/* Copyright (c) 2006, Michael Kazhdan and Matthew Bolitho All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. Neither the name of the Johns Hopkins University nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ template< class Real > template< int FEMDegree , BoundaryType BType> void Octree< Real >::_Evaluator< FEMDegree , BType >::set( LocalDepth depth ) { static const int LeftPointSupportRadius = BSplineSupportSizes< FEMDegree >::SupportEnd; static const int RightPointSupportRadius = -BSplineSupportSizes< FEMDegree >::SupportStart; BSplineEvaluationData< FEMDegree , BType >::SetEvaluator( evaluator , depth ); if( depth>0 ) BSplineEvaluationData< FEMDegree , BType >::SetChildEvaluator( childEvaluator , depth-1 ); int center = ( 1<>1; // First set the stencils for the current depth for( int x=-LeftPointSupportRadius ; x<=RightPointSupportRadius ; x++ ) for( int y=-LeftPointSupportRadius ; y<=RightPointSupportRadius ; y++ ) for( int z=-LeftPointSupportRadius ; z<=RightPointSupportRadius ; z++ ) { int fIdx[] = { center+x , center+y , center+z }; // The cell stencil { double vv[3] , dv[3]; for( int dd=0 ; dd( dv[0] * vv[1] * vv[2] , vv[0] * dv[1] * vv[2] , vv[0] * vv[1] * dv[2] ); } //// The face stencil for( int f=0 ; f<(int)Cube::FACES ; f++ ) { int dir , off; Cube::FactorFaceIndex( f , dir , off ); double vv[3] = {0.0, 0.0, 0.0}; double dv[3] = {0.0, 0.0, 0.0}; switch( dir ) { case 0: vv[0] = evaluator.cornerValue( fIdx[0] , center+off , false ); vv[1] = evaluator.centerValue( fIdx[1] , center , false ); vv[2] = evaluator.centerValue( fIdx[2] , center , false ); dv[0] = evaluator.cornerValue( fIdx[0] , center+off , true ); dv[1] = evaluator.centerValue( fIdx[1] , center , true ); dv[2] = evaluator.centerValue( fIdx[2] , center , true ); break; case 1: vv[0] = evaluator.centerValue( fIdx[0] , center , false ); vv[1] = evaluator.cornerValue( fIdx[1] , center+off , false ); vv[2] = evaluator.centerValue( fIdx[2] , center , false ); dv[0] = evaluator.centerValue( fIdx[0] , center , true ); dv[1] = evaluator.cornerValue( fIdx[1] , center+off , true ); dv[2] = evaluator.centerValue( fIdx[2] , center , true ); break; case 2: vv[0] = evaluator.centerValue( fIdx[0] , center , false ); vv[1] = evaluator.centerValue( fIdx[1] , center , false ); vv[2] = evaluator.cornerValue( fIdx[2] , center+off , false ); dv[0] = evaluator.centerValue( fIdx[0] , center , true ); dv[1] = evaluator.centerValue( fIdx[1] , center , true ); dv[2] = evaluator.cornerValue( fIdx[2] , center+off , true ); break; } faceStencil[f]( x+LeftPointSupportRadius , y+LeftPointSupportRadius , z+LeftPointSupportRadius ) = vv[0] * vv[1] * vv[2]; dFaceStencil[f]( x+LeftPointSupportRadius , y+LeftPointSupportRadius , z+LeftPointSupportRadius ) = Point3D< double >( dv[0] * vv[1] * vv[2] , vv[0] * dv[1] * vv[2] , vv[0] * vv[1] * dv[2] ); } //// The edge stencil for( int e=0 ; e<(int)Cube::EDGES ; e++ ) { int orientation , i1 , i2; Cube::FactorEdgeIndex( e , orientation , i1 , i2 ); double vv[3] = {0.0, 0.0, 0.0}; double dv[3] = {0.0, 0.0, 0.0}; switch( orientation ) { case 0: vv[0] = evaluator.centerValue( fIdx[0] , center , false ); vv[1] = evaluator.cornerValue( fIdx[1] , center+i1 , false ); vv[2] = evaluator.cornerValue( fIdx[2] , center+i2 , false ); dv[0] = evaluator.centerValue( fIdx[0] , center , true ); dv[1] = evaluator.cornerValue( fIdx[1] , center+i1 , true ); dv[2] = evaluator.cornerValue( fIdx[2] , center+i2 , true ); break; case 1: vv[0] = evaluator.cornerValue( fIdx[0] , center+i1 , false ); vv[1] = evaluator.centerValue( fIdx[1] , center , false ); vv[2] = evaluator.cornerValue( fIdx[2] , center+i2 , false ); dv[0] = evaluator.cornerValue( fIdx[0] , center+i1 , true ); dv[1] = evaluator.centerValue( fIdx[1] , center , true ); dv[2] = evaluator.cornerValue( fIdx[2] , center+i2 , true ); break; case 2: vv[0] = evaluator.cornerValue( fIdx[0] , center+i1 , false ); vv[1] = evaluator.cornerValue( fIdx[1] , center+i2 , false ); vv[2] = evaluator.centerValue( fIdx[2] , center , false ); dv[0] = evaluator.cornerValue( fIdx[0] , center+i1 , true ); dv[1] = evaluator.cornerValue( fIdx[1] , center+i2 , true ); dv[2] = evaluator.centerValue( fIdx[2] , center , true ); break; } edgeStencil[e]( x+LeftPointSupportRadius , y+LeftPointSupportRadius , z+LeftPointSupportRadius ) = vv[0] * vv[1] * vv[2]; dEdgeStencil[e]( x+LeftPointSupportRadius , y+LeftPointSupportRadius , z+LeftPointSupportRadius ) = Point3D< double >( dv[0] * vv[1] * vv[2] , vv[0] * dv[1] * vv[2] , vv[0] * vv[1] * dv[2] ); } //// The corner stencil for( int c=0 ; c<(int)Cube::CORNERS ; c++ ) { int cx , cy ,cz; Cube::FactorCornerIndex( c , cx , cy , cz ); double vv[3] , dv[3]; vv[0] = evaluator.cornerValue( fIdx[0] , center+cx , false ); vv[1] = evaluator.cornerValue( fIdx[1] , center+cy , false ); vv[2] = evaluator.cornerValue( fIdx[2] , center+cz , false ); dv[0] = evaluator.cornerValue( fIdx[0] , center+cx , true ); dv[1] = evaluator.cornerValue( fIdx[1] , center+cy , true ); dv[2] = evaluator.cornerValue( fIdx[2] , center+cz , true ); cornerStencil[c]( x+LeftPointSupportRadius , y+LeftPointSupportRadius , z+LeftPointSupportRadius ) = vv[0] * vv[1] * vv[2]; dCornerStencil[c]( x+LeftPointSupportRadius , y+LeftPointSupportRadius , z+LeftPointSupportRadius ) = Point3D< double >( dv[0] * vv[1] * vv[2] , vv[0] * dv[1] * vv[2] , vv[0] * vv[1] * dv[2] ); } } // Now set the stencils for the parents for( int child=0 ; child( dv[0] * vv[1] * vv[2] , vv[0] * dv[1] * vv[2] , vv[0] * vv[1] * dv[2] ); } //// The face stencil for( int f=0 ; f<(int)Cube::FACES ; f++ ) { int dir , off; Cube::FactorFaceIndex( f , dir , off ); double vv[3] = {0.0, 0.0, 0.0}; double dv[3] = {0.0, 0.0, 0.0}; switch( dir ) { case 0: vv[0] = childEvaluator.cornerValue( fIdx[0] , center+childX+off , false ); vv[1] = childEvaluator.centerValue( fIdx[1] , center+childY , false ); vv[2] = childEvaluator.centerValue( fIdx[2] , center+childZ , false ); dv[0] = childEvaluator.cornerValue( fIdx[0] , center+childX+off , true ); dv[1] = childEvaluator.centerValue( fIdx[1] , center+childY , true ); dv[2] = childEvaluator.centerValue( fIdx[2] , center+childZ , true ); break; case 1: vv[0] = childEvaluator.centerValue( fIdx[0] , center+childX , false ); vv[1] = childEvaluator.cornerValue( fIdx[1] , center+childY+off , false ); vv[2] = childEvaluator.centerValue( fIdx[2] , center+childZ , false ); dv[0] = childEvaluator.centerValue( fIdx[0] , center+childX , true ); dv[1] = childEvaluator.cornerValue( fIdx[1] , center+childY+off , true ); dv[2] = childEvaluator.centerValue( fIdx[2] , center+childZ , true ); break; case 2: vv[0] = childEvaluator.centerValue( fIdx[0] , center+childX , false ); vv[1] = childEvaluator.centerValue( fIdx[1] , center+childY , false ); vv[2] = childEvaluator.cornerValue( fIdx[2] , center+childZ+off , false ); dv[0] = childEvaluator.centerValue( fIdx[0] , center+childX , true ); dv[1] = childEvaluator.centerValue( fIdx[1] , center+childY , true ); dv[2] = childEvaluator.cornerValue( fIdx[2] , center+childZ+off , true ); break; } faceStencils[child][f]( x+LeftPointSupportRadius , y+LeftPointSupportRadius , z+LeftPointSupportRadius ) = vv[0] * vv[1] * vv[2]; dFaceStencils[child][f]( x+LeftPointSupportRadius , y+LeftPointSupportRadius , z+LeftPointSupportRadius ) = Point3D< double >( dv[0] * vv[1] * vv[2] , vv[0] * dv[1] * vv[2] , vv[0] * vv[1] * dv[2] ); } //// The edge stencil for( int e=0 ; e<(int)Cube::EDGES ; e++ ) { int orientation , i1 , i2; Cube::FactorEdgeIndex( e , orientation , i1 , i2 ); double vv[3] = {0.0, 0.0, 0.0}; double dv[3] = {0.0, 0.0, 0.0}; switch( orientation ) { case 0: vv[0] = childEvaluator.centerValue( fIdx[0] , center+childX , false ); vv[1] = childEvaluator.cornerValue( fIdx[1] , center+childY+i1 , false ); vv[2] = childEvaluator.cornerValue( fIdx[2] , center+childZ+i2 , false ); dv[0] = childEvaluator.centerValue( fIdx[0] , center+childX , true ); dv[1] = childEvaluator.cornerValue( fIdx[1] , center+childY+i1 , true ); dv[2] = childEvaluator.cornerValue( fIdx[2] , center+childZ+i2 , true ); break; case 1: vv[0] = childEvaluator.cornerValue( fIdx[0] , center+childX+i1 , false ); vv[1] = childEvaluator.centerValue( fIdx[1] , center+childY , false ); vv[2] = childEvaluator.cornerValue( fIdx[2] , center+childZ+i2 , false ); dv[0] = childEvaluator.cornerValue( fIdx[0] , center+childX+i1 , true ); dv[1] = childEvaluator.centerValue( fIdx[1] , center+childY , true ); dv[2] = childEvaluator.cornerValue( fIdx[2] , center+childZ+i2 , true ); break; case 2: vv[0] = childEvaluator.cornerValue( fIdx[0] , center+childX+i1 , false ); vv[1] = childEvaluator.cornerValue( fIdx[1] , center+childY+i2 , false ); vv[2] = childEvaluator.centerValue( fIdx[2] , center+childZ , false ); dv[0] = childEvaluator.cornerValue( fIdx[0] , center+childX+i1 , true ); dv[1] = childEvaluator.cornerValue( fIdx[1] , center+childY+i2 , true ); dv[2] = childEvaluator.centerValue( fIdx[2] , center+childZ , true ); break; } edgeStencils[child][e]( x+LeftPointSupportRadius , y+LeftPointSupportRadius , z+LeftPointSupportRadius ) = vv[0] * vv[1] * vv[2]; dEdgeStencils[child][e]( x+LeftPointSupportRadius , y+LeftPointSupportRadius , z+LeftPointSupportRadius ) = Point3D< double >( dv[0] * vv[1] * vv[2] , vv[0] * dv[1] * vv[2] , vv[0] * vv[1] * dv[2] ); } //// The corner stencil for( int c=0 ; c<(int)Cube::CORNERS ; c++ ) { int cx , cy ,cz; Cube::FactorCornerIndex( c , cx , cy , cz ); double vv[3] , dv[3]; vv[0] = childEvaluator.cornerValue( fIdx[0] , center+childX+cx , false ); vv[1] = childEvaluator.cornerValue( fIdx[1] , center+childY+cy , false ); vv[2] = childEvaluator.cornerValue( fIdx[2] , center+childZ+cz , false ); dv[0] = childEvaluator.cornerValue( fIdx[0] , center+childX+cx , true ); dv[1] = childEvaluator.cornerValue( fIdx[1] , center+childY+cy , true ); dv[2] = childEvaluator.cornerValue( fIdx[2] , center+childZ+cz , true ); cornerStencils[child][c]( x+LeftPointSupportRadius , y+LeftPointSupportRadius , z+LeftPointSupportRadius ) = vv[0] * vv[1] * vv[2]; dCornerStencils[child][c]( x+LeftPointSupportRadius , y+LeftPointSupportRadius , z+LeftPointSupportRadius ) = Point3D< double >( dv[0] * vv[1] * vv[2] , vv[0] * dv[1] * vv[2] , vv[0] * vv[1] * dv[2] ); } } } if( _bsData ) delete _bsData; _bsData = new BSplineData< FEMDegree , BType >( depth ); } template< class Real > template< class V , int FEMDegree , BoundaryType BType > V Octree< Real >::_getValue( const ConstPointSupportKey< FEMDegree >& neighborKey , const TreeOctNode* node , Point3D< Real > p , const DenseNodeData< V >& solution , const DenseNodeData< V >& coarseSolution , const _Evaluator< FEMDegree , BType >& evaluator ) const { static const int SupportSize = BSplineSupportSizes< FEMDegree >::SupportSize; static const int LeftSupportRadius = -BSplineSupportSizes< FEMDegree >::SupportStart; static const int RightSupportRadius = BSplineSupportSizes< FEMDegree >::SupportEnd; static const int LeftPointSupportRadius = BSplineSupportSizes< FEMDegree >::SupportEnd; static const int RightPointSupportRadius = - BSplineSupportSizes< FEMDegree >::SupportStart; if( IsActiveNode( node->children ) ) fprintf( stderr , "[WARNING] getValue assumes leaf node\n" ); V value(0); while( GetGhostFlag( node ) ) { const typename TreeOctNode::ConstNeighbors< SupportSize >& neighbors = _neighbors< LeftPointSupportRadius , RightPointSupportRadius >( neighborKey , node ); for( int i=0 ; i _s ; Real _w; _startAndWidth( _n , _s , _w ); int _fIdx[3]; functionIndex< FEMDegree , BType >( _n , _fIdx ); for( int dd=0 ; dd<3 ; dd++ ) _pIdx[dd] = std::max< int >( 0 , std::min< int >( SupportSize-1 , LeftSupportRadius + (int)floor( ( p[dd]-_s[dd] ) / _w ) ) ); value += solution[ _n->nodeData.nodeIndex ] * (Real) ( evaluator._bsData->baseBSplines[ _fIdx[0] ][ _pIdx[0] ]( p[0] ) * evaluator._bsData->baseBSplines[ _fIdx[1] ][ _pIdx[1] ]( p[1] ) * evaluator._bsData->baseBSplines[ _fIdx[2] ][ _pIdx[2] ]( p[2] ) ); } } node = node->parent; } LocalDepth d = _localDepth( node ); for( int dd=0 ; dd<3 ; dd++ ) if ( p[dd]==0 ) p[dd] = (Real)(0.+1e-6); else { if( p[dd]==1 ) p[dd] = (Real)(1.-1e-6); } { const typename TreeOctNode::ConstNeighbors< SupportSize >& neighbors = _neighbors< LeftPointSupportRadius , RightPointSupportRadius >( neighborKey , node ); for( int i=0 ; i _s ; Real _w; _startAndWidth( _n , _s , _w ); int _fIdx[3]; functionIndex< FEMDegree , BType >( _n , _fIdx ); for( int dd=0 ; dd<3 ; dd++ ) _pIdx[dd] = std::max< int >( 0 , std::min< int >( SupportSize-1 , LeftSupportRadius + (int)floor( ( p[dd]-_s[dd] ) / _w ) ) ); value += solution[ _n->nodeData.nodeIndex ] * (Real) ( evaluator._bsData->baseBSplines[ _fIdx[0] ][ _pIdx[0] ]( p[0] ) * evaluator._bsData->baseBSplines[ _fIdx[1] ][ _pIdx[1] ]( p[1] ) * evaluator._bsData->baseBSplines[ _fIdx[2] ][ _pIdx[2] ]( p[2] ) ); } } if( d>0 ) { const typename TreeOctNode::ConstNeighbors< SupportSize >& neighbors = _neighbors< LeftPointSupportRadius , RightPointSupportRadius >( neighborKey , node->parent ); for( int i=0 ; i _s ; Real _w; _startAndWidth( _n , _s , _w ); int _fIdx[3]; functionIndex< FEMDegree , BType >( _n , _fIdx ); for( int dd=0 ; dd<3 ; dd++ ) _pIdx[dd] = std::max< int >( 0 , std::min< int >( SupportSize-1 , LeftSupportRadius + (int)floor( ( p[dd]-_s[dd] ) / _w ) ) ); value += coarseSolution[ _n->nodeData.nodeIndex ] * (Real) ( evaluator._bsData->baseBSplines[ _fIdx[0] ][ _pIdx[0] ]( p[0] ) * evaluator._bsData->baseBSplines[ _fIdx[1] ][ _pIdx[1] ]( p[1] ) * evaluator._bsData->baseBSplines[ _fIdx[2] ][ _pIdx[2] ]( p[2] ) ); } } } } return value; } template< class Real > template< int FEMDegree , BoundaryType BType > std::pair< Real , Point3D< Real > > Octree< Real >::_getValueAndGradient( const ConstPointSupportKey< FEMDegree >& neighborKey , const TreeOctNode* node , Point3D< Real > p , const DenseNodeData< Real >& solution , const DenseNodeData< Real >& coarseSolution , const _Evaluator< FEMDegree , BType >& evaluator ) const { static const int SupportSize = BSplineSupportSizes< FEMDegree >::SupportSize; static const int LeftSupportRadius = -BSplineSupportSizes< FEMDegree >::SupportStart; static const int RightSupportRadius = BSplineSupportSizes< FEMDegree >::SupportEnd; static const int LeftPointSupportRadius = BSplineSupportSizes< FEMDegree >::SupportEnd; static const int RightPointSupportRadius = - BSplineSupportSizes< FEMDegree >::SupportStart; if( IsActiveNode( node->children ) ) fprintf( stderr , "[WARNING] _getValueAndGradient assumes leaf node\n" ); Real value(0); Point3D< Real > gradient; while( GetGhostFlag( node ) ) { const typename TreeOctNode::ConstNeighbors< SupportSize >& neighbors = _neighbors< LeftPointSupportRadius , RightPointSupportRadius >( neighborKey , node ); for( int i=0 ; i _s; Real _w; _startAndWidth( _n , _s , _w ); int _fIdx[3]; functionIndex< FEMDegree , BType >( _n , _fIdx ); for( int dd=0 ; dd<3 ; dd++ ) _pIdx[dd] = std::max< int >( 0 , std::min< int >( SupportSize-1 , LeftSupportRadius + (int)floor( ( p[dd]-_s[dd] ) / _w ) ) ); value += solution[ _n->nodeData.nodeIndex ] * (Real) ( evaluator._bsData->baseBSplines[ _fIdx[0] ][ _pIdx[0] ]( p[0] ) * evaluator._bsData->baseBSplines[ _fIdx[1] ][ _pIdx[1] ]( p[1] ) * evaluator._bsData->baseBSplines[ _fIdx[2] ][ _pIdx[2] ]( p[2] ) ); gradient += Point3D< Real > ( evaluator._bsData->dBaseBSplines[ _fIdx[0] ][ _pIdx[0] ]( p[0] ) * evaluator._bsData-> baseBSplines[ _fIdx[1] ][ _pIdx[1] ]( p[1] ) * evaluator._bsData-> baseBSplines[ _fIdx[2] ][ _pIdx[2] ]( p[2] ) , evaluator._bsData-> baseBSplines[ _fIdx[0] ][ _pIdx[0] ]( p[0] ) * evaluator._bsData->dBaseBSplines[ _fIdx[1] ][ _pIdx[1] ]( p[1] ) * evaluator._bsData-> baseBSplines[ _fIdx[2] ][ _pIdx[2] ]( p[2] ) , evaluator._bsData-> baseBSplines[ _fIdx[0] ][ _pIdx[0] ]( p[0] ) * evaluator._bsData-> baseBSplines[ _fIdx[1] ][ _pIdx[1] ]( p[1] ) * evaluator._bsData->dBaseBSplines[ _fIdx[2] ][ _pIdx[2] ]( p[2] ) ) * solution[ _n->nodeData.nodeIndex ]; } } node = node->parent; } LocalDepth d = _localDepth( node ); for( int dd=0 ; dd<3 ; dd++ ) { if ( p[dd]==0 ) p[dd] = (Real)(0.