// Copyright (c) 2018 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include #include #include #include #include /* The index database stores three items for each block: the disk location of the encoded filter, * its dSHA256 hash, and the header. Those belonging to blocks on the active chain are indexed by * height, and those belonging to blocks that have been reorganized out of the active chain are * indexed by block hash. This ensures that filter data for any block that becomes part of the * active chain can always be retrieved, alleviating timing concerns. * * The filters themselves are stored in flat files and referenced by the LevelDB entries. This * minimizes the amount of data written to LevelDB and keeps the database values constant size. The * disk location of the next block filter to be written (represented as a FlatFilePos) is stored * under the DB_FILTER_POS key. * * Keys for the height index have the type [DB_BLOCK_HEIGHT, uint32 (BE)]. The height is represented * as big-endian so that sequential reads of filters by height are fast. * Keys for the hash index have the type [DB_BLOCK_HASH, uint256]. */ constexpr char DB_BLOCK_HASH = 's'; constexpr char DB_BLOCK_HEIGHT = 't'; constexpr char DB_FILTER_POS = 'P'; constexpr unsigned int MAX_FLTR_FILE_SIZE = 0x1000000; // 16 MiB /** The pre-allocation chunk size for fltr?????.dat files */ constexpr unsigned int FLTR_FILE_CHUNK_SIZE = 0x100000; // 1 MiB /** Maximum size of the cfheaders cache * We have a limit to prevent a bug in filling this cache * potentially turning into an OOM. At 2000 entries, this cache * is big enough for a 2,000,000 length block chain, which * we should be enough until ~2047. */ constexpr size_t CF_HEADERS_CACHE_MAX_SZ{2000}; namespace { struct DBVal { uint256 hash; uint256 header; FlatFilePos pos; SERIALIZE_METHODS(DBVal, obj) { READWRITE(obj.hash, obj.header, obj.pos); } }; struct DBHeightKey { int height; DBHeightKey() : height(0) {} explicit DBHeightKey(int height_in) : height(height_in) {} template void Serialize(Stream& s) const { ser_writedata8(s, DB_BLOCK_HEIGHT); ser_writedata32be(s, height); } template void Unserialize(Stream& s) { char prefix = ser_readdata8(s); if (prefix != DB_BLOCK_HEIGHT) { throw std::ios_base::failure("Invalid format for block filter index DB height key"); } height = ser_readdata32be(s); } }; struct DBHashKey { uint256 hash; explicit DBHashKey(const uint256& hash_in) : hash(hash_in) {} SERIALIZE_METHODS(DBHashKey, obj) { char prefix = DB_BLOCK_HASH; READWRITE(prefix); if (prefix != DB_BLOCK_HASH) { throw std::ios_base::failure("Invalid format for block filter index DB hash key"); } READWRITE(obj.hash); } }; }; // namespace static std::map g_filter_indexes; BlockFilterIndex::BlockFilterIndex(BlockFilterType filter_type, size_t n_cache_size, bool f_memory, bool f_wipe) : m_filter_type(filter_type) { const std::string& filter_name = BlockFilterTypeName(filter_type); if (filter_name.empty()) throw std::invalid_argument("unknown filter_type"); fs::path path = GetDataDir() / "indexes" / "blockfilter" / filter_name; fs::create_directories(path); m_name = filter_name + " block filter index"; m_db = MakeUnique(path / "db", n_cache_size, f_memory, f_wipe); m_filter_fileseq = MakeUnique(std::move(path), "fltr", FLTR_FILE_CHUNK_SIZE); } bool BlockFilterIndex::Init() { if (!m_db->Read(DB_FILTER_POS, m_next_filter_pos)) { // Check that the cause of the read failure is that the key does not exist. Any other errors // indicate database corruption or a disk failure, and starting the index would cause // further corruption. if (m_db->Exists(DB_FILTER_POS)) { return error("%s: Cannot read current %s state; index may be corrupted", __func__, GetName()); } // If the DB_FILTER_POS is not set, then initialize to the first location. m_next_filter_pos.nFile = 0; m_next_filter_pos.nPos = 0; } return BaseIndex::Init(); } bool BlockFilterIndex::CommitInternal(CDBBatch& batch) { const FlatFilePos& pos = m_next_filter_pos; // Flush current filter file to disk. CAutoFile file(m_filter_fileseq->Open(pos), SER_DISK, CLIENT_VERSION); if (file.IsNull()) { return error("%s: Failed to open filter file %d", __func__, pos.nFile); } if (!FileCommit(file.Get())) { return error("%s: Failed to commit filter file %d", __func__, pos.nFile); } batch.Write(DB_FILTER_POS, pos); return BaseIndex::CommitInternal(batch); } bool BlockFilterIndex::ReadFilterFromDisk(const FlatFilePos& pos, BlockFilter& filter) const { CAutoFile filein(m_filter_fileseq->Open(pos, true), SER_DISK, CLIENT_VERSION); if (filein.IsNull()) { return false; } uint256 block_hash; std::vector