//////////////////////////////////////////////////////////////////////// // // Copyright (C) 1996-2021 The Octave Project Developers // // See the file COPYRIGHT.md in the top-level directory of this // distribution or . // // This file is part of Octave. // // Octave is free software: you can redistribute it and/or modify it // under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // Octave is distributed in the hope that it will be useful, but // WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with Octave; see the file COPYING. If not, see // . // //////////////////////////////////////////////////////////////////////// #if defined (HAVE_CONFIG_H) # include "config.h" #endif #include #include #include #include "Array-util.h" #include "f77-fcn.h" #include "fCNDArray.h" #include "lo-ieee.h" #include "lo-mappers.h" #include "mx-base.h" #include "mx-op-defs.h" #include "mx-fcnda-fs.h" #include "oct-fftw.h" #include "oct-locbuf.h" #include "bsxfun-defs.cc" FloatComplexNDArray::FloatComplexNDArray (const charNDArray& a) : MArray (a.dims ()) { octave_idx_type n = a.numel (); for (octave_idx_type i = 0; i < n; i++) xelem (i) = static_cast (a(i)); } #if defined (HAVE_FFTW) FloatComplexNDArray FloatComplexNDArray::fourier (int dim) const { dim_vector dv = dims (); if (dim > dv.ndims () || dim < 0) return FloatComplexNDArray (); octave_idx_type stride = 1; octave_idx_type n = dv(dim); for (int i = 0; i < dim; i++) stride *= dv(i); octave_idx_type howmany = numel () / dv(dim); howmany = (stride == 1 ? howmany : (howmany > stride ? stride : howmany)); octave_idx_type nloop = (stride == 1 ? 1 : numel () / dv(dim) / stride); octave_idx_type dist = (stride == 1 ? n : 1); const FloatComplex *in (fortran_vec ()); FloatComplexNDArray retval (dv); FloatComplex *out (retval.fortran_vec ()); // Need to be careful here about the distance between fft's for (octave_idx_type k = 0; k < nloop; k++) octave::fftw::fft (in + k * stride * n, out + k * stride * n, n, howmany, stride, dist); return retval; } FloatComplexNDArray FloatComplexNDArray::ifourier (int dim) const { dim_vector dv = dims (); if (dim > dv.ndims () || dim < 0) return FloatComplexNDArray (); octave_idx_type stride = 1; octave_idx_type n = dv(dim); for (int i = 0; i < dim; i++) stride *= dv(i); octave_idx_type howmany = numel () / dv(dim); howmany = (stride == 1 ? howmany : (howmany > stride ? stride : howmany)); octave_idx_type nloop = (stride == 1 ? 1 : numel () / dv(dim) / stride); octave_idx_type dist = (stride == 1 ? n : 1); const FloatComplex *in (fortran_vec ()); FloatComplexNDArray retval (dv); FloatComplex *out (retval.fortran_vec ()); // Need to be careful here about the distance between fft's for (octave_idx_type k = 0; k < nloop; k++) octave::fftw::ifft (in + k * stride * n, out + k * stride * n, n, howmany, stride, dist); return retval; } FloatComplexNDArray FloatComplexNDArray::fourier2d (void) const { dim_vector dv = dims (); if (dv.ndims () < 2) return FloatComplexNDArray (); dim_vector dv2 (dv(0), dv(1)); const FloatComplex *in = fortran_vec (); FloatComplexNDArray retval (dv); FloatComplex *out = retval.fortran_vec (); octave_idx_type howmany = numel () / dv(0) / dv(1); octave_idx_type dist = dv(0) * dv(1); for (octave_idx_type i=0; i < howmany; i++) octave::fftw::fftNd (in + i*dist, out + i*dist, 2, dv2); return retval; } FloatComplexNDArray FloatComplexNDArray::ifourier2d (void) const { dim_vector dv = dims (); if (dv.ndims () < 2) return