lst.display (os, format); } } void visit_compiled_fcn_stack_frame (compiled_fcn_stack_frame& frame) { // This one follows static link always. Hmm, should the access // link for a compiled_fcn_stack_frame be the same as the static // link? std::shared_ptr slink = frame.static_link (); if (slink) slink->accept (*this); } void visit_script_stack_frame (script_stack_frame& frame) { std::shared_ptr alink = frame.access_link (); if (alink) alink->accept (*this); } void visit_user_fcn_stack_frame (user_fcn_stack_frame& frame) { append_list (frame); std::shared_ptr alink = frame.access_link (); if (alink) alink->accept (*this); } void visit_scope_stack_frame (scope_stack_frame& frame) { append_list (frame); std::shared_ptr alink = frame.access_link (); if (alink) alink->accept (*this); } private: typedef std::pair syminf_list_elt; // FIXME: the following is too complex and duplicates too much // code. Maybe it should be split up so we have separate classes // that do each job that is needed? std::list filter (stack_frame& frame, const std::list& symbols) { std::list new_symbols; if (m_match_all) { for (const auto& sym : symbols) { if (frame.is_defined (sym)) { std::string name = sym.name (); if (m_first_only && m_found_names.find (name) != m_found_names.end ()) continue; m_found_names.insert (name); new_symbols.push_back (sym); } } } else if (m_have_regexp) { octave_idx_type npatterns = m_patterns.numel (); for (octave_idx_type j = 0; j < npatterns; j++) { std::string pattern = m_patterns[j]; regexp pat (pattern); for (const auto& sym : symbols) { std::string name = sym.name (); if (pat.is_match (name) && frame.is_defined (sym)) { if (m_first_only && m_found_names.find (name) != m_found_names.end ()) continue; m_found_names.insert (name); new_symbols.push_back (sym); } } } } else { octave_idx_type npatterns = m_patterns.numel (); for (octave_idx_type j = 0; j < npatterns; j++) { std::string pattern = m_patterns[j]; glob_match pat (pattern); for (const auto& sym : symbols) { std::string name = sym.name (); if (pat.match (name) && frame.is_defined (sym)) { if (m_first_only && m_found_names.find (name) == m_found_names.end ()) continue; m_found_names.insert (name); new_symbols.push_back (sym); } } } } return new_symbols; } void append_list (stack_frame& frame) { symbol_scope scope = frame.get_scope (); std::list symbols = scope.symbol_list (); if (m_match_all || ! m_patterns.empty ()) symbols = filter (frame, symbols); symbol_info_list syminf_list = frame.make_symbol_info_list (symbols); m_sym_inf_list.push_back (syminf_list_elt (scope.name (), syminf_list)); } string_vector m_patterns; bool m_match_all; bool m_first_only; bool m_have_regexp; std::list> m_sym_inf_list; std::set m_found_names; }; stack_frame * stack_frame::create (tree_evaluator& tw, octave_function *fcn, std::size_t index, const std::shared_ptr& parent_link, const std::shared_ptr& static_link) { return new compiled_fcn_stack_frame (tw, fcn, index, parent_link, static_link); } stack_frame * stack_frame::create (tree_evaluator& tw, octave_user_script *script, std::size_t index, const std::shared_ptr& parent_link, const std::shared_ptr& static_link) { return new script_stack_frame (tw, script, index, parent_link, static_link); } stack_frame * stack_frame::create (tree_evaluator& tw, octave_user_function *fcn, std::size_t index, const std::shared_ptr& parent_link, const std::shared_ptr& static_link, const std::shared_ptr& access_link) { return new user_fcn_stack_frame (tw, fcn, index, parent_link, static_link, access_link); } stack_frame * stack_frame::create (tree_evaluator& tw, octave_user_function *fcn, std::size_t index, const std::shared_ptr& parent_link, const std::shared_ptr& static_link, const local_vars_map& local_vars, const std::shared_ptr& access_link) { return new user_fcn_stack_frame (tw, fcn, index, parent_link, static_link, local_vars, access_link); } stack_frame * stack_frame::create (tree_evaluator& tw, const symbol_scope& scope, std::size_t index, const std::shared_ptr& parent_link, const std::shared_ptr& static_link) { return new scope_stack_frame (tw, scope, index, parent_link, static_link); } // This function is only implemented and should only be called for // user_fcn stack frames. Anything else indicates an error in the // implementation, but we'll simply warn if that happens. void stack_frame::clear_values (void) { warning ("invalid call to stack_frame::clear_values; please