encoded_filter; try { filein >> block_hash >> encoded_filter; filter = BlockFilter(GetFilterType(), block_hash, std::move(encoded_filter)); } catch (const std::exception& e) { return error("%s: Failed to deserialize block filter from disk: %s", __func__, e.what()); } return true; } size_t BlockFilterIndex::WriteFilterToDisk(FlatFilePos& pos, const BlockFilter& filter) { assert(filter.GetFilterType() == GetFilterType()); size_t data_size = GetSerializeSize(filter.GetBlockHash(), CLIENT_VERSION) + GetSerializeSize(filter.GetEncodedFilter(), CLIENT_VERSION); // If writing the filter would overflow the file, flush and move to the next one. if (pos.nPos + data_size > MAX_FLTR_FILE_SIZE) { CAutoFile last_file(m_filter_fileseq->Open(pos), SER_DISK, CLIENT_VERSION); if (last_file.IsNull()) { LogPrintf("%s: Failed to open filter file %d\n", __func__, pos.nFile); return 0; } if (!TruncateFile(last_file.Get(), pos.nPos)) { LogPrintf("%s: Failed to truncate filter file %d\n", __func__, pos.nFile); return 0; } if (!FileCommit(last_file.Get())) { LogPrintf("%s: Failed to commit filter file %d\n", __func__, pos.nFile); return 0; } pos.nFile++; pos.nPos = 0; } // Pre-allocate sufficient space for filter data. bool out_of_space; m_filter_fileseq->Allocate(pos, data_size, out_of_space); if (out_of_space) { LogPrintf("%s: out of disk space\n", __func__); return 0; } CAutoFile fileout(m_filter_fileseq->Open(pos), SER_DISK, CLIENT_VERSION); if (fileout.IsNull()) { LogPrintf("%s: Failed to open filter file %d\n", __func__, pos.nFile); return 0; } fileout << filter.GetBlockHash() << filter.GetEncodedFilter(); return data_size; } bool BlockFilterIndex::WriteBlock(const CBlock& block, const CBlockIndex* pindex) { CBlockUndo block_undo; uint256 prev_header; if (pindex->nHeight > 0) { if (!UndoReadFromDisk(block_undo, pindex)) { return false; } std::pair read_out; if (!m_db->Read(DBHeightKey(pindex->nHeight - 1), read_out)) { return false; } uint256 expected_block_hash = pindex->pprev->GetBlockHash(); if (read_out.first != expected_block_hash) { return error("%s: previous block header belongs to unexpected block %s; expected %s", __func__, read_out.first.ToString(), expected_block_hash.ToString()); } prev_header = read_out.second.header; } BlockFilter filter(m_filter_type, block, block_undo); size_t bytes_written = WriteFilterToDisk(m_next_filter_pos, filter); if (bytes_written == 0) return false; std::pair value; value.first = pindex->GetBlockHash(); value.second.hash = filter.GetHash(); value.second.header = filter.ComputeHeader(prev_header); value.second.pos = m_next_filter_pos; if (!m_db->Write(DBHeightKey(pindex->nHeight), value)) { return false; } m_next_filter_pos.nPos += bytes_written; return true; } static bool CopyHeightIndexToHashIndex(CDBIterator& db_it, CDBBatch& batch, const std::string& index_name, int start_height, int stop_height) { DBHeightKey key(start_height); db_it.Seek(key); for (int height = start_height; height <= stop_height; ++height) { if (!db_it.GetKey(key) || key.height != height) { return error("%s: unexpected key in %s: expected (%c, %d)", __func__, index_name, DB_BLOCK_HEIGHT, height); } std::pair value; if (!db_it.GetValue(value)) { return error("%s: unable to read value in %s at key (%c, %d)", __func__, index_name, DB_BLOCK_HEIGHT, height); } batch.Write(DBHashKey(value.first), std::move(value.second)); db_it.Next(); } return true; } bool BlockFilterIndex::Rewind(const CBlockIndex* current_tip, const CBlockIndex* new_tip) { assert(current_tip->GetAncestor(new_tip->nHeight) == new_tip); CDBBatch batch(*m_db); std::unique_ptr db_it(m_db->NewIterator()); // During a reorg, we need to copy all filters for blocks that are getting disconnected from the // height index to the hash index so we can still find them when the height index entries are // overwritten. if (!CopyHeightIndexToHashIndex(*db_it, batch, m_name, new_tip->nHeight, current_tip->nHeight)) { return false; } // The latest filter position gets written in Commit by the call to the BaseIndex::Rewind. // But since this creates new references to the filter, the position should get updated here // atomically as well in case Commit fails. batch.Write(DB_FILTER_POS, m_next_filter_pos); if (!m_db->WriteBatch(batch)) return false; return BaseIndex::Rewind(current_tip, new_tip); } static bool LookupOne(const CDBWrapper& db, const CBlockIndex* block_index, DBVal& result) { // First check if the result is stored under the height index and the value there matches the // block hash. This should be the case if the block is on the active chain. std::pair read_out; if (!db.Read(DBHeightKey(block_index->nHeight), read_out)) { return false; } if (read_out.first == block_index->GetBlockHash()) { result = std::move(read_out.second); return true; } // If value at the height index corresponds to an different block, the result will be stored in // the hash index. return db.Read(DBHashKey(block_index->GetBlockHash()), result); } static bool LookupRange(CDBWrapper& db, const std::string& index_name, int start_height, const CBlockIndex* stop_index, std::vector& results) { if (start_height < 0) { return error("%s: start height (%d) is negative", __func__, start_height); } if (start_height > stop_index->nHeight) { return error("%s: start height (%d) is greater than stop height (%d)", __func__, start_height, stop_index->nHeight); } size_t results_size = static_cast(stop_index->nHeight - start_height + 1); std::vector> values(results_size); DBHeightKey key(start_height); std::unique_ptr db_it(db.NewIterator()); db_it->Seek(DBHeightKey(start_height)); for (int height = start_height; height <= stop_index->nHeight; ++height) { if (!db_it->Valid() || !db_it->GetKey(key) || key.height != height) { return false; } size_t i = static_cast(height - start_height); if (!db_it->GetValue(values[i])) { return error("%s: unable to read value in %s at key (%c, %d)", __func__, index_name, DB_BLOCK_HEIGHT, height); } db_it->Next(); } results.resize(results_size); // Iterate backwards through block indexes collecting results in order to access the block hash // of each entry in case we need to look it up in the hash index. for (const CBlockIndex* block_index = stop_index; block_index && block_index->nHeight >= start_height; block_index = block_index->pprev) { uint256 block_hash = block_index->GetBlockHash(); size_t i = static_cast(block_index->nHeight - start_height); if (block_hash == values[i].first) { results[i] = std::move(values[i].second); continue; } if (!db.Read(DBHashKey(block_hash), results[i])) { return error("%s: unable to read value in %s at key (%c, %s)", __func__, index_name, DB_BLOCK_HASH, block_hash.ToString()); } } return true; } bool BlockFilterIndex::LookupFilter(const CBlockIndex* block_index, BlockFilter& filter_out) const { DBVal entry; if (!LookupOne(*m_db, block_index, entry)) { return false; } return ReadFilterFromDisk(entry.pos, filter_out); } bool BlockFilterIndex::LookupFilterHeader(const CBlockIndex* block_index, uint256& header_out) { LOCK(m_cs_headers_cache); bool is_checkpoint{block_index->nHeight % CFCHECKPT_INTERVAL == 0}; if (is_checkpoint) { // Try to find the block in the headers cache if this is a checkpoint height. auto header = m_headers_cache.find(block_index->GetBlockHash()); if (header != m_headers_cache.end()) { header_out = header->second; return true; } } DBVal entry; if (!LookupOne(*m_db, block_index, entry)) { return false; } if (is_checkpoint && m_headers_cache.size() < CF_HEADERS_CACHE_MAX_SZ) { // Add to the headers cache if this is a checkpoint height. m_headers_cache.emplace(block_index->GetBlockHash(), entry.header); } header_out = entry.header; return true; } bool BlockFilterIndex::LookupFilterRange(int start_height, const CBlockIndex* stop_index, std::vector& filters_out) const { std::vector entries; if (!LookupRange(*m_db, m_name, start_height, stop_index, entries)) { return false; } filters_out.resize(entries.size()); auto filter_pos_it = filters_out.begin(); for (const auto& entry : entries) { if (!ReadFilterFromDisk(entry.pos, *filter_pos_it)) { return false; } ++filter_pos_it; } return true; } bool BlockFilterIndex::LookupFilterHashRange(int start_height, const CBlockIndex* stop_index, std::vector& hashes_out) const { std::vector entries; if (!LookupRange(*m_db, m_name, start_height, stop_index, entries)) { return false; } hashes_out.clear(); hashes_out.reserve(entries.size()); for (const auto& entry : entries) { hashes_out.push_back(entry.hash); } return true; } BlockFilterIndex* GetBlockFilterIndex(BlockFilterType filter_type) { auto it = g_filter_indexes.find(filter_type); return it != g_filter_indexes.end() ? &it->second : nullptr; } void ForEachBlockFilterIndex(std::function fn) { for (auto& entry : g_filter_indexes) fn(entry.second); } bool InitBlockFilterIndex(BlockFilterType filter_type, size_t n_cache_size, bool f_memory, bool f_wipe) { auto result = g_filter_indexes.emplace(std::piecewise_construct, std::forward_as_tuple(filter_type), std::forward_as_tuple(filter_type, n_cache_size, f_memory, f_wipe)); return result.second; } bool DestroyBlockFilterIndex(BlockFilterType filter_type) { return g_filter_indexes.erase(filter_type); } void DestroyAllBlockFilterIndexes() { g_filter_indexes.clear(); }