Function: znchar Section: number_theoretical C-Name: znchar Prototype: G Help: znchar(D): given a datum D describing a group G = (Z/NZ)^* and a Dirichlet character chi, return the pair [G,chi]. Doc: Given a datum $D$ describing a group $(\Z/N\Z)^*$ and a Dirichlet character $\chi$, return the pair \kbd{[G, chi]}, where \kbd{G} is \kbd{znstar(N, 1)}) and \kbd{chi} is a GP character. The following possibilities for $D$ are supported \item a nonzero \typ{INT} congruent to $0,1$ modulo $4$, return the real character modulo $D$ given by the Kronecker symbol $(D/.)$; \item a \typ{INTMOD} \kbd{Mod(m, N)}, return the Conrey character modulo $N$ of index $m$ (see \kbd{znconreylog}). \item a modular form space as per \kbd{mfinit}$([N,k,\chi])$ or a modular form for such a space, return the underlying Dirichlet character $\chi$ (which may be defined modulo a divisor of $N$ but need not be primitive). In the remaining cases, \kbd{G} is initialized by \kbd{znstar(N, 1)}. \item a pair \kbd{[G, chi]}, where \kbd{chi} is a standard GP Dirichlet character $c = (c_j)$ on \kbd{G} (generic character \typ{VEC} or Conrey characters \typ{COL} or \typ{INT}); given generators $G = \oplus (\Z/d_j\Z) g_j$, $\chi(g_j) = e(c_j/d_j)$. \item a pair \kbd{[G, chin]}, where \kbd{chin} is a \emph{normalized} representation $[n, \tilde{c}]$ of the Dirichlet character $c$; $\chi(g_j) = e(\tilde{c}_j / n)$ where $n$ is minimal (order of $\chi$). \bprog ? [G,chi] = znchar(-3); ? G.cyc %2 = [2] ? chareval(G, chi, 2) %3 = 1/2 ? kronecker(-3,2) %4 = -1 ? znchartokronecker(G,chi) %5 = -3 ? mf = mfinit([28, 5/2, Mod(2,7)]); [f] = mfbasis(mf); ? [G,chi] = znchar(mf); [G.mod, chi] %7 = [7, [2]~] ? [G,chi] = znchar(f); chi %8 = [28, [0, 2]~] @eprog