// Copyright 2014 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #if V8_TARGET_ARCH_PPC || V8_TARGET_ARCH_PPC64 #include "src/api/api-arguments.h" #include "src/codegen/code-factory.h" // For interpreter_entry_return_pc_offset. TODO(jkummerow): Drop. #include "src/codegen/macro-assembler-inl.h" #include "src/codegen/register-configuration.h" #include "src/debug/debug.h" #include "src/deoptimizer/deoptimizer.h" #include "src/execution/frame-constants.h" #include "src/execution/frames.h" #include "src/heap/heap-inl.h" #include "src/logging/counters.h" #include "src/objects/cell.h" #include "src/objects/foreign.h" #include "src/objects/heap-number.h" #include "src/objects/js-generator.h" #include "src/objects/smi.h" #include "src/runtime/runtime.h" #include "src/wasm/wasm-linkage.h" #include "src/wasm/wasm-objects.h" namespace v8 { namespace internal { #define __ ACCESS_MASM(masm) void Builtins::Generate_Adaptor(MacroAssembler* masm, Address address) { __ Move(kJavaScriptCallExtraArg1Register, ExternalReference::Create(address)); __ Jump(BUILTIN_CODE(masm->isolate(), AdaptorWithBuiltinExitFrame), RelocInfo::CODE_TARGET); } static void GenerateTailCallToReturnedCode(MacroAssembler* masm, Runtime::FunctionId function_id) { // ----------- S t a t e ------------- // -- r3 : actual argument count // -- r4 : target function (preserved for callee) // -- r6 : new target (preserved for callee) // ----------------------------------- { FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); // Push a copy of the target function, the new target and the actual // argument count. // Push function as parameter to the runtime call. __ SmiTag(kJavaScriptCallArgCountRegister); __ Push(kJavaScriptCallTargetRegister, kJavaScriptCallNewTargetRegister, kJavaScriptCallArgCountRegister, kJavaScriptCallTargetRegister); __ CallRuntime(function_id, 1); __ mr(r5, r3); // Restore target function, new target and actual argument count. __ Pop(kJavaScriptCallTargetRegister, kJavaScriptCallNewTargetRegister, kJavaScriptCallArgCountRegister); __ SmiUntag(kJavaScriptCallArgCountRegister); } static_assert(kJavaScriptCallCodeStartRegister == r5, "ABI mismatch"); __ JumpCodeObject(r5); } namespace { enum StackLimitKind { kInterruptStackLimit, kRealStackLimit }; void LoadStackLimit(MacroAssembler* masm, Register destination, StackLimitKind kind) { DCHECK(masm->root_array_available()); Isolate* isolate = masm->isolate(); ExternalReference limit = kind == StackLimitKind::kRealStackLimit ? ExternalReference::address_of_real_jslimit(isolate) : ExternalReference::address_of_jslimit(isolate); DCHECK(TurboAssembler::IsAddressableThroughRootRegister(isolate, limit)); intptr_t offset = TurboAssembler::RootRegisterOffsetForExternalReference(isolate, limit); CHECK(is_int32(offset)); __ LoadP(destination, MemOperand(kRootRegister, offset), r0); } void Generate_StackOverflowCheck(MacroAssembler* masm, Register num_args, Register scratch, Label* stack_overflow) { // Check the stack for overflow. We are not trying to catch // interruptions (e.g. debug break and preemption) here, so the "real stack // limit" is checked. LoadStackLimit(masm, scratch, StackLimitKind::kRealStackLimit); // Make scratch the space we have left. The stack might already be overflowed // here which will cause scratch to become negative. __ sub(scratch, sp, scratch); // Check if the arguments will overflow the stack. __ ShiftLeftImm(r0, num_args, Operand(kSystemPointerSizeLog2)); __ cmp(scratch, r0); __ ble(stack_overflow); // Signed comparison. } void Generate_JSBuiltinsConstructStubHelper(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r3 : number of arguments // -- r4 : constructor function // -- r6 : new target // -- cp : context // -- lr : return address // -- sp[...]: constructor arguments // ----------------------------------- Register scratch = r5; Label stack_overflow; Generate_StackOverflowCheck(masm, r3, r8, &stack_overflow); // Enter a construct frame. { FrameAndConstantPoolScope scope(masm, StackFrame::CONSTRUCT); // Preserve the incoming parameters on the stack. __ SmiTag(r3); __ Push(cp, r3); __ SmiUntag(r3, SetRC); // Set up pointer to last argument (skip receiver). __ addi( r7, fp, Operand(StandardFrameConstants::kCallerSPOffset + kSystemPointerSize)); // Copy arguments and receiver to the expression stack. __ PushArray(r7, r3, r8, r0); // The receiver for the builtin/api call. __ PushRoot(RootIndex::kTheHoleValue); // Call the function. // r3: number of arguments (untagged) // r4: constructor function // r6: new target { ConstantPoolUnavailableScope constant_pool_unavailable(masm); __ InvokeFunctionWithNewTarget(r4, r6, r3, CALL_FUNCTION); } // Restore context from the frame. __ LoadP(cp, MemOperand(fp, ConstructFrameConstants::kContextOffset)); // Restore smi-tagged arguments count from the frame. __ LoadP(scratch, MemOperand(fp, ConstructFrameConstants::kLengthOffset)); // Leave construct frame. } // Remove caller arguments from the stack and return. STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0); __ SmiToPtrArrayOffset(scratch, scratch); __ add(sp, sp, scratch); __ addi(sp, sp, Operand(kSystemPointerSize)); __ blr(); __ bind(&stack_overflow); { FrameScope scope(masm, StackFrame::INTERNAL); __ CallRuntime(Runtime::kThrowStackOverflow); __ bkpt(0); // Unreachable code. } } } // namespace // The construct stub for ES5 constructor functions and ES6 class constructors. void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r3: number of arguments (untagged) // -- r4: constructor function // -- r6: new target // -- cp: context // -- lr: return address // -- sp[...]: constructor arguments // ----------------------------------- // Enter a construct frame. { FrameAndConstantPoolScope scope(masm, StackFrame::CONSTRUCT); Label post_instantiation_deopt_entry, not_create_implicit_receiver; // Preserve the incoming parameters on the stack. __ SmiTag(r3); __ Push(cp, r3, r4); __ PushRoot(RootIndex::kUndefinedValue); __ Push(r6); // ----------- S t a t e ------------- // -- sp[0*kSystemPointerSize]: new target // -- sp[1*kSystemPointerSize]: padding // -- r4 and sp[2*kSystemPointerSize]: constructor function // -- sp[3*kSystemPointerSize]: number of arguments (tagged) // -- sp[4*kSystemPointerSize]: context // ----------------------------------- __ LoadTaggedPointerField( r7, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset)); __ lwz(r7, FieldMemOperand(r7, SharedFunctionInfo::kFlagsOffset)); __ DecodeField(r7); __ JumpIfIsInRange(r7, kDefaultDerivedConstructor, kDerivedConstructor, ¬_create_implicit_receiver); // If not derived class constructor: Allocate the new receiver object. __ IncrementCounter(masm->isolate()->counters()->constructed_objects(), 1, r7, r8); __ Call(BUILTIN_CODE(masm->isolate(), FastNewObject), RelocInfo::CODE_TARGET); __ b(&post_instantiation_deopt_entry); // Else: use TheHoleValue as receiver for constructor call __ bind(¬_create_implicit_receiver); __ LoadRoot(r3, RootIndex::kTheHoleValue); // ----------- S t a t e ------------- // -- r3: receiver // -- Slot 4 / sp[0*kSystemPointerSize]: new target // -- Slot 3 / sp[1*kSystemPointerSize]: padding // -- Slot 2 / sp[2*kSystemPointerSize]: constructor function // -- Slot 1 / sp[3*kSystemPointerSize]: number of arguments (tagged) // -- Slot 0 / sp[4*kSystemPointerSize]: context // ----------------------------------- // Deoptimizer enters here. masm->isolate()->heap()->SetConstructStubCreateDeoptPCOffset( masm->pc_offset()); __ bind(&post_instantiation_deopt_entry); // Restore new target. __ Pop(r6); // Push the allocated receiver to the stack. __ Push(r3); // We need two copies because we may have to return the original one // and the calling conventions dictate that the called function pops the // receiver. The second copy is pushed after the arguments, we saved in r6 // since r0 needs to store the number of arguments before // InvokingFunction. __ mr(r9, r3); // Set up pointer to first argument (skip receiver). __ addi( r7, fp, Operand(StandardFrameConstants::kCallerSPOffset + kSystemPointerSize)); // ----------- S t a t e ------------- // -- r6: new target // -- sp[0*kSystemPointerSize]: implicit receiver // -- sp[1*kSystemPointerSize]: implicit receiver // -- sp[2*kSystemPointerSize]: padding // -- sp[3*kSystemPointerSize]: constructor function // -- sp[4*kSystemPointerSize]: number of arguments (tagged) // -- sp[5*kSystemPointerSize]: context // ----------------------------------- // Restore constructor function and argument count. __ LoadP(r4, MemOperand(fp, ConstructFrameConstants::kConstructorOffset)); __ LoadP(r3, MemOperand(fp, ConstructFrameConstants::kLengthOffset)); __ SmiUntag(r3); Label enough_stack_space, stack_overflow; Generate_StackOverflowCheck(masm, r3, r8, &stack_overflow); __ b(&enough_stack_space); __ bind(&stack_overflow); // Restore the context from the frame. __ LoadP(cp, MemOperand(fp, ConstructFrameConstants::kContextOffset)); __ CallRuntime(Runtime::kThrowStackOverflow); // Unreachable code. __ bkpt(0); __ bind(&enough_stack_space); // Copy arguments and receiver to the expression stack. __ PushArray(r7, r3, r8, r0); // Push implicit receiver. __ Push(r9); // Call the function. { ConstantPoolUnavailableScope constant_pool_unavailable(masm); __ InvokeFunctionWithNewTarget(r4, r6, r3, CALL_FUNCTION); } // ----------- S t a t e ------------- // -- r0: constructor result // -- sp[0*kSystemPointerSize]: implicit receiver // -- sp[1*kSystemPointerSize]: padding // -- sp[2*kSystemPointerSize]: constructor function // -- sp[3*kSystemPointerSize]: number of arguments // -- sp[4*kSystemPointerSize]: context // ----------------------------------- // Store offset of return address for deoptimizer. masm->isolate()->heap()->SetConstructStubInvokeDeoptPCOffset( masm->pc_offset()); // Restore the context from the frame. __ LoadP(cp, MemOperand(fp, ConstructFrameConstants::kContextOffset)); // If the result is an object (in the ECMA sense), we should get rid // of the receiver and use the result; see ECMA-262 section 13.2.2-7 // on page 74. Label use_receiver, do_throw, leave_frame; // If the result is undefined, we jump out to using the implicit receiver. __ JumpIfRoot(r3, RootIndex::kUndefinedValue, &use_receiver); // Otherwise we do a smi check and fall through to check if the return value // is a valid receiver. // If the result is a smi, it is *not* an object in the ECMA sense. __ JumpIfSmi(r3, &use_receiver); // If the type of the result (stored in its map) is less than // FIRST_JS_RECEIVER_TYPE, it is not an object in the ECMA sense. STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE); __ CompareObjectType(r3, r7, r7, FIRST_JS_RECEIVER_TYPE); __ bge(&leave_frame); __ b(&use_receiver); __ bind(&do_throw); __ CallRuntime(Runtime::kThrowConstructorReturnedNonObject); // Throw away the result of the constructor invocation and use the // on-stack receiver as the result. __ bind(&use_receiver); __ LoadP(r3, MemOperand(sp)); __ JumpIfRoot(r3, RootIndex::kTheHoleValue, &do_throw); __ bind(&leave_frame); // Restore smi-tagged arguments count from the frame. __ LoadP(r4, MemOperand(fp, ConstructFrameConstants::kLengthOffset)); // Leave construct frame. } // Remove caller arguments from the stack and return. STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0); __ SmiToPtrArrayOffset(r4, r4); __ add(sp, sp, r4); __ addi(sp, sp, Operand(kSystemPointerSize)); __ blr(); } void Builtins::Generate_JSBuiltinsConstructStub(MacroAssembler* masm) { Generate_JSBuiltinsConstructStubHelper(masm); } static void GetSharedFunctionInfoBytecode(MacroAssembler* masm, Register sfi_data, Register scratch1) { Label done; __ CompareObjectType(sfi_data, scratch1, scratch1, INTERPRETER_DATA_TYPE); __ bne(&done); __ LoadTaggedPointerField( sfi_data, FieldMemOperand(sfi_data, InterpreterData::kBytecodeArrayOffset)); __ bind(&done); } // static void Builtins::Generate_ResumeGeneratorTrampoline(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r3 : the value to pass to the generator // -- r4 : the JSGeneratorObject to resume // -- lr : return address // ----------------------------------- __ AssertGeneratorObject(r4); // Store input value into generator object. __ StoreTaggedField( r3, FieldMemOperand(r4, JSGeneratorObject::kInputOrDebugPosOffset), r0); __ RecordWriteField(r4, JSGeneratorObject::kInputOrDebugPosOffset, r3, r6, kLRHasNotBeenSaved, kDontSaveFPRegs); // Load suspended function and context. __ LoadTaggedPointerField( r7, FieldMemOperand(r4, JSGeneratorObject::kFunctionOffset)); __ LoadTaggedPointerField(cp, FieldMemOperand(r7, JSFunction::kContextOffset)); // Flood function if we are stepping. Label prepare_step_in_if_stepping, prepare_step_in_suspended_generator; Label stepping_prepared; Register scratch = r8; ExternalReference debug_hook = ExternalReference::debug_hook_on_function_call_address(masm->isolate()); __ Move(scratch, debug_hook); __ LoadByte(scratch, MemOperand(scratch), r0); __ extsb(scratch, scratch); __ CmpSmiLiteral(scratch, Smi::zero(), r0); __ bne(&prepare_step_in_if_stepping); // Flood function if we need to continue stepping in the suspended generator. ExternalReference debug_suspended_generator = ExternalReference::debug_suspended_generator_address(masm->isolate()); __ Move(scratch, debug_suspended_generator); __ LoadP(scratch, MemOperand(scratch)); __ cmp(scratch, r4); __ beq(&prepare_step_in_suspended_generator); __ bind(&stepping_prepared); // Check the stack for overflow. We are not trying to catch interruptions // (i.e. debug break and preemption) here, so check the "real stack limit". Label stack_overflow; LoadStackLimit(masm, scratch, StackLimitKind::kRealStackLimit); __ cmpl(sp, scratch); __ blt(&stack_overflow); // ----------- S t a t e ------------- // -- r4 : the JSGeneratorObject to resume // -- r7 : generator function // -- cp : generator context // -- lr : return address // ----------------------------------- // Copy the function arguments from the generator object's register file. __ LoadTaggedPointerField( r6, FieldMemOperand(r7, JSFunction::kSharedFunctionInfoOffset)); __ LoadHalfWord( r6, FieldMemOperand(r6, SharedFunctionInfo::kFormalParameterCountOffset)); __ LoadTaggedPointerField( r5, FieldMemOperand(r4, JSGeneratorObject::kParametersAndRegistersOffset)); { Label done_loop, loop; __ mr(r9, r6); __ bind(&loop); __ subi(r9, r9, Operand(1)); __ cmpi(r9, Operand::Zero()); __ blt(&done_loop); __ ShiftLeftImm(r10, r9, Operand(kTaggedSizeLog2)); __ add(scratch, r5, r10); __ LoadAnyTaggedField(scratch, FieldMemOperand(scratch, FixedArray::kHeaderSize)); __ Push(scratch); __ b(&loop); __ bind(&done_loop); // Push receiver. __ LoadAnyTaggedField( scratch, FieldMemOperand(r4, JSGeneratorObject::kReceiverOffset)); __ Push(scratch); } // Underlying function needs to have bytecode