report"); } symbol_info_list stack_frame::make_symbol_info_list (const std::list& symrec_list) const { symbol_info_list symbol_stats; for (const auto& sym : symrec_list) { octave_value value = varval (sym); if (value.is_defined ()) { symbol_info syminf (sym.name (), value, sym.is_formal (), is_global (sym), is_persistent (sym)); symbol_stats.append (syminf); } } return symbol_stats; } octave_value stack_frame::who (const string_vector& patterns, bool have_regexp, bool return_list, bool verbose, const std::string& whos_line_fmt, const std::string& msg) { symbol_info_accumulator sym_inf_accum (patterns, have_regexp); accept (sym_inf_accum); if (return_list) { if (verbose) return sym_inf_accum.map_value (); else return Cell (string_vector (sym_inf_accum.names ())); } else if (! sym_inf_accum.is_empty ()) { if (msg.empty ()) octave_stdout << "Variables visible from the current scope:\n"; else octave_stdout << msg; if (verbose) sym_inf_accum.display (octave_stdout, whos_line_fmt); else { octave_stdout << "\n"; string_vector names (sym_inf_accum.names ()); names.list_in_columns (octave_stdout); } octave_stdout << "\n"; } return octave_value (); } // Return first occurrence of variables in current stack frame and any // parent frames reachable through access links. symbol_info_list stack_frame::all_variables (void) { symbol_info_accumulator sia (true, true); accept (sia); return sia.symbol_info (); } octave_value stack_frame::workspace (void) { std::list ws_list; stack_frame *frame = this; while (frame) { octave::symbol_info_list symbols = frame->all_variables (); octave_scalar_map ws; for (const auto& sym_name : symbols.names ()) { octave_value val = symbols.varval (sym_name); if (val.is_defined ()) ws.assign (sym_name, val); } ws_list.push_back (ws); std::shared_ptr nxt = frame->access_link (); frame = nxt.get (); } Cell ws_frames (ws_list.size (), 1); octave_idx_type i = 0; for (const auto& elt : ws_list) ws_frames(i++) = elt; return ws_frames; } // FIXME: Should this function also find any variables in parent // scopes accessible through access_links? std::list stack_frame::variable_names (void) const { std::list retval; symbol_scope scope = get_scope (); const std::map& symbols = scope.symbols (); for (const auto& nm_sr : symbols) { if (is_variable (nm_sr.second)) retval.push_back (nm_sr.first); } retval.sort (); return retval; } symbol_info_list stack_frame::glob_symbol_info (const std::string& pattern) { symbol_info_accumulator sia (pattern, false); accept (sia); return sia.symbol_info (); } symbol_info_list stack_frame::regexp_symbol_info (const std::string& pattern) { symbol_info_accumulator sia (pattern, true); accept (sia); return sia.symbol_info (); } std::size_t stack_frame::size (void) const { // This function should only be called for user_fcn_stack_frame or // scope_stack_frame objects. Anything else indicates an error in // the implementation. panic_impossible (); } void stack_frame::resize (std::size_t) { // This function should only be called for user_fcn_stack_frame or // scope_stack_frame objects. Anything else indicates an error in // the implementation. panic_impossible (); } stack_frame::scope_flags stack_frame::get_scope_flag (std::size_t) const { // This function should only be called for user_fcn_stack_frame or // scope_stack_frame objects. Anything else indicates an error in // the implementation. panic_impossible (); } void stack_frame::set_scope_flag (std::size_t, scope_flags) { // This function should only be called for user_fcn_stack_frame or // scope_stack_frame objects. Anything else indicates an error in // the implementation. panic_impossible (); } void stack_frame::install_variable (const symbol_record& sym, const octave_value& value, bool global) { if (global && ! is_global (sym)) { octave_value val = varval (sym); if (val.is_defined ()) { std::string nm = sym.name (); warning_with_id ("Octave:global-local-conflict", "global: '%s' is defined in the current scope.\n", nm.c_str ()); warning_with_id ("Octave:global-local-conflict", "global: in a future version, global variables must be declared before use.