FloatComplexNDArray (); dim_vector dv2 (dv(0), dv(1)); const FloatComplex *in = fortran_vec (); FloatComplexNDArray retval (dv); FloatComplex *out = retval.fortran_vec (); octave_idx_type howmany = numel () / dv(0) / dv(1); octave_idx_type dist = dv(0) * dv(1); for (octave_idx_type i=0; i < howmany; i++) octave::fftw::ifftNd (in + i*dist, out + i*dist, 2, dv2); return retval; } FloatComplexNDArray FloatComplexNDArray::fourierNd (void) const { dim_vector dv = dims (); int rank = dv.ndims (); const FloatComplex *in (fortran_vec ()); FloatComplexNDArray retval (dv); FloatComplex *out (retval.fortran_vec ()); octave::fftw::fftNd (in, out, rank, dv); return retval; } FloatComplexNDArray FloatComplexNDArray::ifourierNd (void) const { dim_vector dv = dims (); int rank = dv.ndims (); const FloatComplex *in (fortran_vec ()); FloatComplexNDArray retval (dv); FloatComplex *out (retval.fortran_vec ()); octave::fftw::ifftNd (in, out, rank, dv); return retval; } #else FloatComplexNDArray FloatComplexNDArray::fourier (int dim) const { octave_unused_parameter (dim); (*current_liboctave_error_handler) ("support for FFTW was unavailable or disabled when liboctave was built"); return FloatComplexNDArray (); } FloatComplexNDArray FloatComplexNDArray::ifourier (int dim) const { octave_unused_parameter (dim); (*current_liboctave_error_handler) ("support for FFTW was unavailable or disabled when liboctave was built"); return FloatComplexNDArray (); } FloatComplexNDArray FloatComplexNDArray::fourier2d (void) const { (*current_liboctave_error_handler) ("support for FFTW was unavailable or disabled when liboctave was built"); return FloatComplexNDArray (); } FloatComplexNDArray FloatComplexNDArray::ifourier2d (void) const { (*current_liboctave_error_handler) ("support for FFTW was unavailable or disabled when liboctave was built"); return FloatComplexNDArray (); } FloatComplexNDArray FloatComplexNDArray::fourierNd (void) const { (*current_liboctave_error_handler) ("support for FFTW was unavailable or disabled when liboctave was built"); return FloatComplexNDArray (); } FloatComplexNDArray FloatComplexNDArray::ifourierNd (void) const { (*current_liboctave_error_handler) ("support for FFTW was unavailable or disabled when liboctave was built"); return FloatComplexNDArray (); } #endif // unary operations boolNDArray FloatComplexNDArray::operator ! (void) const { if (any_element_is_nan ()) octave::err_nan_to_logical_conversion (); return do_mx_unary_op (*this, mx_inline_not); } // FIXME: this is not quite the right thing. bool FloatComplexNDArray::any_element_is_nan (void) const { return do_mx_check (*this, mx_inline_any_nan); } bool FloatComplexNDArray::any_element_is_inf_or_nan (void) const { return ! do_mx_check (*this, mx_inline_all_finite); } // Return true if no elements have imaginary components. bool FloatComplexNDArray::all_elements_are_real (void) const { return do_mx_check (*this, mx_inline_all_real); } // Return nonzero if any element of CM has a non-integer real or // imaginary part. Also extract the largest and smallest (real or // imaginary) values and return them in MAX_VAL and MIN_VAL. bool FloatComplexNDArray::all_integers (float& max_val, float& min_val) const { octave_idx_type nel = numel (); if (nel > 0) { FloatComplex val = elem (0); float r_val = val.real (); float i_val = val.imag (); max_val = r_val; min_val = r_val; if (i_val > max_val) max_val = i_val; if (i_val < max_val) min_val = i_val; } else return false; for (octave_idx_type i = 0; i < nel; i++) { FloatComplex val = elem (i); float r_val = val.real (); float i_val = val.imag (); if (r_val > max_val) max_val = r_val; if (i_val > max_val) max_val = i_val; if (r_val < min_val) min_val = r_val; if (i_val < min_val) min_val = i_val; if (octave::math::x_nint (r_val) != r_val || octave::math::x_nint (i_val) != i_val) return false; } return true; } bool FloatComplexNDArray::too_large_for_float (void) const { return false; } boolNDArray FloatComplexNDArray::all (int dim) const { return do_mx_red_op (*this, dim, mx_inline_all); } boolNDArray FloatComplexNDArray::any (int dim) const { return do_mx_red_op (*this, dim, mx_inline_any); } FloatComplexNDArray FloatComplexNDArray::cumprod (int dim) const { return do_mx_cum_op (*this, dim, mx_inline_cumprod); } FloatComplexNDArray FloatComplexNDArray::cumsum (int dim) const { return do_mx_cum_op (*this, dim, mx_inline_cumsum); } FloatComplexNDArray FloatComplexNDArray::prod (int dim) const { return do_mx_red_op (*this, dim, mx_inline_prod); } ComplexNDArray FloatComplexNDArray::dprod (int dim) const { return do_mx_red_op (*this, dim, mx_inline_dprod); } FloatComplexNDArray FloatComplexNDArray::sum (int dim) const { return do_mx_red_op (*this, dim, mx_inline_sum); } ComplexNDArray FloatComplexNDArray::dsum (int dim) const { return do_mx_red_op (*this, dim, mx_inline_dsum); } FloatComplexNDArray FloatComplexNDArray::sumsq (int dim) const { return do_mx_red_op (*this, dim, mx_inline_sumsq); } FloatComplexNDArray FloatComplexNDArray::diff (octave_idx_type order, int dim) const { return do_mx_diff_op (*this, dim, order, mx_inline_diff); } FloatComplexNDArray FloatComplexNDArray::concat (const FloatComplexNDArray& rb, const Array& ra_idx) { if (rb.numel () > 0) insert (rb, ra_idx); return *this; } FloatComplexNDArray FloatComplexNDArray::concat (const FloatNDArray& rb, const Array& ra_idx) { FloatComplexNDArray tmp (rb); if (rb.numel () > 0) insert (tmp, ra_idx); return *this; } FloatComplexNDArray concat (NDArray& ra, FloatComplexNDArray& rb, const Array& ra_idx) { FloatComplexNDArray retval (ra); if (rb.numel () > 0) retval.insert (rb, ra_idx); return retval; } static const FloatComplex FloatComplex_NaN_result (octave::numeric_limits::NaN (), octave::numeric_limits::NaN ()); FloatComplexNDArray FloatComplexNDArray::max (int dim) const { return do_mx_minmax_op (*this, dim, mx_inline_max); } FloatComplexNDArray FloatComplexNDArray::max (Array& idx_arg, int dim) const { return do_mx_minmax_op (*this, idx_arg, dim, mx_inline_max); } FloatComplexNDArray FloatComplexNDArray::min (int dim) const { return do_mx_minmax_op (*this, dim, mx_inline_min); } FloatComplexNDArray FloatComplexNDArray::min (Array& idx_arg, int dim) const { return do_mx_minmax_op (*this, idx_arg, dim, mx_inline_min); } FloatComplexNDArray FloatComplexNDArray::cummax (int dim) const { return do_mx_cumminmax_op (*this, dim, mx_inline_cummax); } FloatComplexNDArray FloatComplexNDArray::cummax (Array& idx_arg, int dim) const { return do_mx_cumminmax_op (*this, idx_arg, dim, mx_inline_cummax); } FloatComplexNDArray FloatComplexNDArray::cummin (int dim) const { return do_mx_cumminmax_op (*this, dim, mx_inline_cummin); } FloatComplexNDArray FloatComplexNDArray::cummin (Array& idx_arg, int dim) const { return do_mx_cumminmax_op (*this, idx_arg, dim, mx_inline_cummin); } FloatNDArray FloatComplexNDArray::abs (void) const { return do_mx_unary_map (*this); } boolNDArray