************************************************************************ *************** Dalton - An Electronic Structure Program *************** ************************************************************************ This is output from DALTON release Dalton2019.alpha (2019) ( Web site: http://daltonprogram.org ) ---------------------------------------------------------------------------- NOTE: Dalton is an experimental code for the evaluation of molecular properties using (MC)SCF, DFT, CI, and CC wave functions. The authors accept no responsibility for the performance of the code or for the correctness of the results. The code (in whole or part) is provided under a licence and is not to be reproduced for further distribution without the written permission of the authors or their representatives. See the home page "http://daltonprogram.org" for further information. If results obtained with this code are published, the appropriate citations would be both of: K. Aidas, C. Angeli, K. L. Bak, V. Bakken, R. Bast, L. Boman, O. Christiansen, R. Cimiraglia, S. Coriani, P. Dahle, E. K. Dalskov, U. Ekstroem, T. Enevoldsen, J. J. Eriksen, P. Ettenhuber, B. Fernandez, L. Ferrighi, H. Fliegl, L. Frediani, K. Hald, A. Halkier, C. Haettig, H. Heiberg, T. Helgaker, A. C. Hennum, H. Hettema, E. Hjertenaes, S. Hoest, I.-M. Hoeyvik, M. F. Iozzi, B. Jansik, H. J. Aa. Jensen, D. Jonsson, P. Joergensen, J. Kauczor, S. Kirpekar, T. Kjaergaard, W. Klopper, S. Knecht, R. Kobayashi, H. Koch, J. Kongsted, A. Krapp, K. Kristensen, A. Ligabue, O. B. Lutnaes, J. I. Melo, K. V. Mikkelsen, R. H. Myhre, C. Neiss, C. B. Nielsen, P. Norman, J. Olsen, J. M. H. Olsen, A. Osted, M. J. Packer, F. Pawlowski, T. B. Pedersen, P. F. Provasi, S. Reine, Z. Rinkevicius, T. A. Ruden, K. Ruud, V. Rybkin, P. Salek, C. C. M. Samson, A. Sanchez de Meras, T. Saue, S. P. A. Sauer, B. Schimmelpfennig, K. Sneskov, A. H. Steindal, K. O. Sylvester-Hvid, P. R. Taylor, A. M. Teale, E. I. Tellgren, D. P. Tew, A. J. Thorvaldsen, L. Thoegersen, O. Vahtras, M. A. Watson, D. J. D. Wilson, M. Ziolkowski and H. Agren, "The Dalton quantum chemistry program system", WIREs Comput. Mol. Sci. 2014, 4:269–284 (doi: 10.1002/wcms.1172) and Dalton, a molecular electronic structure program, Release Dalton2019.alpha (2019), see http://daltonprogram.org ---------------------------------------------------------------------------- Authors in alphabetical order (major contribution(s) in parenthesis): Kestutis Aidas, Vilnius University, Lithuania (QM/MM) Celestino Angeli, University of Ferrara, Italy (NEVPT2) Keld L. Bak, UNI-C, Denmark (AOSOPPA, non-adiabatic coupling, magnetic properties) Vebjoern Bakken, University of Oslo, Norway (DALTON; geometry optimizer, symmetry detection) Radovan Bast, UiT The Arctic U. of Norway, Norway (DALTON installation and execution frameworks) Pablo Baudin, University of Valencia, Spain (Cholesky excitation energies) Linus Boman, NTNU, Norway (Cholesky decomposition and subsystems) Ove Christiansen, Aarhus University, Denmark (CC module) Renzo Cimiraglia, University of Ferrara, Italy (NEVPT2) Sonia Coriani, Technical Univ. of Denmark, Denmark (CC module, MCD in RESPONS) Janusz Cukras, University of Trieste, Italy (MChD in RESPONS) Paal Dahle, University of Oslo, Norway (Parallelization) Erik K. Dalskov, UNI-C, Denmark (SOPPA) Thomas Enevoldsen, Univ. of Southern Denmark, Denmark (SOPPA) Janus J. Eriksen, Aarhus University, Denmark (Polarizable embedding model, TDA) Rasmus Faber, University of Copenhagen, Denmark (Vib.avg. NMR with SOPPA, parallel AO-SOPPA) Tobias Fahleson, KTH Stockholm, Sweden (Damped cubic response) Berta Fernandez, U. of Santiago de Compostela, Spain (doublet spin, ESR in RESPONS) Lara Ferrighi, Aarhus University, Denmark (PCM Cubic response) Heike Fliegl, University of Oslo, Norway (CCSD(R12)) Luca Frediani, UiT The Arctic U. of Norway, Norway (PCM) Bin Gao, UiT The Arctic U. of Norway, Norway (Gen1Int library) Christof Haettig, Ruhr-University Bochum, Germany (CC module) Kasper Hald, Aarhus University, Denmark (CC module) Asger Halkier, Aarhus University, Denmark (CC module) Frederik Beyer Hansen, University of Copenhagen, Denmark (Parallel AO-SOPPA) Erik D. Hedegaard, Univ. of Southern Denmark, Denmark (Polarizable embedding model, QM/MM) Hanne Heiberg, University of Oslo, Norway (geometry analysis, selected one-electron integrals) Trygve Helgaker, University of Oslo, Norway (DALTON; ABACUS, ERI, DFT modules, London, and much more) Alf Christian Hennum, University of Oslo, Norway (Parity violation) Hinne Hettema, University of Auckland, New Zealand (quadratic response in RESPONS; SIRIUS supersymmetry) Eirik Hjertenaes, NTNU, Norway (Cholesky decomposition) Pi A. B. Haase, University of Copenhagen, Denmark (Triplet AO-SOPPA) Maria Francesca Iozzi, University of Oslo, Norway (RPA) Christoph Jacob TU Braunschweig Germany (Frozen density embedding model) Brano Jansik Technical Univ. of Ostrava Czech Rep. (DFT cubic response) Hans Joergen Aa. Jensen, Univ. of Southern Denmark, Denmark (DALTON; SIRIUS, RESPONS, ABACUS modules, London, and much more) Dan Jonsson, UiT The Arctic U. of Norway, Norway (cubic response in RESPONS module) Poul Joergensen, Aarhus University, Denmark (RESPONS, ABACUS, and CC