/* ./src_f77/dppcon.f -- translated by f2c (version 20030320). You must link the resulting object file with the libraries: -lf2c -lm (in that order) */ #include /* Table of constant values */ static integer c__1 = 1; /* Subroutine */ int dppcon_(char *uplo, integer *n, doublereal *ap, doublereal *anorm, doublereal *rcond, doublereal *work, integer * iwork, integer *info, ftnlen uplo_len) { /* System generated locals */ integer i__1; doublereal d__1; /* Local variables */ static integer ix, kase; static doublereal scale; extern logical lsame_(char *, char *, ftnlen, ftnlen); extern /* Subroutine */ int drscl_(integer *, doublereal *, doublereal *, integer *); static logical upper; extern doublereal dlamch_(char *, ftnlen); extern /* Subroutine */ int dlacon_(integer *, doublereal *, doublereal *, integer *, doublereal *, integer *); static doublereal scalel; extern integer idamax_(integer *, doublereal *, integer *); static doublereal scaleu; extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen), dlatps_( char *, char *, char *, char *, integer *, doublereal *, doublereal *, doublereal *, doublereal *, integer *, ftnlen, ftnlen, ftnlen, ftnlen); static doublereal ainvnm; static char normin[1]; static doublereal smlnum; /* -- LAPACK routine (version 3.0) -- */ /* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */ /* Courant Institute, Argonne National Lab, and Rice University */ /* March 31, 1993 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* DPPCON estimates the reciprocal of the condition number (in the */ /* 1-norm) of a real symmetric positive definite packed matrix using */ /* the Cholesky factorization A = U**T*U or A = L*L**T computed by */ /* DPPTRF. */ /* An estimate is obtained for norm(inv(A)), and the reciprocal of the */ /* condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))). */ /* Arguments */ /* ========= */ /* UPLO (input) CHARACTER*1 */ /* = 'U': Upper triangle of A is stored; */ /* = 'L': Lower triangle of A is stored. */ /* N (input) INTEGER */ /* The order of the matrix A. N >= 0. */ /* AP (input) DOUBLE PRECISION array, dimension (N*(N+1)/2) */ /* The triangular factor U or L from the Cholesky factorization */ /* A = U**T*U or A = L*L**T, packed columnwise in a linear */ /* array. The j-th column of U or L is stored in the array AP */ /* as follows: */ /* if UPLO = 'U', AP(i + (j-1)*j/2) = U(i,j) for 1<=i<=j; */ /* if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = L(i,j) for j<=i<=n. */ /* ANORM (input) DOUBLE PRECISION */ /* The 1-norm (or infinity-norm) of the symmetric matrix A. */ /* RCOND (output) DOUBLE PRECISION */ /* The reciprocal of the condition number of the matrix A, */ /* computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an */ /* estimate of the 1-norm of inv(A) computed in this routine. */ /* WORK (workspace) DOUBLE PRECISION array, dimension (3*N) */ /* IWORK (workspace) INTEGER array, dimension (N) */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ --iwork; --work; --ap; /* Function Body */ *info = 0; upper = lsame_(uplo, "U", (ftnlen)1, (ftnlen)1); if (! upper && ! lsame_(uplo, "L", (ftnlen)1, (ftnlen)1)) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*anorm < 0.) { *info = -4; } if (*info != 0) { i__1 = -(*info); xerbla_("DPPCON", &i__1, (ftnlen)6); return 0; } /* Quick return if possible */ *rcond = 0.; if (*n == 0) { *rcond = 1.; return 0; } else if (*anorm == 0.) { return 0; } smlnum = dlamch_("Safe minimum", (ftnlen)12); /* Estimate the 1-norm of the inverse. */ kase = 0; *(unsigned char *)normin = 'N'; L10: dlacon_(n, &work[*n + 1], &work[1], &iwork[1], &ainvnm, &kase); if (kase != 0) { if (upper) { /* Multiply by inv(U'). */ dlatps_("Upper", "Transpose", "Non-unit", normin, n, &ap[1], & work[1], &scalel, &work[(*n << 1) + 1], info, (ftnlen)5, ( ftnlen)9, (ftnlen)8, (ftnlen)1); *(unsigned char *)normin = 'Y'; /* Multiply by inv(U). */ dlatps_("Upper", "No transpose", "Non-unit", normin, n, &ap[1], & work[1], &scaleu, &work[(*n << 1) + 1], info, (ftnlen)5, ( ftnlen)12, (ftnlen)8, (ftnlen)1); } else { /* Multiply by inv(L). */ dlatps_("Lower", "No transpose", "Non-unit", normin, n, &ap[1], & work[1], &scalel, &work[(*n << 1) + 1], info, (ftnlen)5, ( ftnlen)12, (ftnlen)8, (ftnlen)1); *(unsigned char *)normin = 'Y'; /* Multiply by inv(L'). */ dlatps_("Lower", "Transpose", "Non-unit", normin, n, &ap[1], & work[1], &scaleu, &work[(*n << 1) + 1], info, (ftnlen)5, ( ftnlen)9, (ftnlen)8, (ftnlen)1); } /* Multiply by 1/SCALE if doing so will not cause overflow. */ scale = scalel * scaleu; if (scale != 1.) { ix = idamax_(n, &work[1], &c__1); if (scale < (d__1 = work[ix], abs(d__1)) * smlnum || scale == 0.) { goto L20; } drscl_(n, &scale, &work[1], &c__1); } goto L10; } /* Compute the estimate of the reciprocal condition number. */ if (ainvnm != 0.) { *rcond = 1. / ainvnm / *anorm; } L20: return 0; /* End of DPPCON */ } /* dppcon_ */