/* * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ /* * This header file includes all of the fix point signal processing library (SPL) function * descriptions and declarations. * For specific function calls, see bottom of file. */ #ifndef WEBRTC_SPL_SIGNAL_PROCESSING_LIBRARY_H_ #define WEBRTC_SPL_SIGNAL_PROCESSING_LIBRARY_H_ #include #include "typedefs.h" #ifdef ARM_WINM #include // intrinsic file for windows mobile #endif // Macros specific for the fixed point implementation #define WEBRTC_SPL_WORD16_MAX 32767 #define WEBRTC_SPL_WORD16_MIN -32768 #define WEBRTC_SPL_WORD32_MAX (WebRtc_Word32)0x7fffffff #define WEBRTC_SPL_WORD32_MIN (WebRtc_Word32)0x80000000 #define WEBRTC_SPL_MAX_LPC_ORDER 14 #define WEBRTC_SPL_MAX_SEED_USED 0x80000000L #define WEBRTC_SPL_MIN(A, B) (A < B ? A : B) // Get min value #define WEBRTC_SPL_MAX(A, B) (A > B ? A : B) // Get max value #define WEBRTC_SPL_ABS_W16(a) \ (((WebRtc_Word16)a >= 0) ? ((WebRtc_Word16)a) : -((WebRtc_Word16)a)) #define WEBRTC_SPL_ABS_W32(a) \ (((WebRtc_Word32)a >= 0) ? ((WebRtc_Word32)a) : -((WebRtc_Word32)a)) #if (defined WEBRTC_TARGET_PC)||(defined __TARGET_XSCALE) #define WEBRTC_SPL_GET_BYTE(a, nr) (((WebRtc_Word8 *)a)[nr]) #define WEBRTC_SPL_SET_BYTE(d_ptr, val, index) \ (((WebRtc_Word8 *)d_ptr)[index] = (val)) #elif defined WEBRTC_BIG_ENDIAN #define WEBRTC_SPL_GET_BYTE(a, nr) \ ((((WebRtc_Word16 *)a)[nr >> 1]) >> (((nr + 1) & 0x1) * 8) & 0x00ff) #define WEBRTC_SPL_SET_BYTE(d_ptr, val, index) \ ((WebRtc_Word16 *)d_ptr)[index >> 1] = \ ((((WebRtc_Word16 *)d_ptr)[index >> 1]) \ & (0x00ff << (8 * ((index) & 0x1)))) | (val << (8 * ((index + 1) & 0x1))) #else #define WEBRTC_SPL_GET_BYTE(a,nr) \ ((((WebRtc_Word16 *)(a))[(nr) >> 1]) >> (((nr) & 0x1) * 8) & 0x00ff) #define WEBRTC_SPL_SET_BYTE(d_ptr, val, index) \ ((WebRtc_Word16 *)(d_ptr))[(index) >> 1] = \ ((((WebRtc_Word16 *)(d_ptr))[(index) >> 1]) \ & (0x00ff << (8 * (((index) + 1) & 0x1)))) | \ ((val) << (8 * ((index) & 0x1))) #endif #define WEBRTC_SPL_MUL(a, b) \ ((WebRtc_Word32) ((WebRtc_Word32)(a) * (WebRtc_Word32)(b))) #define WEBRTC_SPL_UMUL(a, b) \ ((WebRtc_UWord32) ((WebRtc_UWord32)(a) * (WebRtc_UWord32)(b))) #define WEBRTC_SPL_UMUL_RSFT16(a, b) \ ((WebRtc_UWord32) ((WebRtc_UWord32)(a) * (WebRtc_UWord32)(b)) >> 16) #define WEBRTC_SPL_UMUL_16_16(a, b) \ ((WebRtc_UWord32) (WebRtc_UWord16)(a) * (WebRtc_UWord16)(b)) #define WEBRTC_SPL_UMUL_16_16_RSFT16(a, b) \ (((WebRtc_UWord32) (WebRtc_UWord16)(a) * (WebRtc_UWord16)(b)) >> 16) #define WEBRTC_SPL_UMUL_32_16(a, b) \ ((WebRtc_UWord32) ((WebRtc_UWord32)(a) * (WebRtc_UWord16)(b))) #define WEBRTC_SPL_UMUL_32_16_RSFT16(a, b) \ ((WebRtc_UWord32) ((WebRtc_UWord32)(a) * (WebRtc_UWord16)(b)) >> 16) #define WEBRTC_SPL_MUL_16_U16(a, b) \ ((WebRtc_Word32)(WebRtc_Word16)(a) * (WebRtc_UWord16)(b)) #define WEBRTC_SPL_DIV(a, b) \ ((WebRtc_Word32) ((WebRtc_Word32)(a) / (WebRtc_Word32)(b))) #define WEBRTC_SPL_UDIV(a, b) \ ((WebRtc_UWord32) ((WebRtc_UWord32)(a) / (WebRtc_UWord32)(b))) #ifndef WEBRTC_ARCH_ARM_V7A // For ARMv7 platforms, these are inline functions in spl_inl_armv7.h #define WEBRTC_SPL_MUL_16_16(a, b) \ ((WebRtc_Word32) (((WebRtc_Word16)(a)) * ((WebRtc_Word16)(b)))) #define WEBRTC_SPL_MUL_16_32_RSFT16(a, b) \ (WEBRTC_SPL_MUL_16_16(a, b >> 16) \ + ((WEBRTC_SPL_MUL_16_16(a, (b & 0xffff) >> 1) + 0x4000) >> 15)) #define WEBRTC_SPL_MUL_32_32_RSFT32(a32a, a32b, b32) \ ((WebRtc_Word32)(WEBRTC_SPL_MUL_16_32_RSFT16(a32a, b32) \ + (WEBRTC_SPL_MUL_16_32_RSFT16(a32b, b32) >> 16))) #define WEBRTC_SPL_MUL_32_32_RSFT32BI(a32, b32) \ ((WebRtc_Word32)(WEBRTC_SPL_MUL_16_32_RSFT16(( \ (WebRtc_Word16)(a32 >> 16)), b32) + \ (WEBRTC_SPL_MUL_16_32_RSFT16(( \ (WebRtc_Word16)((a32 & 0x0000FFFF) >> 1)), b32) >> 15))) #endif #define WEBRTC_SPL_MUL_16_32_RSFT11(a, b) \ ((WEBRTC_SPL_MUL_16_16(a, (b) >> 16) << 5) \ + (((WEBRTC_SPL_MUL_16_U16(a, (WebRtc_UWord16)(b)) >> 1) + 0x0200) >> 10)) #define WEBRTC_SPL_MUL_16_32_RSFT14(a, b) \ ((WEBRTC_SPL_MUL_16_16(a, (b) >> 16) << 2) \ + (((WEBRTC_SPL_MUL_16_U16(a, (WebRtc_UWord16)(b)) >> 1) + 0x1000) >> 13)) #define WEBRTC_SPL_MUL_16_32_RSFT15(a, b) \ ((WEBRTC_SPL_MUL_16_16(a, (b) >> 16) << 1) \ + (((WEBRTC_SPL_MUL_16_U16(a, (WebRtc_UWord16)(b)) >> 1) + 0x2000) >> 14)) #ifdef ARM_WINM #define WEBRTC_SPL_MUL_16_16(a, b) \ _SmulLo_SW_SL((WebRtc_Word16)(a), (WebRtc_Word16)(b)) #endif #define WEBRTC_SPL_MUL_16_16_RSFT(a, b, c) \ (WEBRTC_SPL_MUL_16_16(a, b) >> (c)) #define WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND(a, b, c) \ ((WEBRTC_SPL_MUL_16_16(a, b) + ((WebRtc_Word32) \ (((WebRtc_Word32)1) << ((c) - 1)))) >> (c)) #define WEBRTC_SPL_MUL_16_16_RSFT_WITH_FIXROUND(a, b) \ ((WEBRTC_SPL_MUL_16_16(a, b) + ((WebRtc_Word32) (1 << 14))) >> 15) // C + the 32 most significant bits of A * B #define WEBRTC_SPL_SCALEDIFF32(A, B, C) \ (C + (B >> 16) * A + (((WebRtc_UWord32)(0x0000FFFF & B) * A) >> 16)) #define WEBRTC_SPL_ADD_SAT_W32(a, b) WebRtcSpl_AddSatW32(a, b) #define WEBRTC_SPL_SAT(a, b, c) (b > a ? a : b < c ? c : b) #define WEBRTC_SPL_MUL_32_16(a, b) ((a) * (b)) #define WEBRTC_SPL_SUB_SAT_W32(a, b) WebRtcSpl_SubSatW32(a, b) #define WEBRTC_SPL_ADD_SAT_W16(a, b) WebRtcSpl_AddSatW16(a, b) #define WEBRTC_SPL_SUB_SAT_W16(a, b) WebRtcSpl_SubSatW16(a, b) // We cannot do casting here due to signed/unsigned problem #define WEBRTC_SPL_IS_NEG(a) ((a) & 0x80000000) // Shifting with negative numbers allowed // Positive means left shift #define WEBRTC_SPL_SHIFT_W16(x, c) \ (((c) >= 0) ? ((x) << (c)) : ((x) >> (-(c)))) #define WEBRTC_SPL_SHIFT_W32(x, c) \ (((c) >= 0) ? ((x) << (c)) : ((x) >> (-(c)))) // Shifting with negative numbers not allowed // We cannot do casting here due to signed/unsigned problem #define WEBRTC_SPL_RSHIFT_W16(x, c) ((x) >> (c)) #define WEBRTC_SPL_LSHIFT_W16(x, c) ((x) << (c)) #define WEBRTC_SPL_RSHIFT_W32(x, c) ((x) >> (c)) #define WEBRTC_SPL_LSHIFT_W32(x, c) ((x) << (c)) #define WEBRTC_SPL_RSHIFT_U16(x, c) ((WebRtc_UWord16)(x) >> (c)) #define WEBRTC_SPL_LSHIFT_U16(x, c) ((WebRtc_UWord16)(x) << (c)) #define WEBRTC_SPL_RSHIFT_U32(x, c) ((WebRtc_UWord32)(x) >> (c)) #define WEBRTC_SPL_LSHIFT_U32(x, c) ((WebRtc_UWord32)(x) << (c)) #define WEBRTC_SPL_VNEW(t, n) (t *) malloc (sizeof (t) * (n)) #define