modules) Maciej Kaminski, University of Warsaw, Poland (CPPh in RESPONS) Joanna Kauczor, Linkoeping University, Sweden (Complex polarization propagator (CPP) module) Sheela Kirpekar, Univ. of Southern Denmark, Denmark (Mass-velocity & Darwin integrals) Wim Klopper, KIT Karlsruhe, Germany (R12 code in CC, SIRIUS, and ABACUS modules) Stefan Knecht, ETH Zurich, Switzerland (Parallel CI and MCSCF) Rika Kobayashi, Australian National Univ., Australia (DIIS in CC, London in MCSCF) Henrik Koch, NTNU, Norway (CC module, Cholesky decomposition) Jacob Kongsted, Univ. of Southern Denmark, Denmark (Polarizable embedding model, QM/MM) Andrea Ligabue, University of Modena, Italy (CTOCD, AOSOPPA) Nanna H. List Univ. of Southern Denmark, Denmark (Polarizable embedding model) Ola B. Lutnaes, University of Oslo, Norway (DFT Hessian) Juan I. Melo, University of Buenos Aires, Argentina (LRESC, Relativistic Effects on NMR Shieldings) Kurt V. Mikkelsen, University of Copenhagen, Denmark (MC-SCRF and QM/MM) Rolf H. Myhre, NTNU, Norway (Subsystems and CC3) Christian Neiss, Univ. Erlangen-Nuernberg, Germany (CCSD(R12)) Christian B. Nielsen, University of Copenhagen, Denmark (QM/MM) Patrick Norman, KTH Stockholm, Sweden (Cubic response and complex frequency response in RESPONS) Jeppe Olsen, Aarhus University, Denmark (SIRIUS CI/density modules) Jogvan Magnus H. Olsen, Univ. of Southern Denmark, Denmark (Polarizable embedding model, QM/MM) Anders Osted, Copenhagen University, Denmark (QM/MM) Martin J. Packer, University of Sheffield, UK (SOPPA) Filip Pawlowski, Kazimierz Wielki University, Poland (CC3) Morten N. Pedersen, Univ. of Southern Denmark, Denmark (Polarizable embedding model) Thomas B. Pedersen, University of Oslo, Norway (Cholesky decomposition) Patricio F. Provasi, University of Northeastern, Argentina (Analysis of coupling constants in localized orbitals) Zilvinas Rinkevicius, KTH Stockholm, Sweden (open-shell DFT, ESR) Elias Rudberg, KTH Stockholm, Sweden (DFT grid and basis info) Torgeir A. Ruden, University of Oslo, Norway (Numerical derivatives in ABACUS) Kenneth Ruud, UiT The Arctic U. of Norway, Norway (DALTON; ABACUS magnetic properties and much more) Pawel Salek, KTH Stockholm, Sweden (DALTON; DFT code) Claire C. M. Samson University of Karlsruhe Germany (Boys localization, r12 integrals in ERI) Alfredo Sanchez de Meras, University of Valencia, Spain (CC module, Cholesky decomposition) Trond Saue, Paul Sabatier University, France (direct Fock matrix construction) Stephan P. A. Sauer, University of Copenhagen, Denmark (SOPPA(CCSD), SOPPA prop., AOSOPPA, vibrational g-factors) Andre S. P. Gomes, CNRS/Universite de Lille, France (Frozen density embedding model) Bernd Schimmelpfennig, Forschungszentrum Karlsruhe, Germany (AMFI module) Kristian Sneskov, Aarhus University, Denmark (Polarizable embedding model, QM/MM) Arnfinn H. Steindal, UiT The Arctic U. of Norway, Norway (parallel QM/MM, Polarizable embedding model) Casper Steinmann, Univ. of Southern Denmark, Denmark (QFIT, Polarizable embedding model) K. O. Sylvester-Hvid, University of Copenhagen, Denmark (MC-SCRF) Peter R. Taylor, VLSCI/Univ. of Melbourne, Australia (Symmetry handling ABACUS, integral transformation) Andrew M. Teale, University of Nottingham, England (DFT-AC, DFT-D) David P. Tew, University of Bristol, England (CCSD(R12)) Olav Vahtras, KTH Stockholm, Sweden (triplet response, spin-orbit, ESR, TDDFT, open-shell DFT) Lucas Visscher, Vrije Universiteit Amsterdam, Netherlands (Frozen density embedding model) David J. Wilson, La Trobe University, Australia (DFT Hessian and DFT magnetizabilities) Hans Agren, KTH Stockholm, Sweden (SIRIUS module, RESPONS, MC-SCRF solvation model) -------------------------------------------------------------------------------- Date and time (Linux) : Tue Aug 6 15:40:52 2019 Host name : adm-110765.pc.sdu.dk * Work memory size : 64000000 = 488.28 megabytes. * Directories for basis set searches: 1) /home/hjj/progs/gitDalton_hjaaj-srdft/build_srdft_intelmpi/test/rsp_mc_srPBE_mu_inf_fermi_nosymm 2) /home/hjj/progs/gitDalton_hjaaj-srdft/build_srdft_intelmpi/basis Compilation information ----------------------- Who compiled | hjj Host | adm-110765.pc.sdu.dk System | Linux-4.15.0-39-generic CMake generator | Unix Makefiles Processor | x86_64 64-bit integers | OFF MPI | ON Fortran compiler | /opt/intel/compilers_and_libraries_2019.1.144/linu | x/mpi/intel64/bin/mpif90 Fortran compiler version | GNU Fortran (Ubuntu 8.3.0-6ubuntu1~18.04.1) 8.3.0 C compiler | /opt/intel/compilers_and_libraries_2019.1.144/linu | x/mpi/intel64/bin/mpicc C compiler version | gcc (Ubuntu 7.4.0-1ubuntu1~18.04.1) 7.4.0 C++ compiler | /opt/intel/compilers_and_libraries_2019.1.144/linu | x/mpi/intel64/bin/mpicxx C++ compiler version | unknown BLAS | /opt/intel/compilers_and_libraries_2019.1.144/linu | x/mkl/lib/intel64/libmkl_gf_lp64.so;/opt/intel/com | pilers_and_libraries_2019.1.144/linux/mkl/lib/inte | l64/libmkl_sequential.so;/opt/intel/compilers_and_ | libraries_2019.1.144/linux/mkl/lib/intel64/libmkl_ | core.so;/usr/lib/x86_64-linux-gnu/libpthread.so;/u | sr/lib/x86_64-linux-gnu/libm.so LAPACK | /opt/intel/compilers_and_libraries_2019.1.144/linu | x/mkl/lib/intel64/libmkl_lapack95_lp64.a;/opt/inte | l/compilers_and_libraries_2019.1.144/linux/mkl/lib | /intel64/libmkl_gf_lp64.so Static linking | OFF Last Git revision | f8892fe83769bcd863e671505911584565206414 Git branch | hjaaj-srdft Configuration time | 2019-08-06 15:30:35.442168 * Sequential calculation. Content of the .dal input file ---------------------------------- **DALTON INPUT .RUN RESPONSE .DIRECT **INTEGRALS .FC *TWOINT .DOSRINTEGRALS .ERF 10000 **WAVE FUNCTIONS .HFSRDFT .MP2 .MCSRDFT .SRFUN SRXPBEGWS SRCPBEGWS *SCF INPUT .MAX ERRORVECTORS 2 *OPTIMIZATION .DETERMINANTS *CONFIGURATION INPUT .INACTIVE 0 .ELECTRONS 2 .CAS SPACE 2 .SYMMETRY 1 .SPIN MULTIPLICITY 1 **RESPONSE *LINEAR .FERMI .TRIPLET **END OF DALTON INPUT Content of the .mol file ---------------------------- BASIS 3-21G TOP KEK Atomtypes=1 Angstrom Nosymmetry Charge=1.0 Atoms=2 H 0.0 0.0 0.0 H 1.2 0.0 0.0 ******************************************************************* *********** Output from DALTON general input processing *********** ******************************************************************* -------------------------------------------------------------------------------- Overall default print level: 0 Print level for DALTON.STAT: 1 AO-direct calculation (in sections where implemented) HERMIT 1- and 2-electron integral sections will be executed "Old" integral transformation used (limited to max 255 basis functions) Wave function sections will be executed (SIRIUS module) Dynamic molecular response properties section will be executed (RESPONSE module) -------------------------------------------------------------------------------- **************************************************************************** *************** Output of molecule and basis set information *************** **************************************************************************** The two title cards from your ".mol" input: ------------------------------------------------------------------------ 1: TOP 2: KEK ------------------------------------------------------------------------ Coordinates are entered in Angstrom and converted to atomic units. - Conversion factor : 1 bohr = 0.52917721 A Atomic type no. 1 -------------------- Nuclear charge: 1.00000 Number of symmetry independent centers: 2 Number of basis sets to read; 2 Basis set file used for this atomic type with Z = 1 : "/home/hjj/progs/gitDalton_hjaaj-srdft/build_srdft_intelmpi/basis/3-21G" Info about the basis set file: your basis has no documentation. Basis set: 3-21G SYMGRP: Point group information ------------------------------- @ Point group: C1 Isotopic Masses --------------- H 1.007825 H 1.007825 Total mass: 2.015650 amu Natural abundance: 99.970 % Center-of-mass coordinates (a.u.): 1.133836 0.000000 0.000000 Center-of-mass coordinates (Angs): 0.600000 0.000000 0.000000 Atoms and basis sets -------------------- Number of atom types : 1 Total number of atoms: 2 Basis set used is "3-21G" from the basis set library. label atoms charge prim cont basis ---------------------------------------------------------------------- H 2 1.0000 3 2 [3s|2s] ---------------------------------------------------------------------- total: 2 2.0000 6 4 ---------------------------------------------------------------------- Threshold for neglecting AO integrals: 1.00D-12 Cartesian Coordinates (a.u.) ---------------------------- Total number of coordinates: 6 H : 1 x 0.0000000000 2 y 0.0000000000 3 z 0.0000000000 H : 4 x 2.2676713500 5 y 0.0000000000 6 z 0.0000000000 Interatomic separations (in Angstrom): -------------------------------------- H H ------ ------ H : 0.000000 H : 1.200000 0.000000 Max interatomic separation is 1.2000 Angstrom ( 2.2677 Bohr) between atoms 2 and 1, "H " and "H ". Min HX interatomic separation is 1.2000 Angstrom ( 2.2677 Bohr) Bond distances (Angstrom): -------------------------- atom 1 atom 2 distance ------ ------ -------- Principal moments of inertia (u*A**2) and principal axes -------------------------------------------------------- IA 0.000000 1.000000 0.000000 0.000000 IB 0.725634 0.000000 1.000000 0.000000 IC 0.725634 0.000000 0.000000 1.000000 Rotational constants -------------------- @ The molecule is linear. B = 696465.44 MHz ( 23.231587 cm-1) @ Nuclear repulsion energy : 0.440981009000 Hartree .---------------------------------------. | Starting in Integral Section (HERMIT) | `---------------------------------------' *************************************************************************************** ****************** Output from **INTEGRALS input processing (HERMIT) ****************** *************************************************************************************** ************************************************************************* ****************** Output from HERMIT input processing ****************** ************************************************************************* Default print level: 1 Calculation of one-electron Hamiltonian integrals. The following one-electron property integrals are calculated as requested: - overlap integrals - Fermi contact integrals (Dirac delta function integrals) Center of mass (bohr): 1.133835674996 0.000000000000 0.000000000000 Operator center (bohr): 0.000000000000 0.000000000000 0.000000000000 Gauge origin (bohr): 0.000000000000 0.000000000000 0.000000000000 