/* * jddctmgr.c * * Copyright (C) 1994, Thomas G. Lane. * This file is part of the Independent JPEG Group's software. * For conditions of distribution and use, see the accompanying README file. * * This file contains the inverse-DCT management logic. * This code selects a particular IDCT implementation to be used, * and it performs related housekeeping chores. No code in this file * is executed per IDCT step, only during pass setup. * * Note that the IDCT routines are responsible for performing coefficient * dequantization as well as the IDCT proper. This module sets up the * dequantization multiplier table needed by the IDCT routine. */ #define JPEG_INTERNALS #include "jinclude.h" #include "jpeglib.h" #include "jdct.h" /* Private declarations for DCT subsystem */ /* Private subobject for this module */ typedef struct { struct jpeg_inverse_dct pub; /* public fields */ /* Record the IDCT method type actually selected for each component */ J_DCT_METHOD real_method[MAX_COMPONENTS]; } my_idct_controller; typedef my_idct_controller * my_idct_ptr; /* ZIG[i] is the zigzag-order position of the i'th element of a DCT block */ /* read in natural order (left to right, top to bottom). */ static const int ZIG[DCTSIZE2] = { 0, 1, 5, 6, 14, 15, 27, 28, 2, 4, 7, 13, 16, 26, 29, 42, 3, 8, 12, 17, 25, 30, 41, 43, 9, 11, 18, 24, 31, 40, 44, 53, 10, 19, 23, 32, 39, 45, 52, 54, 20, 22, 33, 38, 46, 51, 55, 60, 21, 34, 37, 47, 50, 56, 59, 61, 35, 36, 48, 49, 57, 58, 62, 63 }; /* The current scaled-IDCT routines require ISLOW-style multiplier tables, * so be sure to compile that code if either ISLOW or SCALING is requested. */ #ifdef DCT_ISLOW_SUPPORTED #define PROVIDE_ISLOW_TABLES #else #ifdef IDCT_SCALING_SUPPORTED #define PROVIDE_ISLOW_TABLES #endif #endif /* * Initialize for an input scan. * * Verify that all referenced Q-tables are present, and set up * the multiplier table for each one. * With a multiple-scan JPEG file, this is called during each input scan, * NOT during the final output pass where the IDCT is actually done. * The purpose is to save away the current Q-table contents just in case * the encoder changes tables between scans. This decoder will dequantize * any component using the Q-table which was current at the start of the * first scan using that component. */ METHODDEF void start_input_pass (j_decompress_ptr cinfo) { my_idct_ptr idct = (my_idct_ptr) cinfo->idct; int ci, qtblno, i; jpeg_component_info *compptr; JQUANT_TBL * qtbl; for (ci = 0; ci < cinfo->comps_in_scan; ci++) { compptr = cinfo->cur_comp_info[ci]; qtblno = compptr->quant_tbl_no; /* Make sure specified quantization table is present */ if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS || cinfo->quant_tbl_ptrs[qtblno] == NULL) ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno); qtbl = cinfo->quant_tbl_ptrs[qtblno]; /* Create multiplier table from quant table, unless we already did so. */ if (compptr->dct_table != NULL) continue; switch (idct->real_method[compptr->component_index]) { #ifdef PROVIDE_ISLOW_TABLES case JDCT_ISLOW: { /* For LL&M IDCT method, multipliers are equal to raw quantization * coefficients, but are stored in natural order as ints. */ ISLOW_MULT_TYPE * ismtbl; compptr->dct_table = (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, DCTSIZE2 * SIZEOF(ISLOW_MULT_TYPE)); ismtbl = (ISLOW_MULT_TYPE *) compptr->dct_table; for (i = 0; i < DCTSIZE2; i++) { ismtbl[i] = (ISLOW_MULT_TYPE) qtbl->quantval[ZIG[i]]; } } break; #endif #ifdef DCT_IFAST_SUPPORTED case JDCT_IFAST: { /* For AA&N IDCT method, multipliers are equal to quantization * coefficients scaled by scalefactor[row]*scalefactor[col], where * scalefactor[0] = 1 * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7 * For integer operation, the multiplier table is to be scaled by * IFAST_SCALE_BITS. The multipliers are stored in natural order. */ IFAST_MULT_TYPE * ifmtbl; #define CONST_BITS 14 static const INT16 aanscales[DCTSIZE2] = { /* precomputed values scaled up by 14 bits */ 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, 