WEBRTC_SPL_FREE free #define WEBRTC_SPL_RAND(a) \ ((WebRtc_Word16)(WEBRTC_SPL_MUL_16_16_RSFT((a), 18816, 7) & 0x00007fff)) #ifdef __cplusplus extern "C" { #endif #define WEBRTC_SPL_MEMCPY_W8(v1, v2, length) \ memcpy(v1, v2, (length) * sizeof(char)) #define WEBRTC_SPL_MEMCPY_W16(v1, v2, length) \ memcpy(v1, v2, (length) * sizeof(WebRtc_Word16)) #define WEBRTC_SPL_MEMMOVE_W16(v1, v2, length) \ memmove(v1, v2, (length) * sizeof(WebRtc_Word16)) // inline functions: #include "spl_inl.h" // Get SPL Version WebRtc_Word16 WebRtcSpl_get_version(char* version, WebRtc_Word16 length_in_bytes); int WebRtcSpl_GetScalingSquare(WebRtc_Word16* in_vector, int in_vector_length, int times); // Copy and set operations. Implementation in copy_set_operations.c. // Descriptions at bottom of file. void WebRtcSpl_MemSetW16(WebRtc_Word16* vector, WebRtc_Word16 set_value, int vector_length); void WebRtcSpl_MemSetW32(WebRtc_Word32* vector, WebRtc_Word32 set_value, int vector_length); void WebRtcSpl_MemCpyReversedOrder(WebRtc_Word16* out_vector, WebRtc_Word16* in_vector, int vector_length); WebRtc_Word16 WebRtcSpl_CopyFromEndW16(G_CONST WebRtc_Word16* in_vector, WebRtc_Word16 in_vector_length, WebRtc_Word16 samples, WebRtc_Word16* out_vector); WebRtc_Word16 WebRtcSpl_ZerosArrayW16(WebRtc_Word16* vector, WebRtc_Word16 vector_length); WebRtc_Word16 WebRtcSpl_ZerosArrayW32(WebRtc_Word32* vector, WebRtc_Word16 vector_length); WebRtc_Word16 WebRtcSpl_OnesArrayW16(WebRtc_Word16* vector, WebRtc_Word16 vector_length); WebRtc_Word16 WebRtcSpl_OnesArrayW32(WebRtc_Word32* vector, WebRtc_Word16 vector_length); // End: Copy and set operations. // Minimum and maximum operations. Implementation in min_max_operations.c. // Descriptions at bottom of file. WebRtc_Word16 WebRtcSpl_MaxAbsValueW16(const WebRtc_Word16* vector, WebRtc_Word16 length); WebRtc_Word32 WebRtcSpl_MaxAbsValueW32(G_CONST WebRtc_Word32* vector, WebRtc_Word16 length); WebRtc_Word16 WebRtcSpl_MinValueW16(G_CONST WebRtc_Word16* vector, WebRtc_Word16 length); WebRtc_Word32 WebRtcSpl_MinValueW32(G_CONST WebRtc_Word32* vector, WebRtc_Word16 length); WebRtc_Word16 WebRtcSpl_MaxValueW16(G_CONST WebRtc_Word16* vector, WebRtc_Word16 length); WebRtc_Word16 WebRtcSpl_MaxAbsIndexW16(G_CONST WebRtc_Word16* vector, WebRtc_Word16 length); WebRtc_Word32 WebRtcSpl_MaxValueW32(G_CONST WebRtc_Word32* vector, WebRtc_Word16 length); WebRtc_Word16 WebRtcSpl_MinIndexW16(G_CONST WebRtc_Word16* vector, WebRtc_Word16 length); WebRtc_Word16 WebRtcSpl_MinIndexW32(G_CONST WebRtc_Word32* vector, WebRtc_Word16 length); WebRtc_Word16 WebRtcSpl_MaxIndexW16(G_CONST WebRtc_Word16* vector, WebRtc_Word16 length); WebRtc_Word16 WebRtcSpl_MaxIndexW32(G_CONST WebRtc_Word32* vector, WebRtc_Word16 length); // End: Minimum and maximum operations. // Vector scaling operations. Implementation in vector_scaling_operations.c. // Description at bottom of file. void WebRtcSpl_VectorBitShiftW16(WebRtc_Word16* out_vector, WebRtc_Word16 vector_length, G_CONST WebRtc_Word16* in_vector, WebRtc_Word16 right_shifts); void WebRtcSpl_VectorBitShiftW32(WebRtc_Word32* out_vector, WebRtc_Word16 vector_length, G_CONST WebRtc_Word32* in_vector, WebRtc_Word16 right_shifts); void WebRtcSpl_VectorBitShiftW32ToW16(WebRtc_Word16* out_vector, WebRtc_Word16 vector_length, G_CONST WebRtc_Word32* in_vector, WebRtc_Word16 right_shifts); void WebRtcSpl_ScaleVector(G_CONST WebRtc_Word16* in_vector, WebRtc_Word16* out_vector, WebRtc_Word16 gain, WebRtc_Word16 vector_length, WebRtc_Word16 right_shifts); void WebRtcSpl_ScaleVectorWithSat(G_CONST WebRtc_Word16* in_vector, WebRtc_Word16* out_vector, WebRtc_Word16 gain, WebRtc_Word16 vector_length, WebRtc_Word16 right_shifts); void WebRtcSpl_ScaleAndAddVectors(G_CONST WebRtc_Word16* in_vector1, WebRtc_Word16 gain1, int right_shifts1, G_CONST WebRtc_Word16* in_vector2, WebRtc_Word16 gain2, int right_shifts2, WebRtc_Word16* out_vector, int vector_length); // End: Vector scaling operations. // iLBC specific functions. Implementations in ilbc_specific_functions.c. // Description at bottom of file. void WebRtcSpl_ScaleAndAddVectorsWithRound(WebRtc_Word16* in_vector1, WebRtc_Word16 scale1, WebRtc_Word16* in_vector2, WebRtc_Word16 scale2, WebRtc_Word16 right_shifts, WebRtc_Word16* out_vector, WebRtc_Word16 vector_length); void WebRtcSpl_ReverseOrderMultArrayElements(WebRtc_Word16* out_vector, G_CONST WebRtc_Word16* in_vector, G_CONST WebRtc_Word16* window, WebRtc_Word16 vector_length, WebRtc_Word16 right_shifts); void WebRtcSpl_ElementwiseVectorMult(WebRtc_Word16* out_vector, G_CONST WebRtc_Word16* in_vector, G_CONST WebRtc_Word16* window, WebRtc_Word16 vector_length, WebRtc_Word16 right_shifts); void WebRtcSpl_AddVectorsAndShift(WebRtc_Word16* out_vector, G_CONST WebRtc_Word16* in_vector1, G_CONST WebRtc_Word16* in_vector2, WebRtc_Word16 vector_length, WebRtc_Word16 right_shifts); void WebRtcSpl_AddAffineVectorToVector(WebRtc_Word16* out_vector, WebRtc_Word16* in_vector, WebRtc_Word16 gain, WebRtc_Word32 add_constant, WebRtc_Word16 right_shifts, int vector_length); void WebRtcSpl_AffineTransformVector(WebRtc_Word16* out_vector, WebRtc_Word16* in_vector, WebRtc_Word16 gain, WebRtc_Word32 add_constant, WebRtc_Word16 right_shifts, int vector_length); // End: iLBC specific functions. // Signal processing operations. Descriptions at bottom of this file. int WebRtcSpl_AutoCorrelation(G_CONST WebRtc_Word16* vector, int vector_length, int order, WebRtc_Word32* result_vector, int* scale); WebRtc_Word16 WebRtcSpl_LevinsonDurbin(WebRtc_Word32* auto_corr, WebRtc_Word16* lpc_coef, WebRtc_Word16* refl_coef, WebRtc_Word16 order); void WebRtcSpl_ReflCoefToLpc(G_CONST WebRtc_Word16* refl_coef, int use_order, WebRtc_Word16* lpc_coef); void WebRtcSpl_LpcToReflCoef(WebRtc_Word16* lpc_coef, int use_order, WebRtc_Word16* refl_coef); void WebRtcSpl_AutoCorrToReflCoef(G_CONST WebRtc_Word32* auto_corr, int use_order, WebRtc_Word16* refl_coef); void WebRtcSpl_CrossCorrelation(WebRtc_Word32* cross_corr, WebRtc_Word16* vector1, WebRtc_Word16* vector2, WebRtc_Word16 dim_vector, WebRtc_Word16 dim_cross_corr, WebRtc_Word16 right_shifts, WebRtc_Word16 step_vector2); void WebRtcSpl_GetHanningWindow(WebRtc_Word16* window, WebRtc_Word16 