Dipole origin (bohr): 0.000000000000 0.000000000000 0.000000000000 Integrals for all indirect spin-spin coupling and/or shielding tensors are calculated. Set-up from HR2INP: ------------------- Print level in TWOINT: 1 DFT-hybrid : Using a Erf type two-elec. operator with the coupling parameter : ********** * Direct calculation of Fock matrices in AO-basis. * Program controlled screening thresholds used for this. * Separate density screening of Coulomb integral batches * Separate density screening of exchange integral batches ************************************************************************ ************************** Output from HERINT ************************** ************************************************************************ Nuclear contribution to dipole moments -------------------------------------- au Debye C m (/(10**-30) x 2.26767135 5.76384528 19.22611836 y 0.00000000 0.00000000 0.00000000 z 0.00000000 0.00000000 0.00000000 Total CPU time used in HERMIT: 0.00 seconds Total wall time used in HERMIT: 0.00 seconds .----------------------------------. | End of Integral Section (HERMIT) | `----------------------------------' .--------------------------------------------. | Starting in Wave Function Section (SIRIUS) | `--------------------------------------------' CI program in use: SIRIUS-CI *** Output from Huckel module : Using EWMO model: T Using EHT model: F Number of Huckel orbitals each symmetry: 2 EWMO - Energy Weighted Maximum Overlap - is a Huckel type method, which normally is better than Extended Huckel Theory. Reference: Linderberg and Ohrn, Propagators in Quantum Chemistry (Wiley, 1973) Huckel EWMO eigenvalues for symmetry : 1 -0.738080 -0.261920 SETCI, core memory needed for CI: LCINDX = 38 LACIMX = 118 LBCIMX = 0 Number of determinants: 4 Number of configurations: 4 Time used in SETCI : 0.02s ********************************************************************** *SIRIUS* a direct, restricted step, second order MCSCF program * ********************************************************************** Date and time (Linux) : Tue Aug 6 15:40:52 2019 Host name : adm-110765.pc.sdu.dk Title lines from ".mol" input file: TOP KEK Print level on unit LUPRI = 2 is 0 Print level on unit LUW4 = 2 is 5 @ MC-SCF optimization. @ Multi-configurational response calculation. @ Type: complete active space calculation (CAS). @ This is a combination run starting with @ a restricted, closed shell HF-srDFT hybrid calculation @ an MP2 calculation Fock matrices are calculated directly without use of integrals on disk. Initial molecular orbitals are obtained according to ".MOSTART EWMO " input option Wave function specification ============================ @ Wave function type --- MC-SCF --- @ Number of closed shell electrons 0 @ Number of electrons in active shells 2 @ Total charge of the molecule 0 @ Spin multiplicity and 2 M_S 1 0 @ Total number of symmetries 1 (point group: C1 ) @ Reference state symmetry 1 (irrep name : A ) @ This is a lrWFT-srDFT calculation using the @ SRXPBEGWS short range exchange functional @ SRCPBEGWS short range correlation functional @ sr-DFT and exact sr-HF exchange weights: 1.000000 0.000000 Orbital specifications ====================== @ Abelian symmetry species All | 1 @ | A --- | --- @ Inactive orbitals 0 | 0 @ Active orbitals 2 | 2 @ Secondary orbitals 2 | 2 @ Total number of orbitals 4 | 4 @ Number of basis functions 4 | 4 -- Initial occupation of symmetries is determined from total charge (only one symmetry!) -- Initial occupation of symmetries is : @ Occupied SCF orbitals 1 | 1 Optimization information ======================== @ Number of determinants 4 @ Number of orbital rotations 4 ------------------------------------------ @ Total number of variables 8 Maximum number of macro iterations 25 Maximum number of micro iterations 600 Threshold for MCSCF gradient 1.00D-05 Number of initial trial vectors 1 Number of initial CI iterations 3 Number of simultaneous trial vectors 1 @ This calculation converges to the lowest state for the specified symmetry and spin species. Maximum number of NEO/NR iterations 24 *********************************************** ***** DIIS acceleration of SCF iterations ***** *********************************************** C1-DIIS algorithm; max error vectors = 2 Iter Total energy Error norm Delta(E) DIIS dim. ----------------------------------------------------------------------------- *** INFO GETGAB: GABSRXXX not found on AOPROPER. Regenerating. ** Atom H * Grid spacing Value chosen: 0.142 AH = 10.894356000000000 RADERR = 1.0000000000000000E-013 * Inner grid point: 2.64923E-05 * Outer point: Value chosen: 9.278 Constant c: 1.73693E-04 Number of points: 77 H 1 18514 77 434 ** Atom H * Grid spacing Value chosen: 0.142 AH = 10.894356000000000 RADERR = 1.0000000000000000E-013 * Inner grid point: 2.64923E-05 * Outer point: Value chosen: 9.278 Constant c: 1.73693E-04 Number of points: 77 H 1 18514 77 434 Number of grid points in quadrature: 37028 (100.0%) Ex-sr + Ec-sr -0.0000000012 + EJsr = sr Coulomb energy 0.0000000000 = Total E(srDFT) -0.0000000012 Corrections needed for correct CI energy evaluation: - 0.5 Tr(Vxc-sr Dcore) 0.0000000012 - Tr(Vxc-sr Dval) 0.0000000000 - 0.5 Tr( (Jsr+HFXFAC*Ksr) Dval ) 0.0000000000 1 