######################################################################## ## ## Copyright (C) 2008-2021 The Octave Project Developers ## ## See the file COPYRIGHT.md in the top-level directory of this ## distribution or . ## ## This file is part of Octave. ## ## Octave is free software: you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation, either version 3 of the License, or ## (at your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## GNU General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## . ## ######################################################################## ## -*- texinfo -*- ## @deftypefn {} {@var{x} =} fminbnd (@var{fun}, @var{a}, @var{b}) ## @deftypefnx {} {@var{x} =} fminbnd (@var{fun}, @var{a}, @var{b}, @var{options}) ## @deftypefnx {} {[@var{x}, @var{fval}, @var{info}, @var{output}] =} fminbnd (@dots{}) ## Find a minimum point of a univariate function. ## ## @var{fun} is a function handle, inline function, or string containing the ## name of the function to evaluate. ## ## The starting interval is specified by @var{a} (left boundary) and @var{b} ## (right boundary). The endpoints must be finite. ## ## @var{options} is a structure specifying additional parameters which ## control the algorithm. Currently, @code{fminbnd} recognizes these options: ## @qcode{"Display"}, @qcode{"FunValCheck"}, @qcode{"MaxFunEvals"}, ## @qcode{"MaxIter"}, @qcode{"OutputFcn"}, @qcode{"TolX"}. ## ## @qcode{"MaxFunEvals"} proscribes the maximum number of function evaluations ## before optimization is halted. The default value is 500. ## The value must be a positive integer. ## ## @qcode{"MaxIter"} proscribes the maximum number of algorithm iterations ## before optimization is halted. The default value is 500. ## The value must be a positive integer. ## ## @qcode{"TolX"} specifies the termination tolerance for the solution @var{x}. ## The default is @code{1e-4}. ## ## For a description of the other options, see @ref{XREFoptimset,,optimset}. ## To initialize an options structure with default values for @code{fminbnd} ## use @code{options = optimset ("fminbnd")}. ## ## On exit, the function returns @var{x}, the approximate minimum point, and ## @var{fval}, the function evaluated @var{x}. ## ## The third output @var{info} reports whether the algorithm succeeded and may ## take one of the following values: ## ## @itemize ## @item 1 ## The algorithm converged to a solution. ## ## @item 0 ## Iteration limit (either @code{MaxIter} or @code{MaxFunEvals}) exceeded. ## ## @item -1 ## The algorithm was terminated by a user @code{OutputFcn}. ## @end itemize ## ## Programming Notes: The search for a minimum is restricted to be in the ## finite interval bound by @var{a} and @var{b}. If you have only one initial ## point to begin searching from then you will need to use an unconstrained ## minimization algorithm such as @code{fminunc} or @code{fminsearch}. ## @code{fminbnd} internally uses a Golden Section search strategy. ## @seealso{fzero, fminunc, fminsearch, optimset} ## @end deftypefn ## This is patterned after opt/fmin.f from Netlib, which in turn is taken from ## Richard Brent: Algorithms For Minimization Without Derivatives, ## Prentice-Hall (1973) ## PKG_ADD: ## Discard result to avoid polluting workspace with ans at startup. ## PKG_ADD: [~] = __all_opts__ ("fminbnd"); function [x, fval, info, output] = fminbnd (fun, a, b, options = struct ()) ## Get default options if requested. if (nargin == 1 && ischar (fun) && strcmp (fun, "defaults")) x = struct ("Display", "notify", "FunValCheck", "off", "MaxFunEvals", 500, "MaxIter", 500, "OutputFcn", [], "TolX", 1e-4); return; endif if (nargin < 2 || nargin > 4) print_usage (); endif if (a > b) error ("Octave:invalid-input-arg", "fminbnd: the lower bound cannot be greater than the upper one"); endif if (ischar (fun)) fun = str2func (fun); endif displ = optimget (options, "Display", "notify"); funvalchk = strcmpi (optimget (options, "FunValCheck", "off"), "on"); outfcn = optimget (options, "OutputFcn"); tolx = optimget (options, "TolX", 1e-4); maxiter = optimget (options, "MaxIter", 500); maxfev = optimget (options, "MaxFunEvals", 500); if (funvalchk) ## Replace fun with a guarded version. fun = @(x) guarded_eval (fun, x); endif ## The default exit flag if exceeded number of iterations. info = 0; niter = 0; nfev = 0; c = 0.5*(3 - sqrt (5)); v = a + c*(b-a); w = x = v; e = 0; fv = fw = fval = fun (x); nfev += 1; if (isa (a, "single") || isa (b, "single") || isa (fval, "single")) sqrteps = eps ("single"); else sqrteps = eps ("double"); endif ## Only for display purposes. iter(1).funccount = nfev; iter(1).x = x; iter(1).fx = fval; while (niter < maxiter && nfev < maxfev) xm = 0.5*(a+b); ## FIXME: the golden section search can actually get closer than sqrt(eps) ## sometimes. Sometimes not, it depends on the function. This is the ## strategy from the Netlib code. Something smarter would be good. tol = 2 * sqrteps * abs (x) + tolx / 3; if (abs (x - xm) <= (2*tol - 0.5*(b-a))) info = 1; break; endif if (abs (e) > tol) dogs = false; ## Try inverse parabolic step. iter(niter+1).procedure = "parabolic"; r = (x - w)*(fval - fv); q = (x - v)*(fval - fw); p = (x - v)*q - (x - w)*r; q = 2*(q - r); p *= -sign (q); q = abs (q); r = e; e = d; if (abs (p) < abs (0.5*q*r) && p > q*(a-x) && p < q*(b-x)) ## The parabolic step is acceptable. d = p / q; u = x + d; ## f must not be evaluated too close to ax or bx. if (min (u-a, b-u) < 2*tol) d = tol * (sign (xm - x) + (xm == x)); endif else dogs = true; endif else dogs = true; endif if (dogs) ## Default to golden section step. ## WARNING: This is also the "initial" procedure following MATLAB ## nomenclature. After the loop we'll fix the string for the first step. iter(niter+1).procedure = "golden"; e = ifelse (x >= xm, a - x, b - x); d = c * e; endif ## f must not be evaluated too close to x. u = x + max (abs (d), tol) * (sign (d) + (d == 0)); fu = fun (u); niter += 1; iter(niter).funccount = nfev++; iter(niter).x = u; iter(niter).fx = fu; ## update a, b, v, w, and x if (fu < fval) if (u < x) b = x; else a = x; endif v = w; fv = fw; w = x; fw = fval; x = u; fval = fu; else ## The following if-statement was originally executed even if fu == fval. if (u < x) a = u; else b = u; endif if (fu <= fw || w == x) v = w; fv = fw; w = u; fw = fu; elseif (fu <= fv || v == x || v == w) v = u; fv = fu; endif endif ## If there's an output function, use it now. if (! isempty (outfcn)) optv.funccount = nfev; optv.fval = fval; optv.iteration = niter; if (outfcn (x, optv, "iter")) info = -1; break; endif endif endwhile ## Fix the first step procedure. iter(1).procedure = "initial"; ## Handle the "Display" option switch (displ) case "iter" print_formatted_table (iter); print_exit_msg (info, struct ("TolX", tolx, "fx", fval)); case "notify" if (info == 0) print_exit_msg (info, struct ("fx",fval)); endif case "final" print_exit_msg (info, struct ("TolX", tolx, "fx", fval)); case "off" "skip"; otherwise warning ("fminbnd: unknown option for Display: '%s'", displ); endswitch output.iterations = niter; output.funcCount = nfev; output.algorithm = "golden section search, parabolic interpolation"; output.bracket = [a, b]; ## FIXME: bracketf possibly unavailable. endfunction ## A helper function that evaluates a function and checks for bad results. function fx = guarded_eval (fun, x) fx = fun (x); fx = fx(1); if (! isreal (fx)) error ("Octave:fmindbnd:notreal", "fminbnd: non-real value encountered"); elseif (isnan (fx)) error ("Octave:fmindbnd:isnan", "fminbnd: NaN value encountered"); endif endfunction ## A hack for printing a formatted table function print_formatted_table (table) printf ("\n Func-count x f(x) Procedure\n"); for row=table printf("%5.5s %7.7s %8.8s\t%s\n", int2str (row.funccount), num2str (row.x,"%.5f"), num2str (row.fx,"%.6f"), row.procedure); endfor printf ("\n"); endfunction ## Print either a success termination message or bad news function print_exit_msg (info, opt=struct()) printf (""); switch (info) case 1 printf ("Optimization terminated:\n"); printf (" the current x satisfies the termination criteria using OPTIONS.TolX of %e\n", opt.TolX); case 0 printf ("Exiting: Maximum number of iterations has been exceeded\n"); printf (" - increase MaxIter option.\n"); printf (" Current function value: %.6f\n", opt.fx); case -1 "FIXME"; # FIXME: what's the message MATLAB prints for this case? otherwise error ("fminbnd: internal error, info return code was %d", info); endswitch printf ("\n"); endfunction %!shared opt0 %! opt0 = optimset ("tolx", 0); %!assert (fminbnd (@cos, pi/2, 3*pi/2, opt0), pi, 10*sqrt (eps)) %!assert (fminbnd (@(x) (x - 1e-3)^4, -1, 1, opt0), 1e-3, 10e-3*sqrt (eps)) %!assert (fminbnd (@(x) abs (x-1e7), 0, 1e10, opt0), 1e7, 10e7*sqrt (eps)) %!assert (fminbnd (@(x) x^2 + sin (2*pi*x), 0.4, 1, opt0), fzero (@(x) 2*x + 2*pi*cos (2*pi*x), [0.4, 1], opt0), sqrt (eps)) %!assert (fminbnd (@(x) x > 0.3, 0, 1) < 0.3) %!assert (fminbnd (@(x) sin (x), 0, 0), 0, eps) %!error fminbnd (@(x) sin (x), 0, -pi)