available. if (FLAG_debug_code) { __ LoadTaggedPointerField( r6, FieldMemOperand(r7, JSFunction::kSharedFunctionInfoOffset)); __ LoadTaggedPointerField( r6, FieldMemOperand(r6, SharedFunctionInfo::kFunctionDataOffset)); GetSharedFunctionInfoBytecode(masm, r6, r3); __ CompareObjectType(r6, r6, r6, BYTECODE_ARRAY_TYPE); __ Assert(eq, AbortReason::kMissingBytecodeArray); } // Resume (Ignition/TurboFan) generator object. { __ LoadP(r3, FieldMemOperand(r7, JSFunction::kSharedFunctionInfoOffset)); __ LoadHalfWord( r3, FieldMemOperand(r3, SharedFunctionInfo::kFormalParameterCountOffset)); // We abuse new.target both to indicate that this is a resume call and to // pass in the generator object. In ordinary calls, new.target is always // undefined because generator functions are non-constructable. __ mr(r6, r4); __ mr(r4, r7); static_assert(kJavaScriptCallCodeStartRegister == r5, "ABI mismatch"); __ LoadTaggedPointerField(r5, FieldMemOperand(r4, JSFunction::kCodeOffset)); __ JumpCodeObject(r5); } __ bind(&prepare_step_in_if_stepping); { FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); __ Push(r4, r7); // Push hole as receiver since we do not use it for stepping. __ PushRoot(RootIndex::kTheHoleValue); __ CallRuntime(Runtime::kDebugOnFunctionCall); __ Pop(r4); __ LoadTaggedPointerField( r7, FieldMemOperand(r4, JSGeneratorObject::kFunctionOffset)); } __ b(&stepping_prepared); __ bind(&prepare_step_in_suspended_generator); { FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); __ Push(r4); __ CallRuntime(Runtime::kDebugPrepareStepInSuspendedGenerator); __ Pop(r4); __ LoadTaggedPointerField( r7, FieldMemOperand(r4, JSGeneratorObject::kFunctionOffset)); } __ b(&stepping_prepared); __ bind(&stack_overflow); { FrameScope scope(masm, StackFrame::INTERNAL); __ CallRuntime(Runtime::kThrowStackOverflow); __ bkpt(0); // This should be unreachable. } } void Builtins::Generate_ConstructedNonConstructable(MacroAssembler* masm) { FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); __ push(r4); __ CallRuntime(Runtime::kThrowConstructedNonConstructable); } namespace { // Called with the native C calling convention. The corresponding function // signature is either: // // using JSEntryFunction = GeneratedCode; // or // using JSEntryFunction = GeneratedCode; void Generate_JSEntryVariant(MacroAssembler* masm, StackFrame::Type type, Builtins::Name entry_trampoline) { // The register state is either: // r3: root_register_value // r4: code entry // r5: function // r6: receiver // r7: argc // r8: argv // or // r3: root_register_value // r4: microtask_queue Label invoke, handler_entry, exit; { NoRootArrayScope no_root_array(masm); // PPC LINUX ABI: // preserve LR in pre-reserved slot in caller's frame __ mflr(r0); __ StoreP(r0, MemOperand(sp, kStackFrameLRSlot * kSystemPointerSize)); // Save callee saved registers on the stack. __ MultiPush(kCalleeSaved); // Save callee-saved double registers. __ MultiPushDoubles(kCalleeSavedDoubles); // Set up the reserved register for 0.0. __ LoadDoubleLiteral(kDoubleRegZero, Double(0.0), r0); // Initialize the root register. // C calling convention. The first argument is passed in r3. __ mr(kRootRegister, r3); } // Push a frame with special values setup to mark it as an entry frame. // r4: code entry // r5: function // r6: receiver // r7: argc // r8: argv __ li(r0, Operand(-1)); // Push a bad frame pointer to fail if it is used. __ push(r0); if (FLAG_enable_embedded_constant_pool) { __ li(kConstantPoolRegister, Operand::Zero()); __ push(kConstantPoolRegister); } __ mov(r0, Operand(StackFrame::TypeToMarker(type))); __ push(r0); __ push(r0); // Save copies of the top frame descriptor on the stack. __ Move(r3, ExternalReference::Create(IsolateAddressId::kCEntryFPAddress, masm->isolate())); __ LoadP(r0, MemOperand(r3)); __ push(r0); Register scratch = r9; // Set up frame pointer for the frame to be pushed. __ addi(fp, sp, Operand(-EntryFrameConstants::kCallerFPOffset)); // If this is the outermost JS call, set js_entry_sp value. Label non_outermost_js; ExternalReference js_entry_sp = ExternalReference::Create(IsolateAddressId::kJSEntrySPAddress, masm->isolate()); __ Move(r3, js_entry_sp); __ LoadP(scratch, MemOperand(r3)); __ cmpi(scratch, Operand::Zero()); __ bne(&non_outermost_js); __ StoreP(fp, MemOperand(r3)); __ mov(scratch, Operand(StackFrame::OUTERMOST_JSENTRY_FRAME)); Label cont; __ b(&cont); __ bind(&non_outermost_js); __ mov(scratch, Operand(StackFrame::INNER_JSENTRY_FRAME)); __ bind(&cont); __ push(scratch); // frame-type // Jump to a faked try block that does the invoke, with a faked catch // block that sets the pending exception. __ b(&invoke); // Block literal pool emission whilst taking the position of the handler // entry. This avoids making the assumption that literal pools are always // emitted after an instruction is emitted, rather than before. { ConstantPoolUnavailableScope constant_pool_unavailable(masm); __ bind(&handler_entry); // Store the current pc as the handler offset. It's used later to create the // handler table. masm->isolate()->builtins()->SetJSEntryHandlerOffset(handler_entry.pos()); // Caught exception: Store result (exception) in the pending exception // field in the JSEnv and return a failure sentinel. Coming in here the // fp will be invalid because the PushStackHandler below sets it to 0 to // signal the existence of the JSEntry frame. __ Move(scratch, ExternalReference::Create( IsolateAddressId::kPendingExceptionAddress, masm->isolate())); } __ StoreP(r3, MemOperand(scratch)); __ LoadRoot(r3, RootIndex::kException); __ b(&exit); // Invoke: Link this frame into the handler chain. __ bind(&invoke); // Must preserve r4-r8. __ PushStackHandler(); // If an exception not caught by another handler occurs, this handler // returns control to the code after the b(&invoke) above, which // restores all kCalleeSaved registers (including cp and fp) to their // saved values before returning a failure to C. // Invoke the function by calling through JS entry trampoline builtin. // Notice that we cannot store a reference to the trampoline code directly in // this stub, because runtime stubs are not traversed when doing GC. // Invoke the function by calling through JS entry trampoline builtin and // pop the faked function when we return. Handle trampoline_code = masm->isolate()->builtins()->builtin_handle(entry_trampoline); __ Call(trampoline_code, RelocInfo::CODE_TARGET); // Unlink this frame from the handler chain. __ PopStackHandler(); __ bind(&exit); // r3 holds result // Check if the current stack frame is marked as the outermost JS frame. Label non_outermost_js_2; __ pop(r8); __ cmpi(r8, Operand(StackFrame::OUTERMOST_JSENTRY_FRAME)); __ bne(&non_outermost_js_2); __ mov(scratch, Operand::Zero()); __ Move(r8, js_entry_sp); __ StoreP(scratch, MemOperand(r8)); __ bind(&non_outermost_js_2); // Restore the top frame descriptors from the stack. __ pop(r6); __ Move(scratch, ExternalReference::Create(IsolateAddressId::kCEntryFPAddress, masm->isolate())); __ StoreP(r6, MemOperand(scratch)); // Reset the stack to the callee saved registers. __ addi(sp, sp, Operand(-EntryFrameConstants::kCallerFPOffset)); // Restore callee-saved double registers. __ MultiPopDoubles(kCalleeSavedDoubles); // Restore callee-saved registers. __ MultiPop(kCalleeSaved); // Return __ LoadP(r0, MemOperand(sp, kStackFrameLRSlot * kSystemPointerSize)); __ mtlr(r0); __ blr(); } } // namespace void Builtins::Generate_JSEntry(MacroAssembler* masm) { Generate_JSEntryVariant(masm, StackFrame::ENTRY, Builtins::kJSEntryTrampoline); } void Builtins::Generate_JSConstructEntry(MacroAssembler* masm) { Generate_JSEntryVariant(masm, StackFrame::CONSTRUCT_ENTRY, Builtins::kJSConstructEntryTrampoline); } void Builtins::Generate_JSRunMicrotasksEntry(MacroAssembler* masm) { Generate_JSEntryVariant(masm, StackFrame::ENTRY, Builtins::kRunMicrotasksTrampoline); } // Clobbers scratch1 and scratch2; preserves all other registers. static void Generate_CheckStackOverflow(MacroAssembler* masm, Register argc, Register scratch1, Register scratch2) { // Check the stack for overflow. We are not trying to catch // interruptions (e.g. debug break and preemption) here, so the "real stack // limit" is checked. Label okay; LoadStackLimit(masm, scratch1, StackLimitKind::kRealStackLimit); // Make scratch1 the space we have left. The stack might already be overflowed // here which will cause scratch1 to become negative. __ sub(scratch1, sp, scratch1); // Check if the arguments will overflow the stack. __ ShiftLeftImm(scratch2, argc, Operand(kSystemPointerSizeLog2)); __ cmp(scratch1, scratch2); __ bgt(&okay); // Signed comparison. // Out of stack space. __ CallRuntime(Runtime::kThrowStackOverflow); __ bind(&okay); } static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm, bool is_construct) { // Called from Generate_JS_Entry // r4: new.target // r5: function // r6: receiver // r7: argc // r8: argv // r0,r3,r9, cp may be clobbered // Enter an internal frame. { FrameScope scope(masm, StackFrame::INTERNAL); // Setup the context (we need to use the caller context from the isolate). ExternalReference context_address = ExternalReference::Create( IsolateAddressId::kContextAddress, masm->isolate()); __ Move(cp, context_address); __ LoadP(cp, MemOperand(cp)); // Push the function. __ Push(r5); // Check if we have enough stack space to push all arguments. __ addi(r3, r7, Operand(1)); Generate_CheckStackOverflow(masm, r3, r9, r0); // Copy arguments to the stack in a loop. // r4: function // r7: argc // r8: argv, i.e. points to first arg Label loop, done; __ cmpi(r7, Operand::Zero()); __ beq(&done); __ ShiftLeftImm(r9, r7, Operand(kSystemPointerSizeLog2)); __ add(r8, r8, r9); // point to last arg __ mtctr(r7); __ bind(&loop); __ LoadPU(r9, MemOperand(r8, -kSystemPointerSize)); // read next parameter __ LoadP(r0, MemOperand(r9)); // dereference handle __ push(r0); // push parameter __ bdnz(&loop); __ bind(&done); // Push the receiver. __ Push(r6); // r3: argc // r4: function // r6: new.target __ mr(r3, r7); __ mr(r6, r4); __ mr(r4, r5); // Initialize all JavaScript callee-saved registers, since they will be seen // by the garbage collector as part of handlers. __ LoadRoot(r7, RootIndex::kUndefinedValue); __ mr(r8, r7); __ mr(r14, r7); __ mr(r15, r7); __ mr(r16, r7); __ mr(r17, r7); // Invoke the code. Handle builtin = is_construct ? BUILTIN_CODE(masm->isolate(), Construct) : masm->isolate()->builtins()->Call(); __ Call(builtin, RelocInfo::CODE_TARGET); // Exit the JS frame and remove the parameters (except function), and // return. } __ blr(); // r3: result } void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) { Generate_JSEntryTrampolineHelper(masm, false); } void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) { Generate_JSEntryTrampolineHelper(masm, true); } void Builtins::Generate_RunMicrotasksTrampoline(MacroAssembler* masm) { // This expects two C++ function parameters passed by Invoke() in // execution.cc. // r3: root_register_value // r4: microtask_queue __ mr(RunMicrotasksDescriptor::MicrotaskQueueRegister(), r4); __ Jump(BUILTIN_CODE(masm->isolate(), RunMicrotasks), RelocInfo::CODE_TARGET); } static void ReplaceClosureCodeWithOptimizedCode(MacroAssembler* masm, Register optimized_code, Register closure, Register scratch1, Register scratch2) { // Store code entry in the closure. __ StoreTaggedField(optimized_code, FieldMemOperand(closure, JSFunction::kCodeOffset), r0); __ mr(scratch1, optimized_code); // Write barrier clobbers scratch1 below. __ RecordWriteField(closure, JSFunction::kCodeOffset, scratch1, scratch2, kLRHasNotBeenSaved, kDontSaveFPRegs, OMIT_REMEMBERED_SET, OMIT_SMI_CHECK); } static void LeaveInterpreterFrame(MacroAssembler* masm, Register scratch) { Register args_count = scratch; // Get the arguments + receiver count. __ LoadP(args_count, MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp)); __ lwz(args_count, FieldMemOperand(args_count, BytecodeArray::kParameterSizeOffset)); // Leave the frame (also dropping the register file). __ LeaveFrame(StackFrame::INTERPRETED); __ add(sp, sp, args_count); } // Tail-call |function_id| if |actual_marker| == |expected_marker| static void TailCallRuntimeIfMarkerEquals(MacroAssembler* masm, Register actual_marker, OptimizationMarker expected_marker, Runtime::FunctionId function_id) { Label no_match; __ cmpi(actual_marker, Operand(expected_marker)); __ bne(&no_match); GenerateTailCallToReturnedCode(masm, function_id); __ bind(&no_match); } static void TailCallOptimizedCodeSlot(MacroAssembler* masm, Register optimized_code_entry, Register scratch) { // ----------- S t a t e ------------- // -- r3 : actual argument count // -- r6 : new target (preserved for callee if needed, and caller) // -- r4 : target function (preserved for callee if needed, and caller) // ----------------------------------- DCHECK(!AreAliased(r4, r6, optimized_code_entry, scratch)); Register closure = r4; Label heal_optimized_code_slot; // If the optimized code is cleared, go to runtime to update the optimization // marker field. __ LoadWeakValue(optimized_code_entry, optimized_code_entry, &heal_optimized_code_slot); // Check if the optimized code is marked for deopt. If it is, call the // runtime to clear it. __ LoadTaggedPointerField( scratch, FieldMemOperand(optimized_code_entry, Code::kCodeDataContainerOffset)); __ LoadWordArith( scratch, FieldMemOperand(scratch, CodeDataContainer::kKindSpecificFlagsOffset)); __ TestBit(scratch, Code::kMarkedForDeoptimizationBit, r0); __ bne(&heal_optimized_code_slot, cr0); // Optimized code is good, get it into the closure and link the closure // into the optimized functions list, then tail call the optimized code. ReplaceClosureCodeWithOptimizedCode(masm, optimized_code_entry, closure, scratch, r8); static_assert(kJavaScriptCallCodeStartRegister == r5, "ABI mismatch"); __ LoadCodeObjectEntry(r5, optimized_code_entry); __ Jump(r5); // Optimized code slot contains deoptimized code or code is cleared and // optimized code marker isn't updated. Evict the code, update the marker // and re-enter the closure's code. __ bind(&heal_optimized_code_slot); GenerateTailCallToReturnedCode(masm, Runtime::kHealOptimizedCodeSlot); } static void MaybeOptimizeCode(MacroAssembler* masm, Register feedback_vector, Register optimization_marker) { // ----------- S t a t e ------------- // -- r3 : actual argument count // -- r6 : new target (preserved for callee if needed, and caller) // -- r4 : target function (preserved for callee if needed, and caller) // -- feedback vector (preserved for caller if needed) // -- optimization_marker : a int32 containing a non-zero optimization // marker. // ----------------------------------- DCHECK(!AreAliased(feedback_vector, r4, r6, optimization_marker)); // TODO(v8:8394): The