/* ---------------------------------------------------------------------- This is the ██╗ ██╗ ██████╗ ██████╗ ██████╗ ██╗ ██╗████████╗███████╗ ██║ ██║██╔════╝ ██╔════╝ ██╔════╝ ██║ ██║╚══██╔══╝██╔════╝ ██║ ██║██║ ███╗██║ ███╗██║ ███╗███████║ ██║ ███████╗ ██║ ██║██║ ██║██║ ██║██║ ██║██╔══██║ ██║ ╚════██║ ███████╗██║╚██████╔╝╚██████╔╝╚██████╔╝██║ ██║ ██║ ███████║ ╚══════╝╚═╝ ╚═════╝ ╚═════╝ ╚═════╝ ╚═╝ ╚═╝ ╚═╝ ╚══════╝® DEM simulation engine, released by DCS Computing Gmbh, Linz, Austria http://www.dcs-computing.com, office@dcs-computing.com LIGGGHTS® is part of CFDEM®project: http://www.liggghts.com | http://www.cfdem.com Core developer and main author: Christoph Kloss, christoph.kloss@dcs-computing.com LIGGGHTS® is open-source, distributed under the terms of the GNU Public License, version 2 or later. It is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. You should have received a copy of the GNU General Public License along with LIGGGHTS®. If not, see http://www.gnu.org/licenses . See also top-level README and LICENSE files. LIGGGHTS® and CFDEM® are registered trade marks of DCS Computing GmbH, the producer of the LIGGGHTS® software and the CFDEM®coupling software See http://www.cfdem.com/terms-trademark-policy for details. ------------------------------------------------------------------------- Contributing author and copyright for this file: This file is from LAMMPS LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator http://lammps.sandia.gov, Sandia National Laboratories Steve Plimpton, sjplimp@sandia.gov Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. ------------------------------------------------------------------------- */ // C or Fortran style library interface to LAMMPS // customize by adding new LAMMPS-specific functions #include "lmptype.h" #include #include #include #include "library.h" #include "lammps.h" #include "input.h" #include "atom.h" #include "domain.h" #include "update.h" #include "group.h" #include "input.h" #include "variable.h" #include "modify.h" #include "compute.h" #include "fix.h" #include "comm.h" #include "memory.h" #include "error.h" using namespace LAMMPS_NS; /* ---------------------------------------------------------------------- create an instance of LAMMPS and return pointer to it pass in command-line args and MPI communicator to run on ------------------------------------------------------------------------- */ void lammps_open(int argc, char **argv, MPI_Comm communicator, void **ptr) { LAMMPS *lmp = new LAMMPS(argc,argv,communicator); *ptr = (void *) lmp; } /* ---------------------------------------------------------------------- create an instance of LAMMPS and return pointer to it caller doesn't know MPI communicator, so use MPI_COMM_WORLD intialize MPI if needed ------------------------------------------------------------------------- */ void lammps_open_no_mpi(int argc, char **argv, void **ptr) { int flag; MPI_Initialized(&flag); if (!flag) { int argc = 0; char **argv = NULL; MPI_Init(&argc,&argv); } MPI_Comm communicator = MPI_COMM_WORLD; LAMMPS *lmp = new LAMMPS(argc,argv,communicator); *ptr = (void *) lmp; } /* ---------------------------------------------------------------------- destruct an instance of LAMMPS ------------------------------------------------------------------------- */ void lammps_close(void *ptr) { LAMMPS *lmp = (LAMMPS *) ptr; delete lmp; } /* ---------------------------------------------------------------------- process an input script in filename str ------------------------------------------------------------------------- */ void lammps_file(void *ptr, const char *str) { LAMMPS *lmp = (LAMMPS *) ptr; lmp->input->file(str); } /* ---------------------------------------------------------------------- process a single input command in str ------------------------------------------------------------------------- */ char *lammps_command(void *ptr, const char *str) { LAMMPS *lmp = (LAMMPS *) ptr; return lmp->input->one(str); } /* ---------------------------------------------------------------------- clean-up function to free memory allocated by lib and returned to caller ------------------------------------------------------------------------- */ void lammps_free(void *ptr) { free(ptr); } /* ---------------------------------------------------------------------- add LAMMPS-specific library functions all must receive LAMMPS pointer as argument customize by adding a function here and in library.h header file ------------------------------------------------------------------------- */ /* ---------------------------------------------------------------------- extract a pointer to an internal LAMMPS global entity name = desired quantity, e.g. dt or boxyhi or natoms returns a void pointer to the entity which the caller can cast to the proper data type returns a NULL if name not listed below customize by adding names ------------------------------------------------------------------------- */ void *lammps_extract_global(void *ptr, const char *name) { LAMMPS *lmp = (LAMMPS *) ptr; if (strcmp(name,"dt") == 0) return (void *) &lmp->update->dt; if (strcmp(name,"atime") == 0) return (void *)&lmp->update->atime; if (strcmp(name,"boxxlo") == 0) return (void *) &lmp->domain->boxlo[0]; if (strcmp(name,"boxxhi") == 0) return (void *) &lmp->domain->boxhi[0]; if (strcmp(name,"boxylo") == 0) return (void *) &lmp->domain->boxlo[1]; if (strcmp(name,"boxyhi") == 0) return (void *) &lmp->domain->boxhi[1]; if (strcmp(name,"boxzlo") == 0) return (void *) &lmp->domain->boxlo[2]; if (strcmp(name,"boxzhi") == 0) return (void *) &lmp->domain->boxhi[2]; if (strcmp(name,"subxlo") == 0) return (void *) &lmp->domain->sublo[0]; if (strcmp(name,"subxhi") == 0) return (void *) &lmp->domain->subhi[0]; if (strcmp(name,"subylo") == 0) return (void *) &lmp->domain->sublo[1]; if (strcmp(name,"subyhi") == 0) return (void *) &lmp->domain->subhi[1]; if (strcmp(name,"subzlo") == 0) return (void *) &lmp->domain->sublo[2]; if (strcmp(name,"subzhi") == 0) return (void *) &lmp->domain->subhi[2]; if (strcmp(name,"procx") == 0) return (void *) &lmp->comm->procgrid[0]; if (strcmp(name,"procy") == 0) return (void *) &lmp->comm->procgrid[1]; if (strcmp(name,"procz") == 0) return (void *) &lmp->comm->procgrid[2]; if (strcmp(name,"procneighxleft") == 0) return (void *) &lmp->comm->procneigh[0][0]; if (strcmp(name,"procneighxright") == 0) return (void *) &lmp->comm->procneigh[0][1]; if (strcmp(name,"procneighyleft") == 0) return (void *) &lmp->comm->procneigh[1][0]; if (strcmp(name,"procneighyright") == 0) return (void *) &lmp->comm->procneigh[1][1]; if (strcmp(name,"procneighzleft") == 0) return (void *) &lmp->comm->procneigh[2][0]; if (strcmp(name,"procneighzright") == 0) return (void *) &lmp->comm->procneigh[2][1]; if (strcmp(name,"mylocx") == 0) return (void *) &lmp->comm->myloc[0]; if (strcmp(name,"mylocy") == 0) return (void *) &lmp->comm->myloc[1]; if (strcmp(name,"mylocz") == 0) return (void *) &lmp->comm->myloc[2]; if (strcmp(name,"natoms") == 0) return (void *) &lmp->atom->natoms; if (strcmp(name,"nlocal") == 0) return (void *) &lmp->atom->nlocal; if (strcmp(name,"nghost") == 0) return (void *) &lmp->atom->nghost; if (strcmp(name,"ago") == 0) return (void *) &lmp->neighbor->ago; //INT, time steps since last neighbor->decide, if (strcmp(name,"ntimestep") == 0) return (void *) &lmp->update->ntimestep; if (strcmp(name,"firststep") == 0) return (void *) &lmp->update->firststep; return NULL; } /* ---------------------------------------------------------------------- extract a pointer to an internal LAMMPS atom-based entity name = desired quantity, e.g. x or mass returns a void pointer to the entity which the caller can cast to the proper data type returns a NULL if Atom::extract() does not recognize the name customize by adding names to Atom::extract() ------------------------------------------------------------------------- */ void *lammps_extract_atom(void *ptr, const char *name) { LAMMPS *lmp = (LAMMPS *) ptr; return lmp->atom->extract(name); } /* ---------------------------------------------------------------------- extract a pointer to an internal LAMMPS compute-based entity id = compute ID style = 0 for global data, 1 for per-atom data, 2 for local data type = 0 for scalar, 1 for vector, 2 for array for global data, returns a pointer to the compute's internal data structure for the entity caller should cast it to (double *) for a scalar or vector caller should cast it to (double **) for an array for per-atom or local data, returns a pointer to the compute's internal data structure for the entity caller should cast it to (double *) for a vector caller should cast it to (double **) for an array returns a void pointer to the compute's internal data structure for the entity which the caller can cast to the proper data type returns a NULL if id is not recognized or style/type not supported IMPORTANT: if the compute is not current it will be invoked LAMMPS cannot easily check here if it is valid to invoke the compute, so caller must insure that it is OK ------------------------------------------------------------------------- */ void *lammps_extract_compute(void *ptr, const char *id, int style, int type) { LAMMPS *lmp = (LAMMPS *) ptr; int icompute = lmp->modify->find_compute(id); if (icompute < 0) return NULL; Compute *compute = lmp->modify->compute[icompute]; if (style == 0) { if (type == 0) { if (!compute->scalar_flag) return NULL; if (compute->invoked_scalar != lmp->update->ntimestep) compute->compute_scalar(); return (void *) &compute->scalar; } if (type == 1) { if (!compute->vector_flag) return NULL; if (compute->invoked_vector != lmp->update->ntimestep) compute->compute_vector(); return (void *) compute->vector; } if (type == 2) { if (!compute->array_flag) return NULL; if (compute->invoked_array != lmp->update->ntimestep) compute->compute_array(); return (void *) compute->array; } } if (style == 1) { if (!compute->peratom_flag) return NULL; if (type == 1) { if (compute->invoked_peratom != lmp->update->ntimestep) compute->compute_peratom(); return (void *) compute->vector_atom; } if (type == 2) { if (compute->invoked_peratom != lmp->update->ntimestep) compute->compute_peratom(); return (void *) compute->array_atom; } } if (style == 2) { if (!compute->local_flag) return NULL; if (type == 1) { if (compute->invoked_local != lmp->update->ntimestep) compute->compute_local(); return (void *) compute->vector_local; } if (type == 2) { if (compute->invoked_local != lmp->update->ntimestep) compute->compute_local(); return (void *) compute->array_local; } } return NULL; } /* ---------------------------------------------------------------------- extract a pointer to an internal LAMMPS fix-based entity id = fix ID style = 0 for global data, 1 for per-atom data, 2 for local data type = 0 for scalar, 1 for vector, 2 for array i,j = indices needed only to specify which global vector or array value for global data, returns a pointer to a memory location which is allocated by this function which the caller can cast to a (double *) which points to the value for per-atom or local data, returns a pointer to the fix's internal data structure for the entity caller should cast it to (double *) for a vector caller should cast it to (double **) for an array returns a NULL if id is not recognized or style/type not supported IMPORTANT: for global data, this function allocates a double to store the value in, so the caller must free this memory to avoid a leak, e.g. double *dptr = (double *) lammps_extract_fix(); double value = *dptr; free(dptr); IMPORTANT: LAMMPS cannot easily check here when info extracted from the fix is valid, so caller must insure that it is OK ------------------------------------------------------------------------- */ void *lammps_extract_fix(void *ptr, const