+1e-6); else if( p[dd]==1 ) p[dd] = (Real)(1.-1e-6); { const typename TreeOctNode::ConstNeighbors< SupportSize >& neighbors = _neighbors< LeftPointSupportRadius , RightPointSupportRadius >( neighborKey , node ); for( int i=0 ; i _s ; Real _w; _startAndWidth( _n , _s , _w ); int _fIdx[3]; functionIndex< FEMDegree , BType >( _n , _fIdx ); for( int dd=0 ; dd<3 ; dd++ ) _pIdx[dd] = std::max< int >( 0 , std::min< int >( SupportSize-1 , LeftSupportRadius + (int)floor( ( p[dd]-_s[dd] ) / _w ) ) ); value += solution[ _n->nodeData.nodeIndex ] * (Real) ( evaluator._bsData->baseBSplines[ _fIdx[0] ][ _pIdx[0] ]( p[0] ) * evaluator._bsData->baseBSplines[ _fIdx[1] ][ _pIdx[1] ]( p[1] ) * evaluator._bsData->baseBSplines[ _fIdx[2] ][ _pIdx[2] ]( p[2] ) ); gradient += Point3D< Real > ( evaluator._bsData->dBaseBSplines[ _fIdx[0] ][ _pIdx[0] ]( p[0] ) * evaluator._bsData-> baseBSplines[ _fIdx[1] ][ _pIdx[1] ]( p[1] ) * evaluator._bsData-> baseBSplines[ _fIdx[2] ][ _pIdx[2] ]( p[2] ) , evaluator._bsData-> baseBSplines[ _fIdx[0] ][ _pIdx[0] ]( p[0] ) * evaluator._bsData->dBaseBSplines[ _fIdx[1] ][ _pIdx[1] ]( p[1] ) * evaluator._bsData-> baseBSplines[ _fIdx[2] ][ _pIdx[2] ]( p[2] ) , evaluator._bsData-> baseBSplines[ _fIdx[0] ][ _pIdx[0] ]( p[0] ) * evaluator._bsData-> baseBSplines[ _fIdx[1] ][ _pIdx[1] ]( p[1] ) * evaluator._bsData->dBaseBSplines[ _fIdx[2] ][ _pIdx[2] ]( p[2] ) ) * solution[ _n->nodeData.nodeIndex ]; } } if( d>0 ) { const typename TreeOctNode::ConstNeighbors< SupportSize >& neighbors = _neighbors< LeftPointSupportRadius , RightPointSupportRadius >( neighborKey , node->parent ); for( int i=0 ; i _s ; Real _w; _startAndWidth( _n , _s , _w ); int _fIdx[3]; functionIndex< FEMDegree , BType >( _n , _fIdx ); for( int dd=0 ; dd<3 ; dd++ ) _pIdx[dd] = std::max< int >( 0 , std::min< int >( SupportSize-1 , LeftSupportRadius + (int)floor( ( p[dd]-_s[dd] ) / _w ) ) ); value += coarseSolution[ _n->nodeData.nodeIndex ] * (Real) ( evaluator._bsData->baseBSplines[ _fIdx[0] ][ _pIdx[0] ]( p[0] ) * evaluator._bsData->baseBSplines[ _fIdx[1] ][ _pIdx[1] ]( p[1] ) * evaluator._bsData->baseBSplines[ _fIdx[2] ][ _pIdx[2] ]( p[2] ) ); gradient += Point3D< Real > ( evaluator._bsData->dBaseBSplines[ _fIdx[0] ][ _pIdx[0] ]( p[0] ) * evaluator._bsData-> baseBSplines[ _fIdx[1] ][ _pIdx[1] ]( p[1] ) * evaluator._bsData-> baseBSplines[ _fIdx[2] ][ _pIdx[2] ]( p[2] ) , evaluator._bsData-> baseBSplines[ _fIdx[0] ][ _pIdx[0] ]( p[0] ) * evaluator._bsData->dBaseBSplines[ _fIdx[1] ][ _pIdx[1] ]( p[1] ) * evaluator._bsData-> baseBSplines[ _fIdx[2] ][ _pIdx[2] ]( p[2] ) , evaluator._bsData-> baseBSplines[ _fIdx[0] ][ _pIdx[0] ]( p[0] ) * evaluator._bsData-> baseBSplines[ _fIdx[1] ][ _pIdx[1] ]( p[1] ) * evaluator._bsData->dBaseBSplines[ _fIdx[2] ][ _pIdx[2] ]( p[2] ) ) * coarseSolution[ _n->nodeData.nodeIndex ]; } } } } } return std::pair< Real , Point3D< Real > >( value , gradient ); } template< class Real > template< class V , int FEMDegree , BoundaryType BType > V Octree< Real >::_getCenterValue( const ConstPointSupportKey< FEMDegree >& neighborKey , const TreeOctNode* node , const DenseNodeData< V >& solution , const DenseNodeData< V >& coarseSolution , const _Evaluator< FEMDegree , BType >& evaluator , bool isInterior ) const { static const int SupportSize = BSplineEvaluationData< FEMDegree , BType >::SupportSize; static const int LeftPointSupportRadius = BSplineEvaluationData< FEMDegree , BType >::SupportEnd; static const int RightPointSupportRadius = - BSplineEvaluationData< FEMDegree , BType >::SupportStart; if( IsActiveNode( node->children ) ) fprintf( stderr , "[WARNING] getCenterValue assumes leaf node\n" ); V value(0); LocalDepth d = _localDepth( node ); if( isInterior ) { const typename TreeOctNode::ConstNeighbors< SupportSize >& neighbors = _neighbors< LeftPointSupportRadius , RightPointSupportRadius >( neighborKey , node ); for( int i=0 ; inodeData.nodeIndex ] * Real( evaluator.cellStencil( i , j , k ) ); } if( d>0 ) { int _corner = int( node - node->parent->children ); const typename TreeOctNode::ConstNeighbors< SupportSize >& neighbors = _neighbors< LeftPointSupportRadius , RightPointSupportRadius >( neighborKey , node->parent ); for( int i=0 ; inodeData.nodeIndex] * Real( evaluator.cellStencils[_corner]( i , j , k ) ); } } } else { LocalOffset cIdx; _localDepthAndOffset( node , d , cIdx ); const typename TreeOctNode::ConstNeighbors< SupportSize >& neighbors = _neighbors< LeftPointSupportRadius , RightPointSupportRadius >( neighborKey , node ); for( int i=0 ; inodeData.nodeIndex ] * Real( evaluator.evaluator.centerValue( fIdx[0] , cIdx[0] , false ) * evaluator.evaluator.centerValue( fIdx[1] , cIdx[1] , false ) * evaluator.evaluator.centerValue( fIdx[2] , cIdx[2] , false ) ); } } if( d>0 ) { const typename TreeOctNode::ConstNeighbors< SupportSize >& neighbors = _neighbors< LeftPointSupportRadius , RightPointSupportRadius >( neighborKey , node->parent ); for( int i=0 ; inodeData.nodeIndex ] * Real( evaluator.childEvaluator.centerValue( fIdx[0] , cIdx[0] , false ) * evaluator.childEvaluator.centerValue( fIdx[1] , cIdx[1] , false ) * evaluator.childEvaluator.centerValue( fIdx[2] , cIdx[2] , false ) ); } } } } return value; } template< class Real > template< int FEMDegree , BoundaryType BType > std::pair< Real , Point3D< Real > > Octree< Real >::_getCenterValueAndGradient( const ConstPointSupportKey< FEMDegree >& neighborKey , const TreeOctNode* node , const DenseNodeData< Real >& solution , const DenseNodeData< Real >& coarseSolution , const _Evaluator< FEMDegree , BType >& evaluator , bool isInterior ) const { static const int SupportSize = BSplineEvaluationData< FEMDegree , BType >::SupportSize; static const int LeftPointSupportRadius = BSplineEvaluationData< FEMDegree , BType >::SupportEnd; static const int RightPointSupportRadius = - BSplineEvaluationData< FEMDegree , BType >::SupportStart; if( IsActiveNode( node->children ) ) fprintf( stderr , "[WARNING] getCenterValueAndGradient assumes leaf node\n" ); Real value(0); Point3D< Real > gradient; LocalDepth d = _localDepth( node ); if( isInterior ) { const typename TreeOctNode::ConstNeighbors< SupportSize >& neighbors = _neighbors< LeftPointSupportRadius , RightPointSupportRadius >( neighborKey , node ); for( int i=0 ; inodeData.nodeIndex ]; gradient += Point3D< Real >( evaluator.dCellStencil( i , j , k ) ) * solution[ n->nodeData.nodeIndex ]; } } if( d>0 ) { int _corner = int( node - node->parent->children ); const typename TreeOctNode::ConstNeighbors< SupportSize >& neighbors = _neighbors< LeftPointSupportRadius , RightPointSupportRadius >( neighborKey , node->parent ); for( int i=0 ; inodeData.nodeIndex]; gradient += Point3D< Real >( evaluator.dCellStencils[_corner]( i , j , k ) ) * coarseSolution[n->nodeData.nodeIndex]; } } } } else { LocalOffset cIdx; _localDepthAndOffset( node , d , cIdx ); const typename TreeOctNode::ConstNeighbors< SupportSize >& neighbors = _neighbors< LeftPointSupportRadius , RightPointSupportRadius >( neighborKey , node ); for( int i=0 ; inodeData.nodeIndex ]; gradient += Point3D< Real > ( evaluator.evaluator.centerValue( fIdx[0] , cIdx[0] , true ) * evaluator.evaluator.centerValue( fIdx[1] , cIdx[1] , false ) * evaluator.evaluator.centerValue( fIdx[2] , cIdx[2] , false ) , evaluator.evaluator.centerValue( fIdx[0] , cIdx[0] , false ) * evaluator.evaluator.centerValue( fIdx[1] , cIdx[1] , true ) * evaluator.evaluator.centerValue( fIdx[2] , cIdx[2] , false ) , evaluator.evaluator.centerValue( fIdx[0] , cIdx[0] , false ) * evaluator.evaluator.centerValue( fIdx[1] , cIdx[1] , false ) * evaluator.evaluator.centerValue( fIdx[2] , cIdx[2] , true ) ) * solution[ n->nodeData.nodeIndex ]; } } if( d>0 ) { const typename TreeOctNode::ConstNeighbors< SupportSize >& neighbors = _neighbors< LeftPointSupportRadius , RightPointSupportRadius >( neighborKey , node->parent ); for( int i=0 ; inodeData.nodeIndex ]; gradient += Point3D< Real > ( evaluator.childEvaluator.centerValue( fIdx[0] , cIdx[0] , true ) * evaluator.childEvaluator.centerValue( fIdx[1] , cIdx[1] , false ) * evaluator.childEvaluator.centerValue( fIdx[2] , cIdx[2] , false ) , evaluator.childEvaluator.centerValue( fIdx[0] , cIdx[0] , false ) * evaluator.childEvaluator.centerValue( fIdx[1] , cIdx[1] , true ) * evaluator.childEvaluator.centerValue( fIdx[2] , cIdx[2] , false ) , evaluator.childEvaluator.centerValue( fIdx[0] , cIdx[0] , false ) * evaluator.childEvaluator.centerValue( fIdx[1] , cIdx[1] , false ) * evaluator.childEvaluator.centerValue( fIdx[2] , cIdx[2] , true ) ) * coarseSolution[ n->nodeData.nodeIndex ]; } } } } return std::pair< Real , Point3D< Real > >( value , gradient ); } template< class Real > template< class V , int FEMDegree , BoundaryType BType > V Octree< Real >::_getEdgeValue( const ConstPointSupportKey< FEMDegree >& neighborKey , const TreeOctNode* node , int edge , const DenseNodeData< V >& solution , const DenseNodeData< V >& coarseSolution , const _Evaluator< FEMDegree , BType >& evaluator , bool isInterior ) const { static const int SupportSize = BSplineEvaluationData< FEMDegree , BType >::SupportSize; static const int LeftPointSupportRadius = BSplineEvaluationData< FEMDegree , BType >::SupportEnd; static const int RightPointSupportRadius = -BSplineEvaluationData< FEMDegree , BType >::SupportStart; V value(0); LocalDepth d ; LocalOffset cIdx; _localDepthAndOffset( node , d , cIdx ); int startX = 0 , endX = SupportSize , startY = 0 , endY = SupportSize , startZ = 0 , endZ = SupportSize; int orientation , i1 , i2; Cube::FactorEdgeIndex( edge , orientation , i1 , i2 ); switch( orientation ) { case 0: cIdx[1] += i1 , cIdx[2] += i2; if( i1 ) startY++ ; else endY--; if( i2 ) startZ++ ; else endZ--; break; case 1: cIdx[0] += i1 , cIdx[2] += i2; if( i1 ) startX++ ; else endX--; if( i2 ) startZ++ ; else endZ--; break; case 2: cIdx[0] += i1 , cIdx[1] += i2; if( i1 ) startX++ ; else endX--; if( i2 ) startY++ ; else endY--; break; } { const typename TreeOctNode::ConstNeighbors< SupportSize >& neighbors = _neighbors< LeftPointSupportRadius , RightPointSupportRadius >( neighborKey , d ); for( int x=startX ; xnodeData.nodeIndex ] * evaluator.edgeStencil[edge]( x , y , z ); else { LocalDepth _d ; LocalOffset fIdx; _localDepthAndOffset( _node , _d , fIdx ); switch( orientation ) { case 0: value += solution[ _node->nodeData.nodeIndex ] * Real( evaluator.evaluator.centerValue( fIdx[0] , cIdx[0] , false ) * evaluator.evaluator.cornerValue( fIdx[1] , cIdx[1] , false ) * evaluator.evaluator.cornerValue( fIdx[2] , cIdx[2] , false ) ); break; case 1: value += solution[ _node->nodeData.nodeIndex ] * Real( evaluator.evaluator.cornerValue( fIdx[0] , cIdx[0] , false ) * evaluator.evaluator.centerValue( fIdx[1] , cIdx[1] , false ) * evaluator.evaluator.cornerValue( fIdx[2] , cIdx[2] , false ) ); break; case 2: value += solution[ _node->nodeData.nodeIndex ] * Real( evaluator.evaluator.cornerValue( fIdx[0] , cIdx[0] , false ) * evaluator.evaluator.cornerValue( fIdx[1] , cIdx[1] , false ) * evaluator.evaluator.centerValue( fIdx[2] , cIdx[2] , false ) ); break; } } } } } if( d>0 ) { int _corner = int( node - node->parent->children ); int _cx , _cy , _cz; Cube::FactorCornerIndex( _corner , _cx , _cy , _cz ); // If the corner/child indices don't match, then the sample position is in the interior of the // coarser cell and so the full support resolution should be used. switch( orientation ) { case 0: if( _cy!=i1 ) startY = 0 , endY = SupportSize; if( _cz!=i2 ) startZ = 0 , endZ = SupportSize; break; case 1: if( _cx!=i1 ) startX = 0 , endX = SupportSize; if( _cz!=i2 ) startZ = 0 , endZ = SupportSize; break; case 2: if( _cx!=i1 ) startX = 0 , endX = SupportSize; if( _cy!=i2 ) startY = 0 , endY = SupportSize; break; } const typename TreeOctNode::ConstNeighbors< SupportSize >& neighbors = _neighbors< LeftPointSupportRadius , RightPointSupportRadius >( neighborKey , node->parent ); for( int x=startX ; xnodeData.nodeIndex ] * evaluator.edgeStencils[_corner][edge]( x , y , z ); else { LocalDepth _d ; LocalOffset fIdx; _localDepthAndOffset( _node , _d , fIdx ); switch( orientation ) { case 0: value += coarseSolution[ _node->nodeData.nodeIndex ] * Real( evaluator.childEvaluator.centerValue( fIdx[0] , cIdx[0] , false ) * evaluator.childEvaluator.cornerValue( fIdx[1] , cIdx[1] , false ) * evaluator.childEvaluator.cornerValue( fIdx[2] , cIdx[2] , false ) ); break; case 1: value += coarseSolution[ _node->nodeData.nodeIndex ] * Real( evaluator.childEvaluator.cornerValue( fIdx[0] , cIdx[0] , false ) * evaluator.childEvaluator.centerValue( fIdx[1] , cIdx[1] , false ) * evaluator.childEvaluator.cornerValue( fIdx[2] , cIdx[2] , false ) ); break; case 2: value += coarseSolution[ _node->nodeData.nodeIndex ] * Real( evaluator.childEvaluator.cornerValue( fIdx[0] , cIdx[0] , false ) * evaluator.childEvaluator.cornerValue( fIdx[1] , cIdx[1] , false ) * evaluator.childEvaluator.centerValue( fIdx[2] , cIdx[2] , false ) ); break; } } } } } return Real( value ); } template< class Real > template< int FEMDegree , BoundaryType BType > std::pair< Real , Point3D< Real > > Octree< Real >::_getEdgeValueAndGradient( const ConstPointSupportKey< FEMDegree >& neighborKey , const TreeOctNode* node , int edge , const DenseNodeData< Real >& solution , const DenseNodeData< Real >& coarseSolution , const _Evaluator< FEMDegree , BType >& evaluator , bool isInterior ) const { static const int SupportSize = BSplineEvaluationData< FEMDegree , BType >::SupportSize; static const int LeftPointSupportRadius = BSplineEvaluationData< FEMDegree , BType >::SupportEnd; static const int RightPointSupportRadius = -BSplineEvaluationData< FEMDegree , BType >::SupportStart; double value = 0; Point3D< double > gradient; LocalDepth d ; LocalOffset cIdx; _localDepthAndOffset( node , d , cIdx ); int startX = 0 , endX = SupportSize , startY = 0 , endY = SupportSize , startZ = 0 , endZ = SupportSize; int orientation , i1 , i2; Cube::FactorEdgeIndex( edge , orientation , i1 , i2 ); switch( orientation ) { case 0: cIdx[1] += i1 , cIdx[2] += i2; if( i1 ) startY++ ; else endY--; if( i2 ) startZ++ ; else endZ--; break; case 1: cIdx[0] += i1 , cIdx[2] += i2; if( i1 ) startX++ ; else endX--; if( i2 ) startZ++ ; else endZ--; break; case 2: cIdx[0] += i1 , cIdx[1] += i2; if( i1 ) startX++ ; else endX--; if( i2 ) startY++ ; else endY--; break; } { const typename TreeOctNode::ConstNeighbors< SupportSize >& neighbors = _neighbors< LeftPointSupportRadius , RightPointSupportRadius >( neighborKey , node ); for( int x=startX ; xnodeData.nodeIndex ]; gradient += evaluator.dEdgeStencil[edge]( x , y , z ) * solution[ _node->nodeData.nodeIndex ]; } else { LocalDepth _d ; LocalOffset fIdx; _localDepthAndOffset( _node , _d , fIdx ); double vv[3] , dv[3]; switch( orientation ) { case 0: vv[0] = evaluator.evaluator.centerValue( fIdx[0] , cIdx[0] , false ); vv[1] = evaluator.evaluator.cornerValue( fIdx[1] , cIdx[1] , false ); vv[2] = evaluator.evaluator.cornerValue( fIdx[2] , cIdx[2] , false ); dv[0] = evaluator.evaluator.centerValue( fIdx[0] , cIdx[0] , true ); dv[1] = evaluator.evaluator.cornerValue( fIdx[1] , cIdx[1] , true ); dv[2] = evaluator.evaluator.cornerValue( fIdx[2] , cIdx[2] , true ); break; case 1: vv[0] = evaluator.evaluator.cornerValue( fIdx[0] , cIdx[0] , false ); vv[1] = evaluator.evaluator.centerValue( fIdx[1] , cIdx[1] , false ); vv[2] = evaluator.evaluator.cornerValue( fIdx[2] , cIdx[2] , false ); dv[0] = evaluator.evaluator.cornerValue( fIdx[0] , cIdx[0] , true ); dv[1] = evaluator.evaluator.centerValue( fIdx[1] , cIdx[1] , true ); dv[2] = evaluator.evaluator.cornerValue( fIdx[2] , cIdx[2] , true ); break; case 2: vv[0] = evaluator.evaluator.cornerValue( fIdx[0] , cIdx[0] , false ); vv[1] = evaluator.evaluator.cornerValue( fIdx[1] , cIdx[1] , false ); vv[2] = evaluator.evaluator.centerValue( fIdx[2] , cIdx[2] , false ); dv[0] = evaluator.evaluator.cornerValue( fIdx[0] , cIdx[0] , true ); dv[1] = evaluator.evaluator.cornerValue( fIdx[1] , cIdx[1] , true ); dv[2] = evaluator.evaluator.centerValue( fIdx[2] , cIdx[2] , true ); break; } value += solution[ _node->nodeData.nodeIndex ] * vv[0] * vv[1] * vv[2]; gradient += Point3D< double >( dv[0]*vv[1]*vv[2] , vv[0]*dv[1]*vv[2] , vv[0]*vv[1]*dv[2] ) * solution[ _node->nodeData.nodeIndex ]; } } } } if( d>0 ) { int _corner = int( node - node->parent->children ); int _cx , _cy , _cz; Cube::FactorCornerIndex( _corner , _cx , _cy , _cz ); // If the corner/child indices don't match, then the sample position is in the interior of the // coarser cell and so the full support resolution should be used. switch( orientation ) { case 0: if( _cy!=i1 ) startY = 0 , endY = SupportSize; if( _cz!=i2 ) startZ = 0 , endZ = SupportSize; break; case 1: if( _cx!=i1 ) startX = 0 , endX = SupportSize; if( _cz!=i2 ) startZ = 0 , endZ = SupportSize; break; case 2: if( _cx!=i1 ) startX = 0 , endX = SupportSize; if( _cy!=i2 ) startY = 0 , endY = SupportSize; break; } const typename TreeOctNode::ConstNeighbors< SupportSize >& neighbors = _neighbors< LeftPointSupportRadius , RightPointSupportRadius >( neighborKey , node->parent ); for( int x=startX ; xnodeData.nodeIndex ]; gradient += evaluator.dEdgeStencils[_corner][edge]( x , y , z ) * coarseSolution[ _node->nodeData.nodeIndex ]; } else { LocalDepth _d ; LocalOffset fIdx; _localDepthAndOffset( _node , _d , fIdx ); double vv[3] , dv[3]; switch( orientation ) { case 0: vv[0] = evaluator.childEvaluator.centerValue( fIdx[0] , cIdx[0] , false ); vv[1] = evaluator.childEvaluator.cornerValue( fIdx[1] , cIdx[1] , false ); vv[2] = evaluator.childEvaluator.cornerValue( fIdx[2] , cIdx[2] , false ); dv[0] = evaluator.childEvaluator.centerValue( fIdx[0] , cIdx[0] , true ); dv[1] = evaluator.childEvaluator.cornerValue( fIdx[1] , cIdx[1] , true ); dv[2] = evaluator.childEvaluator.cornerValue( fIdx[2] , cIdx[2] , true ); break; case 1: vv[0] = evaluator.childEvaluator.cornerValue( fIdx[0] , cIdx[0] , false ); vv[1] = evaluator.childEvaluator.centerValue( fIdx[1] , cIdx[1] , false ); vv[2] = evaluator.childEvaluator.cornerValue( fIdx[2] , cIdx[2] , false ); dv[0] = evaluator.childEvaluator.cornerValue( fIdx[0] , cIdx[0] , true ); dv[1] = evaluator.childEvaluator.centerValue( fIdx[1] , cIdx[1] , true ); dv[2] = evaluator.childEvaluator.cornerValue( fIdx[2] , cIdx[2] , true ); break; case 2: vv[0] = evaluator.childEvaluator.cornerValue( fIdx[0] , cIdx[0] , false ); vv[1] = evaluator.childEvaluator.cornerValue( fIdx[1] , cIdx[1] , false ); vv[2] = evaluator.childEvaluator.centerValue( fIdx[2] , cIdx[2] , false ); dv[0] = evaluator.childEvaluator.cornerValue( fIdx[0] , cIdx[0] , true ); dv[1] = evaluator.childEvaluator.cornerValue( fIdx[1] , cIdx[1] , true ); dv[2] = evaluator.childEvaluator.centerValue( fIdx[2] , cIdx[2] , true ); break; } value += coarseSolution[ _node->nodeData.nodeIndex ] * vv[0] * vv[1] * vv[2]; gradient += Point3D< double >( dv[0]*vv[1]*vv[2] , vv[0]*dv[1]*vv[2] , vv[0]*vv[1]*dv[2] ) * coarseSolution[ _node->nodeData.nodeIndex ]; } } } } return std::pair< Real , Point3D< Real > >( Real( value ) , Point3D< Real >( gradient ) ); } template< class Real > template< class V , int FEMDegree , BoundaryType BType > V Octree< Real >::_getCornerValue( const ConstPointSupportKey< FEMDegree >& neighborKey , const TreeOctNode* node , int corner , const DenseNodeData< V >& solution , const DenseNodeData< V >& coarseSolution , const _Evaluator< FEMDegree , BType >& evaluator , bool isInterior ) const { static const int SupportSize = BSplineSupportSizes< FEMDegree >::SupportSize; static const int LeftPointSupportRadius = BSplineSupportSizes< FEMDegree >::SupportEnd; static const int RightPointSupportRadius = - BSplineSupportSizes< FEMDegree >::SupportStart; V value(0); LocalDepth d ; LocalOffset cIdx; _localDepthAndOffset( node , d , cIdx ); int cx , cy , cz; int startX = 0 , endX = SupportSize , startY = 0 , endY = SupportSize , startZ = 0 , endZ = SupportSize; Cube::FactorCornerIndex( corner , cx , cy , cz ); cIdx[0] += cx , cIdx[1] += cy , cIdx[2] += cz; { const typename TreeOctNode::ConstNeighbors< SupportSize >& neighbors = _neighbors< LeftPointSupportRadius , RightPointSupportRadius >( neighborKey , node ); if( cx==0 ) endX--; else startX++; if( cy==0 ) endY--; else startY++; if( cz==0 ) endZ--; else startZ++; if( isInterior ) for( int x=startX ; xnodeData.nodeIndex ] * Real( evaluator.cornerStencil[corner]( x , y , z ) ); } else for( int x=startX ; xnodeData.nodeIndex ] * Real( evaluator.evaluator.cornerValue( fIdx[0] , cIdx[0] , false ) * evaluator.evaluator.cornerValue( fIdx[1] , cIdx[1] , false ) * evaluator.evaluator.cornerValue( fIdx[2] , cIdx[2] , false ) ); } } } if( d>0 ) { int _corner = int( node - node->parent->children ); int _cx , _cy , _cz; Cube::FactorCornerIndex( _corner , _cx , _cy , _cz ); // If the corner/child indices don't match, then the sample position is in the interior of the // coarser cell and so the full support resolution should be used. if( cx!