FloatComplexNDArray::isnan (void) const { return do_mx_unary_map (*this); } boolNDArray FloatComplexNDArray::isinf (void) const { return do_mx_unary_map (*this); } boolNDArray FloatComplexNDArray::isfinite (void) const { return do_mx_unary_map (*this); } FloatComplexNDArray conj (const FloatComplexNDArray& a) { return do_mx_unary_map> (a); } FloatComplexNDArray& FloatComplexNDArray::insert (const NDArray& a, octave_idx_type r, octave_idx_type c) { dim_vector a_dv = a.dims (); int n = a_dv.ndims (); if (n == dimensions.ndims ()) { Array a_ra_idx (dim_vector (a_dv.ndims (), 1), 0); a_ra_idx.elem (0) = r; a_ra_idx.elem (1) = c; for (int i = 0; i < n; i++) { if (a_ra_idx(i) < 0 || (a_ra_idx(i) + a_dv(i)) > dimensions(i)) (*current_liboctave_error_handler) ("Array::insert: range error for insert"); } a_ra_idx.elem (0) = 0; a_ra_idx.elem (1) = 0; octave_idx_type n_elt = a.numel (); // IS make_unique () NECESSARY HERE? for (octave_idx_type i = 0; i < n_elt; i++) { Array ra_idx = a_ra_idx; ra_idx.elem (0) = a_ra_idx(0) + r; ra_idx.elem (1) = a_ra_idx(1) + c; elem (ra_idx) = a.elem (a_ra_idx); increment_index (a_ra_idx, a_dv); } } else (*current_liboctave_error_handler) ("Array::insert: invalid indexing operation"); return *this; } FloatComplexNDArray& FloatComplexNDArray::insert (const FloatComplexNDArray& a, octave_idx_type r, octave_idx_type c) { Array::insert (a, r, c); return *this; } FloatComplexNDArray& FloatComplexNDArray::insert (const FloatComplexNDArray& a, const Array& ra_idx) { Array::insert (a, ra_idx); return *this; } void FloatComplexNDArray::increment_index (Array& ra_idx, const dim_vector& dimensions, int start_dimension) { ::increment_index (ra_idx, dimensions, start_dimension); } octave_idx_type FloatComplexNDArray::compute_index (Array& ra_idx, const dim_vector& dimensions) { return ::compute_index (ra_idx, dimensions); } FloatComplexNDArray FloatComplexNDArray::diag (octave_idx_type k) const { return MArray::diag (k); } FloatComplexNDArray FloatComplexNDArray::diag (octave_idx_type m, octave_idx_type n) const { return MArray::diag (m, n); } // This contains no information on the array structure !!! std::ostream& operator << (std::ostream& os, const FloatComplexNDArray& a) { octave_idx_type nel = a.numel (); for (octave_idx_type i = 0; i < nel; i++) { os << ' '; octave_write_complex (os, a.elem (i)); os << "\n"; } return os; } std::istream& operator >> (std::istream& is, FloatComplexNDArray& a) { octave_idx_type nel = a.numel (); if (nel > 0) { FloatComplex tmp; for (octave_idx_type i = 0; i < nel; i++) { tmp = octave_read_value (is); if (is) a.elem (i) = tmp; else return is; } } return is; } MINMAX_FCNS (FloatComplexNDArray, FloatComplex) NDS_CMP_OPS (FloatComplexNDArray, FloatComplex) NDS_BOOL_OPS (FloatComplexNDArray, FloatComplex) SND_CMP_OPS (FloatComplex, FloatComplexNDArray) SND_BOOL_OPS (FloatComplex, FloatComplexNDArray) NDND_CMP_OPS (FloatComplexNDArray, FloatComplexNDArray) NDND_BOOL_OPS (FloatComplexNDArray, FloatComplexNDArray) FloatComplexNDArray& operator *= (FloatComplexNDArray& a, float s) { if (a.is_shared ()) a = a * s; else do_ms_inplace_op (a, s, mx_inline_mul2); return a; } FloatComplexNDArray& operator /= (FloatComplexNDArray& a, float s) { if (a.is_shared ()) a = a / s; else do_ms_inplace_op (a, s, mx_inline_div2); return a; } BSXFUN_STDOP_DEFS_MXLOOP (FloatComplexNDArray) BSXFUN_STDREL_DEFS_MXLOOP (FloatComplexNDArray) BSXFUN_OP_DEF_MXLOOP (pow, FloatComplexNDArray, mx_inline_pow)