\n"); // If the symbol is defined in the local but not the // global scope, then use the local value as the // initial value. This value will also override any // initializer in the global statement. octave_value global_val = m_evaluator.global_varval (nm); if (global_val.is_defined ()) { warning_with_id ("Octave:global-local-conflict", "global: global value overrides existing local value"); clear (sym); } else { warning_with_id ("Octave:global-local-conflict", "global: existing local value used to initialize global variable"); m_evaluator.global_varref (nm) = val; } } mark_global (sym); } if (value.is_defined ()) assign (sym, value); } octave_value stack_frame::varval (std::size_t) const { // This function should only be called for user_fcn_stack_frame or // scope_stack_frame objects. Anything else indicates an error in // the implementation. panic_impossible (); } octave_value& stack_frame::varref (std::size_t) { // This function should only be called for user_fcn_stack_frame or // scope_stack_frame objects. Anything else indicates an error in // the implementation. panic_impossible (); } void stack_frame::clear_objects (void) { symbol_cleaner sc (true, true); accept (sc); } void stack_frame::clear_variable (const std::string& name) { symbol_cleaner sc (name); accept (sc); } void stack_frame::clear_variable_pattern (const std::string& pattern) { symbol_cleaner sc (pattern); accept (sc); } void stack_frame::clear_variable_pattern (const string_vector& patterns) { symbol_cleaner sc (patterns); accept (sc); } void stack_frame::clear_variable_regexp (const std::string& pattern) { symbol_cleaner sc (pattern, true); accept (sc); } void stack_frame::clear_variable_regexp (const string_vector& patterns) { symbol_cleaner sc (patterns, true); accept (sc); } void stack_frame::clear_variables (void) { symbol_cleaner sc; accept (sc); } void stack_frame::display_stopped_in_message (std::ostream& os) const { if (index () == 0) os << "at top level" << std::endl; else { os << "stopped in " << fcn_name (); int l = line (); if (l > 0) os << " at line " << line (); os << " [" << fcn_file_name () << "] " << std::endl; } } void stack_frame::display (bool follow) const { std::ostream& os = octave_stdout; os << "-- [stack_frame] (" << this << ") --" << std::endl; os << "parent link: "; if (m_parent_link) os << m_parent_link.get (); else os << "NULL"; os << std::endl; os << "static link: "; if (m_static_link) os << m_static_link.get (); else os << "NULL"; os << std::endl; os << "access link: "; if (m_access_link) os << m_access_link.get (); else os << "NULL"; os << std::endl; os << "line: " << m_line << std::endl; os << "column: " << m_column << std::endl; os << "index: " << m_index << std::endl; os << std::endl; if (! follow) return; os << "FOLLOWING ACCESS LINKS:" << std::endl; std::shared_ptr frm = access_link (); while (frm) { frm->display (false); os << std::endl; frm = frm->access_link (); } } void compiled_fcn_stack_frame::display (bool follow) const { std::ostream& os = octave_stdout; os << "-- [compiled_fcn_stack_frame] (" << this << ") --" << std::endl; stack_frame::display (follow); os << "fcn: " << m_fcn->name () << " (" << m_fcn->type_name () << ")" << std::endl; } void compiled_fcn_stack_frame::accept (stack_frame_walker& sfw) { sfw.visit_compiled_fcn_stack_frame (*this); } script_stack_frame::script_stack_frame (tree_evaluator& tw, octave_user_script *script, std::size_t index, const std::shared_ptr& parent_link, const std::shared_ptr& static_link) : stack_frame (tw, index, parent_link, static_link, get_access_link (static_link)), m_script (script), m_unwind_protect_frame (nullptr), m_lexical_frame_offsets (get_num_symbols (script), 1), m_value_offsets (get_num_symbols (script), 0) { set_script_offsets (); } std::size_t script_stack_frame::get_num_symbols (octave_user_script *script) { symbol_scope script_scope = script->scope (); return script_scope.num_symbols (); } void script_stack_frame::set_script_offsets (void) { // Set frame and data offsets inside stack frame based on enclosing // scope(s). symbol_scope script_scope = m_script->scope (); std::size_t num_script_symbols = script_scope.num_symbols (); resize (num_script_symbols); const std::map& script_symbols = script_scope.symbols (); set_script_offsets_internal (script_symbols); } void script_stack_frame::set_script_offsets_internal (const std::map& script_symbols) { // This scope will be used to evaluate the script. Find (or // possibly insert) symbols from the dummy script scope here. symbol_scope eval_scope = m_access_link->get_scope (); if (eval_scope.is_nested ()) { bool found = false; for (const auto& nm_sr : script_symbols) { std::string name = nm_sr.first; symbol_record