size); void WebRtcSpl_SqrtOfOneMinusXSquared(WebRtc_Word16* in_vector, int vector_length, WebRtc_Word16* out_vector); // End: Signal processing operations. // Randomization functions. Implementations collected in randomization_functions.c and // descriptions at bottom of this file. WebRtc_UWord32 WebRtcSpl_IncreaseSeed(WebRtc_UWord32* seed); WebRtc_Word16 WebRtcSpl_RandU(WebRtc_UWord32* seed); WebRtc_Word16 WebRtcSpl_RandN(WebRtc_UWord32* seed); WebRtc_Word16 WebRtcSpl_RandUArray(WebRtc_Word16* vector, WebRtc_Word16 vector_length, WebRtc_UWord32* seed); // End: Randomization functions. // Math functions WebRtc_Word32 WebRtcSpl_Sqrt(WebRtc_Word32 value); WebRtc_Word32 WebRtcSpl_SqrtFloor(WebRtc_Word32 value); // Divisions. Implementations collected in division_operations.c and // descriptions at bottom of this file. WebRtc_UWord32 WebRtcSpl_DivU32U16(WebRtc_UWord32 num, WebRtc_UWord16 den); WebRtc_Word32 WebRtcSpl_DivW32W16(WebRtc_Word32 num, WebRtc_Word16 den); WebRtc_Word16 WebRtcSpl_DivW32W16ResW16(WebRtc_Word32 num, WebRtc_Word16 den); WebRtc_Word32 WebRtcSpl_DivResultInQ31(WebRtc_Word32 num, WebRtc_Word32 den); WebRtc_Word32 WebRtcSpl_DivW32HiLow(WebRtc_Word32 num, WebRtc_Word16 den_hi, WebRtc_Word16 den_low); // End: Divisions. WebRtc_Word32 WebRtcSpl_Energy(WebRtc_Word16* vector, int vector_length, int* scale_factor); WebRtc_Word32 WebRtcSpl_DotProductWithScale(WebRtc_Word16* vector1, WebRtc_Word16* vector2, int vector_length, int scaling); // Filter operations. int WebRtcSpl_FilterAR(G_CONST WebRtc_Word16* ar_coef, int ar_coef_length, G_CONST WebRtc_Word16* in_vector, int in_vector_length, WebRtc_Word16* filter_state, int filter_state_length, WebRtc_Word16* filter_state_low, int filter_state_low_length, WebRtc_Word16* out_vector, WebRtc_Word16* out_vector_low, int out_vector_low_length); void WebRtcSpl_FilterMAFastQ12(WebRtc_Word16* in_vector, WebRtc_Word16* out_vector, WebRtc_Word16* ma_coef, WebRtc_Word16 ma_coef_length, WebRtc_Word16 vector_length); // Performs a AR filtering on a vector in Q12 // Input: // - data_in : Input samples // - data_out : State information in positions // data_out[-order] .. data_out[-1] // - coefficients : Filter coefficients (in Q12) // - coefficients_length: Number of coefficients (order+1) // - data_length : Number of samples to be filtered // Output: // - data_out : Filtered samples void WebRtcSpl_FilterARFastQ12(const int16_t* data_in, int16_t* data_out, const int16_t* __restrict coefficients, int coefficients_length, int data_length); // Performs a MA down sampling filter on a vector // Input: // - data_in : Input samples (state in positions // data_in[-order] .. data_in[-1]) // - data_in_length : Number of samples in |data_in| to be filtered. // This must be at least // |delay| + |factor|*(|out_vector_length|-1) + 1) // - data_out_length : Number of down sampled samples desired // - coefficients : Filter coefficients (in Q12) // - coefficients_length: Number of coefficients (order+1) // - factor : Decimation factor // - delay : Delay of filter (compensated for in out_vector) // Output: // - data_out : Filtered samples // Return value : 0 if OK, -1 if |in_vector| is too short int WebRtcSpl_DownsampleFast(const int16_t* data_in, int data_in_length, int16_t* data_out, int data_out_length, const int16_t* __restrict coefficients, int coefficients_length, int factor, int delay); // End: Filter operations. // FFT operations int WebRtcSpl_ComplexFFT(WebRtc_Word16 vector[], int stages, int mode); int WebRtcSpl_ComplexIFFT(WebRtc_Word16 vector[], int stages, int mode); // Treat a 16-bit complex data buffer |complex_data| as an array of 32-bit // values, and swap elements whose indexes are bit-reverses of each other. // // Input: // - complex_data : Complex data buffer containing 2^|stages| real // elements interleaved with 2^|stages| imaginary // elements: [Re Im Re Im Re Im....] // - stages : Number of FFT stages. Must be at least 3 and at most // 10, since the table WebRtcSpl_kSinTable1024[] is 1024 // elements long. // // Output: // - complex_data : The complex data buffer. void WebRtcSpl_ComplexBitReverse(int16_t* __restrict complex_data, int stages); // End: FFT operations /************************************************************ * * RESAMPLING FUNCTIONS AND THEIR STRUCTS ARE DEFINED BELOW * ************************************************************/ /******************************************************************* * resample.c * * Includes the following resampling combinations * 22 kHz -> 16 kHz * 16 kHz -> 22 kHz * 22 kHz -> 8 kHz * 8 kHz -> 22 kHz * ******************************************************************/ // state structure for 22 -> 16 resampler typedef struct { WebRtc_Word32 S_22_44[8]; WebRtc_Word32 S_44_32[8]; WebRtc_Word32 S_32_16[8]; } WebRtcSpl_State22khzTo16khz; void WebRtcSpl_Resample22khzTo16khz(const WebRtc_Word16* in, WebRtc_Word16* out, WebRtcSpl_State22khzTo16khz* state, WebRtc_Word32* tmpmem); void WebRtcSpl_ResetResample22khzTo16khz(WebRtcSpl_State22khzTo16khz* state); // state structure for 16 -> 22 resampler typedef struct { WebRtc_Word32 S_16_32[8]; WebRtc_Word32 S_32_22[8]; } WebRtcSpl_State16khzTo22khz; void WebRtcSpl_Resample16khzTo22khz(const WebRtc_Word16* in, WebRtc_Word16* out, WebRtcSpl_State16khzTo22khz* state, WebRtc_Word32* tmpmem); void WebRtcSpl_ResetResample16khzTo22khz(WebRtcSpl_State16khzTo22khz* state); // state structure for 22 -> 8 resampler typedef struct { WebRtc_Word32 S_22_22[16]; WebRtc_Word32 S_22_16[8]; WebRtc_Word32 S_16_8[8]; } WebRtcSpl_State22khzTo8khz; void WebRtcSpl_Resample22khzTo8khz(const WebRtc_Word16* in, WebRtc_Word16* out, WebRtcSpl_State22khzTo8khz* state, WebRtc_Word32* tmpmem); void WebRtcSpl_ResetResample22khzTo8khz(WebRtcSpl_State22khzTo8khz* state); // state structure for 8 -> 22 resampler typedef struct { WebRtc_Word32 S_8_16[8]; WebRtc_Word32 S_16_11[8]; WebRtc_Word32 S_11_22[8]; } WebRtcSpl_State8khzTo22khz; void WebRtcSpl_Resample8khzTo22khz(const WebRtc_Word16* in, WebRtc_Word16* out, WebRtcSpl_State8khzTo22khz* state, WebRtc_Word32* tmpmem); void