22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270, 21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906, 19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315, 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, 12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552, 8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446, 4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247 }; SHIFT_TEMPS compptr->dct_table = (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, DCTSIZE2 * SIZEOF(IFAST_MULT_TYPE)); ifmtbl = (IFAST_MULT_TYPE *) compptr->dct_table; for (i = 0; i < DCTSIZE2; i++) { ifmtbl[i] = (IFAST_MULT_TYPE) DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[ZIG[i]], (INT32) aanscales[i]), CONST_BITS-IFAST_SCALE_BITS); } } break; #endif #ifdef DCT_FLOAT_SUPPORTED case JDCT_FLOAT: { /* For float AA&N IDCT method, multipliers are equal to quantization * coefficients scaled by scalefactor[row]*scalefactor[col], where * scalefactor[0] = 1 * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7 * The multipliers are stored in natural order. */ FLOAT_MULT_TYPE * fmtbl; int row, col; static const double aanscalefactor[DCTSIZE] = { 1.0, 1.387039845, 1.306562965, 1.175875602, 1.0, 0.785694958, 0.541196100, 0.275899379 }; compptr->dct_table = (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, DCTSIZE2 * SIZEOF(FLOAT_MULT_TYPE)); fmtbl = (FLOAT_MULT_TYPE *) compptr->dct_table; i = 0; for (row = 0; row < DCTSIZE; row++) { for (col = 0; col < DCTSIZE; col++) { fmtbl[i] = (FLOAT_MULT_TYPE) ((double) qtbl->quantval[ZIG[i]] * aanscalefactor[row] * aanscalefactor[col]); i++; } } } break; #endif default: ERREXIT(cinfo, JERR_NOT_COMPILED); break; } } } /* * Prepare for an output pass that will actually perform IDCTs. * * start_input_pass should already have been done for all components * of interest; we need only verify that this is true. * Note that uninteresting components are not required to have loaded tables. * This allows the master controller to stop before reading the whole file * if it has obtained the data for the interesting component(s). */ METHODDEF void start_output_pass (j_decompress_ptr cinfo) { jpeg_component_info *compptr; int ci; for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++) { if (! compptr->component_needed) continue; if (compptr->dct_table == NULL) ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, compptr->quant_tbl_no); } } /* * Initialize IDCT manager. */ GLOBAL void jinit_inverse_dct (j_decompress_ptr cinfo) { my_idct_ptr idct; int ci; jpeg_component_info *compptr; idct = (my_idct_ptr) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(my_idct_controller)); cinfo->idct = (struct jpeg_inverse_dct *) idct; idct->pub.start_input_pass = start_input_pass; idct->pub.start_output_pass = start_output_pass; for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++) { compptr->dct_table = NULL; /* initialize tables to "not prepared" */ switch (compptr->DCT_scaled_size) { #ifdef IDCT_SCALING_SUPPORTED case 1: idct->pub.inverse_DCT[ci] = jpeg_idct_1x1; idct->real_method[ci] = JDCT_ISLOW; /* jidctred uses islow-style table */ break; case 2: idct->pub.inverse_DCT[ci] = jpeg_idct_2x2; idct->real_method[ci] = JDCT_ISLOW; /* jidctred uses islow-style table */ break; case 4: idct->pub.inverse_DCT[ci] = jpeg_idct_4x4; idct->real_method[ci] = JDCT_ISLOW; /* jidctred uses islow-style table */ break; #endif case DCTSIZE: switch (cinfo->dct_method) { #ifdef DCT_ISLOW_SUPPORTED case JDCT_ISLOW: idct->pub.inverse_DCT[ci] = jpeg_idct_islow; idct->real_method[ci] = JDCT_ISLOW; break; #endif #ifdef DCT_IFAST_SUPPORTED case JDCT_IFAST: idct->pub.inverse_DCT[ci] = jpeg_idct_ifast; idct->real_method[ci] = JDCT_IFAST; break; #endif #ifdef DCT_FLOAT_SUPPORTED case JDCT_FLOAT: idct->pub.inverse_DCT[ci] = jpeg_idct_float; idct->real_method[ci] = JDCT_FLOAT; break; #endif default: ERREXIT(cinfo, JERR_NOT_COMPILED); break; } break; default: ERREXIT1(cinfo, JERR_BAD_DCTSIZE, compptr->DCT_scaled_size); break; } } }