=_cx ) startX = 0 , endX = SupportSize; if( cy!=_cy ) startY = 0 , endY = SupportSize; if( cz!=_cz ) startZ = 0 , endZ = SupportSize; const typename TreeOctNode::ConstNeighbors< SupportSize >& neighbors = _neighbors< LeftPointSupportRadius , RightPointSupportRadius >( neighborKey , node->parent ); if( isInterior ) for( int x=startX ; xnodeData.nodeIndex ] * Real( evaluator.cornerStencils[_corner][corner]( x , y , z ) ); } else for( int x=startX ; xnodeData.nodeIndex ] * Real( evaluator.childEvaluator.cornerValue( fIdx[0] , cIdx[0] , false ) * evaluator.childEvaluator.cornerValue( fIdx[1] , cIdx[1] , false ) * evaluator.childEvaluator.cornerValue( fIdx[2] , cIdx[2] , false ) ); } } } return Real( value ); } template< class Real > template< int FEMDegree , BoundaryType BType > std::pair< Real , Point3D< Real > > Octree< Real >::_getCornerValueAndGradient( const ConstPointSupportKey< FEMDegree >& neighborKey , const TreeOctNode* node , int corner , const DenseNodeData< Real >& solution , const DenseNodeData< Real >& coarseSolution , const _Evaluator< FEMDegree , BType >& evaluator , bool isInterior ) const { static const int SupportSize = BSplineSupportSizes< FEMDegree >::SupportSize; static const int LeftPointSupportRadius = BSplineSupportSizes< FEMDegree >::SupportEnd; static const int RightPointSupportRadius = - BSplineSupportSizes< FEMDegree >::SupportStart; double value = 0; Point3D< double > gradient; LocalDepth d ; LocalOffset cIdx; _localDepthAndOffset( node , d , cIdx ); int cx , cy , cz; int startX = 0 , endX = SupportSize , startY = 0 , endY = SupportSize , startZ = 0 , endZ = SupportSize; Cube::FactorCornerIndex( corner , cx , cy , cz ); cIdx[0] += cx , cIdx[1] += cy , cIdx[2] += cz; { if( cx==0 ) endX--; else startX++; if( cy==0 ) endY--; else startY++; if( cz==0 ) endZ--; else startZ++; const typename TreeOctNode::ConstNeighbors< SupportSize >& neighbors = _neighbors< LeftPointSupportRadius , RightPointSupportRadius >( neighborKey , node ); if( isInterior ) for( int x=startX ; xnodeData.nodeIndex ] * evaluator.cornerStencil[corner]( x , y , z ) , gradient += evaluator.dCornerStencil[corner]( x , y , z ) * solution[ _node->nodeData.nodeIndex ]; } else for( int x=startX ; xnodeData.nodeIndex ] * v[0] * v[1] * v[2]; gradient += Point3D< double >( dv[0]*v[1]*v[2] , v[0]*dv[1]*v[2] , v[0]*v[1]*dv[2] ) * solution[ _node->nodeData.nodeIndex ]; } } } if( d>0 ) { int _corner = int( node - node->parent->children ); int _cx , _cy , _cz; Cube::FactorCornerIndex( _corner , _cx , _cy , _cz ); if( cx!=_cx ) startX = 0 , endX = SupportSize; if( cy!=_cy ) startY = 0 , endY = SupportSize; if( cz!=_cz ) startZ = 0 , endZ = SupportSize; const typename TreeOctNode::ConstNeighbors< SupportSize >& neighbors = _neighbors< LeftPointSupportRadius , RightPointSupportRadius >( neighborKey , node->parent ); if( isInterior ) for( int x=startX ; xnodeData.nodeIndex ] * evaluator.cornerStencils[_corner][corner]( x , y , z ) , gradient += evaluator.dCornerStencils[_corner][corner]( x , y , z ) * coarseSolution[ _node->nodeData.nodeIndex ]; } else for( int x=startX ; xnodeData.nodeIndex ] * v[0] * v[1] * v[2]; gradient += Point3D< double >( dv[0]*v[1]*v[2] , v[0]*dv[1]*v[2] , v[0]*v[1]*dv[2] ) * coarseSolution[ _node->nodeData.nodeIndex ]; } } } return std::pair< Real , Point3D< Real > >( Real( value ) , Point3D< Real >( gradient ) ); } template< class Real > template< int Degree , BoundaryType BType > Octree< Real >::MultiThreadedEvaluator< Degree , BType >::MultiThreadedEvaluator( const Octree< Real >* tree , const DenseNodeData< Real >& coefficients , int threads ) : _tree(tree), _coefficients( coefficients ) { _threads = std::max< int >( 1 , threads ); _neighborKeys.resize( _threads ); _coarseCoefficients = _tree->template coarseCoefficients< Real , Degree , BType >( _coefficients ); _evaluator.set( _tree->_maxDepth ); for( int t=0 ; t<_threads ; t++ ) _neighborKeys[t].set( tree->_localToGlobal( _tree->_maxDepth ) ); } template< class Real > template< int Degree , BoundaryType BType > Real Octree< Real >::MultiThreadedEvaluator< Degree , BType >::value( Point3D< Real > p , int thread , const TreeOctNode* node ) { if( !node ) node = _tree->leaf( p ); ConstPointSupportKey< Degree >& nKey = _neighborKeys[thread]; nKey.getNeighbors( node ); return _tree->template _getValue< Real , Degree >( nKey , node , p , _coefficients , _coarseCoefficients , _evaluator ); } template< class Real > template< int Degree , BoundaryType BType > std::pair< Real , Point3D< Real > > Octree< Real >::MultiThreadedEvaluator< Degree , BType >::valueAndGradient( Point3D< Real > p , int thread , const TreeOctNode* node ) { if( !node ) node = _tree->leaf( p ); ConstPointSupportKey< Degree >& nKey = _neighborKeys[thread]; nKey.getNeighbors( node ); return _tree->template _getValueAndGradient< Degree >( nKey , node , p , _coefficients , _coarseCoefficients , _evaluator ); }