script_sr = nm_sr.second; symbol_scope parent_scope = eval_scope; std::size_t count = 1; while (parent_scope) { const std::map& parent_scope_symbols = parent_scope.symbols (); auto p = parent_scope_symbols.find (name); if (p != parent_scope_symbols.end ()) { found = true; symbol_record parent_scope_sr = p->second; std::size_t script_sr_data_offset = script_sr.data_offset (); m_lexical_frame_offsets.at (script_sr_data_offset) = parent_scope_sr.frame_offset () + count; m_value_offsets.at (script_sr_data_offset) = parent_scope_sr.data_offset (); break; } else { count++; parent_scope = parent_scope.parent_scope (); } } if (! found) error ("symbol '%s' cannot be added to static scope", name.c_str ()); } } else { const std::map& eval_scope_symbols = eval_scope.symbols (); for (const auto& nm_sr : script_symbols) { std::string name = nm_sr.first; symbol_record script_sr = nm_sr.second; auto p = eval_scope_symbols.find (name); symbol_record eval_scope_sr; if (p == eval_scope_symbols.end ()) eval_scope_sr = eval_scope.insert (name); else eval_scope_sr = p->second; std::size_t script_sr_data_offset = script_sr.data_offset (); // The +1 is for going from the script frame to the eval // frame. Only one access_link should need to be followed. m_lexical_frame_offsets.at (script_sr_data_offset) = eval_scope_sr.frame_offset () + 1; m_value_offsets.at (script_sr_data_offset) = eval_scope_sr.data_offset (); } } } void script_stack_frame::resize_and_update_script_offsets (const symbol_record& sym) { std::size_t data_offset = sym.data_offset (); // This function is called when adding new symbols to a script // scope. If the symbol wasn't present before, it should be outside // the range so we need to resize then update offsets. assert (data_offset >= size ()); resize (data_offset+1); // FIXME: We should be able to avoid creating the map object and the // looping in the set_scripts_offsets_internal function. Can we do // that without (or with minimal) code duplication? std::map tmp_symbols; tmp_symbols[sym.name ()] = sym; set_script_offsets_internal (tmp_symbols); } // If this is a nested scope, set access_link to nearest parent // stack frame that corresponds to the lexical parent of this scope. std::shared_ptr script_stack_frame::get_access_link (const std::shared_ptr& static_link) { // If this script is called from another script, set access // link to ultimate parent stack frame. std::shared_ptr alink = static_link; while (alink->is_user_script_frame ()) { if (alink->access_link ()) alink = alink->access_link (); else break; } return alink; } unwind_protect * script_stack_frame::unwind_protect_frame (void) { if (! m_unwind_protect_frame) m_unwind_protect_frame = new unwind_protect (); return m_unwind_protect_frame; } symbol_record script_stack_frame::lookup_symbol (const std::string& name) const { symbol_scope scope = get_scope (); symbol_record sym = scope.lookup_symbol (name); if (sym) { assert (sym.frame_offset () == 0); return sym; } sym = m_access_link->lookup_symbol (name); // Return symbol record with adjusted frame offset. symbol_record new_sym = sym.dup (); new_sym.set_frame_offset (sym.frame_offset () + 1); return new_sym; } symbol_record script_stack_frame::insert_symbol (const std::string& name) { // If the symbols is already in the immediate scope, there is // nothing more to do. symbol_scope scope = get_scope (); symbol_record sym = scope.lookup_symbol (name); if (sym) { // All symbol records in a script scope should have zero offset, // which means we redirect our lookup using // lexical_frame_offsets and values_offets. assert (sym.frame_offset () == 0); return sym; } // Insert the symbol in the current scope then resize and update // offsets. This operation should never fail. sym = scope.find_symbol (name); assert (sym); resize_and_update_script_offsets (sym); return sym; } // Similar to set_script_offsets_internal except that we only return // frame and data offsets for symbols found by name in parent scopes // instead of updating the offsets stored in the script frame itself. bool script_stack_frame::get_val_offsets_internal (const symbol_record& script_sr, std::size_t& frame_offset, std::size_t& data_offset) const { bool found = false; // This scope will be used to evaluate the script. Find symbols // here by name. symbol_scope eval_scope = m_access_link->get_scope (); if (eval_scope.is_nested ()) { std::string name = script_sr.name (); symbol_scope parent_scope = eval_scope; std::size_t count = 1; while (parent_scope) { const std::map& parent_scope_symbols = parent_scope.symbols (); auto p = parent_scope_symbols.find (name); if (p != parent_scope_symbols.end ()) { found = true; symbol_record parent_scope_sr = p->second; frame_offset = parent_scope_sr.frame_offset () + count; data_offset = parent_scope_sr.data_offset (); break; } else { count++; parent_scope = parent_scope.parent_scope (); } } } else { const std::map& eval_scope_symbols = eval_scope.symbols (); std::string name = script_sr.name (); auto p = eval_scope_symbols.find (name); symbol_record eval_scope_sr; if (p != eval_scope_symbols.end ()) { found = true; eval_scope_sr = p->second; // The +1 is for going from the script frame to the eval // frame. Only one access_link should need to be followed. frame_offset = eval_scope_sr.frame_offset () + 1; data_offset = eval_scope_sr.data_offset (); } } return found; } bool script_stack_frame::get_val_offsets (const symbol_record& sym, std::size_t& frame_offset, std::size_t& data_offset) const { data_offset = sym.data_offset (); frame_offset = sym.frame_offset (); if (frame_offset == 0) { // An out of range data_offset value here means that we have a // symbol that was not originally in the script. But this // function is called in places where we can't insert a new // symbol, so we fail and it is up to the caller to decide what // to do. if (data_offset >= size ()) return get_val_offsets_internal (sym, frame_offset, data_offset); // Use frame and value offsets stored in this stack frame, // indexed by data_offset from the symbol_record to find the // values. These offsets were determined by // script_stack_frame::set_script_offsets when this script was // invoked. frame_offset = m_lexical_frame_offsets.at (data_offset); if (frame_offset == 0) { // If the frame offset stored in m_lexical_frame_offsets is // zero, then the data offset in the evaluation scope has // not been determined so try to do that now. The symbol // may have been added by eval and without calling // resize_and_update_script_offsets. return get_val_offsets_internal (sym, frame_offset, data_offset); } data_offset = m_value_offsets.at (data_offset); } else { // If frame_offset is not zero, then then we must have a symbol // that was not originally in the script. The values should // have been determined by the script_stack_frame::lookup function. } return true; } void script_stack_frame::get_val_offsets_with_insert (const symbol_record& sym, std::size_t& frame_offset, std::size_t& data_offset) { data_offset = sym.data_offset (); frame_offset = sym.frame_offset (); if (frame_offset == 0) { if (data_offset >= size ()) { // If the data_offset is out of range, then we must have a // symbol that was not originally in the script. Resize and // update the offsets. resize_and_update_script_offsets (sym); } // Use frame and value offsets stored in this stack frame, // indexed by data_offset from the symbol_record to find the // values. These offsets were determined by // script_stack_frame::set_script_offsets when this script was // invoked. frame_offset = m_lexical_frame_offsets.at (data_offset); if (frame_offset == 0) { // If the frame offset stored in m_lexical_frame_offsets is // zero, then the data offset in the evaluation scope has // not been determined so try to do that now. The symbol // may have been added by eval and without calling // resize_and_update_script_offsets. // We don't need to resize here. That case is handled above. // FIXME: We should be able to avoid creating the map object // and the looping in the set_scripts_offsets_internal // function. Can we do that without (or with minimal) code // duplication? std::map tmp_symbols; tmp_symbols[sym.name ()] = sym; set_script_offsets_internal (tmp_symbols); // set_script_offsets_internal may have modified // m_lexical_frame_offsets and m_value_offsets. frame_offset = m_lexical_frame_offsets.at (data_offset); } data_offset = m_value_offsets.at (data_offset); } else { // If frame_offset is not zero, then then we must have a symbol // that was not originally in the script. The values were // determined by the script_stack_frame::lookup function. } } stack_frame::scope_flags script_stack_frame::scope_flag (const symbol_record& sym) const { std::size_t frame_offset; std::size_t data_offset; bool found = get_val_offsets (sym, frame_offset, data_offset); // It