WebRtcSpl_ResetResample8khzTo22khz(WebRtcSpl_State8khzTo22khz* state); /******************************************************************* * resample_fractional.c * Functions for internal use in the other resample functions * * Includes the following resampling combinations * 48 kHz -> 32 kHz * 32 kHz -> 24 kHz * 44 kHz -> 32 kHz * ******************************************************************/ void WebRtcSpl_Resample48khzTo32khz(const WebRtc_Word32* In, WebRtc_Word32* Out, const WebRtc_Word32 K); void WebRtcSpl_Resample32khzTo24khz(const WebRtc_Word32* In, WebRtc_Word32* Out, const WebRtc_Word32 K); void WebRtcSpl_Resample44khzTo32khz(const WebRtc_Word32* In, WebRtc_Word32* Out, const WebRtc_Word32 K); /******************************************************************* * resample_48khz.c * * Includes the following resampling combinations * 48 kHz -> 16 kHz * 16 kHz -> 48 kHz * 48 kHz -> 8 kHz * 8 kHz -> 48 kHz * ******************************************************************/ typedef struct { WebRtc_Word32 S_48_48[16]; WebRtc_Word32 S_48_32[8]; WebRtc_Word32 S_32_16[8]; } WebRtcSpl_State48khzTo16khz; void WebRtcSpl_Resample48khzTo16khz(const WebRtc_Word16* in, WebRtc_Word16* out, WebRtcSpl_State48khzTo16khz* state, WebRtc_Word32* tmpmem); void WebRtcSpl_ResetResample48khzTo16khz(WebRtcSpl_State48khzTo16khz* state); typedef struct { WebRtc_Word32 S_16_32[8]; WebRtc_Word32 S_32_24[8]; WebRtc_Word32 S_24_48[8]; } WebRtcSpl_State16khzTo48khz; void WebRtcSpl_Resample16khzTo48khz(const WebRtc_Word16* in, WebRtc_Word16* out, WebRtcSpl_State16khzTo48khz* state, WebRtc_Word32* tmpmem); void WebRtcSpl_ResetResample16khzTo48khz(WebRtcSpl_State16khzTo48khz* state); typedef struct { WebRtc_Word32 S_48_24[8]; WebRtc_Word32 S_24_24[16]; WebRtc_Word32 S_24_16[8]; WebRtc_Word32 S_16_8[8]; } WebRtcSpl_State48khzTo8khz; void WebRtcSpl_Resample48khzTo8khz(const WebRtc_Word16* in, WebRtc_Word16* out, WebRtcSpl_State48khzTo8khz* state, WebRtc_Word32* tmpmem); void WebRtcSpl_ResetResample48khzTo8khz(WebRtcSpl_State48khzTo8khz* state); typedef struct { WebRtc_Word32 S_8_16[8]; WebRtc_Word32 S_16_12[8]; WebRtc_Word32 S_12_24[8]; WebRtc_Word32 S_24_48[8]; } WebRtcSpl_State8khzTo48khz; void WebRtcSpl_Resample8khzTo48khz(const WebRtc_Word16* in, WebRtc_Word16* out, WebRtcSpl_State8khzTo48khz* state, WebRtc_Word32* tmpmem); void WebRtcSpl_ResetResample8khzTo48khz(WebRtcSpl_State8khzTo48khz* state); /******************************************************************* * resample_by_2.c * * Includes down and up sampling by a factor of two. * ******************************************************************/ void WebRtcSpl_DownsampleBy2(const WebRtc_Word16* in, const WebRtc_Word16 len, WebRtc_Word16* out, WebRtc_Word32* filtState); void WebRtcSpl_UpsampleBy2(const WebRtc_Word16* in, WebRtc_Word16 len, WebRtc_Word16* out, WebRtc_Word32* filtState); /************************************************************ * END OF RESAMPLING FUNCTIONS ************************************************************/ void WebRtcSpl_AnalysisQMF(const WebRtc_Word16* in_data, WebRtc_Word16* low_band, WebRtc_Word16* high_band, WebRtc_Word32* filter_state1, WebRtc_Word32* filter_state2); void WebRtcSpl_SynthesisQMF(const WebRtc_Word16* low_band, const WebRtc_Word16* high_band, WebRtc_Word16* out_data, WebRtc_Word32* filter_state1, WebRtc_Word32* filter_state2); #ifdef __cplusplus } #endif // __cplusplus #endif // WEBRTC_SPL_SIGNAL_PROCESSING_LIBRARY_H_ // // WebRtcSpl_AddSatW16(...) // WebRtcSpl_AddSatW32(...) // // Returns the result of a saturated 16-bit, respectively 32-bit, addition of // the numbers specified by the |var1| and |var2| parameters. // // Input: // - var1 : Input variable 1 // - var2 : Input variable 2 // // Return value : Added and saturated value // // // WebRtcSpl_SubSatW16(...) // WebRtcSpl_SubSatW32(...) // // Returns the result of a saturated 16-bit, respectively 32-bit, subtraction // of the numbers specified by the |var1| and |var2| parameters. // // Input: // - var1 : Input variable 1 // - var2 : Input variable 2 // // Returned value : Subtracted and saturated value // // // WebRtcSpl_GetSizeInBits(...) // // Returns the # of bits that are needed at the most to represent the number // specified by the |value| parameter. // // Input: // - value : Input value // // Return value : Number of bits needed to represent |value| // // // WebRtcSpl_NormW32(...) // // Norm returns the # of left shifts required to 32-bit normalize the 32-bit // signed number specified by the |value| parameter. // // Input: // - value : Input value // // Return value : Number of bit shifts needed to 32-bit normalize |value| // // // WebRtcSpl_NormW16(...) // // Norm returns the # of left shifts required to 16-bit normalize the 16-bit // signed number specified by the |value| parameter. // // Input: // - value : Input value // // Return value : Number of bit shifts needed to 32-bit normalize |value| // // // WebRtcSpl_NormU32(...) // // Norm returns the # of left shifts required to 32-bit normalize the unsigned // 32-bit number specified by the |value| parameter. // // Input: // - value : Input value // // Return value : Number of bit shifts needed to 32-bit normalize |value| // // // WebRtcSpl_GetScalingSquare(...) // // Returns the # of bits required to scale the samples specified in the // |in_vector| parameter so that, if the squares of the samples are added the // # of times specified by the |times| parameter, the 32-bit addition will not // overflow (result in WebRtc_Word32). // // Input: // - in_vector : Input vector to check scaling on // - in_vector_length : Samples in |in_vector| // - times : Number of additions to be performed // // Return value : Number of right bit shifts needed to avoid // overflow in the addition calculation // // // WebRtcSpl_MemSetW16(...) // // Sets all the values in the WebRtc_Word16 vector |vector| of length // |vector_length| to the specified value |set_value| // // Input: // - vector : Pointer to the WebRtc_Word16 vector // - set_value : Value specified // - vector_length : Length of vector // // // WebRtcSpl_MemSetW32(...) // // Sets all the values in the WebRtc_Word32 vector |vector| of length // |vector_length| to the specified value |set_value| // // Input: // - vector : Pointer to the WebRtc_Word16 vector // - set_value : Value specified // - vector_length : Length of vector // // // WebRtcSpl_MemCpyReversedOrder(...) // // Copies all the values from the source WebRtc_Word16 vector |in_vector| to a // destination WebRtc_Word16 vector |out_vector|. It is done in reversed order, // meaning that the first sample of |in_vector| is copied to the last sample of // the |out_vector|. The procedure continues until the last sample of // |in_vector| has been copied to the first sample of |out_vector|. This // creates a reversed vector. Used in e.g. prediction in iLBC. // // Input: // - in_vector : Pointer to the first sample in a WebRtc_Word16 vector // of length |length| // - vector_length : Number of elements to copy // // Output: // - out_vector : Pointer to the last sample in a WebRtc_Word16 vector // of length |length| // // // WebRtcSpl_CopyFromEndW16(...) // // Copies the rightmost |samples| of |in_vector| (of length |in_vector_length|) // to the vector |out_vector|. // // Input: // - in_vector : Input vector // - in_vector_length : Number of samples in |in_vector| // - samples : Number of samples to extract (from right side) // from |in_vector| // // Output: // - out_vector : Vector with the requested samples // // Return value : Number of copied samples in |out_vector| // // // WebRtcSpl_ZerosArrayW16(...) // WebRtcSpl_ZerosArrayW32(...) // // Inserts the value "zero" in all positions of a w16 and a w32 vector // respectively. // // Input: // - vector_length : Number of samples in vector // // Output: // - vector : Vector containing all zeros // // Return value : Number of samples in vector // // // WebRtcSpl_OnesArrayW16(...) // WebRtcSpl_OnesArrayW32(...) // // Inserts the value "one" in all positions of a w16 and a w32 vector // respectively. // // Input: // - vector_length : Number of samples in vector // // Output: // - vector : Vector containing all ones // // Return value : Number of samples in vector // // // WebRtcSpl_MinValueW16(...) // WebRtcSpl_MinValueW32(...) // // Returns the minimum value of a vector // // Input: // - vector : Input vector // - vector_length : Number of samples in vector // // Return value : Minimum sample value in vector // // // WebRtcSpl_MaxValueW16(...) // WebRtcSpl_MaxValueW32(...) // // Returns the maximum value of a vector // // Input: // - vector : Input vector // - vector_length : Number of samples in vector // // Return value : Maximum sample value in vector // // // WebRtcSpl_MaxAbsValueW16(...) // WebRtcSpl_MaxAbsValueW32(...) // // Returns the largest absolute value of a vector // // Input: // - vector : Input vector // - vector_length : Number of samples in vector // // Return value : Maximum absolute value in vector // // // WebRtcSpl_MaxAbsIndexW16(...) // // Returns the vector index to the largest absolute value of a vector // // Input: // - vector : Input vector // - vector_length : Number of samples in vector // // Return value : Index to maximum absolute value in vector // // // WebRtcSpl_MinIndexW16(...) // WebRtcSpl_MinIndexW32(...) // // Returns the vector index to the minimum sample value of a vector // // Input: // - vector : Input vector // - vector_length : Number of samples in vector // // Return value : Index to minimum sample value in vector // // // WebRtcSpl_MaxIndexW16(...) // WebRtcSpl_MaxIndexW32(...) // // Returns the vector index to the maximum sample value of a vector // // Input: // - vector : Input vector // - vector_length : Number of samples in vector // // Return value : Index to maximum sample value in vector // // // WebRtcSpl_VectorBitShiftW16(...) // WebRtcSpl_VectorBitShiftW32(...) // // Bit shifts all the values in a vector up or downwards. Different calls for // WebRtc_Word16 and WebRtc_Word32 vectors respectively. // // Input: // - vector_length : Length of vector // - in_vector : Pointer to the vector that should be bit shifted // - right_shifts : Number of right bit shifts (negative value gives left // shifts) // // Output: // - out_vector : Pointer to the result vector (can be the same as // |in_vector|) // // // WebRtcSpl_VectorBitShiftW32ToW16(...) // // Bit shifts all the values in a WebRtc_Word32 vector up or downwards and // stores the result as a WebRtc_Word16 vector // // Input: // - vector_length : Length of vector // - in_vector : Pointer to the vector that should be bit shifted // - right_shifts : Number of right bit shifts (negative value gives left // shifts) // // Output: // - out_vector : Pointer to the result vector (can be the same as // |in_vector|) // // // WebRtcSpl_ScaleVector(...) // // Performs the vector operation: // out_vector[k] = (gain*in_vector[k])>>right_shifts // // Input: // - in_vector : Input vector // - gain : Scaling gain // - vector_length : Elements in the |in_vector| // - right_shifts : Number of right bit shifts applied // // Output: // - out_vector : Output vector (can be the same as |in_vector|) // // // WebRtcSpl_ScaleVectorWithSat(...) // // Performs the vector operation: // out_vector[k] = SATURATE( (gain*in_vector[k])>>right_shifts ) // // Input: // - in_vector : Input vector // - gain : Scaling gain // - vector_length : Elements in the |in_vector| // - right_shifts : Number of right bit shifts applied // // Output: // - out_vector : Output vector (can be the same as |in_vector|) // // // WebRtcSpl_ScaleAndAddVectors(...) // // Performs the vector operation: // out_vector[k] = (gain1*in_vector1[k])>>right_shifts1 // + (gain2*in_vector2[k])>>right_shifts2 // // Input: // - in_vector1 : Input vector 1 // - gain1 : Gain to be used for vector 1 // - right_shifts1 : Right bit shift to be used for vector 1 // - in_vector2 : Input vector 2 // - gain2 : Gain to be used for vector 2 // - right_shifts2 : Right bit shift to be used for vector 2 // - vector_length : Elements in the input vectors // // Output: // - out_vector : Output vector // // // WebRtcSpl_ScaleAndAddVectorsWithRound(...) // // Performs the vector operation: // // out_vector[k] = ((scale1*in_vector1[k]) + (scale2*in_vector2[k]) // + round_value) >> right_shifts // // where: // // round_value = (1<>1 // // Input: // - in_vector1 : Input vector 1 // - scale1 : Gain to be used for vector 1 // - in_vector2 : Input vector 2 // - scale2 : Gain to be used for vector 2 // - right_shifts : Number of right bit shifts to be applied // - vector_length : Number of elements in the input vectors // // Output: // - out_vector : Output vector // // // WebRtcSpl_ReverseOrderMultArrayElements(...) // // Performs the vector operation: // out_vector[n] = (in_vector[n]*window[-n])>>right_shifts // // Input: // - in_vector : Input vector // - window : Window vector (should be reversed). The pointer // should be set to the last value in the vector // - right_shifts : Number of right bit shift to be applied after the // multiplication // - vector_length : Number of elements in |in_vector| // // Output: // - out_vector : Output vector (can be same as |in_vector|) // // // WebRtcSpl_ElementwiseVectorMult(...) // // Performs the vector operation: // out_vector[n] = (in_vector[n]*window[n])>>right_shifts // // Input: // - in_vector : Input vector // - window : Window vector. // - right_shifts : Number of right bit shift to be applied after the // multiplication // - vector_length : Number of elements in |in_vector| // // Output: // - out_vector : Output vector (can be same as |in_vector|) // // // WebRtcSpl_AddVectorsAndShift(...) // // Performs the vector operation: // out_vector[k] = (in_vector1[k] + in_vector2[k])>>right_shifts // // Input: // - in_vector1 : Input vector 1 // - in_vector2 : Input vector 2 // - right_shifts : Number of right bit shift to be applied after the // multiplication // - vector_length : Number of elements in |in_vector1| and |in_vector2| // // Output: // - out_vector : Output vector (can be same as |in_vector1|) // // // WebRtcSpl_AddAffineVectorToVector(...) // // Adds an affine transformed vector to another vector |out_vector|, i.e, // performs // out_vector[k] += (in_vector[k]*gain+add_constant)>>right_shifts // // Input: // - in_vector : Input vector // - gain : Gain value, used to multiply the in vector with // - add_constant : Constant value to add (usually 1<<(right_shifts-1), // but others can be used as well // - right_shifts : Number of right bit shifts (0-16) // - vector_length : Number of samples in |in_vector| and |out_vector| // // Output: // - out_vector : Vector with the output // // // WebRtcSpl_AffineTransformVector(...) // // Affine transforms a vector, i.e, performs // out_vector[k] = (in_vector[k]*gain+add_constant)>>right_shifts // // Input: // - in_vector : Input vector // - gain : Gain value, used to multiply the in vector with // - add_constant : Constant value to add (usually 1<<(right_shifts-1), // but others can be used as well // - right_shifts : Number of right bit shifts (0-16) // - vector_length : Number of samples in |in_vector| and |out_vector| // // Output: // - out_vector : Vector with the output // // // WebRtcSpl_AutoCorrelation(...) // // A 32-bit fix-point implementation of auto-correlation computation // // Input: // - vector : Vector to calculate autocorrelation upon // - vector_length : Length (in samples) of |vector| // - order : The order up to which the autocorrelation should be // calculated // // Output: // - result_vector : auto-correlation values (values should be seen // relative to each other since the absolute values // might have been down shifted to avoid overflow) // // - scale : The number of left shifts required to obtain the // auto-correlation in Q0 // // Return value : Number of samples in |result_vector|, i.e., (order+1) // // // WebRtcSpl_LevinsonDurbin(...) // // A 32-bit fix-point implementation of the Levinson-Durbin algorithm that // does NOT use the 64 bit class // // Input: // - auto_corr : Vector with autocorrelation values of length >= // |use_order|+1 // - use_order : The LPC filter order (support up to order 20) // // Output: // - lpc_coef : lpc_coef[0..use_order] LPC coefficients in Q12 // - refl_coef : refl_coef[0...use_order-1]| Reflection coefficients in // Q15 // // Return value : 1 for stable 0 for unstable // // // WebRtcSpl_ReflCoefToLpc(...) // // Converts reflection coefficients |refl_coef| to LPC coefficients |lpc_coef|. // This version is a 16 bit operation. // // NOTE: The 16 bit refl_coef -> lpc_coef conversion might result in a // "slightly unstable" filter (i.e., a pole just outside the unit circle) in // "rare" cases even if the reflection coefficients are stable. // // Input: // - refl_coef : Reflection coefficients in Q15 that should be converted // to LPC coefficients // - use_order : Number of coefficients in |refl_coef| // // Output: // - lpc_coef : LPC coefficients in Q12 // // // WebRtcSpl_LpcToReflCoef(...) // // Converts LPC coefficients |lpc_coef| to reflection coefficients |refl_coef|. // This version is a 16 bit operation. // The conversion is implemented by the step-down algorithm. // // Input: // - lpc_coef : LPC coefficients in Q12, that should be converted to // reflection coefficients // - use_order : Number of coefficients in |lpc_coef| // // Output: // - refl_coef : Reflection coefficients in Q15. // // // WebRtcSpl_AutoCorrToReflCoef(...) // // Calculates reflection coefficients (16 bit) from auto-correlation values // // Input: // - auto_corr : Auto-correlation values // - use_order : Number of coefficients wanted be calculated // // Output: // - refl_coef : Reflection coefficients in Q15. // // // WebRtcSpl_CrossCorrelation(...) // // Calculates the cross-correlation between two sequences |vector1| and // |vector2|. |vector1| is fixed and |vector2| slides as the pointer is // increased with the amount |step_vector2| // // Input: // - vector1 : First sequence (fixed throughout the correlation) // - vector2 : Second sequence (slides |step_vector2| for each // new correlation) // - dim_vector : Number of samples to use in the cross-correlation // - dim_cross_corr : Number of cross-correlations to calculate (the // start position for |vector2| is updated for each // new one) // - right_shifts : Number of right bit shifts to use. This will // become the output Q-domain. // - step_vector2 : How many (positive or negative) steps the // |vector2| pointer should be updated