Screening settings (-IFTHRS, JTDIIS, DIFDEN, times) -5 1 F 1.16D-01 1.16D-01 @ 1 -1.05084927127 1.04826D-01 -1.05D+00 1 Virial theorem: -V/T = 2.197506 @ MULPOP H -0.00; H 0.00; 1 Level shift: doubly occupied orbital energies shifted by -2.00D-01 ----------------------------------------------------------------------------- Ex-sr + Ec-sr -0.0000000012 + EJsr = sr Coulomb energy 0.0000000000 = Total E(srDFT) -0.0000000012 Corrections needed for correct CI energy evaluation: - 0.5 Tr(Vxc-sr Dcore) 0.0000000011 - Tr(Vxc-sr Dval) 0.0000000000 - 0.5 Tr( (Jsr+HFXFAC*Ksr) Dval ) 0.0000000000 2 Screening settings (-IFTHRS, JTDIIS, DIFDEN, times) -7 2 F 1.10D-01 1.11D-01 @ 2 -1.05177824948 2.58699D-02 -9.29D-04 2 Virial theorem: -V/T = 2.246110 @ MULPOP H -0.00; H 0.00; 2 Level shift: doubly occupied orbital energies shifted by -5.00D-02 ----------------------------------------------------------------------------- Ex-sr + Ec-sr -0.0000000012 + EJsr = sr Coulomb energy 0.0000000000 = Total E(srDFT) -0.0000000012 Corrections needed for correct CI energy evaluation: - 0.5 Tr(Vxc-sr Dcore) 0.0000000011 - Tr(Vxc-sr Dval) 0.0000000000 - 0.5 Tr( (Jsr+HFXFAC*Ksr) Dval ) 0.0000000000 3 Screening settings (-IFTHRS, JTDIIS, DIFDEN, times) -7 3 F 1.10D-01 1.10D-01 @ 3 -1.05183845247 7.69328D-04 -6.02D-05 2 Virial theorem: -V/T = 2.261700 @ MULPOP H -0.00; H 0.00; 3 Level shift: doubly occupied orbital energies shifted by -1.25D-02 ----------------------------------------------------------------------------- Ex-sr + Ec-sr -0.0000000012 + EJsr = sr Coulomb energy 0.0000000000 = Total E(srDFT) -0.0000000012 Corrections needed for correct CI energy evaluation: - 0.5 Tr(Vxc-sr Dcore) 0.0000000011 - Tr(Vxc-sr Dval) 0.0000000000 - 0.5 Tr( (Jsr+HFXFAC*Ksr) Dval ) 0.0000000000 4 Screening settings (-IFTHRS, JTDIIS, DIFDEN, times) -8 4 F 1.10D-01 1.10D-01 @ 4 -1.05183850576 5.85182D-06 -5.33D-08 2 @ *** DIIS converged in 4 iterations ! @ Converged SCF energy, gradient: -1.051838505761 5.85D-06 - total time used in SIRFCK : 0.00 seconds --- Writing SIRIFC interface file CPU and wall time for SCF : 0.447 0.447 ----- Output from SIRIUS MP2 module ----- Reference: H.J.Aa.Jensen, P.Jørgensen, H.Ågren, and J.Olsen, J. Chem. Phys. 88, 3834 (1988); 89, 5354 (1988) Checking that the closed shell orbitals are canonical Hartree-Fock orbitals Number of electrons : 2 Closed shell orbitals: 1 Generating Fock matrix Ex-sr + Ec-sr -0.0000000012 + EJsr = sr Coulomb energy 0.0000000014 = Total E(srDFT) 0.0000000003 Corrections needed for correct CI energy evaluation: - 0.5 Tr(Vxc-sr Dcore) 0.0000000011 - Tr(Vxc-sr Dval) 0.0000000000 - 0.5 Tr( (Jsr+HFXFAC*Ksr) Dval ) 0.0000000000 Hartree-Fock electronic energy: -1.492819513328 Hartree-Fock total energy: -1.051838504328 Hartree-Fock orbital energies, symmetry 1 ( A ), 1 occupied SCF orbitals -0.48068209 0.13468727 1.16287687 1.20918645 E(LUMO) : 0.13468727 (in symmetry 1) - E(HOMO) : -0.48068209 (in symmetry 1) -------------------------- gap : 0.61536936 ---> (Re)generating AOTWOINT ---> and (re)generating AOSR2INT ************************************************************************ ************************** Output from HERINT ************************** ************************************************************************ Threshold for neglecting two-electron integrals: 1.00D-12 HERMIT - Number of two-electron integrals written: 55 (100.0% ) HERMIT - Megabytes written: 0.007 Threshold for neglecting two-electron integrals: 1.00D-12 HERMIT - Number of two-electron integrals written: 55 (100.0% ) HERMIT - Megabytes written: 0.007 2-el. integral transformation level 5: Total CPU and WALL times (sec) 0.001 0.001 MP2 move 0.029398 electrons to unoccupied HF orbitals @ Short-range Hartree-Fock total energy : -1.0518385043 @ + MP2 contribution from long-range integrals : -0.0233222164 @ = short-range MP2 second order energy : -1.0751607207 ******************************************************* MP2-SRDFT natural orbitals: Short-range self-consistent contributions are NOT taken into account. ******************************************************* Natural orbital occupation numbers, symmetry 1 (irrep A ) Sum = 2.00000000; RHF = 2.00000000; Difference = 0.00000000 1.97076640 0.02763036 0.00114655 0.00045669 Time used for MP2 natural orbitals : 0.111 CPU seconds, 0.111 wall seconds. CPU and wall time for MP2 : 0.111 0.111 SIRIUS MC-srDFT optimization (SIROPT) ================================================ Fock matrix screening setting for SIRCNO: IFTHRS = 9 ----- Output from SIRIUS CI module (CICTL) ----- 2-el. integral transformation level 0: Total CPU and WALL times (sec) 0.000 0.000 (CIST1) 4 lowest diagonal elements: Element no. Config.no. Active energy Total energy 1 : 1 -1.4925877147 -1.0516067057 2 : 2 -1.1219074251 -0.6809264161 3 : 3 -1.1219074251 -0.6809264161 4 : 4 -0.7170532023 -0.2760721933 Convergence threshold for CI optimization : 0.00000500 The requested root number is now converged. *** CI converged in 2 iterations. SR 0-el. energy for input .STATE 1 ------------------------------------- SR core Hartree energy : 0.000000000000 - SR valence Hartree energy : -0.000000001477 + SR Exchange-correlation : -0.000000001193 - SR Exchange-correlation pot.: 0.000000002306 = Total eff. SR 0-el. energy : -0.000000000364 CI-DFT energy for state no. 1 ------------------------------------- SR eff. 1-el. energy : 0.000000000648 SR total Hartree energy : 0.000000001477 SR eff. total DFT energy : 0.000000000284 LR total CI energy : -1.089740492692 Total CI-DFT energy : -1.089740492408 Decomposition of the auxiliary CI-srDFT energy: ELRCI : -1.089740492692 EMYDFTAUX : 0.000000000000 ESRDV : 0.000000000648 POTNUC : 0.440981009000 Auxiliary CI-srDFT energy for root 1: -1.530721501044 @ Final CI energies and residuals in symmetry 1 (irrep A ) @ 1 -1.089740492407894 2.36D-16 --- OUTPUT FROM SIRCNO Keyword = FD+NO Ex-sr + Ec-sr -0.0000000012 + EJsr = sr Coulomb energy 0.0000000006 = Total E(srDFT) -0.0000000006 Corrections needed for correct CI energy evaluation: - 0.5 Tr(Vxc-sr Dcore) -0.0000000000 - Tr(Vxc-sr Dval) 0.0000000024 - 0.5 Tr( (Jsr+HFXFAC*Ksr) Dval ) -0.0000000006 Occupations of CAS natural orbitals: Symmetry 1 ( irrep A in C1 ) 1.910463269 0.089536731 --- MACRO ITERATION 1 --- -------------------------- 2-el. integral transformation level 3: Total CPU and WALL times (sec) 0.000 0.001 Fock matrix screening setting for this macro iteration: 10^( -9) Ex-sr + Ec-sr -0.0000000012 + EJsr = sr Coulomb energy 0.0000000006 = Total E(srDFT) -0.0000000006 Corrections needed for correct CI energy evaluation: - 0.5 Tr(Vxc-sr Dcore) -0.0000000000 - Tr(Vxc-sr Dval) 0.0000000024 - 0.5 Tr( (Jsr+HFXFAC*Ksr) Dval ) -0.0000000006 Total MC-srDFT energy : -1.089740493334466 (MACRO 1) - Nuclear repulsion : 0.440981009000000 - Inactive energy : 0.000000000000000 - Active energy : -1.530721502885380 - srDFT effective energy : 0.000000000550915 Norm of total gradient : 0.049733992108 - of CI gradient : 0.000000000635 - of orbital gradient : 0.049733992108 Virial theorem: -V/T = 2.196450 @ MULPOP H -0.00; H 0.00; Residual norm when dim(red L) = 4 NEO root CSF orbital total 1 0.00000000 0.00000000 0.00000000 converged (NEONEX) NEO vector is converged. --- OUTPUT FROM SIRCNO Keyword = FD+NO Ex-sr + Ec-sr -0.0000000012 + EJsr = sr Coulomb energy 0.0000000006 = Total E(srDFT) -0.0000000006 Corrections needed for correct CI energy evaluation: - 0.5 Tr(Vxc-sr Dcore) -0.0000000000 - Tr(Vxc-sr Dval) 0.0000000024 - 0.5 Tr( (Jsr+HFXFAC*Ksr) Dval ) -0.0000000006 Occupations of CAS natural orbitals: Symmetry 1 ( irrep A in C1 ) 1.900486918 0.099513082 --- MACRO ITERATION 2 --- -------------------------- 2-el. integral transformation level 3: Total CPU and WALL times (sec) 0.000 0.000 Fock matrix screening setting for this macro iteration: 10^( -9) Ex-sr + Ec-sr -0.0000000012 + EJsr = sr Coulomb energy 0.0000000006 = Total E(srDFT) -0.0000000006 Corrections needed for correct CI energy evaluation: - 0.5 Tr(Vxc-sr Dcore) -0.0000000000 - Tr(Vxc-sr Dval) 0.0000000024 - 0.5 Tr( (Jsr+HFXFAC*Ksr) Dval ) -0.0000000006 Total MC-srDFT energy : -1.090241350027877 (MACRO 2) - Nuclear repulsion : 0.440981009000000 - Inactive energy : 0.000000000000000 - Active energy : -1.531222359564297 - srDFT effective energy : 0.000000000536420 Norm of total gradient : 0.002482362750 - of CI gradient : 0.001977150172 - of orbital gradient : 0.001501000339 Virial theorem: -V/T = 2.177357 @ MULPOP H -0.00; H 0.00; Residual norm when dim(red L) = 4 NEO root CSF orbital total 1 0.00000000 0.00000000 0.00000000 converged (NEONEX) NEO vector is converged. --- OUTPUT FROM SIRCNO Keyword = FD+NO Ex-sr + Ec-sr -0.0000000012 + EJsr = sr Coulomb energy 0.0000000006 = Total E(srDFT) -0.0000000006 Corrections needed for correct CI energy evaluation: - 0.5 Tr(Vxc-sr Dcore) -0.0000000000 - Tr(Vxc-sr Dval) 0.0000000024 - 0.5 Tr( (Jsr+HFXFAC*Ksr) Dval ) -0.0000000006 Occupations of CAS natural orbitals: Symmetry 1 ( irrep A in C1 ) 1.902249553 0.097750447 --- MACRO ITERATION 3 --- -------------------------- 2-el. integral transformation level 3: Total CPU and WALL times (sec) 0.000 0.000 Fock matrix screening setting for this macro iteration: 10^( -9) Ex-sr + Ec-sr -0.0000000012 + EJsr = sr Coulomb energy 0.0000000006 = Total E(srDFT) -0.0000000006 Corrections needed for correct CI energy evaluation: - 0.5 Tr(Vxc-sr Dcore) -0.0000000000 - Tr(Vxc-sr Dval) 0.0000000024 - 0.5 Tr( (Jsr+HFXFAC*Ksr) Dval ) -0.0000000006 Total MC-srDFT energy : -1.090247604317479 (MACRO 3) - Nuclear repulsion : 0.440981009000000 - Inactive energy : 0.000000000000000 - Active energy : -1.531228613855171 - srDFT effective energy : 0.000000000537691 Norm of total gradient : 0.000030830079 - of CI gradient : 0.000016104992 - of orbital gradient : 0.000026289219 Virial theorem: -V/T = 2.177363 @ MULPOP H -0.00; H 0.00; Residual norm when dim(red L) = 4 NEO root CSF orbital total 1 0.00000000 0.00000000 0.00000000 converged (NEONEX) NEO vector is converged. --- OUTPUT FROM SIRCNO Keyword = FD+NO Ex-sr + Ec-sr -0.0000000012 + EJsr = sr Coulomb energy 0.0000000006 = Total E(srDFT) -0.0000000006 Corrections needed for correct CI energy evaluation: - 0.5 Tr(Vxc-sr Dcore) -0.0000000000 - Tr(Vxc-sr Dval) 0.0000000024 - 0.5 Tr( (Jsr+HFXFAC*Ksr) Dval ) -0.0000000006 Occupations of CAS natural orbitals: Symmetry 1 ( irrep A in C1 ) 1.902269455 0.097730545 --- MACRO ITERATION 4 --- -------------------------- 2-el. integral transformation level 3: Total CPU and WALL times (sec) 0.000 0.000 Fock matrix screening setting for this macro iteration: 10^( -9) Ex-sr + Ec-sr -0.0000000012 + EJsr = sr Coulomb energy 0.0000000006 = Total E(srDFT) -0.0000000006 Corrections needed for correct CI energy evaluation: - 0.5 Tr(Vxc-sr Dcore) -0.0000000000 - Tr(Vxc-sr Dval) 0.0000000024 - 0.5 Tr( (Jsr+HFXFAC*Ksr) Dval ) -0.0000000006 Total MC-srDFT energy : -1.090247605615059 (MACRO 4) - Nuclear repulsion : 0.440981009000000 - Inactive energy : 0.000000000000000 - Active energy : -1.531228615152764 - srDFT effective energy : 0.000000000537705 Norm of total gradient : 0.000000007467 - of CI gradient : 0.000000005571 - of orbital gradient : 0.000000004972 Virial theorem: -V/T = 2.177357 @ MULPOP H -0.00; H 0.00; *** Optimization control: MC-srDFT converged *** Number of macro iterations used 4 Number of micro iterations used 9 Total number of CPU seconds used 2.40 CPU and wall time for MCSCF : 2.405 2.405 .----------------------------------------. | --- SIRIUS OPTIMIZATION STATISTICS --- | `----------------------------------------' Date and time (Linux) : Tue Aug 6 15:40:55 2019 Host name : adm-110765.pc.sdu.dk ITER ITMIC EMCSCF GRDNRM RATIO STPLNG --------------------------------------------------------------------- 1 3 -1.089740493334 0.0497339921 0.000000 0.0550322111 2 3 -1.090241350028 0.0024823627 0.936037 0.0062531815 3 3 -1.090247604317 0.0000308301 1.009318 0.0000964999 4 0 -1.090247605615 0.0000000075 1.000141 0.0000000000 ITER INDGCM GCIMAX GCINRM INDGOM GOBMAX GOBNRM GRDNRM ------------------------------------------------------------------------------ 1 4 -0.000000 0.000000 2 -0.048073 0.049734 0.049734 2 4 -0.001927 0.001977 3 0.001412 0.001501 0.002482 3 4 -0.000016 0.000016 3 0.000024 0.000026 0.000031 4 4 -0.000000 0.000000 3 0.000000 0.000000 0.000000 ITER ITMIC NCLIN NOLIN TIMMAC TIMITR TIMMIC TIMLIN TIMMIC/ITMIC ------------------------------------------------------------------------------ 1 3 1 2 0.69 0.00 0.58 0.47 0.19 2 3 1 2 0.68 0.00 0.57 0.46 0.19 3 3 1 2 0.72 0.00 0.62 0.51 0.21 4 0 0 0 0.11 0.00 0.00 0.00 ITER EMY EACTIV EMCSCF 1 0.000000000551 -1.530721502885 -1.089740493334 2 0.000000000536 -1.531222359564 -1.090241350028 3 0.000000000538 -1.531228613855 -1.090247604317 4 0.000000000538 -1.531228615153 -1.090247605615 ITER DEPRED DEACT RATIO 1 0.000000000000 0.000000000000 0.000000000000 2 -0.000535082287 -0.000500856693 0.936036766728 3 -0.000006196552 -0.000006254290 1.009317637484 4 -0.000000001297 -0.000000001298 1.000140982179 ITER BETA GAMMA STPLNG RTRUST 1 0.20000000 1.00000000 0.055032211083 0.700000000000 2 0.20000000 1.00000000 0.006253181545 0.700000000000 3 0.20000000 1.00000000 0.000096499890 0.700000000000 4 0.00000000 0.00000000 0.000000000000 0.700000000000 Reduced L root no. 1 ITER EVAL EVEC(1) EVEC(2) EVEC(3) ---------------------------------------------------------------------------- 1 -0.000042801398 0.999939434618 -0.010737745785 -0.002351458829 2 -0.000000495723 0.999999217955 -0.000407028878 -0.001181930329 3 -0.000000000104 0.999999999814 -0.000004615640 -0.000018730647 4 0.000000000000 0.000000000000 0.000000000000 0.000000000000 .-----------------------------------. | --- Final results from SIRIUS --- | `-----------------------------------' @ Spin multiplicity: 1 @ Spatial symmetry: 1 ( irrep A in C1 ) @ Total charge of molecule: 0 @ State number: 1 @ Final MC-SRDFT energy: -1.090247605615 @ Nuclear repulsion: 0.440981009000 @ Electronic energy: -1.531228614615 @ Final gradient norm: 0.000000007467 Date and time (Linux) : Tue Aug 6 15:40:55 2019 Host name : adm-110765.pc.sdu.dk Occupancies of natural orbitals ------------------------------- Symmetry 1 ( A ) -- Total occupation in this symmetry is 2.000000000 1.902269455 0.097730545 File label for MO orbitals: 6Aug19 (CNOORB) (Only coefficients > 0.0100 are printed.) Molecular orbitals for symmetry species 1 (A ) ------------------------------------------------ Orbital 1 2 3 4 1 H :1s 0.2438 -0.4339 0.8269 0.9172 2 H :1s 0.3947 -0.6184 -1.3045 -0.6749 3 H :1s 0.2438 0.4339 -0.8269 0.9172 4 H :1s 0.3947 0.6184 1.3045 -0.6749 Printout of CI-coefficients abs greater than 0.05000 for root 1 *** NOTE: this root is the reference state *** Printout of coefficients in interval 0.3162E+00 to 0.1000E+01 ============================================================== Coefficient of determinant 1 is 0.97526136 9.75261364E-01 alpha-string: 1 beta-string: 1 Printout of coefficients in interval 0.1000E+00 to 0.3162E+00 ============================================================== Coefficient of determinant 4 is -0.22105491 -2.21054908E-01 alpha-string: 2 beta-string: 2 Printout of coefficients in interval 0.5000E-01 to 0.1000E+00 ============================================================== ( no coefficients ) Norm of printed part of CI vector .. 1.00000000 Magnitude of CI coefficients ============================ ( Ranges are relative to norm of vector : 1.00E+00 ) 10- 1 to 10- 0 2 0.10000000E+01 0.10000000E+01 Number of coefficients less than 10^-11 times norm is 2 Total CPU time used in SIRIUS : 2.96 seconds Total wall time used in SIRIUS : 2.97 seconds Date and time (Linux) : Tue Aug 6 15:40:55 2019 Host name : adm-110765.pc.sdu.dk .