logging of first execution will break if // feedback vectors are not allocated. We need to find a different way of // logging these events if required. TailCallRuntimeIfMarkerEquals(masm, optimization_marker, OptimizationMarker::kLogFirstExecution, Runtime::kFunctionFirstExecution); TailCallRuntimeIfMarkerEquals(masm, optimization_marker, OptimizationMarker::kCompileOptimized, Runtime::kCompileOptimized_NotConcurrent); TailCallRuntimeIfMarkerEquals(masm, optimization_marker, OptimizationMarker::kCompileOptimizedConcurrent, Runtime::kCompileOptimized_Concurrent); // Marker should be one of LogFirstExecution / CompileOptimized / // CompileOptimizedConcurrent. InOptimizationQueue and None shouldn't reach // here. if (FLAG_debug_code) { __ stop(); } } // Advance the current bytecode offset. This simulates what all bytecode // handlers do upon completion of the underlying operation. Will bail out to a // label if the bytecode (without prefix) is a return bytecode. Will not advance // the bytecode offset if the current bytecode is a JumpLoop, instead just // re-executing the JumpLoop to jump to the correct bytecode. static void AdvanceBytecodeOffsetOrReturn(MacroAssembler* masm, Register bytecode_array, Register bytecode_offset, Register bytecode, Register scratch1, Register scratch2, Label* if_return) { Register bytecode_size_table = scratch1; Register scratch3 = bytecode; // The bytecode offset value will be increased by one in wide and extra wide // cases. In the case of having a wide or extra wide JumpLoop bytecode, we // will restore the original bytecode. In order to simplify the code, we have // a backup of it. Register original_bytecode_offset = scratch2; DCHECK(!AreAliased(bytecode_array, bytecode_offset, bytecode_size_table, bytecode, original_bytecode_offset)); __ Move(bytecode_size_table, ExternalReference::bytecode_size_table_address()); __ Move(original_bytecode_offset, bytecode_offset); // Check if the bytecode is a Wide or ExtraWide prefix bytecode. Label process_bytecode, extra_wide; STATIC_ASSERT(0 == static_cast(interpreter::Bytecode::kWide)); STATIC_ASSERT(1 == static_cast(interpreter::Bytecode::kExtraWide)); STATIC_ASSERT(2 == static_cast(interpreter::Bytecode::kDebugBreakWide)); STATIC_ASSERT(3 == static_cast(interpreter::Bytecode::kDebugBreakExtraWide)); __ cmpi(bytecode, Operand(0x3)); __ bgt(&process_bytecode); __ andi(r0, bytecode, Operand(0x1)); __ bne(&extra_wide, cr0); // Load the next bytecode and update table to the wide scaled table. __ addi(bytecode_offset, bytecode_offset, Operand(1)); __ lbzx(bytecode, MemOperand(bytecode_array, bytecode_offset)); __ addi(bytecode_size_table, bytecode_size_table, Operand(kIntSize * interpreter::Bytecodes::kBytecodeCount)); __ b(&process_bytecode); __ bind(&extra_wide); // Load the next bytecode and update table to the extra wide scaled table. __ addi(bytecode_offset, bytecode_offset, Operand(1)); __ lbzx(bytecode, MemOperand(bytecode_array, bytecode_offset)); __ addi(bytecode_size_table, bytecode_size_table, Operand(2 * kIntSize * interpreter::Bytecodes::kBytecodeCount)); // Load the size of the current bytecode. __ bind(&process_bytecode); // Bailout to the return label if this is a return bytecode. #define JUMP_IF_EQUAL(NAME) \ __ cmpi(bytecode, \ Operand(static_cast(interpreter::Bytecode::k##NAME))); \ __ beq(if_return); RETURN_BYTECODE_LIST(JUMP_IF_EQUAL) #undef JUMP_IF_EQUAL // If this is a JumpLoop, re-execute it to perform the jump to the beginning // of the loop. Label end, not_jump_loop; __ cmpi(bytecode, Operand(static_cast(interpreter::Bytecode::kJumpLoop))); __ bne(¬_jump_loop); // We need to restore the original bytecode_offset since we might have // increased it to skip the wide / extra-wide prefix bytecode. __ Move(bytecode_offset, original_bytecode_offset); __ b(&end); __ bind(¬_jump_loop); // Otherwise, load the size of the current bytecode and advance the offset. __ ShiftLeftImm(scratch3, bytecode, Operand(2)); __ lwzx(scratch3, MemOperand(bytecode_size_table, scratch3)); __ add(bytecode_offset, bytecode_offset, scratch3); __ bind(&end); } // Generate code for entering a JS function with the interpreter. // On entry to the function the receiver and arguments have been pushed on the // stack left to right. // // The live registers are: // o r3: actual argument count (not including the receiver) // o r4: the JS function object being called. // o r6: the incoming new target or generator object // o cp: our context // o pp: the caller's constant pool pointer (if enabled) // o fp: the caller's frame pointer // o sp: stack pointer // o lr: return address // // The function builds an interpreter frame. See InterpreterFrameConstants in // frames.h for its layout. void Builtins::Generate_InterpreterEntryTrampoline(MacroAssembler* masm) { Register closure = r4; Register feedback_vector = r5; // Get the bytecode array from the function object and load it into // kInterpreterBytecodeArrayRegister. __ LoadTaggedPointerField( r7, FieldMemOperand(closure, JSFunction::kSharedFunctionInfoOffset)); // Load original bytecode array or the debug copy. __ LoadTaggedPointerField( kInterpreterBytecodeArrayRegister, FieldMemOperand(r7, SharedFunctionInfo::kFunctionDataOffset)); GetSharedFunctionInfoBytecode(masm, kInterpreterBytecodeArrayRegister, ip); // The bytecode array could have been flushed from the shared function info, // if so, call into CompileLazy. Label compile_lazy; __ CompareObjectType(kInterpreterBytecodeArrayRegister, r7, no_reg, BYTECODE_ARRAY_TYPE); __ bne(&compile_lazy); // Load the feedback vector from the closure. __ LoadTaggedPointerField( feedback_vector, FieldMemOperand(closure, JSFunction::kFeedbackCellOffset)); __ LoadTaggedPointerField( feedback_vector, FieldMemOperand(feedback_vector, Cell::kValueOffset)); Label push_stack_frame; // Check if feedback vector is valid. If valid, check for optimized code // and update invocation count. Otherwise, setup the stack frame. __ LoadTaggedPointerField( r7, FieldMemOperand(feedback_vector, HeapObject::kMapOffset)); __ LoadHalfWord(r7, FieldMemOperand(r7, Map::kInstanceTypeOffset)); __ cmpi(r7, Operand(FEEDBACK_VECTOR_TYPE)); __ bne(&push_stack_frame); Register optimization_state = r7; // Read off the optimization state in the feedback vector. __ LoadWord(optimization_state, FieldMemOperand(feedback_vector, FeedbackVector::kFlagsOffset), r0); // Check if the optimized code slot is not empty or has a optimization marker. Label has_optimized_code_or_marker; __ TestBitMask(optimization_state, FeedbackVector::kHasOptimizedCodeOrCompileOptimizedMarkerMask, r0); __ bne(&has_optimized_code_or_marker, cr0); Label not_optimized; __ bind(¬_optimized); // Increment invocation count for the function. __ LoadWord( r8, FieldMemOperand(feedback_vector, FeedbackVector::kInvocationCountOffset), r0); __ addi(r8, r8, Operand(1)); __ StoreWord( r8, FieldMemOperand(feedback_vector, FeedbackVector::kInvocationCountOffset), r0); // Open a frame scope to indicate that there is a frame on the stack. The // MANUAL indicates that the scope shouldn't actually generate code to set up // the frame (that is done below). __ bind(&push_stack_frame); FrameScope frame_scope(masm, StackFrame::MANUAL); __ PushStandardFrame(closure); // Reset code age and the OSR arming. The OSR field and BytecodeAgeOffset are // 8-bit fields next to each other, so we could just optimize by writing a // 16-bit. These static asserts guard our assumption is valid. STATIC_ASSERT(BytecodeArray::kBytecodeAgeOffset == BytecodeArray::kOsrNestingLevelOffset + kCharSize); STATIC_ASSERT(BytecodeArray::kNoAgeBytecodeAge == 0); __ li(r8, Operand(0)); __ StoreHalfWord(r8, FieldMemOperand(kInterpreterBytecodeArrayRegister, BytecodeArray::kOsrNestingLevelOffset), r0); // Load initial bytecode offset. __ mov(kInterpreterBytecodeOffsetRegister, Operand(BytecodeArray::kHeaderSize - kHeapObjectTag)); // Push bytecode array and Smi tagged bytecode array offset. __ SmiTag(r7, kInterpreterBytecodeOffsetRegister); __ Push(kInterpreterBytecodeArrayRegister, r7); // Allocate the local and temporary register file on the stack. Label stack_overflow; { // Load frame size (word) from the BytecodeArray object. __ lwz(r5, FieldMemOperand(kInterpreterBytecodeArrayRegister, BytecodeArray::kFrameSizeOffset)); // Do a stack check to ensure we don't go over the limit. __ sub(r8, sp, r5); LoadStackLimit(masm, r0, StackLimitKind::kRealStackLimit); __ cmpl(r8, r0); __ blt(&stack_overflow); // If ok, push undefined as the initial value for all register file entries. // TODO(rmcilroy): Consider doing more than one push per loop iteration. Label loop, no_args; __ LoadRoot(kInterpreterAccumulatorRegister, RootIndex::kUndefinedValue); __ ShiftRightImm(r5, r5, Operand(kSystemPointerSizeLog2), SetRC); __ beq(&no_args, cr0); __ mtctr(r5); __ bind(&loop); __ push(kInterpreterAccumulatorRegister); __ bdnz(&loop); __ bind(&no_args); } // If the bytecode array has a valid incoming new target or generator object // register, initialize it with incoming value which was passed in r6. Label no_incoming_new_target_or_generator_register; __ LoadWordArith( r8, FieldMemOperand( kInterpreterBytecodeArrayRegister, BytecodeArray::kIncomingNewTargetOrGeneratorRegisterOffset)); __ cmpi(r8, Operand::Zero()); __ beq(&no_incoming_new_target_or_generator_register); __ ShiftLeftImm(r8, r8, Operand(kSystemPointerSizeLog2)); __ StorePX(r6, MemOperand(fp, r8)); __ bind(&no_incoming_new_target_or_generator_register); // Perform interrupt stack check. // TODO(solanes): Merge with the real stack limit check above. Label stack_check_interrupt, after_stack_check_interrupt; LoadStackLimit(masm, r0, StackLimitKind::kInterruptStackLimit); __ cmpl(sp, r0); __ blt(&stack_check_interrupt); __ bind(&after_stack_check_interrupt); // The accumulator is already loaded with undefined. // Load the dispatch table into a register and dispatch to the bytecode // handler at the current bytecode offset. Label do_dispatch; __ bind(&do_dispatch); __ Move( kInterpreterDispatchTableRegister, ExternalReference::interpreter_dispatch_table_address(masm->isolate())); __ lbzx(r6, MemOperand(kInterpreterBytecodeArrayRegister, kInterpreterBytecodeOffsetRegister)); __ ShiftLeftImm(r6, r6, Operand(kSystemPointerSizeLog2)); __ LoadPX(kJavaScriptCallCodeStartRegister, MemOperand(kInterpreterDispatchTableRegister, r6)); __ Call(kJavaScriptCallCodeStartRegister); masm->isolate()->heap()->SetInterpreterEntryReturnPCOffset(masm->pc_offset()); // Any returns to the entry trampoline are either due to the return bytecode // or the interpreter tail calling a builtin and then a dispatch. // Get bytecode array and bytecode offset from the stack frame. __ LoadP(kInterpreterBytecodeArrayRegister, MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp)); __ LoadP(kInterpreterBytecodeOffsetRegister, MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp)); __ SmiUntag(kInterpreterBytecodeOffsetRegister); // Either return, or advance to the next bytecode and dispatch. Label do_return; __ lbzx(r4, MemOperand(kInterpreterBytecodeArrayRegister, kInterpreterBytecodeOffsetRegister)); AdvanceBytecodeOffsetOrReturn(masm, kInterpreterBytecodeArrayRegister, kInterpreterBytecodeOffsetRegister, r4, r5, r6, &do_return); __ b(&do_dispatch); __ bind(&do_return); // The return value is in r3. LeaveInterpreterFrame(masm, r5); __ blr(); __ bind(&stack_check_interrupt); // Modify the bytecode offset in the stack to be kFunctionEntryBytecodeOffset // for the call to the StackGuard. __ mov(kInterpreterBytecodeOffsetRegister, Operand(Smi::FromInt(BytecodeArray::kHeaderSize - kHeapObjectTag + kFunctionEntryBytecodeOffset))); __ StoreP(kInterpreterBytecodeOffsetRegister, MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp)); __ CallRuntime(Runtime::kStackGuard); // After the call, restore the bytecode array, bytecode offset and accumulator // registers again. Also, restore the bytecode offset in the stack to its // previous value. __ LoadP(kInterpreterBytecodeArrayRegister, MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp)); __ mov(kInterpreterBytecodeOffsetRegister, Operand(BytecodeArray::kHeaderSize - kHeapObjectTag)); __ LoadRoot(kInterpreterAccumulatorRegister, RootIndex::kUndefinedValue); __ SmiTag(r0, kInterpreterBytecodeOffsetRegister); __ StoreP(r0, MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp)); __ jmp(&after_stack_check_interrupt); __ bind(&has_optimized_code_or_marker); Label maybe_has_optimized_code; // Check if optimized code is available __ TestBitMask(optimization_state, FeedbackVector::kHasCompileOptimizedOrLogFirstExecutionMarker, r0); __ beq(&maybe_has_optimized_code, cr0); Register optimization_marker = optimization_state; __ DecodeField(optimization_marker); MaybeOptimizeCode(masm, feedback_vector, optimization_marker); // Fall through if there's no runnable optimized code. __ jmp(¬_optimized); __ bind(&maybe_has_optimized_code); Register optimized_code_entry = optimization_state; __ LoadAnyTaggedField( optimization_marker, FieldMemOperand(feedback_vector, FeedbackVector::kMaybeOptimizedCodeOffset)); TailCallOptimizedCodeSlot(masm, optimized_code_entry, r9); __ bind(&compile_lazy); GenerateTailCallToReturnedCode(masm, Runtime::kCompileLazy); __ bind(&stack_overflow); __ CallRuntime(Runtime::kThrowStackOverflow); __ bkpt(0); // Should not return. } static void Generate_InterpreterPushArgs(MacroAssembler* masm, Register num_args, Register start_address, Register scratch) { __ subi(scratch, num_args, Operand(1)); __ ShiftLeftImm(scratch, scratch, Operand(kSystemPointerSizeLog2)); __ sub(start_address, start_address, scratch); // Push the arguments. __ PushArray(start_address, num_args, scratch, r0, TurboAssembler::PushArrayOrder::kReverse); } // static void Builtins::Generate_InterpreterPushArgsThenCallImpl( MacroAssembler* masm, ConvertReceiverMode receiver_mode, InterpreterPushArgsMode mode) { DCHECK(mode != InterpreterPushArgsMode::kArrayFunction); // ----------- S t a t e ------------- // -- r3 : the number of arguments (not including the receiver) // -- r5 : the address of the first argument to be pushed. Subsequent // arguments should be consecutive above this, in the same order as // they are to be pushed onto the stack. // -- r4 : the target to call (can be any Object). // ----------------------------------- Label stack_overflow; if (mode == InterpreterPushArgsMode::kWithFinalSpread) { // The spread argument should not be pushed. __ subi(r3, r3, Operand(1)); } // Calculate number of arguments (add one for receiver). __ addi(r6, r3, Operand(1)); Generate_StackOverflowCheck(masm, r6, ip, &stack_overflow); if (receiver_mode == ConvertReceiverMode::kNullOrUndefined) { // Don't copy receiver. Argument count is correct. __ mr(r6, r3); } // Push the