for each new // cross-correlation value. // // Output: // - cross_corr : The cross-correlation in Q(-right_shifts) // // // WebRtcSpl_GetHanningWindow(...) // // Creates (the first half of) a Hanning window. Size must be at least 1 and // at most 512. // // Input: // - size : Length of the requested Hanning window (1 to 512) // // Output: // - window : Hanning vector in Q14. // // // WebRtcSpl_SqrtOfOneMinusXSquared(...) // // Calculates y[k] = sqrt(1 - x[k]^2) for each element of the input vector // |in_vector|. Input and output values are in Q15. // // Inputs: // - in_vector : Values to calculate sqrt(1 - x^2) of // - vector_length : Length of vector |in_vector| // // Output: // - out_vector : Output values in Q15 // // // WebRtcSpl_IncreaseSeed(...) // // Increases the seed (and returns the new value) // // Input: // - seed : Seed for random calculation // // Output: // - seed : Updated seed value // // Return value : The new seed value // // // WebRtcSpl_RandU(...) // // Produces a uniformly distributed value in the WebRtc_Word16 range // // Input: // - seed : Seed for random calculation // // Output: // - seed : Updated seed value // // Return value : Uniformly distributed value in the range // [Word16_MIN...Word16_MAX] // // // WebRtcSpl_RandN(...) // // Produces a normal distributed value in the WebRtc_Word16 range // // Input: // - seed : Seed for random calculation // // Output: // - seed : Updated seed value // // Return value : N(0,1) value in the Q13 domain // // // WebRtcSpl_RandUArray(...) // // Produces a uniformly distributed vector with elements in the WebRtc_Word16 // range // // Input: // - vector_length : Samples wanted in the vector // - seed : Seed for random calculation // // Output: // - vector : Vector with the uniform values // - seed : Updated seed value // // Return value : Number of samples in vector, i.e., |vector_length| // // // WebRtcSpl_Sqrt(...) // // Returns the square root of the input value |value|. The precision of this // function is integer precision, i.e., sqrt(8) gives 2 as answer. // If |value| is a negative number then 0 is returned. // // Algorithm: // // A sixth order Taylor Series expansion is used here to compute the square // root of a number y^0.5 = (1+x)^0.5 // where // x = y-1 // = 1+(x/2)-0.5*((x/2)^2+0.5*((x/2)^3-0.625*((x/2)^4+0.875*((x/2)^5) // 0.5 <= x < 1 // // Input: // - value : Value to calculate sqrt of // // Return value : Result of the sqrt calculation // // // WebRtcSpl_SqrtFloor(...) // // Returns the square root of the input value |value|. The precision of this // function is rounding down integer precision, i.e., sqrt(8) gives 2 as answer. // If |value| is a negative number then 0 is returned. // // Algorithm: // // An iterative 4 cylce/bit routine // // Input: // - value : Value to calculate sqrt of // // Return value : Result of the sqrt calculation // // // WebRtcSpl_DivU32U16(...) // // Divides a WebRtc_UWord32 |num| by a WebRtc_UWord16 |den|. // // If |den|==0, (WebRtc_UWord32)0xFFFFFFFF is returned. // // Input: // - num : Numerator // - den : Denominator // // Return value : Result of the division (as a WebRtc_UWord32), i.e., the // integer part of num/den. // // // WebRtcSpl_DivW32W16(...) // // Divides a WebRtc_Word32 |num| by a WebRtc_Word16 |den|. // // If |den|==0, (WebRtc_Word32)0x7FFFFFFF is returned. // // Input: // - num : Numerator // - den : Denominator // // Return value : Result of the division (as a WebRtc_Word32), i.e., the // integer part of num/den. // // // WebRtcSpl_DivW32W16ResW16(...) // // Divides a WebRtc_Word32 |num| by a WebRtc_Word16 |den|, assuming that the // result is less than 32768, otherwise an unpredictable result will occur. // // If |den|==0, (WebRtc_Word16)0x7FFF is returned. // // Input: // - num : Numerator // - den : Denominator // // Return value : Result of the division (as a WebRtc_Word16), i.e., the // integer part of num/den. // // // WebRtcSpl_DivResultInQ31(...) // // Divides a WebRtc_Word32 |num| by a WebRtc_Word16 |den|, assuming that the // absolute value of the denominator is larger than the numerator, otherwise // an unpredictable result will occur. // // Input: // - num : Numerator // - den : Denominator // // Return value : Result of the division in Q31. // // // WebRtcSpl_DivW32HiLow(...) // // Divides a WebRtc_Word32 |num| by a denominator in hi, low format. The // absolute value of the denominator has to be larger (or equal to) the // numerator. // // Input: // - num : Numerator // - den_hi : High part of denominator // - den_low : Low part of denominator // // Return value : Divided value in Q31 // // // WebRtcSpl_Energy(...) // // Calculates the energy of a vector // // Input: // - vector : Vector which the energy should be calculated on // - vector_length : Number of samples in vector // // Output: // - scale_factor : Number of left bit shifts needed to get the physical // energy value, i.e, to get the Q0 value // // Return value : Energy value in Q(-|scale_factor|) // // // WebRtcSpl_FilterAR(...) // // Performs a 32-bit AR filtering on a vector in Q12 // // Input: // - ar_coef : AR-coefficient vector (values in Q12), // ar_coef[0] must be 4096. // - ar_coef_length : Number of coefficients in |ar_coef|. // - in_vector : Vector to be filtered. // - in_vector_length : Number of samples in |in_vector|. // - filter_state : Current state (higher part) of the filter. // - filter_state_length : Length (in samples) of |filter_state|. // - filter_state_low : Current state (lower part) of the filter. // - filter_state_low_length : Length (in samples) of |filter_state_low|. // - out_vector_low_length : Maximum length (in samples) of // |out_vector_low|. // // Output: // - filter_state : Updated state (upper part) vector. // - filter_state_low : Updated state (lower part) vector. // - out_vector : Vector containing the upper part of the // filtered values. // - out_vector_low : Vector containing the lower part of the // filtered values. // // Return value : Number of samples in the |out_vector|. // // // WebRtcSpl_FilterMAFastQ12(...) // // Performs a MA filtering on a vector in Q12 // // Input: // - in_vector : Input samples (state in positions // in_vector[-order] .. in_vector[-1]) // - ma_coef : Filter coefficients (in Q12) // - ma_coef_length : Number of B coefficients (order+1) // - vector_length : Number of samples to be filtered // // Output: // - out_vector : Filtered samples // // // WebRtcSpl_DotProductWithScale(...) // // Calculates the dot product between two (WebRtc_Word16) vectors // // Input: // - vector1 : Vector 1 // - vector2 : Vector 2 // - vector_length : Number of samples used in the dot product // - scaling : The number of right bit shifts to apply on each term // during calculation to avoid overflow, i.e., the // output will be in Q(-|scaling|) // // Return value : The dot product in Q(-scaling) // // // WebRtcSpl_ComplexIFFT(...) // // Complex Inverse FFT // // Computes an inverse complex 2^|stages|-point FFT on the input vector, which // is in bit-reversed order. The original content of the vector is destroyed in // the process, since the input is overwritten by the output, normal-ordered, // FFT vector. With X as the input complex vector, y as the output complex // vector and with M = 2^|stages|, the following is computed: // // M-1 // y(k) = sum[X(i)*[cos(2*pi*i*k/M) + j*sin(2*pi*i*k/M)]] // i=0 // // The implementations are optimized for speed, not for code size. It uses the // decimation-in-time algorithm with radix-2 butterfly technique. // // Input: // - vector : In pointer to complex vector containing 2^|stages| // real elements interleaved with 2^|stages| imaginary // elements. // [ReImReImReIm....] // The elements are in Q(-scale) domain, see more on Return // Value below. // // - stages : Number of FFT stages. Must be at least 3 and at most 10, // since the table WebRtcSpl_kSinTable1024[] is 1024 // elements long. // // - mode : This parameter gives the user to choose how the FFT // should work. // mode==0: Low-complexity and Low-accuracy mode // mode==1: High-complexity and High-accuracy mode // // Output: // - vector : Out pointer to the FFT vector (the same as input). // // Return Value : The scale value that tells the number of left bit shifts // that the elements in the |vector| should be shifted with // in order to get Q0 values, i.e. the physically correct // values. The scale parameter is always 0 or positive, // except if N>1024 (|stages|>10), which returns a scale // value of -1, indicating error. // // // WebRtcSpl_ComplexFFT(...) // // Complex FFT // // Computes a complex 2^|stages|-point FFT on the input vector, which is in // bit-reversed order. The original content of the vector is destroyed in // the process, since the input is overwritten by the output, normal-ordered, // FFT vector. With x as the input complex vector, Y as the output complex // vector and with M = 2^|stages|, the following is computed: // // M-1 // Y(k) = 1/M * sum[x(i)*[cos(2*pi*i*k/M) + j*sin(2*pi*i*k/M)]] // i=0 // // The implementations are optimized for speed, not for code size. It uses the // decimation-in-time algorithm with radix-2 butterfly technique. // // This routine prevents overflow by scaling by 2 before each FFT stage. This is // a fixed scaling, for proper normalization - there will be log2(n) passes, so // this results in an overall factor of 1/n, distributed to maximize arithmetic // accuracy. // // Input: // - vector : In pointer to complex vector containing 2^|stages| real // elements interleaved with 2^|stages| imaginary elements. // [ReImReImReIm....] // The output is in the Q0 domain. // // - stages : Number of FFT stages. Must be at least 3 and at most 10, // since the table WebRtcSpl_kSinTable1024[] is 1024 // elements long. // // - mode : This parameter gives the user to choose how the FFT // should work. // mode==0: Low-complexity and Low-accuracy mode // mode==1: High-complexity and High-accuracy mode // // Output: // - vector : The output FFT vector is in the Q0 domain. // // Return value : The scale parameter is always 0, except if N>1024, // which returns a scale value of -1, indicating error. // // // WebRtcSpl_AnalysisQMF(...) // // Splits a 0-2*F Hz signal into two sub bands: 0-F Hz and F-2*F Hz. The // current version has F = 8000, therefore, a super-wideband audio signal is // split to lower-band 0-8 kHz and upper-band 8-16 kHz. // // Input: // - in_data : Wide band speech signal, 320 samples (10 ms) // // Input & Output: // - filter_state1 : Filter state for first All-pass filter // - filter_state2 : Filter state for second All-pass filter // // Output: // - low_band : Lower-band signal 0-8 kHz band, 160 samples (10 ms) // - high_band : Upper-band signal 8-16 kHz band (flipped in frequency // domain), 160 samples (10 ms) // // // WebRtcSpl_SynthesisQMF(...) // // Combines the two sub bands (0-F and F-2*F Hz) into a signal of 0-2*F // Hz, (current version has F = 8000 Hz). So the filter combines lower-band // (0-8 kHz) and upper-band (8-16 kHz) channels to obtain super-wideband 0-16 // kHz audio. // // Input: // - low_band : The signal with the 0-8 kHz band, 160 samples (10 ms) // - high_band : The signal with the 8-16 kHz band, 160 samples (10 ms) // // Input & Output: // - filter_state1 : Filter state for first All-pass filter // - filter_state2 : Filter state for second All-pass filter // // Output: // - out_data : Super-wideband speech signal, 0-16 kHz // // WebRtc_Word16 WebRtcSpl_SatW32ToW16(...) // // This function saturates a 32-bit word into a 16-bit word. // // Input: // - value32 : The value of a 32-bit word. // // Output: // - out16 : the saturated 16-bit word. // // int32_t WebRtc_MulAccumW16(...) // // This function multiply a 16-bit word by a 16-bit word, and accumulate this // value to a 32-bit integer. // // Input: // - a : The value of the first 16-bit word. // - b : The value of the second 16-bit word. // - c : The value of an 32-bit integer. // // Return Value: The value of a * b + c. // // WebRtc_Word16 WebRtcSpl_get_version(...) // // This function gives the version string of the Signal Processing Library. // // Input: // - length_in_bytes : The size of Allocated space (in Bytes) where // the version number is written to (in string format). // // Output: // - version : Pointer to a buffer where the version number is written to. //