/* ---------------------------------------------------------------------- This is the ██╗ ██╗ ██████╗ ██████╗ ██████╗ ██╗ ██╗████████╗███████╗ ██║ ██║██╔════╝ ██╔════╝ ██╔════╝ ██║ ██║╚══██╔══╝██╔════╝ ██║ ██║██║ ███╗██║ ███╗██║ ███╗███████║ ██║ ███████╗ ██║ ██║██║ ██║██║ ██║██║ ██║██╔══██║ ██║ ╚════██║ ███████╗██║╚██████╔╝╚██████╔╝╚██████╔╝██║ ██║ ██║ ███████║ ╚══════╝╚═╝ ╚═════╝ ╚═════╝ ╚═════╝ ╚═╝ ╚═╝ ╚═╝ ╚══════╝® DEM simulation engine, released by DCS Computing Gmbh, Linz, Austria http://www.dcs-computing.com, office@dcs-computing.com LIGGGHTS® is part of CFDEM®project: http://www.liggghts.com | http://www.cfdem.com Core developer and main author: Christoph Kloss, christoph.kloss@dcs-computing.com LIGGGHTS® is open-source, distributed under the terms of the GNU Public License, version 2 or later. It is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. You should have received a copy of the GNU General Public License along with LIGGGHTS®. If not, see http://www.gnu.org/licenses . See also top-level README and LICENSE files. LIGGGHTS® and CFDEM® are registered trade marks of DCS Computing GmbH, the producer of the LIGGGHTS® software and the CFDEM®coupling software See http://www.cfdem.com/terms-trademark-policy for details. ------------------------------------------------------------------------- Contributing author and copyright for this file: Rahul Mohanty (University of Edinburgh, P&G) ------------------------------------------------------------------------- */ #ifdef NORMAL_MODEL NORMAL_MODEL(LUDING,luding,12) #else #ifndef NORMAL_MODEL_LUDING_H_ #define NORMAL_MODEL_LUDING_H_ #include "contact_models.h" #include "normal_model_base.h" #include #include "atom.h" #include "force.h" #include "update.h" #include "global_properties.h" namespace LIGGGHTS { namespace ContactModels { template<> class NormalModel : public NormalModelBase { public: NormalModel(LAMMPS * lmp, IContactHistorySetup * hsetup,class ContactModelBase *c) : NormalModelBase(lmp, hsetup, c), K_elastic(NULL), CoeffRestLog(NULL), kn2k1(NULL), kn2kc(NULL), phiF(NULL), f_adh(NULL), limitForce(false) { history_offset = hsetup->add_history_value("deltaMax", "0"); kc_offset = hsetup->add_history_value("kc", "1"); fo_offset = hsetup->add_history_value("fo", "1"); c->add_history_offset("kc_offset", kc_offset); c->add_history_offset("fo_offset", fo_offset); } inline void registerSettings(Settings & settings){ settings.registerOnOff("tangential_damping", tangential_damping, true); settings.registerOnOff("limitForce", limitForce, true); } inline void postSettings(IContactHistorySetup * hsetup, ContactModelBase *cmb) {} inline void connectToProperties(PropertyRegistry & registry) { registry.registerProperty("K_elastic", &MODEL_PARAMS::createLoadingStiffness,"model luding"); registry.registerProperty("CoeffRestLog", &MODEL_PARAMS::createCoeffRestLog,"model luding"); registry.registerProperty("kn2k1", &MODEL_PARAMS::createUnloadingStiffness,"model luding"); registry.registerProperty("kn2kc", &MODEL_PARAMS::createCoeffAdhesionStiffness,"model luding"); registry.registerProperty("phiF", &MODEL_PARAMS::createCoeffPlasticityDepth,"model luding"); registry.registerProperty("f_adh", &MODEL_PARAMS::createPullOffForce,"model luding"); registry.connect("K_elastic", K_elastic,"model luding"); registry.connect("CoeffRestLog", CoeffRestLog,"model luding"); registry.connect("kn2kc", kn2kc,"model luding"); registry.connect("kn2k1", kn2k1, "model luding"); registry.connect("phiF", phiF,"model luding"); registry.connect("f_adh", f_adh,"model luding"); // error checks on coarsegraining if(force->cg_active()) error->cg(FLERR,"model luding"); } // effective exponent for stress-strain relationship inline double stressStrainExponent() { return 1.; } inline void surfacesIntersect(SurfacesIntersectData & sidata, ForceData & i_forces, ForceData & j_forces) { const int itype = sidata.itype; const int jtype = sidata.jtype; const double deltan = sidata.deltan; double ri = sidata.radi; double rj = sidata.radj; double reff=sidata.is_wall ? sidata.radi : (ri*rj/(ri+rj)); #ifdef SUPERQUADRIC_ACTIVE_FLAG if(sidata.is_non_spherical && atom->superquadric_flag) reff = sidata.reff; #endif double meff=sidata.meff; double kn = K_elastic[itype][jtype]; double kt = kn; // convert Kn and Kt from pressure units to force/distance^2 kn /= force->nktv2p; kt /= force->nktv2p; const double k1 = kn; const double k2Max = kn * kn2k1[itype][jtype]; const double kc = kn2kc[itype][jtype] * kn; const double f_0 = f_adh[itype][jtype]; double gamman, gammat; gamman = sqrt(4.