can't be global or persistent, so call it local. if (! found) return LOCAL; // Follow frame_offset access links to stack frame that holds // the value. const stack_frame *frame = this; for (std::size_t i = 0; i < frame_offset; i++) { std::shared_ptr nxt = frame->access_link (); frame = nxt.get (); } if (! frame) error ("internal error: invalid access link in function call stack"); if (data_offset >= frame->size ()) return LOCAL; return frame->get_scope_flag (data_offset); } octave_value script_stack_frame::varval (const symbol_record& sym) const { std::size_t frame_offset; std::size_t data_offset; bool found = get_val_offsets (sym, frame_offset, data_offset); if (! found) return octave_value (); // Follow frame_offset access links to stack frame that holds // the value. const stack_frame *frame = this; for (std::size_t i = 0; i < frame_offset; i++) { std::shared_ptr nxt = frame->access_link (); frame = nxt.get (); } if (! frame) error ("internal error: invalid access link in function call stack"); if (data_offset >= frame->size ()) return octave_value (); switch (frame->get_scope_flag (data_offset)) { case LOCAL: return frame->varval (data_offset); case PERSISTENT: { symbol_scope scope = frame->get_scope (); return scope.persistent_varval (data_offset); } case GLOBAL: return m_evaluator.global_varval (sym.name ()); } error ("internal error: invalid switch case"); } octave_value& script_stack_frame::varref (const symbol_record& sym) { std::size_t frame_offset; std::size_t data_offset; get_val_offsets_with_insert (sym, frame_offset, data_offset); // Follow frame_offset access links to stack frame that holds // the value. stack_frame *frame = this; for (std::size_t i = 0; i < frame_offset; i++) { std::shared_ptr nxt = frame->access_link (); frame = nxt.get (); } if (data_offset >= frame->size ()) frame->resize (data_offset+1); switch (frame->get_scope_flag (data_offset)) { case LOCAL: return frame->varref (data_offset); case PERSISTENT: { symbol_scope scope = frame->get_scope (); return scope.persistent_varref (data_offset); } case GLOBAL: return m_evaluator.global_varref (sym.name ()); } error ("internal error: invalid switch case"); } void script_stack_frame::mark_scope (const symbol_record& sym, scope_flags flag) { std::size_t data_offset = sym.data_offset (); if (data_offset >= size ()) resize_and_update_script_offsets (sym); // Redirection to evaluation context for the script. std::size_t frame_offset = m_lexical_frame_offsets.at (data_offset); data_offset = m_value_offsets.at (data_offset); if (frame_offset > 1) error ("variables must be made PERSISTENT or GLOBAL in the first scope in which they are used"); std::shared_ptr frame = access_link (); if (data_offset >= frame->size ()) frame->resize (data_offset+1); frame->set_scope_flag (data_offset, flag); } void script_stack_frame::display (bool follow) const { std::ostream& os = octave_stdout; os << "-- [script_stack_frame] (" << this << ") --" << std::endl; stack_frame::display (follow); os << "script: " << m_script->name () << " (" << m_script->type_name () << ")" << std::endl; os << "lexical_offsets: " << m_lexical_frame_offsets.size () << " elements:"; for (std::size_t i = 0; i < m_lexical_frame_offsets.size (); i++) os << " " << m_lexical_frame_offsets.at (i); os << std::endl; os << "value_offsets: " << m_value_offsets.size () << " elements:"; for (std::size_t i = 0; i < m_value_offsets.size (); i++) os << " " << m_value_offsets.at (i); os << std::endl; display_scope (os, get_scope ()); } void script_stack_frame::accept (stack_frame_walker& sfw) { sfw.visit_script_stack_frame (*this); } void base_value_stack_frame::display (bool follow) const { std::ostream& os = octave_stdout; os << "-- [base_value_stack_frame] (" << this << ") --" << std::endl; stack_frame::display (follow); os << "values: " << m_values.size () << " elements (idx, scope flag, type):" << std::endl; for (std::size_t i = 0; i < m_values.size (); i++) { os << " (" << i << ", " << m_flags.at (i) << ", "; octave_value val = varval (i); os << (val.is_defined () ? val.type_name () : " UNDEFINED") << ")" << std::endl; } } // If this is a nested scope, set access_link to nearest parent // stack frame that corresponds to the lexical parent of this scope. std::shared_ptr user_fcn_stack_frame::get_access_link (octave_user_function *fcn, const std::shared_ptr& static_link) { std::shared_ptr alink; symbol_scope fcn_scope = fcn->scope (); if (fcn_scope.is_nested ()) { if (! static_link) error ("internal call stack error (invalid static link)"); symbol_scope caller_scope = static_link->get_scope (); int nesting_depth = fcn_scope.nesting_depth (); int caller_nesting_depth = caller_scope.nesting_depth (); if (caller_nesting_depth < nesting_depth) { // FIXME: do we need to ensure that the called // function is a child of the caller? Does it hurt // to assert this condition, at least for now? alink = static_link; } else { // FIXME: do we need to check that the parent of the // called function is also a parent of the caller? // Does it hurt to assert this condition, at least // for now? int links_to_follow = caller_nesting_depth - nesting_depth + 1; alink = static_link; while (alink && --links_to_follow >= 0) alink = alink->access_link (); if (! alink) error ("internal function nesting error (invalid access link)"); } } return alink; } void user_fcn_stack_frame::clear_values (void) { symbol_scope fcn_scope = m_fcn->scope (); const std::list& symbols = fcn_scope.symbol_list (); if (size () == 0) return; for (const auto& sym : symbols) { std::size_t frame_offset = sym.frame_offset (); if (frame_offset > 0) continue; std::size_t data_offset = sym.data_offset (); if (data_offset >= size ()) continue; if (get_scope_flag (data_offset) == LOCAL) { octave_value& ref = m_values.at (data_offset); if (ref.get_count () == 1) { ref.call_object_destructor (); ref = octave_value (); } } } } unwind_protect * user_fcn_stack_frame::unwind_protect_frame (void) { if (! m_unwind_protect_frame) m_unwind_protect_frame = new unwind_protect (); return m_unwind_protect_frame; } symbol_record user_fcn_stack_frame::lookup_symbol (const std::string& name) const { const stack_frame *frame = this; while (frame) { symbol_scope scope = frame->get_scope (); symbol_record sym = scope.lookup_symbol (name); if (sym) return sym; std::shared_ptr nxt = frame->access_link (); frame = nxt.get (); } return symbol_record (); } symbol_record user_fcn_stack_frame::insert_symbol (const std::string& name) { // If the symbols is already in the immediate scope, there is // nothing more to do. symbol_scope scope = get_scope (); symbol_record sym = scope.lookup_symbol (name); if (sym) return sym; // FIXME: This needs some thought... We may need to add a symbol to // a static workspace, but the symbol can never be defined as a // variable. This currently works by tagging the added symbol as // "added_static". Aside from the bad name, this doesn't seem like // the best solution. Maybe scopes should have a separate set of // symbols that may only be defined as functions? // Insert the symbol in the current scope. This is not possible for // anonymous functions, nested functions, or functions that contain // nested functions (their scopes will all be marked static). // if (scope.is_static ()) // error ("can not add variable '%s' to a static workspace", // name.c_str ()); // At this point, non-local references are not possible so we only // need to look in the current scope and insert there. This // operation should never fail. sym = scope.find_symbol (name); assert (sym); return sym; } stack_frame::scope_flags user_fcn_stack_frame::scope_flag (const symbol_record& sym) const { std::size_t frame_offset = sym.frame_offset (); std::size_t data_offset = sym.data_offset (); // Follow frame_offset access links to stack frame that holds // the value. const stack_frame *frame = this; for (std::size_t i = 0; i < frame_offset; i++) { std::shared_ptr nxt = frame->access_link (); frame = nxt.get (); } if (! frame) error ("internal error: invalid access link in function call stack"); if (data_offset >= frame->size ()) return LOCAL; return frame->get_scope_flag (data_offset); } octave_value user_fcn_stack_frame::varval (const symbol_record& sym) const { std::size_t frame_offset = sym.frame_offset (); std::size_t data_offset = sym.data_offset (); // Follow frame_offset access links to stack frame that holds // the value. const stack_frame *frame = this; for (std::size_t i = 0; i < frame_offset; i++) { std::shared_ptr nxt = frame->access_link (); frame = nxt.get (); } if (! frame) error ("internal error: invalid access link in function call stack"); if (data_offset >= frame->size ()) return octave_value (); switch (frame->get_scope_flag (data_offset)) { case LOCAL: return frame->varval (data_offset); case PERSISTENT: { symbol_scope scope = frame->get_scope (); return scope.persistent_varval (data_offset); } case GLOBAL: return m_evaluator.global_varval (sym.name ()); } error ("internal error: invalid switch case"); } octave_value& user_fcn_stack_frame::varref (const symbol_record& sym) { std::size_t frame_offset = sym.frame_offset (); std::size_t data_offset = sym.data_offset (); // Follow frame_offset access links to stack frame that holds // the value. stack_frame *frame = this; for (std::size_t i = 0; i < frame_offset; i++) { std::shared_ptr nxt = frame->access_link (); frame = nxt.get (); } if (data_offset >= frame->size ()) frame->resize (data_offset+1); switch (frame->get_scope_flag (data_offset)) { case LOCAL: return frame->varref (data_offset); case PERSISTENT: { symbol_scope scope = frame->get_scope (); return scope.persistent_varref (data_offset); } case GLOBAL: return m_evaluator.global_varref (sym.name ()); } error ("internal error: invalid switch case"); } void user_fcn_stack_frame::mark_scope (const symbol_record& sym, scope_flags flag) { std::size_t frame_offset = sym.frame_offset (); if (frame_offset > 0 && (flag == PERSISTENT || flag == GLOBAL)) error ("variables must be made PERSISTENT or GLOBAL in the first scope in which they are used"); std::size_t data_offset = sym.data_offset (); if (data_offset >= size ()) resize (data_offset+1); set_scope_flag (data_offset, flag); } void user_fcn_stack_frame::display (bool follow) const { std::ostream& os = octave_stdout; os << "-- [user_fcn_stack_frame] (" << this << ") --" << std::endl; base_value_stack_frame::display (follow); os << "fcn: " << m_fcn->name () << " (" << m_fcn->type_name () << ")" << std::endl; display_scope (os, get_scope ()); } void user_fcn_stack_frame::accept (stack_frame_walker& sfw) { sfw.visit_user_fcn_stack_frame (*this); } void user_fcn_stack_frame::break_closure_cycles (const std::shared_ptr& frame) { for (auto& val : m_values) val.break_closure_cycles (frame); if (m_access_link) m_access_link->break_closure_cycles (frame); } symbol_record scope_stack_frame::insert_symbol (const std::string& name) { // There is no access link for scope frames, so there is no other // frame to search in and the offset must be zero. symbol_record sym = m_scope.lookup_symbol (name); if (sym) return sym; // If the symbol is not found, insert it. We only need to search in // the local scope object. This operation should never fail. sym = m_scope.find_symbol (name); assert (sym); return sym; } stack_frame::scope_flags scope_stack_frame::scope_flag (const symbol_record& sym) const { // There is no access link for scope frames, so the frame // offset must be zero. std::size_t data_offset = sym.data_offset (); if (data_offset >= size ()) return LOCAL; return get_scope_flag (data_offset); } octave_value scope_stack_frame::varval (const symbol_record& sym) const { // There is no access link for scope frames, so the frame // offset must be zero. std::size_t data_offset = sym.data_offset (); if (data_offset >= size ()) return octave_value (); switch (get_scope_flag (data_offset)) { case LOCAL: return m_values.at (data_offset); case PERSISTENT: return m_scope.persistent_varval (data_offset); case GLOBAL: return m_evaluator.global_varval (sym.name ()); } error ("internal error: invalid switch case"); } octave_value& scope_stack_frame::varref (const symbol_record& sym) { // There is no access link for scope frames, so the frame // offset must be zero. std::size_t data_offset = sym.data_offset (); if (data_offset >= size ()) resize (data_offset+1); switch (get_scope_flag (data_offset)) { case LOCAL: return m_values.at (data_offset); case PERSISTENT: return m_scope.persistent_varref (data_offset); case GLOBAL: return m_evaluator.global_varref (sym.name ()); } error ("internal error: invalid switch case"); } void scope_stack_frame::mark_scope (const symbol_record& sym, scope_flags flag) { // There is no access link for scope frames, so the frame // offset must be zero. std::size_t data_offset = sym.data_offset (); if (data_offset >= size ()) resize (data_offset+1); set_scope_flag (data_offset, flag); } void scope_stack_frame::display (bool follow) const { std::ostream& os = octave_stdout; os << "-- [scope_stack_frame] (" << this << ") --" << std::endl; base_value_stack_frame::display (follow); display_scope (os, m_scope); } void scope_stack_frame::accept (stack_frame_walker& sfw) { sfw.visit_scope_stack_frame (*this); } }