---------------------------------------. | End of Wave Function Section (SIRIUS) | `---------------------------------------' .------------------------------------------------. | Starting in Dynamic Property Section (RESPONS) | `------------------------------------------------' ---------------------------------------------------------------------------------------- RESPONSE - an MCSCF, MC-srDFT, DFT, SOPPA and SOPPA-srDFT response property program ---------------------------------------------------------------------------------------- -------- OUTPUT FROM RESPONSE INPUT PROCESSING -------- Linear Response calculation --------------------------- Print level : IPRLR = 2 Maximum number of iterations : MAXITL = 60 Threshold for relative convergence : THCLR = 1.000D-03 Maximum iterations in optimal orbital algorithm: MAXITO = 5 1 B-frequencies 0.000000D+00 2 second order properties calculated with symmetry no. 1 and labels: FC H 001 FC H 002 TRACTL_1: Integral transformation abandoned, the required MO integrals are already available. 2-el. integral transformation level 3: Total CPU and WALL times (sec) 0.000 0.000 Sorting integrals to Dirac format: Total CPU and WALL times (sec) 0.000 0.000 MCSCF energy : -1.090247605615059 -- inactive part : 0.000000000537705 -- active part : -1.531228615152764 -- nuclear repulsion : 0.440981009000000 ************************************* *** MC-srDFT response calculation *** ************************************* ---------------------------------------------------------------- ----- Linear response calculation ----- Symmetry of excitation/property operator(s) 1 ( A ) ---------------------------------------------------------------- Number of excitations of this symmetry 0 Number of response properties of this symmetry 2 Number of C6/C8 properties of this symmetry 0 Perturbation symmetry. KSYMOP: 1 Perturbation spin symmetry.TRPLET: T Orbital variables. KZWOPT: 4 Configuration variables. KZCONF: 4 Total number of variables. KZVAR : 8 RSPLR -- linear response calculation for symmetry 1 ( A ) RSPLR -- operator label : FC H 001 RSPLR -- operator spin : 0 RSPLR -- frequencies : 0.000000 --- SOLVING SETS OF LINEAR EQUATIONS FOR LINEAR RESPONSE PROPERTIES --- Operator symmetry = 1 ( A ); triplet = T ** RSPCTL MICROITERATION NUMBER 1 No. Residual tot., conf., and orb. Bnorm Frequency ---------------------------------------------------------------- 1 2.76748D+00 8.60D-16 2.77D+00 1.45D+01 0.00000D+00 ** RSPCTL MICROITERATION NUMBER 2 No. Residual tot., conf., and orb. Bnorm Frequency ---------------------------------------------------------------- 1 2.25371D-01 8.31D-16 2.25D-01 1.66D+01 0.00000D+00 ** RSPCTL MICROITERATION NUMBER 3 No. Residual tot., conf., and orb. Bnorm Frequency ---------------------------------------------------------------- 1 3.49566D-05 8.31D-16 3.50D-05 1.65D+01 0.00000D+00 *** THE REQUESTED 1 SOLUTION VECTORS CONVERGED Convergence of RSP solution vectors, threshold = 1.00D-03 --------------------------------------------------------------- (dimension of paired reduced space: 8) RSP solution vector no. 1; norm of residual 2.12D-06 *** RSPCTL MICROITERATIONS CONVERGED RSPLR -- linear response calculation for symmetry 1 ( A ) RSPLR -- operator label : FC H 002 RSPLR -- operator spin : 0 RSPLR -- frequencies : 0.000000 --- SOLVING SETS OF LINEAR EQUATIONS FOR LINEAR RESPONSE PROPERTIES --- Operator symmetry = 1 ( A ); triplet = T ** RSPCTL MICROITERATION NUMBER 1 No. Residual tot., conf., and orb. Bnorm Frequency ---------------------------------------------------------------- 1 2.76748D+00 7.02D-16 2.77D+00 1.45D+01 0.00000D+00 ** RSPCTL MICROITERATION NUMBER 2 No. Residual tot., conf., and orb. Bnorm Frequency ---------------------------------------------------------------- 1 2.25371D-01 6.66D-16 2.25D-01 1.66D+01 0.00000D+00 ** RSPCTL MICROITERATION NUMBER 3 No. Residual tot., conf., and orb. Bnorm Frequency ---------------------------------------------------------------- 1 3.49566D-05 9.42D-16 3.50D-05 1.65D+01 0.00000D+00 *** THE REQUESTED 1 SOLUTION VECTORS CONVERGED Convergence of RSP solution vectors, threshold = 1.00D-03 --------------------------------------------------------------- (dimension of paired reduced space: 8) RSP solution vector no. 1; norm of residual 2.12D-06 *** RSPCTL MICROITERATIONS CONVERGED Final output of second order properties from linear response ------------------------------------------------------------ @ Spin symmetry of operators: triplet Note that minus the linear response function: - << A; B >>(omega) is printed. The results are of quadratic accuracy using Sellers formula. @ FREQUENCY INDEPENDENT SECOND ORDER PROPERTIES @ -<< FC H 001 ; FC H 001 >> = 7.140539047242E+01 @ -<< FC H 001 ; FC H 002 >> = -4.130157718488E+01 @ -<< FC H 002 ; FC H 002 >> = 7.140539047242E+01 Time used in linear response calculation is 1.29 CPU seconds for symmetry 1 Total CPU time used in RESPONSE: 1.29 seconds Total wall time used in RESPONSE: 1.30 seconds .-------------------------------------------. | End of Dynamic Property Section (RESPONS) | `-------------------------------------------' Total CPU time used in DALTON: 4.27 seconds Total wall time used in DALTON: 4.27 seconds Date and time (Linux) : Tue Aug 6 15:40:56 2019 Host name : adm-110765.pc.sdu.dk