arguments. Generate_InterpreterPushArgs(masm, r6, r5, r7); if (receiver_mode == ConvertReceiverMode::kNullOrUndefined) { __ PushRoot(RootIndex::kUndefinedValue); } if (mode == InterpreterPushArgsMode::kWithFinalSpread) { // Pass the spread in the register r3. // r2 already points to the penultimate argument, the spread // lies in the next interpreter register. __ LoadP(r5, MemOperand(r5, -kSystemPointerSize)); } // Call the target. if (mode == InterpreterPushArgsMode::kWithFinalSpread) { __ Jump(BUILTIN_CODE(masm->isolate(), CallWithSpread), RelocInfo::CODE_TARGET); } else { __ Jump(masm->isolate()->builtins()->Call(ConvertReceiverMode::kAny), RelocInfo::CODE_TARGET); } __ bind(&stack_overflow); { __ TailCallRuntime(Runtime::kThrowStackOverflow); // Unreachable Code. __ bkpt(0); } } // static void Builtins::Generate_InterpreterPushArgsThenConstructImpl( MacroAssembler* masm, InterpreterPushArgsMode mode) { // ----------- S t a t e ------------- // -- r3 : argument count (not including receiver) // -- r6 : new target // -- r4 : constructor to call // -- r5 : allocation site feedback if available, undefined otherwise. // -- r7 : address of the first argument // ----------------------------------- Label stack_overflow; __ addi(r8, r3, Operand(1)); Generate_StackOverflowCheck(masm, r8, ip, &stack_overflow); if (mode == InterpreterPushArgsMode::kWithFinalSpread) { // The spread argument should not be pushed. __ subi(r3, r3, Operand(1)); } // Push the arguments. Generate_InterpreterPushArgs(masm, r3, r7, r8); // Push a slot for the receiver to be constructed. __ li(r0, Operand::Zero()); __ push(r0); if (mode == InterpreterPushArgsMode::kWithFinalSpread) { // Pass the spread in the register r2. // r4 already points to the penultimate argument, the spread // lies in the next interpreter register. __ subi(r7, r7, Operand(kSystemPointerSize)); __ LoadP(r5, MemOperand(r7)); } else { __ AssertUndefinedOrAllocationSite(r5, r8); } if (mode == InterpreterPushArgsMode::kArrayFunction) { __ AssertFunction(r4); // Tail call to the array construct stub (still in the caller // context at this point). Handle code = BUILTIN_CODE(masm->isolate(), ArrayConstructorImpl); __ Jump(code, RelocInfo::CODE_TARGET); } else if (mode == InterpreterPushArgsMode::kWithFinalSpread) { // Call the constructor with r3, r4, and r6 unmodified. __ Jump(BUILTIN_CODE(masm->isolate(), ConstructWithSpread), RelocInfo::CODE_TARGET); } else { DCHECK_EQ(InterpreterPushArgsMode::kOther, mode); // Call the constructor with r3, r4, and r6 unmodified. __ Jump(BUILTIN_CODE(masm->isolate(), Construct), RelocInfo::CODE_TARGET); } __ bind(&stack_overflow); { __ TailCallRuntime(Runtime::kThrowStackOverflow); // Unreachable Code. __ bkpt(0); } } static void Generate_InterpreterEnterBytecode(MacroAssembler* masm) { // Set the return address to the correct point in the interpreter entry // trampoline. Label builtin_trampoline, trampoline_loaded; Smi interpreter_entry_return_pc_offset( masm->isolate()->heap()->interpreter_entry_return_pc_offset()); DCHECK_NE(interpreter_entry_return_pc_offset, Smi::zero()); // If the SFI function_data is an InterpreterData, the function will have a // custom copy of the interpreter entry trampoline for profiling. If so, // get the custom trampoline, otherwise grab the entry address of the global // trampoline. __ LoadP(r5, MemOperand(fp, StandardFrameConstants::kFunctionOffset)); __ LoadTaggedPointerField( r5, FieldMemOperand(r5, JSFunction::kSharedFunctionInfoOffset)); __ LoadTaggedPointerField( r5, FieldMemOperand(r5, SharedFunctionInfo::kFunctionDataOffset)); __ CompareObjectType(r5, kInterpreterDispatchTableRegister, kInterpreterDispatchTableRegister, INTERPRETER_DATA_TYPE); __ bne(&builtin_trampoline); __ LoadTaggedPointerField( r5, FieldMemOperand(r5, InterpreterData::kInterpreterTrampolineOffset)); __ addi(r5, r5, Operand(Code::kHeaderSize - kHeapObjectTag)); __ b(&trampoline_loaded); __ bind(&builtin_trampoline); __ Move(r5, ExternalReference:: address_of_interpreter_entry_trampoline_instruction_start( masm->isolate())); __ LoadP(r5, MemOperand(r5)); __ bind(&trampoline_loaded); __ addi(r0, r5, Operand(interpreter_entry_return_pc_offset.value())); __ mtlr(r0); // Initialize the dispatch table register. __ Move( kInterpreterDispatchTableRegister, ExternalReference::interpreter_dispatch_table_address(masm->isolate())); // Get the bytecode array pointer from the frame. __ LoadP(kInterpreterBytecodeArrayRegister, MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp)); if (FLAG_debug_code) { // Check function data field is actually a BytecodeArray object. __ TestIfSmi(kInterpreterBytecodeArrayRegister, r0); __ Assert(ne, AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry, cr0); __ CompareObjectType(kInterpreterBytecodeArrayRegister, r4, no_reg, BYTECODE_ARRAY_TYPE); __ Assert( eq, AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry); } // Get the target bytecode offset from the frame. __ LoadP(kInterpreterBytecodeOffsetRegister, MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp)); __ SmiUntag(kInterpreterBytecodeOffsetRegister); if (FLAG_debug_code) { Label okay; __ cmpi(kInterpreterBytecodeOffsetRegister, Operand(BytecodeArray::kHeaderSize - kHeapObjectTag + kFunctionEntryBytecodeOffset)); __ bge(&okay); __ bkpt(0); __ bind(&okay); } // Dispatch to the target bytecode. UseScratchRegisterScope temps(masm); Register scratch = temps.Acquire(); __ lbzx(ip, MemOperand(kInterpreterBytecodeArrayRegister, kInterpreterBytecodeOffsetRegister)); __ ShiftLeftImm(scratch, scratch, Operand(kSystemPointerSizeLog2)); __ LoadPX(kJavaScriptCallCodeStartRegister, MemOperand(kInterpreterDispatchTableRegister, scratch)); __ Jump(kJavaScriptCallCodeStartRegister); } void Builtins::Generate_InterpreterEnterBytecodeAdvance(MacroAssembler* masm) { // Get bytecode array and bytecode offset from the stack frame. __ LoadP(kInterpreterBytecodeArrayRegister, MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp)); __ LoadP(kInterpreterBytecodeOffsetRegister, MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp)); __ SmiUntag(kInterpreterBytecodeOffsetRegister); Label enter_bytecode, function_entry_bytecode; __ cmpi(kInterpreterBytecodeOffsetRegister, Operand(BytecodeArray::kHeaderSize - kHeapObjectTag + kFunctionEntryBytecodeOffset)); __ beq(&function_entry_bytecode); // Load the current bytecode. __ lbzx(r4, MemOperand(kInterpreterBytecodeArrayRegister, kInterpreterBytecodeOffsetRegister)); // Advance to the next bytecode. Label if_return; AdvanceBytecodeOffsetOrReturn(masm, kInterpreterBytecodeArrayRegister, kInterpreterBytecodeOffsetRegister, r4, r5, r6, &if_return); __ bind(&enter_bytecode); // Convert new bytecode offset to a Smi and save in the stackframe. __ SmiTag(r5, kInterpreterBytecodeOffsetRegister); __ StoreP(r5, MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp)); Generate_InterpreterEnterBytecode(masm); __ bind(&function_entry_bytecode); // If the code deoptimizes during the implicit function entry stack interrupt // check, it will have a bailout ID of kFunctionEntryBytecodeOffset, which is // not a valid bytecode offset. Detect this case and advance to the first // actual bytecode. __ mov(kInterpreterBytecodeOffsetRegister, Operand(BytecodeArray::kHeaderSize - kHeapObjectTag)); __ b(&enter_bytecode); // We should never take the if_return path. __ bind(&if_return); __ Abort(AbortReason::kInvalidBytecodeAdvance); } void Builtins::Generate_InterpreterEnterBytecodeDispatch(MacroAssembler* masm) { Generate_InterpreterEnterBytecode(masm); } namespace { void Generate_ContinueToBuiltinHelper(MacroAssembler* masm, bool java_script_builtin, bool with_result) { const RegisterConfiguration* config(RegisterConfiguration::Default()); int allocatable_register_count = config->num_allocatable_general_registers(); Register scratch = ip; if (with_result) { if (java_script_builtin) { __ mr(scratch, r3); } else { // Overwrite the hole inserted by the deoptimizer with the return value // from the LAZY deopt point. __ StoreP( r3, MemOperand( sp, config->num_allocatable_general_registers() * kSystemPointerSize + BuiltinContinuationFrameConstants::kFixedFrameSize)); } } for (int i = allocatable_register_count - 1; i >= 0; --i) { int code = config->GetAllocatableGeneralCode(i); __ Pop(Register::from_code(code)); if (java_script_builtin && code == kJavaScriptCallArgCountRegister.code()) { __ SmiUntag(Register::from_code(code)); } } if (java_script_builtin && with_result) { // Overwrite the hole inserted by the deoptimizer with the return value from // the LAZY deopt point. r0 contains the arguments count, the return value // from LAZY is always the last argument. __ addi(r3, r3, Operand(BuiltinContinuationFrameConstants::kFixedSlotCount)); __ ShiftLeftImm(r0, r3, Operand(kSystemPointerSizeLog2)); __ StorePX(scratch, MemOperand(sp, r0)); // Recover arguments count. __ subi(r3, r3, Operand(BuiltinContinuationFrameConstants::kFixedSlotCount)); } __ LoadP( fp, MemOperand(sp, BuiltinContinuationFrameConstants::kFixedFrameSizeFromFp)); // Load builtin index (stored as a Smi) and use it to get the builtin start // address from the builtins table. UseScratchRegisterScope temps(masm); Register builtin = temps.Acquire(); __ Pop(builtin); __ addi(sp, sp, Operand(BuiltinContinuationFrameConstants::kFixedFrameSizeFromFp)); __ Pop(r0); __ mtlr(r0); __ LoadEntryFromBuiltinIndex(builtin); __ Jump(builtin); } } // namespace void Builtins::Generate_ContinueToCodeStubBuiltin(MacroAssembler* masm) { Generate_ContinueToBuiltinHelper(masm, false, false); } void Builtins::Generate_ContinueToCodeStubBuiltinWithResult( MacroAssembler* masm) { Generate_ContinueToBuiltinHelper(masm, false, true); } void Builtins::Generate_ContinueToJavaScriptBuiltin(MacroAssembler* masm) { Generate_ContinueToBuiltinHelper(masm, true, false); } void Builtins::Generate_ContinueToJavaScriptBuiltinWithResult( MacroAssembler* masm) { Generate_ContinueToBuiltinHelper(masm, true, true); } void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) { { FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); __ CallRuntime(Runtime::kNotifyDeoptimized); } DCHECK_EQ(kInterpreterAccumulatorRegister.code(), r3.code()); __ LoadP(r3, MemOperand(sp, 0 * kSystemPointerSize)); __ addi(sp, sp, Operand(1 * kSystemPointerSize)); __ Ret(); } void Builtins::Generate_InterpreterOnStackReplacement(MacroAssembler* masm) { { FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); __ CallRuntime(Runtime::kCompileForOnStackReplacement); } // If the code object is null, just return to the caller. Label skip; __ CmpSmiLiteral(r3, Smi::zero(), r0); __ bne(&skip); __ Ret(); __ bind(&skip); // Drop the handler frame that is be sitting on top of the actual // JavaScript frame. This is the case then OSR is triggered from bytecode. __ LeaveFrame(StackFrame::STUB); // Load deoptimization data from the code object. // = [#deoptimization_data_offset] __ LoadTaggedPointerField( r4, FieldMemOperand(r3, Code::kDeoptimizationDataOffset)); { ConstantPoolUnavailableScope constant_pool_unavailable(masm); __ addi(r3, r3, Operand(Code::kHeaderSize - kHeapObjectTag)); // Code start if (FLAG_enable_embedded_constant_pool) { __ LoadConstantPoolPointerRegisterFromCodeTargetAddress(r3); } // Load the OSR entrypoint offset from the deoptimization data. // = [#header_size + #osr_pc_offset] __ SmiUntagField( r4, FieldMemOperand(r4, FixedArray::OffsetOfElementAt( DeoptimizationData::kOsrPcOffsetIndex))); // Compute the target address = code start + osr_offset __ add(r0, r3, r4); // And "return" to the OSR entry point of the function. __ mtlr(r0); __ blr(); } } // static void Builtins::Generate_FunctionPrototypeApply(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r3 : argc // -- sp[0] : receiver // -- sp[4] : thisArg // -- sp[8] : argArray // ----------------------------------- // 1. Load receiver into r4, argArray into r5 (if present), remove all // arguments from the stack (including the receiver), and push thisArg (if // present) instead. { __ LoadRoot(r8, RootIndex::kUndefinedValue); __ mr(r5, r8); Label done; __ LoadP(r4, MemOperand(sp)); // receiver __ cmpi(r3, Operand(1)); __ blt(&done); __ LoadP(r8, MemOperand(sp, kSystemPointerSize)); // thisArg __ cmpi(r3, Operand(2)); __ blt(&done); __ LoadP(r5, MemOperand(sp, 2 * kSystemPointerSize)); // argArray __ bind(&done); __ ShiftLeftImm(ip, r3, Operand(kSystemPointerSizeLog2)); __ add(sp, sp, ip); __ StoreP(r8, MemOperand(sp)); } // ----------- S t a t e ------------- // -- r5 : argArray // -- r4 : receiver // -- sp[0] : thisArg // ----------------------------------- // 2. We don't need to check explicitly for callable receiver here, // since that's the first thing the Call/CallWithArrayLike builtins // will do. // 3. Tail call with no arguments if argArray is null or undefined. Label no_arguments; __ JumpIfRoot(r5, RootIndex::kNullValue, &no_arguments); __ JumpIfRoot(r5, RootIndex::kUndefinedValue, &no_arguments); // 4a. Apply the receiver to the given argArray. __ Jump(BUILTIN_CODE(masm->isolate(), CallWithArrayLike), RelocInfo::CODE_TARGET); // 4b. The argArray is either null or undefined, so we tail call without any // arguments to the receiver. __ bind(&no_arguments); { __ li(r3, Operand::Zero()); __ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET); } } // static void Builtins::Generate_FunctionPrototypeCall(MacroAssembler* masm) { // 1. Get the callable to call (passed as receiver) from the stack. __ Pop(r4); // 2. Make sure we have at least one argument. // r3: actual number of arguments { Label done; __ cmpi(r3, Operand::Zero()); __ bne(&done); __ PushRoot(RootIndex::kUndefinedValue); __ addi(r3, r3, Operand(1)); __ bind(&done); } // 3. Adjust the actual number of arguments. __ subi(r3, r3, Operand(1)); // 4. Call the callable. __ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET); } void Builtins::Generate_ReflectApply(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r3 : argc // -- sp[0] : receiver // -- sp[4] : target (if argc >= 1) // -- sp[8] : thisArgument (if argc >= 2) // -- sp[12] : argumentsList (if argc == 3) // ----------------------------------- // 1. Load target into r4 (if present), argumentsList into r5 (if present), // remove all arguments from the stack (including the receiver), and push // thisArgument (if present) instead. { __ LoadRoot(r4, RootIndex::kUndefinedValue); __ mr(r8, r4); __ mr(r5, r4); Label done; __ cmpi(r3, Operand(1)); __ blt(&done); __ LoadP(r4, MemOperand(sp, kSystemPointerSize)); // thisArg __ cmpi(r3, Operand(2)); __ blt(&done); __ LoadP(r8, MemOperand(sp, 2 * kSystemPointerSize)); // argArray __ cmpi(r3, Operand(3)); __ blt(&done); __ LoadP(r5, MemOperand(sp, 3 * kSystemPointerSize)); // argArray __ bind(&done); __ ShiftLeftImm(ip, r3, Operand(kSystemPointerSizeLog2)); __ add(sp, sp, ip); __ StoreP(r8, MemOperand(sp)); } // ----------- S t a t e ------------- // -- r5 : argumentsList // -- r4 : target // -- sp[0] : thisArgument // ----------------------------------- // 2. We don't need to check explicitly for callable target here, // since that's the first thing the Call/CallWithArrayLike builtins // will do. // 3. Apply the target to the given argumentsList. __ Jump(BUILTIN_CODE(masm->isolate(), CallWithArrayLike), RelocInfo::CODE_TARGET); } void Builtins::Generate_ReflectConstruct(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r3 : argc // -- sp[0] : receiver // -- sp[4] : target // -- sp[8] : argumentsList // -- sp[12] : new.target (optional) // ----------------------------------- // 1. Load target into r4 (if present), argumentsList into r5 (if present), // new.target into r6 (if present, otherwise use target), remove all // arguments from the stack (including the receiver), and push thisArgument // (if present) instead. { __ LoadRoot(r4, RootIndex::kUndefinedValue); __ mr(r5, r4); Label done; __ mr(r7, r4); __ cmpi(r3, Operand(1)); __ blt(&done); __ LoadP(r4, MemOperand(sp, kSystemPointerSize)); // thisArg __ mr(r6, r4); __ cmpi(r3, Operand(2)); __ blt(&done); __ LoadP(r5, MemOperand(sp, 2 * kSystemPointerSize)); // argArray __ cmpi(r3, Operand(3)); __ blt(&done); __ LoadP(r6, MemOperand(sp, 3 * kSystemPointerSize)); // argArray __ bind(&done); __ ShiftLeftImm(r0, r3, Operand(kSystemPointerSizeLog2)); __ add(sp, sp, r0); __ StoreP(r7, MemOperand(sp)); } // ----------- S t a t e ------------- // -- r5 : argumentsList // -- r6 : new.target // -- r4 : target // -- sp[0] : receiver (undefined) // ----------------------------------- // 2. We don't need to check explicitly for constructor target here, // since that's the first thing the Construct/ConstructWithArrayLike // builtins will do. // 3. We don't need to check explicitly for constructor new.target here, // since that's the second thing the Construct/ConstructWithArrayLike // builtins will do. // 4. Construct the target with the given new.target and argumentsList. __ Jump(BUILTIN_CODE(masm->isolate(), ConstructWithArrayLike), RelocInfo::CODE_TARGET); } static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) { __ SmiTag(r3); __ mov(r7, Operand(StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR))); __ mflr(r0); __ push(r0); if (FLAG_enable_embedded_constant_pool) { __ Push(fp, kConstantPoolRegister, r7, r4, r3); } else { __ Push(fp, r7, r4, r3); } __ Push(Smi::zero()); // Padding. __ addi(fp, sp, Operand(ArgumentsAdaptorFrameConstants::kFixedFrameSizeFromFp)); } static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r3 : result being passed through // ----------------------------------- // Get the number of arguments passed (as a smi), tear down the frame and // then tear down the parameters. __ LoadP(r4, MemOperand(fp, ArgumentsAdaptorFrameConstants::kLengthOffset)); int stack_adjustment = kSystemPointerSize; // adjust for receiver __ LeaveFrame(StackFrame::ARGUMENTS_ADAPTOR, stack_adjustment); __ SmiToPtrArrayOffset(r0, r4); __ add(sp, sp, r0); } // static void Builtins::Generate_CallOrConstructVarargs(MacroAssembler* masm, Handle code) { // ----------- S t a t e ------------- // -- r4 : target // -- r3 : number of parameters on the stack (not including the receiver) // -- r5 : arguments list (a FixedArray) // -- r7 : len (number of elements to push from args) // -- r6 : new.target (for [[Construct]]) // ----------------------------------- Register scratch = ip; if (masm->emit_debug_code()) { // Allow r5 to be a FixedArray, or a FixedDoubleArray if r7 == 0. Label ok, fail; __ AssertNotSmi(r5); __ LoadTaggedPointerField(scratch, FieldMemOperand(r5, HeapObject::kMapOffset)); __ LoadHalfWord(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset)); __ cmpi(scratch, Operand(FIXED_ARRAY_TYPE)); __ beq(&ok); __ cmpi(scratch, Operand(FIXED_DOUBLE_ARRAY_TYPE)); __ bne(&fail); __ cmpi(r7, Operand::Zero()); __ beq(&ok); // Fall through. __ bind(&fail); __ Abort(AbortReason::kOperandIsNotAFixedArray); __ bind(&ok); } // Check for stack overflow. Label stack_overflow; Generate_StackOverflowCheck(masm, r7, scratch, &stack_overflow); // Move the arguments already in the stack, // including the receiver and the return address. { Label copy; Register src = r9, dest = r8; __ addi(src, sp, Operand(-kSystemPointerSize)); __ ShiftLeftImm(r0, r7, Operand(kSystemPointerSizeLog2)); __ sub(sp, sp, r0); // Update stack pointer. __ addi(dest, sp, Operand(-kSystemPointerSize)); __ addi(r0, r3, Operand(1)); __ mtctr(r0); __ bind(©); __ LoadPU(r0, MemOperand(src, kSystemPointerSize)); __ StorePU(r0, MemOperand(dest, kSystemPointerSize)); __ bdnz(©); } // Push arguments onto the stack (thisArgument is already on the stack). { Label loop, no_args, skip; __ cmpi(r7, Operand::Zero()); __ beq(&no_args); __ addi(r5, r5, Operand(FixedArray::kHeaderSize - kHeapObjectTag - kTaggedSize)); __ mtctr(r7); __ bind(&loop); __ LoadTaggedPointerField(scratch, MemOperand(r5, kTaggedSize)); __ addi(r5, r5, Operand(kTaggedSize)); __ CompareRoot(scratch, RootIndex::kTheHoleValue); __ bne(&skip); __ LoadRoot(scratch, RootIndex::kUndefinedValue); __ bind(&skip); __ StorePU(scratch, MemOperand(r8, kSystemPointerSize)); __ bdnz(&loop); __ bind(&no_args); __ add(r3, r3, r7); } // Tail-call to the actual Call or Construct builtin. __ Jump(code, RelocInfo::CODE_TARGET); __ bind(&stack_overflow); __ TailCallRuntime(Runtime::kThrowStackOverflow); } // static void Builtins::Generate_CallOrConstructForwardVarargs(MacroAssembler* masm, CallOrConstructMode mode, Handle code) { // ----------- S t a t e ------------- // -- r3 : the number of arguments (not including the receiver) // -- r6 : the new.target (for [[Construct]] calls) // -- r4 : the target to call (can be any Object) // -- r5 : start index (to support rest parameters) // ----------------------------------- Register scratch = r9; if (mode == CallOrConstructMode::kConstruct) { Label new_target_constructor, new_target_not_constructor; __ JumpIfSmi(r6, &new_target_not_constructor); __ LoadTaggedPointerField(scratch, FieldMemOperand(r6, HeapObject::kMapOffset)); __ lbz(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset)); __ TestBit(scratch, Map::Bits1::IsConstructorBit::kShift, r0); __ bne(&new_target_constructor, cr0); __ bind(&new_target_not_constructor); { FrameScope scope(masm, StackFrame::MANUAL); __ EnterFrame(StackFrame::INTERNAL); __ Push(r6); __ CallRuntime(Runtime::kThrowNotConstructor); } __ bind(&new_target_constructor); } // Check if we have an arguments adaptor frame below the function frame. Label arguments_adaptor, arguments_done; __ LoadP(r7, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); __ LoadP(scratch, MemOperand(r7, CommonFrameConstants::kContextOrFrameTypeOffset)); __ cmpi(scratch, Operand(StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR))); __ beq(&arguments_adaptor); { __ LoadP(r8, MemOperand(fp, StandardFrameConstants::kFunctionOffset)); __ LoadTaggedPointerField( r8, FieldMemOperand(r8, JSFunction::kSharedFunctionInfoOffset)); __ LoadHalfWord( r8, FieldMemOperand(r8, SharedFunctionInfo::kFormalParameterCountOffset)); __ mr(r7, fp); } __ b(&arguments_done); __ bind(&arguments_adaptor); { // Load the length from the ArgumentsAdaptorFrame. __ LoadP(r8, MemOperand(r7, ArgumentsAdaptorFrameConstants::kLengthOffset)); __ SmiUntag(r8); } __ bind(&arguments_done); Label stack_done, stack_overflow; __ sub(r8, r8, r5, LeaveOE, SetRC); __ ble(&stack_done, cr0); { // ----------- S t a t e ------------- // -- r3 : the number of arguments already in the stack (not including the // receiver) // -- r4 : the target to call (can be any Object) // -- r5 : start index (to support rest parameters) // -- r6 : the new.target (for [[Construct]] calls) // -- r7 : point to the caller stack frame // -- r8 : number of arguments to copy, i.e. arguments count - start index // ----------------------------------- // Check for stack overflow. Generate_StackOverflowCheck(masm, r8, scratch, &stack_overflow); // Forward the arguments from the caller frame. // Point to the first argument to copy (skipping the receiver). __ addi(r7, r7, Operand(CommonFrameConstants::kFixedFrameSizeAboveFp + kSystemPointerSize)); __ ShiftLeftImm(scratch, r5, Operand(kSystemPointerSizeLog2)); __ add(r7, r7, scratch); // Move the arguments already in the stack, // including the receiver and the return address. { Label copy; Register src = ip, dest = r5; // r7 and r10 are context and root. __ addi(src, sp, Operand(-kSystemPointerSize)); // Update stack pointer. __ ShiftLeftImm(scratch, r8, Operand(kSystemPointerSizeLog2)); __ sub(sp, sp, scratch); __ addi(dest, sp, Operand(-kSystemPointerSize)); __ addi(r0, r3, Operand(1)); __ mtctr(r0); __ bind(©); __ LoadPU(r0, MemOperand(src, kSystemPointerSize)); __ StorePU(r0, MemOperand(dest, kSystemPointerSize)); __ bdnz(©); } // Copy arguments from the caller frame. // TODO(victorgomes): Consider using forward order as potentially more cache // friendly. { Label loop; __ add(r3, r3, r8); __ addi(r5, r5, Operand(kSystemPointerSize)); __ bind(&loop); { __ subi(r8, r8, Operand(1)); __ ShiftLeftImm(scratch, r8, Operand(kSystemPointerSizeLog2)); __ LoadPX(r0, MemOperand(r7, scratch)); __ StorePX(r0, MemOperand(r5, scratch)); __ cmpi(r8, Operand::Zero()); __ bne(&loop); } } } __ b(&stack_done); __ bind(&stack_overflow); __ TailCallRuntime(Runtime::kThrowStackOverflow); __ bind(&stack_done); // Tail-call to the {code} handler. __ Jump(code, RelocInfo::CODE_TARGET); } // static void Builtins::Generate_CallFunction(MacroAssembler* masm, ConvertReceiverMode mode) { // ----------- S t a t e ------------- // -- r3 : the number of arguments (not including the receiver) // -- r4 : the function to call (checked to be a JSFunction) // ----------------------------------- __ AssertFunction(r4); // See ES6 section 9.2.1 [[Call]] ( thisArgument, argumentsList) // Check that the function is not a "classConstructor". Label class_constructor; __ LoadTaggedPointerField( r5, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset)); __ lwz(r6, FieldMemOperand(r5, SharedFunctionInfo::kFlagsOffset)); __ TestBitMask(r6, SharedFunctionInfo::IsClassConstructorBit::kMask, r0); __ bne(&class_constructor, cr0); // Enter the context of the function; ToObject has to run in the function // context, and we also need to take the global proxy from the function // context in case of conversion. __ LoadTaggedPointerField(cp, FieldMemOperand(r4, JSFunction::kContextOffset)); // We need to convert the receiver for non-native sloppy mode functions. Label done_convert; __ andi(r0, r6, Operand(SharedFunctionInfo::IsStrictBit::kMask | SharedFunctionInfo::IsNativeBit::kMask)); __ bne(&done_convert, cr0); { // ----------- S t a t e ------------- // -- r3 : the number of arguments (not including the receiver) // -- r4 : the function to call (checked to be a JSFunction) // -- r5 : the shared function info. // -- cp : the function context. // ----------------------------------- if (mode == ConvertReceiverMode::kNullOrUndefined) { // Patch receiver to global proxy. __ LoadGlobalProxy(r6); } else { Label convert_to_object, convert_receiver; __ LoadReceiver(r6, r3); __ JumpIfSmi(r6, &convert_to_object); STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE); __ CompareObjectType(r6, r7, r7, FIRST_JS_RECEIVER_TYPE); __ bge(&done_convert); if (mode != ConvertReceiverMode::kNotNullOrUndefined) { Label convert_global_proxy; __ JumpIfRoot(r6, RootIndex::kUndefinedValue, &convert_global_proxy); __ JumpIfNotRoot(r6, RootIndex::kNullValue, &convert_to_object); __ bind(&convert_global_proxy); { // Patch receiver to global proxy. __ LoadGlobalProxy(r6); } __ b(&convert_receiver); } __ bind(&convert_to_object); { // Convert receiver using ToObject. // TODO(bmeurer): Inline the allocation here to avoid building the frame // in the fast case? (fall back to AllocateInNewSpace?) FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); __ SmiTag(r3); __ Push(r3, r4); __ mr(r3, r6); __ Push(cp); __ Call(BUILTIN_CODE(masm->isolate(), ToObject), RelocInfo::CODE_TARGET); __ Pop(cp); __ mr(r6, r3); __ Pop(r3, r4); __ SmiUntag(r3); } __ LoadTaggedPointerField( r5, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset)); __ bind(&convert_receiver); } __ StoreReceiver(r6, r3, r7); } __ bind(&done_convert); // ----------- S t a t e ------------- // -- r3 : the number of arguments (not including the receiver) // -- r4 : the function to call (checked to be a JSFunction) // -- r5 : the shared function info. // -- cp : the function context. // ----------------------------------- __ LoadHalfWord( r5, FieldMemOperand(r5, SharedFunctionInfo::kFormalParameterCountOffset)); __ InvokeFunctionCode(r4, no_reg, r5, r3, JUMP_FUNCTION); // The function is a "classConstructor", need to raise an exception. __ bind(&class_constructor); { FrameAndConstantPoolScope frame(masm, StackFrame::INTERNAL); __ push(r4); __ CallRuntime(Runtime::kThrowConstructorNonCallableError); } } namespace { void Generate_PushBoundArguments(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r3 : the number of arguments (not including the receiver) // -- r4 : target (checked to be a JSBoundFunction) // -- r6 : new.target (only in case of [[Construct]]) // ----------------------------------- // Load [[BoundArguments]] into r5 and length of that into r7. Label no_bound_arguments; __ LoadTaggedPointerField( r5, FieldMemOperand(r4, JSBoundFunction::kBoundArgumentsOffset)); __ SmiUntagField(r7, FieldMemOperand(r5, FixedArray::kLengthOffset), SetRC); __ beq(&no_bound_arguments, cr0); { // ----------- S t a t e ------------- // -- r3 : the number of arguments (not including the receiver) // -- r4 : target (checked to be a JSBoundFunction) // -- r5 : the [[BoundArguments]] (implemented as FixedArray) // -- r6 : new.target (only in case of [[Construct]]) // -- r7 : the number of [[BoundArguments]] // ----------------------------------- Register scratch = r9; // Reserve stack space for the [[BoundArguments]]. { Label done; __ ShiftLeftImm(r10, r7, Operand(kSystemPointerSizeLog2)); __ sub(r0, sp, r10); // Check the stack for overflow. We are not trying to catch interruptions // (i.e. debug break and preemption) here, so check the "real stack // limit". { LoadStackLimit(masm, scratch, StackLimitKind::kRealStackLimit); __ cmpl(r0, scratch); } __ bgt(&done); // Signed comparison. { FrameScope scope(masm, StackFrame::MANUAL); __ EnterFrame(StackFrame::INTERNAL); __ CallRuntime(Runtime::kThrowStackOverflow); } __ bind(&done); } // Pop receiver. __ Pop(r8); // Push [[BoundArguments]]. { Label loop, done; __ add(r3, r3, r7); // Adjust effective number of arguments. __ addi(r5, r5, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); __ mtctr(r7); __ bind(&loop); __ subi(r7, r7, Operand(1)); __ ShiftLeftImm(scratch, r7, Operand(kTaggedSizeLog2)); __ add(scratch, scratch, r5); __ LoadAnyTaggedField(scratch, MemOperand(scratch)); __ Push(scratch); __ bdnz(&loop); __ bind(&done); } // Push receiver. __ Push(r8); } __ bind(&no_bound_arguments); } } // namespace // static void Builtins::Generate_CallBoundFunctionImpl(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r3 : the number of arguments (not including the receiver) // -- r4 : the function to call (checked to be a JSBoundFunction) // ----------------------------------- __ AssertBoundFunction(r4); // Patch the receiver to [[BoundThis]]. __ LoadAnyTaggedField(r6, FieldMemOperand(r4, JSBoundFunction::kBoundThisOffset)); __ StoreReceiver(r6, r3, ip); // Push the [[BoundArguments]] onto the stack. Generate_PushBoundArguments(masm); // Call the [[BoundTargetFunction]] via the Call builtin. __ LoadTaggedPointerField( r4, FieldMemOperand(r4, JSBoundFunction::kBoundTargetFunctionOffset)); __ Jump(BUILTIN_CODE(masm->isolate(), Call_ReceiverIsAny), RelocInfo::CODE_TARGET); } // static void Builtins::Generate_Call(MacroAssembler* masm, ConvertReceiverMode mode) { // ----------- S t a t e ------------- // -- r3 : the number of arguments (not including the receiver) // -- r4 : the target to call (can be any Object). // ----------------------------------- Label non_callable, non_smi; __ JumpIfSmi(r4, &non_callable); __ bind(&non_smi); __ CompareObjectType(r4, r7, r8, JS_FUNCTION_TYPE); __ Jump(masm->isolate()->builtins()->CallFunction(mode), RelocInfo::CODE_TARGET, eq); __ cmpi(r8, Operand(JS_BOUND_FUNCTION_TYPE)); __ Jump(BUILTIN_CODE(masm->isolate(), CallBoundFunction), RelocInfo::CODE_TARGET, eq); // Check if target has a [[Call]] internal method. __ lbz(r7, FieldMemOperand(r7, Map::kBitFieldOffset)); __ TestBit(r7, Map::Bits1::IsCallableBit::kShift, r0); __ beq(&non_callable, cr0); // Check if target is a proxy and call CallProxy external builtin __ cmpi(r8, Operand(JS_PROXY_TYPE)); __ Jump(BUILTIN_CODE(masm->isolate(), CallProxy), RelocInfo::CODE_TARGET, eq); // 2. Call to something else, which might have a [[Call]] internal method (if // not we raise an exception). // Overwrite the original receiver the (original) target. __ StoreReceiver(r4, r3, r8); // Let the "call_as_function_delegate" take care of the rest. __ LoadNativeContextSlot(Context::CALL_AS_FUNCTION_DELEGATE_INDEX, r4); __ Jump(masm->isolate()->builtins()->CallFunction( ConvertReceiverMode::kNotNullOrUndefined), RelocInfo::CODE_TARGET); // 3. Call to something that is not callable. __ bind(&non_callable); { FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); __ Push(r4); __ CallRuntime(Runtime::kThrowCalledNonCallable); } } // static void Builtins::Generate_ConstructFunction(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r3 : the number of arguments (not including the receiver) // -- r4 : the constructor to call (checked to be a JSFunction) // -- r6 : the new target (checked to be a constructor) // ----------------------------------- __ AssertConstructor(r4); __ AssertFunction(r4); // Calling convention for function specific ConstructStubs require // r5 to contain either an AllocationSite or undefined. __ LoadRoot(r5, RootIndex::kUndefinedValue); Label call_generic_stub; // Jump to JSBuiltinsConstructStub or JSConstructStubGeneric. __ LoadTaggedPointerField( r7, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset)); __ lwz(r7, FieldMemOperand(r7, SharedFunctionInfo::kFlagsOffset)); __ mov(ip, Operand(SharedFunctionInfo::ConstructAsBuiltinBit::kMask)); __ and_(r7, r7, ip, SetRC); __ beq(&call_generic_stub, cr0); __ Jump(BUILTIN_CODE(masm->isolate(), JSBuiltinsConstructStub), RelocInfo::CODE_TARGET); __ bind(&call_generic_stub); __ Jump(BUILTIN_CODE(masm->isolate(), JSConstructStubGeneric), RelocInfo::CODE_TARGET); } // static void Builtins::Generate_ConstructBoundFunction(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r3 : the number of arguments (not including the receiver) // -- r4 : the function to call (checked to be a JSBoundFunction) // -- r6 : the new target (checked to be a constructor) // ----------------------------------- __ AssertConstructor(r4); __ AssertBoundFunction(r4); // Push the [[BoundArguments]] onto the stack. Generate_PushBoundArguments(masm); // Patch new.target to [[BoundTargetFunction]] if new.target equals target. Label skip; __ CompareTagged(r4, r6); __ bne(&skip); __ LoadTaggedPointerField( r6, FieldMemOperand(r4, JSBoundFunction::kBoundTargetFunctionOffset)); __ bind(&skip); // Construct the [[BoundTargetFunction]] via the Construct builtin. __ LoadTaggedPointerField( r4, FieldMemOperand(r4, JSBoundFunction::kBoundTargetFunctionOffset)); __ Jump(BUILTIN_CODE(masm->isolate(), Construct), RelocInfo::CODE_TARGET); } // static void Builtins::Generate_Construct(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r3 : the number of arguments (not including the receiver) // -- r4 : the constructor to call (can be any Object) // -- r6 : the new target (either the same as the constructor or // the JSFunction on which new was invoked initially) // ----------------------------------- // Check if target is a Smi. Label non_constructor, non_proxy; __ JumpIfSmi(r4, &non_constructor); // Check if target has a [[Construct]] internal method. __ LoadTaggedPointerField(r7, FieldMemOperand(r4, HeapObject::kMapOffset)); __ lbz(r5, FieldMemOperand(r7, Map::kBitFieldOffset)); __ TestBit(r5, Map::Bits1::IsConstructorBit::kShift, r0); __ beq(&non_constructor, cr0); // Dispatch based on instance type. __ CompareInstanceType(r7, r8, JS_FUNCTION_TYPE); __ Jump(BUILTIN_CODE(masm->isolate(), ConstructFunction), RelocInfo::CODE_TARGET, eq); // Only dispatch to bound functions after checking whether they are // constructors. __ cmpi(r8, Operand(JS_BOUND_FUNCTION_TYPE)); __ Jump(BUILTIN_CODE(masm->isolate(), ConstructBoundFunction), RelocInfo::CODE_TARGET, eq); // Only dispatch to proxies after checking whether they are constructors. __ cmpi(r8, Operand(JS_PROXY_TYPE)); __ bne(&non_proxy); __ Jump(BUILTIN_CODE(masm->isolate(), ConstructProxy), RelocInfo::CODE_TARGET); // Called Construct on an exotic Object with a [[Construct]] internal method. __ bind(&non_proxy); { // Overwrite the original receiver with the (original) target. __ StoreReceiver(r4, r3, r8); // Let the "call_as_constructor_delegate" take care of the rest. __ LoadNativeContextSlot(Context::CALL_AS_CONSTRUCTOR_DELEGATE_INDEX, r4); __ Jump(masm->isolate()->builtins()->CallFunction(), RelocInfo::CODE_TARGET); } // Called Construct on an Object that doesn't have a [[Construct]] internal // method. __ bind(&non_constructor); __ Jump(BUILTIN_CODE(masm->isolate(), ConstructedNonConstructable), RelocInfo::CODE_TARGET); } void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r3 : actual number of arguments // -- r4 : function (passed through to callee) // -- r5 : expected number of arguments // -- r6 : new target (passed through to callee) // ----------------------------------- Label dont_adapt_arguments, stack_overflow; __ cmpli(r5, Operand(kDontAdaptArgumentsSentinel)); __ beq(&dont_adapt_arguments); __ LoadTaggedPointerField( r7, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset)); __ lwz(r7, FieldMemOperand(r7, SharedFunctionInfo::kFlagsOffset)); // ------------------------------------------- // Adapt arguments. // ------------------------------------------- { Label under_application, over_application, invoke; __ cmp(r3, r5); __ blt(&under_application); // Enough parameters: actual >= expected __ bind(&over_application); { EnterArgumentsAdaptorFrame(masm); Generate_StackOverflowCheck(masm, r5, r8, &stack_overflow); // Calculate copy start address into r3 and copy end address into r7. // r3: actual number of arguments as a smi // r4: function // r5: expected number of arguments // r6: new target (passed through to callee) __ ShiftLeftImm(r3, r5, Operand(kSystemPointerSizeLog2)); __ add(r3, r3, fp); // adjust for return address and receiver __ addi(r3, r3, Operand(2 * kSystemPointerSize)); __ ShiftLeftImm(r7, r5, Operand(kSystemPointerSizeLog2)); __ sub(r7, r3, r7); // Copy the arguments (including the receiver) to the new stack frame. // r3: copy start address // r4: function // r5: expected number of arguments // r6: new target (passed through to callee) // r7: copy end address Label copy; __ bind(©); __ LoadP(r0, MemOperand(r3, 0)); __ push(r0); __ cmp(r3, r7); // Compare before moving to next argument. __ subi(r3, r3, Operand(kSystemPointerSize)); __ bne(©); __ b(&invoke); } // Too few parameters: Actual < expected __ bind(&under_application); { EnterArgumentsAdaptorFrame(masm); Generate_StackOverflowCheck(masm, r5, r8, &stack_overflow); // Fill the remaining expected arguments with undefined. // r0: actual number of arguments as a smi // r1: function // r2: expected number of arguments // r3: new target (passed through to callee) __ LoadRoot(r8, RootIndex::kUndefinedValue); __ SmiUntag(r0, r3); __ sub(r9, r5, r0); __ ShiftLeftImm(r7, r9, Operand(kSystemPointerSizeLog2)); __ sub(r7, fp, r7); // Adjust for frame. __ subi(r7, r7, Operand(ArgumentsAdaptorFrameConstants::kFixedFrameSizeFromFp + kSystemPointerSize)); Label fill; __ bind(&fill); __ push(r8); __ cmp(sp, r7); __ b(ne, &fill); // Calculate copy start address into r0 and copy end address is fp. // r0: actual number of arguments as a smi // r1: function // r2: expected number of arguments // r3: new target (passed through to callee) __ SmiToPtrArrayOffset(r3, r3); __ add(r3, r3, fp); // Copy the arguments (including the receiver) to the new stack frame. // r0: copy start address // r1: function // r2: expected number of arguments // r3: new target (passed through to callee) Label copy; __ bind(©); // Adjust load for return address and receiver. __ LoadP(r8, MemOperand(r3, 2 * kSystemPointerSize)); __ push(r8); __ cmp(r3, fp); // Compare before moving to next argument. __ subi(r3, r3, Operand(kSystemPointerSize)); __ b(ne, ©); } // Call the entry point. __ bind(&invoke); __ mr(r3, r5); // r3 : expected number of arguments // r4 : function (passed through to callee) // r6 : new target (passed through to callee) static_assert(kJavaScriptCallCodeStartRegister == r5, "ABI mismatch"); __ LoadTaggedPointerField(r5, FieldMemOperand(r4, JSFunction::kCodeOffset)); __ CallCodeObject(r5); // Store offset of return address for deoptimizer. masm->isolate()->heap()->SetArgumentsAdaptorDeoptPCOffset( masm->pc_offset()); // Exit frame and return. LeaveArgumentsAdaptorFrame(masm); __ blr(); } // ------------------------------------------- // Dont adapt arguments. // ------------------------------------------- __ bind(&dont_adapt_arguments); __ RecordComment("-- Call without adapting args --"); static_assert(kJavaScriptCallCodeStartRegister == r5, "ABI mismatch"); __ LoadTaggedPointerField(r5, FieldMemOperand(r4, JSFunction::kCodeOffset)); __ JumpCodeObject(r5); __ bind(&stack_overflow); { FrameScope frame(masm, StackFrame::MANUAL); __ CallRuntime(Runtime::kThrowStackOverflow); __ bkpt(0); } } void Builtins::Generate_WasmCompileLazy(MacroAssembler* masm) { // The function index was put in a register by the jump table trampoline. // Convert to Smi for the runtime call. __ SmiTag(kWasmCompileLazyFuncIndexRegister, kWasmCompileLazyFuncIndexRegister); { HardAbortScope hard_abort(masm); // Avoid calls to Abort. FrameAndConstantPoolScope scope(masm, StackFrame::WASM_COMPILE_LAZY); // Save all parameter registers (see wasm-linkage.cc). They might be // overwritten in the runtime call below. We don't have any callee-saved // registers in wasm, so no need to store anything else. constexpr RegList gp_regs = Register::ListOf(r3, r4, r5, r6, r7, r8, r9, r10); constexpr RegList fp_regs = DoubleRegister::ListOf(d1, d2, d3, d4, d5, d6, d7, d8); __ MultiPush(gp_regs); __ MultiPushDoubles(fp_regs); // Pass instance and function index as explicit arguments to the runtime // function. __ Push(kWasmInstanceRegister, kWasmCompileLazyFuncIndexRegister); // Initialize the JavaScript context with 0. CEntry will use it to // set the current context on the isolate. __ LoadSmiLiteral(cp, Smi::zero()); __ CallRuntime(Runtime::kWasmCompileLazy, 2); // The entrypoint address is the return value. __ mr(r11, kReturnRegister0); // Restore registers. __ MultiPopDoubles(fp_regs); __ MultiPop(gp_regs); } // Finally, jump to the entrypoint. __ Jump(r11); } void Builtins::Generate_WasmDebugBreak(MacroAssembler* masm) { HardAbortScope hard_abort(masm); // Avoid calls to Abort. { FrameAndConstantPoolScope scope(masm, StackFrame::WASM_DEBUG_BREAK); // Save all parameter registers. They might hold live values, we restore // them after the runtime call. __ MultiPush(WasmDebugBreakFrameConstants::kPushedGpRegs); __ MultiPushDoubles(WasmDebugBreakFrameConstants::kPushedFpRegs); // Initialize the JavaScript context with 0. CEntry will use it to // set the current context on the isolate. __ LoadSmiLiteral(cp, Smi::zero()); __ CallRuntime(Runtime::kWasmDebugBreak, 0); // Restore registers. __ MultiPopDoubles(WasmDebugBreakFrameConstants::kPushedFpRegs); __ MultiPop(WasmDebugBreakFrameConstants::kPushedGpRegs); } __ Ret(); } void Builtins::Generate_CEntry(MacroAssembler* masm, int result_size, SaveFPRegsMode save_doubles, ArgvMode argv_mode, bool builtin_exit_frame) { // Called from JavaScript; parameters are on stack as if calling JS function. // r3: number of arguments including receiver // r4: pointer to builtin function // fp: frame pointer (restored after C call) // sp: stack pointer (restored as callee's sp after C call) // cp: current context (C callee-saved) // // If argv_mode == kArgvInRegister: // r5: pointer to the first argument __ mr(r15, r4); if (argv_mode == kArgvInRegister) { // Move argv into the correct register. __ mr(r4, r5); } else { // Compute the argv pointer. __ ShiftLeftImm(r4, r3, Operand(kSystemPointerSizeLog2)); __ add(r4, r4, sp); __ subi(r4, r4, Operand(kSystemPointerSize)); } // Enter the exit frame that transitions from JavaScript to C++. FrameScope scope(masm, StackFrame::MANUAL); // Need at least one extra slot for return address location. int arg_stack_space = 1; // Pass buffer for return value on stack if necessary bool needs_return_buffer = (result_size == 2 && !ABI_RETURNS_OBJECT_PAIRS_IN_REGS); if (needs_return_buffer) { arg_stack_space += result_size; } __ EnterExitFrame( save_doubles, arg_stack_space, builtin_exit_frame ? StackFrame::BUILTIN_EXIT : StackFrame::EXIT); // Store a copy of argc in callee-saved registers for later. __ mr(r14, r3); // r3, r14: number of arguments including receiver (C callee-saved) // r4: pointer to the first argument // r15: pointer to builtin function (C callee-saved) // Result returned in registers or