char *id, int style, int type, int i, int j) { LAMMPS *lmp = (LAMMPS *) ptr; int ifix = lmp->modify->find_fix(id); if (ifix < 0) return NULL; Fix *fix = lmp->modify->fix[ifix]; if (style == 0) { double *dptr = (double *) malloc(sizeof(double)); if (type == 0) { if (!fix->scalar_flag) return NULL; *dptr = fix->compute_scalar(); return (void *) dptr; } if (type == 1) { if (!fix->vector_flag) return NULL; *dptr = fix->compute_vector(i); return (void *) dptr; } if (type == 2) { if (!fix->array_flag) return NULL; *dptr = fix->compute_array(i,j); return (void *) dptr; } } if (style == 1) { if (!fix->peratom_flag) return NULL; if (type == 1) return (void *) fix->vector_atom; if (type == 2) return (void *) fix->array_atom; } if (style == 2) { if (!fix->local_flag) return NULL; if (type == 1) return (void *) fix->vector_local; if (type == 2) return (void *) fix->array_local; } return NULL; } /* ---------------------------------------------------------------------- extract a pointer to an internal LAMMPS evaluated variable name = variable name, must be equal-style or atom-style variable group = group ID for evaluating an atom-style variable, else NULL for equal-style variable, returns a pointer to a memory location which is allocated by this function which the caller can cast to a (double *) which points to the value for atom-style variable, returns a pointer to the vector of per-atom values on each processor, which the caller can cast to a (double *) which points to the values returns a NULL if name is not recognized or not equal-style or atom-style IMPORTANT: for both equal-style and atom-style variables, this function allocates memory to store the variable data in so the caller must free this memory to avoid a leak e.g. for equal-style variables double *dptr = (double *) lammps_extract_variable(); double value = *dptr; free(dptr); e.g. for atom-style variables double *vector = (double *) lammps_extract_variable(); use the vector values free(vector); IMPORTANT: LAMMPS cannot easily check here when it is valid to evaluate the variable or any fixes or computes or thermodynamic info it references, so caller must insure that it is OK ------------------------------------------------------------------------- */ void *lammps_extract_variable(void *ptr, char *name, char *group) { LAMMPS *lmp = (LAMMPS *) ptr; int ivar = lmp->input->variable->find(name); if (ivar < 0) return NULL; if (lmp->input->variable->equalstyle(ivar)) { double *dptr = (double *) malloc(sizeof(double)); *dptr = lmp->input->variable->compute_equal(ivar); return (void *) dptr; } if (lmp->input->variable->atomstyle(ivar)) { int igroup = lmp->group->find(group); if (igroup < 0) return NULL; int nlocal = lmp->atom->nlocal; double *vector = (double *) malloc(nlocal*sizeof(double)); lmp->input->variable->compute_atom(ivar,igroup,vector,1,0); return (void *) vector; } return NULL; } /* ---------------------------------------------------------------------- return the total number of atoms in the system useful before call to lammps_get_atoms() so can pre-allocate vector ------------------------------------------------------------------------- */ int lammps_get_natoms(void *ptr) { LAMMPS *lmp = (LAMMPS *) ptr; if (lmp->atom->natoms > MAXSMALLINT) return 0; int natoms = static_cast (lmp->atom->natoms); return natoms; } /* ---------------------------------------------------------------------- gather the named atom-based entity across all processors name = desired quantity, e.g. x or charge type = 0 for integer values, 1 for double values count = # of per-atom values, e.g. 1 for type or charge, 3 for x or f return atom-based values in data, ordered by count, then by atom ID e.g. x[0][0],x[0][1],x[0][2],x[1][0],x[1][1],x[1][2],x[2][0],... data must be pre-allocated by caller to correct length ------------------------------------------------------------------------- */ void lammps_gather_atoms(void *ptr, const char *name, int