*meff*kn/(1.+(M_PI/CoeffRestLog[itype][jtype])*(M_PI/CoeffRestLog[itype][jtype]))); gammat = sqrt(4.*meff*kn/(1.+(M_PI/CoeffRestLog[itype][jtype])*(M_PI/CoeffRestLog[itype][jtype]))); if (!tangential_damping) gammat = 0.0; // get the history value -- maximal overlap if(sidata.contact_flags) *sidata.contact_flags |= CONTACT_NORMAL_MODEL; double * const history = &sidata.contact_history[history_offset]; double * const kc_history = &sidata.contact_history[kc_offset]; double * const fo_history = &sidata.contact_history[fo_offset]; double deltaMax; // the 4th value of the history array is deltaMax if (deltan > history[0]) { history[0] = deltan; deltaMax = deltan; } else{ deltaMax = history[0]; } // k2 dependent on the maximum overlap // this accounts for an increasing stiffness with deformation - to capture nonlinearity const double deltaMaxLim =(k2Max/(k2Max-k1))*phiF[itype][jtype]*2*reff; double k2, fHys; if (deltaMax >= deltaMaxLim) // big overlap ... no kn at all { k2 = k2Max; const double fTmp = k2*(deltan-deltaMaxLim)+k1*deltaMaxLim;//k2*(deltan-delta0); if (fTmp >= -kc*deltan) { // un-/reloading part (k2) fHys = fTmp; } else { // cohesion part fHys = -kc*deltan; const double newDeltaMax = ((k2 + kc)/(k2-k1))*deltan; history[0] = newDeltaMax; } } else { k2 = k1 + (k2Max - k1) * deltaMax/deltaMaxLim; const double fTmp = k2*(deltan-deltaMax)+k1*deltaMax;//k2*(deltan-delta0); if (fTmp >= k1*deltan) { // loading part (k1) fHys = k1*deltan; } else { // un-/reloading part (k2) if (fTmp > -kc*deltan) { fHys = fTmp; } else { // cohesion part fHys = -kc*deltan; const double newDeltaMax = ((k2 + kc)/(k2-k1))*deltan; history[0] = newDeltaMax; } } } const double Fn_damping = -gamman*sidata.vn; double Fn = fHys + Fn_damping + f_0; if(limitForce && (Fn<0.0) && kc == 0 && f_0 == 0.0){ Fn = 0.0; } sidata.Fn = Fn; sidata.kn = kn; sidata.kt = kt; kc_history[0] = kc; fo_history[0] = f_0; sidata.gamman = gamman; sidata.gammat = gammat; #ifdef NONSPHERICAL_ACTIVE_FLAG double Fn_i[3] = { Fn * sidata.en[0], Fn * sidata.en[1], Fn * sidata.en[2]}; double torque_i[3] = {0.0, 0.0, 0.0}; //initialized here with zeros to avoid compiler warnings if(sidata.is_non_spherical) { double xci[3]; vectorSubtract3D(sidata.contact_point, atom->x[sidata.i], xci); vectorCross3D(xci, Fn_i, torque_i); } #endif // apply normal force if(sidata.is_wall) { const double Fn_ = Fn * sidata.area_ratio; i_forces.delta_F[0] = Fn_ * sidata.en[0]; i_forces.delta_F[1] = Fn_ * sidata.en[1]; i_forces.delta_F[2] = Fn_ * sidata.en[2]; #ifdef NONSPHERICAL_ACTIVE_FLAG if(sidata.is_non_spherical) { //for non-spherical particles normal force can produce torque! i_forces.delta_torque[0] += torque_i[0]; i_forces.delta_torque[1] += torque_i[1]; i_forces.delta_torque[2] += torque_i[2]; } #endif } else { i_forces.delta_F[0] = sidata.Fn * sidata.en[0]; i_forces.delta_F[1] = sidata.Fn * sidata.en[1]; i_forces.delta_F[2] = sidata.Fn * sidata.en[2]; j_forces.delta_F[0] = -i_forces.delta_F[0]; j_forces.delta_F[1] = -i_forces.delta_F[1]; j_forces.delta_F[2] = -i_forces.delta_F[2]; #ifdef NONSPHERICAL_ACTIVE_FLAG if(sidata.is_non_spherical) { //for non-spherical particles normal force can produce torque! double xcj[3], torque_j[3]; double Fn_j[3] = { -Fn_i[0], -Fn_i[1], -Fn_i[2]}; vectorSubtract3D(sidata.contact_point, atom->x[sidata.j], xcj); vectorCross3D(xcj, Fn_j, torque_j); i_forces.delta_torque[0] += torque_i[0]; i_forces.delta_torque[1] += torque_i[1]; i_forces.delta_torque[2] += torque_i[2]; j_forces.delta_torque[0] += torque_j[0]; j_forces.delta_torque[1] += torque_j[1]; j_forces.delta_torque[2] += torque_j[2]; } #endif } } inline void surfacesClose(SurfacesCloseData & scdata, ForceData&, ForceData&) { if(scdata.contact_flags) *scdata.contact_flags &= ~CONTACT_NORMAL_MODEL; double * const history = &scdata.contact_history[history_offset]; history[0] = 0.0; } void beginPass(SurfacesIntersectData&, ForceData&, ForceData&){} void endPass(SurfacesIntersectData&, ForceData&, ForceData&){} protected: double **K_elastic; double **CoeffRestLog; double **kn2k1; double **kn2kc; double **phiF; double **f_adh; int history_offset; int kc_offset; int fo_offset; bool tangential_damping; bool limitForce; }; } } #endif // NORMAL_MODEL_LUDING_H_ #endif