stack, depending on result size and ABI. Register isolate_reg = r5; if (needs_return_buffer) { // The return value is a non-scalar value. // Use frame storage reserved by calling function to pass return // buffer as implicit first argument. __ mr(r5, r4); __ mr(r4, r3); __ addi(r3, sp, Operand((kStackFrameExtraParamSlot + 1) * kSystemPointerSize)); isolate_reg = r6; } // Call C built-in. __ Move(isolate_reg, ExternalReference::isolate_address(masm->isolate())); Register target = r15; __ StoreReturnAddressAndCall(target); // If return value is on the stack, pop it to registers. if (needs_return_buffer) { __ LoadP(r4, MemOperand(r3, kSystemPointerSize)); __ LoadP(r3, MemOperand(r3)); } // Check result for exception sentinel. Label exception_returned; __ CompareRoot(r3, RootIndex::kException); __ beq(&exception_returned); // Check that there is no pending exception, otherwise we // should have returned the exception sentinel. if (FLAG_debug_code) { Label okay; ExternalReference pending_exception_address = ExternalReference::Create( IsolateAddressId::kPendingExceptionAddress, masm->isolate()); __ Move(r6, pending_exception_address); __ LoadP(r6, MemOperand(r6)); __ CompareRoot(r6, RootIndex::kTheHoleValue); // Cannot use check here as it attempts to generate call into runtime. __ beq(&okay); __ stop(); __ bind(&okay); } // Exit C frame and return. // r3:r4: result // sp: stack pointer // fp: frame pointer Register argc = argv_mode == kArgvInRegister // We don't want to pop arguments so set argc to no_reg. ? no_reg // r14: still holds argc (callee-saved). : r14; __ LeaveExitFrame(save_doubles, argc); __ blr(); // Handling of exception. __ bind(&exception_returned); ExternalReference pending_handler_context_address = ExternalReference::Create( IsolateAddressId::kPendingHandlerContextAddress, masm->isolate()); ExternalReference pending_handler_entrypoint_address = ExternalReference::Create( IsolateAddressId::kPendingHandlerEntrypointAddress, masm->isolate()); ExternalReference pending_handler_constant_pool_address = ExternalReference::Create( IsolateAddressId::kPendingHandlerConstantPoolAddress, masm->isolate()); ExternalReference pending_handler_fp_address = ExternalReference::Create( IsolateAddressId::kPendingHandlerFPAddress, masm->isolate()); ExternalReference pending_handler_sp_address = ExternalReference::Create( IsolateAddressId::kPendingHandlerSPAddress, masm->isolate()); // Ask the runtime for help to determine the handler. This will set r3 to // contain the current pending exception, don't clobber it. ExternalReference find_handler = ExternalReference::Create(Runtime::kUnwindAndFindExceptionHandler); { FrameScope scope(masm, StackFrame::MANUAL); __ PrepareCallCFunction(3, 0, r3); __ li(r3, Operand::Zero()); __ li(r4, Operand::Zero()); __ Move(r5, ExternalReference::isolate_address(masm->isolate())); __ CallCFunction(find_handler, 3); } // Retrieve the handler context, SP and FP. __ Move(cp, pending_handler_context_address); __ LoadP(cp, MemOperand(cp)); __ Move(sp, pending_handler_sp_address); __ LoadP(sp, MemOperand(sp)); __ Move(fp, pending_handler_fp_address); __ LoadP(fp, MemOperand(fp)); // If the handler is a JS frame, restore the context to the frame. Note that // the context will be set to (cp == 0) for non-JS frames. Label skip; __ cmpi(cp, Operand::Zero()); __ beq(&skip); __ StoreP(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); __ bind(&skip); // Reset the masking register. This is done independent of the underlying // feature flag {FLAG_untrusted_code_mitigations} to make the snapshot work // with both configurations. It is safe to always do this, because the // underlying register is caller-saved and can be arbitrarily clobbered. __ ResetSpeculationPoisonRegister(); // Compute the handler entry address and jump to it. ConstantPoolUnavailableScope constant_pool_unavailable(masm); __ Move(ip, pending_handler_entrypoint_address); __ LoadP(ip, MemOperand(ip)); if (FLAG_enable_embedded_constant_pool) { __ Move(kConstantPoolRegister, pending_handler_constant_pool_address); __ LoadP(kConstantPoolRegister, MemOperand(kConstantPoolRegister)); } __ Jump(ip); } void Builtins::Generate_DoubleToI(MacroAssembler* masm) { Label out_of_range, only_low, negate, done, fastpath_done; Register result_reg = r3; HardAbortScope hard_abort(masm); // Avoid calls to Abort. // Immediate values for this stub fit in instructions, so it's safe to use ip. Register scratch = GetRegisterThatIsNotOneOf(result_reg); Register scratch_low = GetRegisterThatIsNotOneOf(result_reg, scratch); Register scratch_high = GetRegisterThatIsNotOneOf(result_reg, scratch, scratch_low); DoubleRegister double_scratch = kScratchDoubleReg; __ Push(result_reg, scratch); // Account for saved regs. int argument_offset = 2 * kSystemPointerSize; // Load double input. __ lfd(double_scratch, MemOperand(sp, argument_offset)); // Do fast-path convert from double to int. __ ConvertDoubleToInt64(double_scratch, #if !V8_TARGET_ARCH_PPC64 scratch, #endif result_reg, d0); // Test for overflow #if V8_TARGET_ARCH_PPC64 __ TestIfInt32(result_reg, r0); #else __ TestIfInt32(scratch, result_reg, r0); #endif __ beq(&fastpath_done); __ Push(scratch_high, scratch_low); // Account for saved regs. argument_offset += 2 * kSystemPointerSize; __ lwz(scratch_high, MemOperand(sp, argument_offset + Register::kExponentOffset)); __ lwz(scratch_low, MemOperand(sp, argument_offset + Register::kMantissaOffset)); __ ExtractBitMask(scratch, scratch_high, HeapNumber::kExponentMask); // Load scratch with exponent - 1. This is faster than loading // with exponent because Bias + 1 = 1024 which is a *PPC* immediate value. STATIC_ASSERT(HeapNumber::kExponentBias + 1 == 1024); __ subi(scratch, scratch, Operand(HeapNumber::kExponentBias + 1)); // If exponent is greater than or equal to 84, the 32 less significant // bits are 0s (2^84 = 1, 52 significant bits, 32 uncoded bits), // the result is 0. // Compare exponent with 84 (compare exponent - 1 with 83). __ cmpi(scratch, Operand(83)); __ bge(&out_of_range); // If we reach this code, 31 <= exponent <= 83. // So, we don't have to handle cases where 0 <= exponent <= 20 for // which we would need to shift right the high part of the mantissa. // Scratch contains exponent - 1. // Load scratch with 52 - exponent (load with 51 - (exponent - 1)). __ subfic(scratch, scratch, Operand(51)); __ cmpi(scratch, Operand::Zero()); __ ble(&only_low); // 21 <= exponent <= 51, shift scratch_low and scratch_high // to generate the result. __ srw(scratch_low, scratch_low, scratch); // Scratch contains: 52 - exponent. // We needs: exponent - 20. // So we use: 32 - scratch = 32 - 52 + exponent = exponent - 20. __ subfic(scratch, scratch, Operand(32)); __ ExtractBitMask(result_reg, scratch_high, HeapNumber::kMantissaMask); // Set the implicit 1 before the mantissa part in scratch_high. STATIC_ASSERT(HeapNumber::kMantissaBitsInTopWord >= 16); __ oris(result_reg, result_reg, Operand(1 << ((HeapNumber::kMantissaBitsInTopWord)-16))); __ slw(r0, result_reg, scratch); __ orx(result_reg, scratch_low, r0); __ b(&negate); __ bind(&out_of_range); __ mov(result_reg, Operand::Zero()); __ b(&done); __ bind(&only_low); // 52 <= exponent <= 83, shift only scratch_low. // On entry, scratch contains: 52 - exponent. __ neg(scratch, scratch); __ slw(result_reg, scratch_low, scratch); __ bind(&negate); // If input was positive, scratch_high ASR 31 equals 0 and // scratch_high LSR 31 equals zero. // New result = (result eor 0) + 0 = result. // If the input was negative, we have to negate the result. // Input_high ASR 31 equals 0xFFFFFFFF and scratch_high LSR 31 equals 1. // New result = (result eor 0xFFFFFFFF) + 1 = 0 - result. __ srawi(r0, scratch_high, 31); #if V8_TARGET_ARCH_PPC64 __ srdi(r0, r0, Operand(32)); #endif __ xor_(result_reg, result_reg, r0); __ srwi(r0, scratch_high, Operand(31)); __ add(result_reg, result_reg, r0); __ bind(&done); __ Pop(scratch_high, scratch_low); // Account for saved regs. argument_offset -= 2 * kSystemPointerSize; __ bind(&fastpath_done); __ StoreP(result_reg, MemOperand(sp, argument_offset)); __ Pop(result_reg, scratch); __ Ret(); } void Builtins::Generate_GenericJSToWasmWrapper(MacroAssembler* masm) { // TODO(v8:10701): Implement for this platform. __ Trap(); } namespace { static int AddressOffset(ExternalReference ref0, ExternalReference ref1) { return ref0.address() - ref1.address(); } // Calls an API function. Allocates HandleScope, extracts returned value // from handle and propagates exceptions. Restores context. stack_space // - space to be unwound on exit (includes the call JS arguments space and // the additional space allocated for the fast call). static void CallApiFunctionAndReturn(MacroAssembler* masm, Register function_address, ExternalReference thunk_ref, int stack_space, MemOperand* stack_space_operand, MemOperand return_value_operand) { Isolate* isolate = masm->isolate(); ExternalReference next_address = ExternalReference::handle_scope_next_address(isolate); const int kNextOffset = 0; const int kLimitOffset = AddressOffset( ExternalReference::handle_scope_limit_address(isolate), next_address); const int kLevelOffset = AddressOffset( ExternalReference::handle_scope_level_address(isolate), next_address); // Additional parameter is the address of the actual callback. DCHECK(function_address == r4 || function_address == r5); Register scratch = r6; __ Move(scratch, ExternalReference::is_profiling_address(isolate)); __ lbz(scratch, MemOperand(scratch, 0)); __ cmpi(scratch, Operand::Zero()); if (CpuFeatures::IsSupported(ISELECT)) { __ Move(scratch, thunk_ref); __ isel(eq, scratch, function_address, scratch); } else { Label profiler_enabled, end_profiler_check; __ bne(&profiler_enabled); __ Move(scratch, ExternalReference::address_of_runtime_stats_flag()); __ lwz(scratch, MemOperand(scratch, 0)); __ cmpi(scratch, Operand::Zero()); __ bne(&profiler_enabled); { // Call the api function directly. __ mr(scratch, function_address); __ b(&end_profiler_check); } __ bind(&profiler_enabled); { // Additional parameter is the address of the actual callback. __ Move(scratch, thunk_ref); } __ bind(&end_profiler_check); } // Allocate HandleScope in callee-save registers. // r17 - next_address // r14 - next_address->kNextOffset // r15 - next_address->kLimitOffset // r16 - next_address->kLevelOffset __ Move(r17, next_address); __ LoadP(r14, MemOperand(r17, kNextOffset)); __ LoadP(r15, MemOperand(r17, kLimitOffset)); __ lwz(r16, MemOperand(r17, kLevelOffset)); __ addi(r16, r16, Operand(1)); __ stw(r16, MemOperand(r17, kLevelOffset)); __ StoreReturnAddressAndCall(scratch); Label promote_scheduled_exception; Label delete_allocated_handles; Label leave_exit_frame; Label return_value_loaded; // load value from ReturnValue __ LoadP(r3, return_value_operand); __ bind(&return_value_loaded); // No more valid handles (the result handle was the last one). Restore // previous handle scope. __ StoreP(r14, MemOperand(r17, kNextOffset)); if (__ emit_debug_code()) { __ lwz(r4, MemOperand(r17, kLevelOffset)); __ cmp(r4, r16); __ Check(eq, AbortReason::kUnexpectedLevelAfterReturnFromApiCall); } __ subi(r16, r16, Operand(1)); __ stw(r16, MemOperand(r17, kLevelOffset)); __ LoadP(r0, MemOperand(r17, kLimitOffset)); __ cmp(r15, r0); __ bne(&delete_allocated_handles); // Leave the API exit frame. __ bind(&leave_exit_frame); // LeaveExitFrame expects unwind space to be in a register. if (stack_space_operand != nullptr) { __ LoadP(r14, *stack_space_operand); } else { __ mov(r14, Operand(stack_space)); } __ LeaveExitFrame(false, r14, stack_space_operand != nullptr); // Check if the function scheduled an exception. __ LoadRoot(r14, RootIndex::kTheHoleValue); __ Move(r15, ExternalReference::scheduled_exception_address(isolate)); __ LoadP(r15, MemOperand(r15)); __ cmp(r14, r15); __ bne(&promote_scheduled_exception); __ blr(); // Re-throw by promoting a scheduled exception. __ bind(&promote_scheduled_exception); __ TailCallRuntime(Runtime::kPromoteScheduledException); // HandleScope limit has changed. Delete allocated extensions. __ bind(&delete_allocated_handles); __ StoreP(r15, MemOperand(r17, kLimitOffset)); __ mr(r14, r3); __ PrepareCallCFunction(1, r15); __ Move(r3, ExternalReference::isolate_address(isolate)); __ CallCFunction(ExternalReference::delete_handle_scope_extensions(), 1); __ mr(r3, r14); __ b(&leave_exit_frame); } } // namespace void Builtins::Generate_CallApiCallback(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- cp : context // -- r4 : api function address // -- r5 : arguments count (not including the receiver) // -- r6 : call data // -- r3 : holder // -- sp[0] : receiver // -- sp[8] : first argument // -- ... // -- sp[(argc) * 8] : last argument // ----------------------------------- Register api_function_address = r4; Register argc = r5; Register call_data = r6; Register holder = r3; Register scratch = r7; DCHECK(!AreAliased(api_function_address, argc, call_data, holder, scratch)); using FCA = FunctionCallbackArguments; STATIC_ASSERT(FCA::kArgsLength == 6); STATIC_ASSERT(FCA::kNewTargetIndex == 5); STATIC_ASSERT(FCA::kDataIndex == 4); STATIC_ASSERT(FCA::kReturnValueOffset == 3); STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2); STATIC_ASSERT(FCA::kIsolateIndex == 1); STATIC_ASSERT(FCA::kHolderIndex == 0); // Set up FunctionCallbackInfo's implicit_args on the stack as follows: // // Target state: // sp[0 * kSystemPointerSize]: kHolder // sp[1 * kSystemPointerSize]: kIsolate // sp[2 * kSystemPointerSize]: undefined (kReturnValueDefaultValue) // sp[3 * kSystemPointerSize]: undefined (kReturnValue) // sp[4 * kSystemPointerSize]: kData // sp[5 * kSystemPointerSize]: undefined (kNewTarget) // Reserve space on the stack. __ subi(sp, sp, Operand(FCA::kArgsLength * kSystemPointerSize)); // kHolder. __ StoreP(holder, MemOperand(sp, 0 * kSystemPointerSize)); // kIsolate. __ Move(scratch, ExternalReference::isolate_address(masm->isolate())); __ StoreP(scratch, MemOperand(sp, 1 * kSystemPointerSize)); // kReturnValueDefaultValue and kReturnValue. __ LoadRoot(scratch, RootIndex::kUndefinedValue); __ StoreP(scratch, MemOperand(sp, 2 * kSystemPointerSize)); __ StoreP(scratch, MemOperand(sp, 3 * kSystemPointerSize)); // kData. __ StoreP(call_data, MemOperand(sp, 4 * kSystemPointerSize)); // kNewTarget. __ StoreP(scratch, MemOperand(sp, 5 * kSystemPointerSize)); // Keep a pointer to kHolder (= implicit_args) in a scratch register. // We use it below to set up the FunctionCallbackInfo object. __ mr(scratch, sp); // Allocate the v8::Arguments structure in the arguments' space since // it's not controlled by GC. // PPC LINUX ABI: // // Create 4 extra slots on stack: // [0] space for DirectCEntryStub's LR save // [1-3] FunctionCallbackInfo // [4] number of bytes to drop from the stack after returning