type, int count, void *data) { LAMMPS *lmp = (LAMMPS *) ptr; // error if tags are not defined or not consecutive int flag = 0; if (lmp->atom->tag_enable == 0 || lmp->atom->tag_consecutive() == 0) flag = 1; if (lmp->atom->natoms > MAXSMALLINT) flag = 1; if (flag && lmp->comm->me == 0) { lmp->error->warning(FLERR,"Library error in lammps_gather_atoms"); return; } int natoms = static_cast (lmp->atom->natoms); int i,j,offset; void *vptr = lmp->atom->extract(name); // copy = Natom length vector of per-atom values // use atom ID to insert each atom's values into copy // MPI_Allreduce with MPI_SUM to merge into data, ordered by atom ID if (type == 0) { int *vector = NULL; int **array = NULL; if (count == 1) vector = (int *) vptr; else array = (int **) vptr; int *copy; lmp->memory->create(copy,count*natoms,"lib/gather:copy"); for (i = 0; i < count*natoms; i++) copy[i] = 0; int *tag = lmp->atom->tag; int nlocal = lmp->atom->nlocal; if (count == 1) for (i = 0; i < nlocal; i++) copy[tag[i]-1] = vector[i]; else for (i = 0; i < nlocal; i++) { offset = count*(tag[i]-1); for (j = 0; j < count; j++) copy[offset++] = array[i][0]; } MPI_Allreduce(copy,data,count*natoms,MPI_INT,MPI_SUM,lmp->world); lmp->memory->destroy(copy); } else { double *vector = NULL; double **array = NULL; if (count == 1) vector = (double *) vptr; else array = (double **) vptr; double *copy; lmp->memory->create(copy,count*natoms,"lib/gather:copy"); for (i = 0; i < count*natoms; i++) copy[i] = 0.0; int *tag = lmp->atom->tag; int nlocal = lmp->atom->nlocal; if (count == 1) { for (i = 0; i < nlocal; i++) copy[tag[i]-1] = vector[i]; } else { for (i = 0; i < nlocal; i++) { offset = count*(tag[i]-1); for (j = 0; j < count; j++) copy[offset++] = array[i][j]; } } MPI_Allreduce(copy,data,count*natoms,MPI_DOUBLE,MPI_SUM,lmp->world); lmp->memory->destroy(copy); } } /* ---------------------------------------------------------------------- scatter the named atom-based entity across all processors name = desired quantity, e.g. x or charge type = 0 for integer values, 1 for double values count = # of per-atom values, e.g. 1 for type or charge, 3 for x or f data = atom-based values in data, ordered by count, then by atom ID e.g. x[0][0],x[0][1],x[0][2],x[1][0],x[1][1],x[1][2],x[2][0],... ------------------------------------------------------------------------- */ void lammps_scatter_atoms(void *ptr, const char *name, int type, int count, void *data) { LAMMPS *lmp = (LAMMPS *) ptr; // error if tags are not defined or not consecutive or no atom map int flag = 0; if (lmp->atom->tag_enable == 0 || lmp->atom->tag_consecutive() == 0) flag = 1; if (lmp->atom->natoms > MAXSMALLINT) flag = 1; if (lmp->atom->map_style == 0) flag = 1; if (flag && lmp->comm->me == 0) { lmp->error->warning(FLERR,"Library error in lammps_scatter_atoms"); return; } int natoms = static_cast (lmp->atom->natoms); int i,j,m,offset; void *vptr = lmp->atom->extract(name); // copy = Natom length vector of per-atom values // use atom ID to insert each atom's values into copy // MPI_Allreduce with MPI_SUM to merge into data, ordered by atom ID if (type == 0) { int *vector = NULL; int **array = NULL; if (count == 1) vector = (int *) vptr; else array = (int **) vptr; int *dptr = (int *) data; if (count == 1) { for (i = 0; i < natoms; i++) if ((m = lmp->atom->map(i+1)) >= 0) vector[m] = dptr[i]; } else { for (i = 0; i < natoms; i++) if ((m = lmp->atom->map(i+1)) >= 0) { offset = count*i; for (j = 0; j < count; j++) array[m][j] = dptr[offset++]; } } } else { double *vector = NULL; double **array = NULL; if (count == 1) vector = (double *) vptr; else array = (double **) vptr; double *dptr = (double *) data; if (count == 1) { for (i = 0; i < natoms; i++) if ((m = lmp->atom->map(i+1)) >= 0) vector[m] = dptr[i]; } else { for (i = 0; i < natoms; i++) { if ((m = lmp->atom->map(i+1)) >= 0) { offset = count*i; for (j = 0; j < count; j++) array[m][j] = dptr[offset++]; } } } } }