static constexpr int kApiStackSpace = 5; static constexpr bool kDontSaveDoubles = false; FrameScope frame_scope(masm, StackFrame::MANUAL); __ EnterExitFrame(kDontSaveDoubles, kApiStackSpace); // FunctionCallbackInfo::implicit_args_ (points at kHolder as set up above). // Arguments are after the return address (pushed by EnterExitFrame()). __ StoreP(scratch, MemOperand(sp, (kStackFrameExtraParamSlot + 1) * kSystemPointerSize)); // FunctionCallbackInfo::values_ (points at the first varargs argument passed // on the stack). __ addi(scratch, scratch, Operand((FCA::kArgsLength + 1) * kSystemPointerSize)); __ StoreP(scratch, MemOperand(sp, (kStackFrameExtraParamSlot + 2) * kSystemPointerSize)); // FunctionCallbackInfo::length_. __ stw(argc, MemOperand(sp, (kStackFrameExtraParamSlot + 3) * kSystemPointerSize)); // We also store the number of bytes to drop from the stack after returning // from the API function here. __ mov(scratch, Operand((FCA::kArgsLength + 1 /* receiver */) * kSystemPointerSize)); __ ShiftLeftImm(ip, argc, Operand(kSystemPointerSizeLog2)); __ add(scratch, scratch, ip); __ StoreP(scratch, MemOperand(sp, (kStackFrameExtraParamSlot + 4) * kSystemPointerSize)); // v8::InvocationCallback's argument. __ addi(r3, sp, Operand((kStackFrameExtraParamSlot + 1) * kSystemPointerSize)); ExternalReference thunk_ref = ExternalReference::invoke_function_callback(); // There are two stack slots above the arguments we constructed on the stack. // TODO(jgruber): Document what these arguments are. static constexpr int kStackSlotsAboveFCA = 2; MemOperand return_value_operand( fp, (kStackSlotsAboveFCA + FCA::kReturnValueOffset) * kSystemPointerSize); static constexpr int kUseStackSpaceOperand = 0; MemOperand stack_space_operand( sp, (kStackFrameExtraParamSlot + 4) * kSystemPointerSize); AllowExternalCallThatCantCauseGC scope(masm); CallApiFunctionAndReturn(masm, api_function_address, thunk_ref, kUseStackSpaceOperand, &stack_space_operand, return_value_operand); } void Builtins::Generate_CallApiGetter(MacroAssembler* masm) { int arg0Slot = 0; int accessorInfoSlot = 0; int apiStackSpace = 0; // Build v8::PropertyCallbackInfo::args_ array on the stack and push property // name below the exit frame to make GC aware of them. STATIC_ASSERT(PropertyCallbackArguments::kShouldThrowOnErrorIndex == 0); STATIC_ASSERT(PropertyCallbackArguments::kHolderIndex == 1); STATIC_ASSERT(PropertyCallbackArguments::kIsolateIndex == 2); STATIC_ASSERT(PropertyCallbackArguments::kReturnValueDefaultValueIndex == 3); STATIC_ASSERT(PropertyCallbackArguments::kReturnValueOffset == 4); STATIC_ASSERT(PropertyCallbackArguments::kDataIndex == 5); STATIC_ASSERT(PropertyCallbackArguments::kThisIndex == 6); STATIC_ASSERT(PropertyCallbackArguments::kArgsLength == 7); Register receiver = ApiGetterDescriptor::ReceiverRegister(); Register holder = ApiGetterDescriptor::HolderRegister(); Register callback = ApiGetterDescriptor::CallbackRegister(); Register scratch = r7; DCHECK(!AreAliased(receiver, holder, callback, scratch)); Register api_function_address = r5; __ push(receiver); // Push data from AccessorInfo. __ LoadAnyTaggedField(scratch, FieldMemOperand(callback, AccessorInfo::kDataOffset)); __ push(scratch); __ LoadRoot(scratch, RootIndex::kUndefinedValue); __ Push(scratch, scratch); __ Move(scratch, ExternalReference::isolate_address(masm->isolate())); __ Push(scratch, holder); __ Push(Smi::zero()); // should_throw_on_error -> false __ LoadTaggedPointerField( scratch, FieldMemOperand(callback, AccessorInfo::kNameOffset)); __ push(scratch); // v8::PropertyCallbackInfo::args_ array and name handle. const int kStackUnwindSpace = PropertyCallbackArguments::kArgsLength + 1; // Load address of v8::PropertyAccessorInfo::args_ array and name handle. __ mr(r3, sp); // r3 = Handle __ addi(r4, r3, Operand(1 * kSystemPointerSize)); // r4 = v8::PCI::args_ // If ABI passes Handles (pointer-sized struct) in a register: // // Create 2 extra slots on stack: // [0] space for DirectCEntryStub's LR save // [1] AccessorInfo& // // Otherwise: // // Create 3 extra slots on stack: // [0] space for DirectCEntryStub's LR save // [1] copy of Handle (first arg) // [2] AccessorInfo& if (ABI_PASSES_HANDLES_IN_REGS) { accessorInfoSlot = kStackFrameExtraParamSlot + 1; apiStackSpace = 2; } else { arg0Slot = kStackFrameExtraParamSlot + 1; accessorInfoSlot = arg0Slot + 1; apiStackSpace = 3; } FrameScope frame_scope(masm, StackFrame::MANUAL); __ EnterExitFrame(false, apiStackSpace); if (!ABI_PASSES_HANDLES_IN_REGS) { // pass 1st arg by reference __ StoreP(r3, MemOperand(sp, arg0Slot * kSystemPointerSize)); __ addi(r3, sp, Operand(arg0Slot * kSystemPointerSize)); } // Create v8::PropertyCallbackInfo object on the stack and initialize // it's args_ field. __ StoreP(r4, MemOperand(sp, accessorInfoSlot * kSystemPointerSize)); __ addi(r4, sp, Operand(accessorInfoSlot * kSystemPointerSize)); // r4 = v8::PropertyCallbackInfo& ExternalReference thunk_ref = ExternalReference::invoke_accessor_getter_callback(); __ LoadTaggedPointerField( scratch, FieldMemOperand(callback, AccessorInfo::kJsGetterOffset)); __ LoadP(api_function_address, FieldMemOperand(scratch, Foreign::kForeignAddressOffset)); // +3 is to skip prolog, return address and name handle. MemOperand return_value_operand( fp, (PropertyCallbackArguments::kReturnValueOffset + 3) * kSystemPointerSize); MemOperand* const kUseStackSpaceConstant = nullptr; CallApiFunctionAndReturn(masm, api_function_address, thunk_ref, kStackUnwindSpace, kUseStackSpaceConstant, return_value_operand); } void Builtins::Generate_DirectCEntry(MacroAssembler* masm) { UseScratchRegisterScope temps(masm); Register temp2 = temps.Acquire(); // Place the return address on the stack, making the call // GC safe. The RegExp backend also relies on this. __ mflr(r0); __ StoreP(r0, MemOperand(sp, kStackFrameExtraParamSlot * kSystemPointerSize)); if (ABI_USES_FUNCTION_DESCRIPTORS) { // AIX/PPC64BE Linux use a function descriptor; __ LoadP(ToRegister(ABI_TOC_REGISTER), MemOperand(temp2, kSystemPointerSize)); __ LoadP(temp2, MemOperand(temp2, 0)); // Instruction address } __ Call(temp2); // Call the C++ function. __ LoadP(r0, MemOperand(sp, kStackFrameExtraParamSlot * kSystemPointerSize)); __ mtlr(r0); __ blr(); } namespace { // This code tries to be close to ia32 code so that any changes can be // easily ported. void Generate_DeoptimizationEntry(MacroAssembler* masm, DeoptimizeKind deopt_kind) { Isolate* isolate = masm->isolate(); // Unlike on ARM we don't save all the registers, just the useful ones. // For the rest, there are gaps on the stack, so the offsets remain the same. const int kNumberOfRegisters = Register::kNumRegisters; RegList restored_regs = kJSCallerSaved | kCalleeSaved; RegList saved_regs = restored_regs | sp.bit(); const int kDoubleRegsSize = kDoubleSize * DoubleRegister::kNumRegisters; // Save all double registers before messing with them. __ subi(sp, sp, Operand(kDoubleRegsSize)); const RegisterConfiguration* config = RegisterConfiguration::Default(); for (int i = 0; i < config->num_allocatable_double_registers(); ++i) { int code = config->GetAllocatableDoubleCode(i); const DoubleRegister dreg = DoubleRegister::from_code(code); int offset = code * kDoubleSize; __ stfd(dreg, MemOperand(sp, offset)); } // Push saved_regs (needed to populate FrameDescription::registers_). // Leave gaps for other registers. __ subi(sp, sp, Operand(kNumberOfRegisters * kSystemPointerSize)); for (int16_t i = kNumberOfRegisters - 1; i >= 0; i--) { if ((saved_regs & (1 << i)) != 0) { __ StoreP(ToRegister(i), MemOperand(sp, kSystemPointerSize * i)); } } { UseScratchRegisterScope temps(masm); Register scratch = temps.Acquire(); __ Move(scratch, ExternalReference::Create( IsolateAddressId::kCEntryFPAddress, isolate)); __ StoreP(fp, MemOperand(scratch)); } const int kSavedRegistersAreaSize = (kNumberOfRegisters * kSystemPointerSize) + kDoubleRegsSize; // Get the bailout id is passed as r29 by the caller. __ mr(r5, r29); __ mov(r5, Operand(Deoptimizer::kFixedExitSizeMarker)); // Get the address of the location in the code object (r6) (return // address for lazy deoptimization) and compute the fp-to-sp delta in // register r7. __ mflr(r6); __ addi(r7, sp, Operand(kSavedRegistersAreaSize)); __ sub(r7, fp, r7); // Allocate a new deoptimizer object. // Pass six arguments in r3 to r8. __ PrepareCallCFunction(6, r8); __ li(r3, Operand::Zero()); Label context_check; __ LoadP(r4, MemOperand(fp, CommonFrameConstants::kContextOrFrameTypeOffset)); __ JumpIfSmi(r4, &context_check); __ LoadP(r3, MemOperand(fp, StandardFrameConstants::kFunctionOffset)); __ bind(&context_check); __ li(r4, Operand(static_cast(deopt_kind))); // r5: bailout id already loaded. // r6: code address or 0 already loaded. // r7: Fp-to-sp delta. __ Move(r8, ExternalReference::isolate_address(isolate)); // Call Deoptimizer::New(). { AllowExternalCallThatCantCauseGC scope(masm); __ CallCFunction(ExternalReference::new_deoptimizer_function(), 6); } // Preserve "deoptimizer" object in register r3 and get the input // frame descriptor pointer to r4 (deoptimizer->input_); __ LoadP(r4, MemOperand(r3, Deoptimizer::input_offset())); // Copy core registers into FrameDescription::registers_[kNumRegisters]. DCHECK_EQ(Register::kNumRegisters, kNumberOfRegisters); for (int i = 0; i < kNumberOfRegisters; i++) { int offset = (i * kSystemPointerSize) + FrameDescription::registers_offset(); __ LoadP(r5, MemOperand(sp, i * kSystemPointerSize)); __ StoreP(r5, MemOperand(r4, offset)); } int double_regs_offset = FrameDescription::double_registers_offset(); // Copy double registers to // double_registers_[DoubleRegister::kNumRegisters] for (int i = 0; i < config->num_allocatable_double_registers(); ++i) { int code = config->GetAllocatableDoubleCode(i); int dst_offset = code * kDoubleSize + double_regs_offset; int src_offset = code * kDoubleSize + kNumberOfRegisters * kSystemPointerSize; __ lfd(d0, MemOperand(sp, src_offset)); __ stfd(d0, MemOperand(r4, dst_offset)); } // Mark the stack as not iterable for the CPU profiler which won't be able to // walk the stack without the return address. { UseScratchRegisterScope temps(masm); Register is_iterable = temps.Acquire(); Register zero = r7; __ Move(is_iterable, ExternalReference::stack_is_iterable_address(isolate)); __ li(zero, Operand(0)); __ stb(zero, MemOperand(is_iterable)); } // Remove the saved registers from the stack. __ addi(sp, sp, Operand(kSavedRegistersAreaSize)); // Compute a pointer to the unwinding limit in register r5; that is // the first stack slot not part of the input frame. __ LoadP(r5, MemOperand(r4, FrameDescription::frame_size_offset())); __ add(r5, r5, sp); // Unwind the stack down to - but not including - the unwinding // limit and copy the contents of the activation frame to the input // frame description. __ addi(r6, r4, Operand(FrameDescription::frame_content_offset())); Label pop_loop; Label pop_loop_header; __ b(&pop_loop_header); __ bind(&pop_loop); __ pop(r7); __ StoreP(r7, MemOperand(r6, 0)); __ addi(r6, r6, Operand(kSystemPointerSize)); __ bind(&pop_loop_header); __ cmp(r5, sp); __ bne(&pop_loop); // Compute the output frame in the deoptimizer. __ push(r3); // Preserve deoptimizer object across call. // r3: deoptimizer object; r4: scratch. __ PrepareCallCFunction(1, r4); // Call Deoptimizer::ComputeOutputFrames(). { AllowExternalCallThatCantCauseGC scope(masm); __ CallCFunction(ExternalReference::compute_output_frames_function(), 1); } __ pop(r3); // Restore deoptimizer object (class Deoptimizer). __ LoadP(sp, MemOperand(r3, Deoptimizer::caller_frame_top_offset())); // Replace the current (input) frame with the output frames. Label outer_push_loop, inner_push_loop, outer_loop_header, inner_loop_header; // Outer loop state: r7 = current "FrameDescription** output_", // r4 = one past the last FrameDescription**. __ lwz(r4, MemOperand(r3, Deoptimizer::output_count_offset())); __ LoadP(r7, MemOperand(r3, Deoptimizer::output_offset())); // r7 is output_. __ ShiftLeftImm(r4, r4, Operand(kSystemPointerSizeLog2)); __ add(r4, r7, r4); __ b(&outer_loop_header); __ bind(&outer_push_loop); // Inner loop state: r5 = current FrameDescription*, r6 = loop index. __ LoadP(r5, MemOperand(r7, 0)); // output_[ix] __ LoadP(r6, MemOperand(r5, FrameDescription::frame_size_offset())); __ b(&inner_loop_header); __ bind(&inner_push_loop); __ addi(r6, r6, Operand(-sizeof(intptr_t))); __ add(r9, r5, r6); __ LoadP(r9, MemOperand(r9, FrameDescription::frame_content_offset())); __ push(r9); __ bind(&inner_loop_header); __ cmpi(r6, Operand::Zero()); __ bne(&inner_push_loop); // test for gt? __ addi(r7, r7, Operand(kSystemPointerSize)); __ bind(&outer_loop_header); __ cmp(r7, r4); __ blt(&outer_push_loop); __ LoadP(r4, MemOperand(r3, Deoptimizer::input_offset())); for (int i = 0; i < config->num_allocatable_double_registers(); ++i) { int code = config->GetAllocatableDoubleCode(i); const DoubleRegister dreg = DoubleRegister::from_code(code); int src_offset = code * kDoubleSize + double_regs_offset; __ lfd(dreg, MemOperand(r4, src_offset)); } // Push pc, and continuation from the last output frame. __ LoadP(r9, MemOperand(r5, FrameDescription::pc_offset())); __ push(r9); __ LoadP(r9, MemOperand(r5, FrameDescription::continuation_offset())); __ push(r9); // Restore the registers from the last output frame. { UseScratchRegisterScope temps(masm); Register scratch = temps.Acquire(); DCHECK(!(scratch.bit() & restored_regs)); __ mr(scratch, r5); for (int i = kNumberOfRegisters - 1; i >= 0; i--) { int offset = (i * kSystemPointerSize) + FrameDescription::registers_offset(); if ((restored_regs & (1 << i)) != 0) { __ LoadP(ToRegister(i), MemOperand(scratch, offset)); } } } { UseScratchRegisterScope temps(masm); Register is_iterable = temps.Acquire(); Register one = r7; __ Move(is_iterable, ExternalReference::stack_is_iterable_address(isolate)); __ li(one, Operand(1)); __ stb(one, MemOperand(is_iterable)); } { UseScratchRegisterScope temps(masm); Register scratch = temps.Acquire(); __ pop(scratch); // get continuation, leave pc on stack __ pop(r0); __ mtlr(r0); __ Jump(scratch); } __ stop(); } } // namespace void Builtins::Generate_DeoptimizationEntry_Eager(MacroAssembler* masm) { Generate_DeoptimizationEntry(masm, DeoptimizeKind::kEager); } void Builtins::Generate_DeoptimizationEntry_Soft(MacroAssembler* masm) { Generate_DeoptimizationEntry(masm, DeoptimizeKind::kSoft); } void Builtins::Generate_DeoptimizationEntry_Bailout(MacroAssembler* masm) { Generate_DeoptimizationEntry(masm, DeoptimizeKind::kBailout); } void Builtins::Generate_DeoptimizationEntry_Lazy(MacroAssembler* masm) { Generate_DeoptimizationEntry(masm, DeoptimizeKind::kLazy); } #undef __ } // namespace internal } // namespace v8 #endif // V8_TARGET_ARCH_PPC64 || V8_TARGET_ARCH_PPC64