/* * Copyright (c) 2001 Wind River Systems * Copyright (c) 1997, 1998, 1999, 2000, 2001 * Bill Paul . All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Bill Paul. * 4. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. * * $FreeBSD: src/sys/dev/lge/if_lge.c,v 1.5.2.2 2001/12/14 19:49:23 jlemon Exp $ */ /* * Level 1 LXT1001 gigabit ethernet driver for FreeBSD. Public * documentation not available, but ask me nicely. * * Written by Bill Paul * Wind River Systems */ /* * The Level 1 chip is used on some D-Link, SMC and Addtron NICs. * It's a 64-bit PCI part that supports TCP/IP checksum offload, * VLAN tagging/insertion, GMII and TBI (1000baseX) ports. There * are three supported methods for data transfer between host and * NIC: programmed I/O, traditional scatter/gather DMA and Packet * Propulsion Technology (tm) DMA. The latter mechanism is a form * of double buffer DMA where the packet data is copied to a * pre-allocated DMA buffer who's physical address has been loaded * into a table at device initialization time. The rationale is that * the virtual to physical address translation needed for normal * scatter/gather DMA is more expensive than the data copy needed * for double buffering. This may be true in Windows NT and the like, * but it isn't true for us, at least on the x86 arch. This driver * uses the scatter/gather I/O method for both TX and RX. * * The LXT1001 only supports TCP/IP checksum offload on receive. * Also, the VLAN tagging is done using a 16-entry table which allows * the chip to perform hardware filtering based on VLAN tags. Sadly, * our vlan support doesn't currently play well with this kind of * hardware support. * * Special thanks to: * - Jeff James at Intel, for arranging to have the LXT1001 manual * released (at long last) * - Beny Chen at D-Link, for actually sending it to me * - Brad Short and Keith Alexis at SMC, for sending me sample * SMC9462SX and SMC9462TX adapters for testing * - Paul Saab at Y!, for not killing me (though it remains to be seen * if in fact he did me much of a favor) */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* for vtophys */ #include /* for vtophys */ #include #include #include #include #include "pcidevs.h" #include #include #define LGE_USEIOSPACE #include "if_lgereg.h" /* "controller miibus0" required. See GENERIC if you get errors here. */ #include "miibus_if.h" /* * Various supported device vendors/types and their names. */ static struct lge_type lge_devs[] = { { PCI_VENDOR_LEVELONE, PCI_PRODUCT_LEVELONE_LXT1001, "Level 1 Gigabit Ethernet" }, { 0, 0, NULL } }; static int lge_probe(device_t); static int lge_attach(device_t); static int lge_detach(device_t); static int lge_alloc_jumbo_mem(struct lge_softc *); static void lge_free_jumbo_mem(struct lge_softc *); static struct lge_jslot *lge_jalloc(struct lge_softc *); static void lge_jfree(void *); static void lge_jref(void *); static int lge_newbuf(struct lge_softc *, struct lge_rx_desc *, struct mbuf *); static int lge_encap(struct lge_softc *, struct mbuf *, uint32_t *); static void lge_rxeof(struct lge_softc *, int); static void lge_rxeoc(struct lge_softc *); static void lge_txeof(struct lge_softc *); static void lge_intr(void *); static void lge_tick(void *); static void lge_tick_serialized(void *); static void lge_start(struct ifnet *, struct ifaltq_subque *); static int lge_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *); static void lge_init(void *); static void lge_stop(struct lge_softc *); static void lge_watchdog(struct ifnet *); static void lge_shutdown(device_t); static int lge_ifmedia_upd(struct ifnet *); static void lge_ifmedia_sts(struct ifnet *, struct ifmediareq *); static void lge_eeprom_getword(struct lge_softc *, int, uint16_t *); static void lge_read_eeprom(struct lge_softc *, caddr_t, int, int); static int lge_miibus_readreg(device_t, int, int); static int lge_miibus_writereg(device_t, int, int, int); static void lge_miibus_statchg(device_t); static void lge_setmulti(struct lge_softc *); static void lge_reset(struct lge_softc *); static int lge_list_rx_init(struct lge_softc *); static int lge_list_tx_init(struct lge_softc *); #ifdef LGE_USEIOSPACE #define LGE_RES SYS_RES_IOPORT #define LGE_RID LGE_PCI_LOIO #else #define LGE_RES SYS_RES_MEMORY #define LGE_RID LGE_PCI_LOMEM #endif static device_method_t lge_methods[] = { /* Device interface */ DEVMETHOD(device_probe, lge_probe), DEVMETHOD(device_attach, lge_attach), DEVMETHOD(device_detach, lge_detach), DEVMETHOD(device_shutdown, lge_shutdown), /* bus interface */ DEVMETHOD(bus_print_child, bus_generic_print_child), DEVMETHOD(bus_driver_added, bus_generic_driver_added), /* MII interface */ DEVMETHOD(miibus_readreg, lge_miibus_readreg), DEVMETHOD(miibus_writereg, lge_miibus_writereg), DEVMETHOD(miibus_statchg, lge_miibus_statchg), DEVMETHOD_END }; static DEFINE_CLASS_0(lge, lge_driver, lge_methods, sizeof(struct lge_softc)); static devclass_t lge_devclass; DECLARE_DUMMY_MODULE(if_lge); DRIVER_MODULE(if_lge, pci, lge_driver, lge_devclass, NULL, NULL); DRIVER_MODULE(miibus, lge, miibus_driver, miibus_devclass, NULL, NULL); #define LGE_SETBIT(sc, reg, x) \ CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x)) #define LGE_CLRBIT(sc, reg, x) \ CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x)) #define SIO_SET(x) \ CSR_WRITE_4(sc, LGE_MEAR, CSR_READ_4(sc, LGE_MEAR) | (x)) #define SIO_CLR(x) \ CSR_WRITE_4(sc, LGE_MEAR, CSR_READ_4(sc, LGE_MEAR) & ~(x)) /* * Read a word of data stored in the EEPROM at address 'addr.' */ static void lge_eeprom_getword(struct lge_softc *sc, int addr, uint16_t *dest) { int i; uint32_t val; CSR_WRITE_4(sc, LGE_EECTL, LGE_EECTL_CMD_READ| LGE_EECTL_SINGLEACCESS | ((addr >> 1) << 8)); for (i = 0; i < LGE_TIMEOUT; i++) { if ((CSR_READ_4(sc, LGE_EECTL) & LGE_EECTL_CMD_READ) == 0) break; } if (i == LGE_TIMEOUT) { kprintf("lge%d: EEPROM read timed out\n", sc->lge_unit); return; } val = CSR_READ_4(sc, LGE_EEDATA); if (addr & 1) *dest = (val >> 16) & 0xFFFF; else *dest = val & 0xFFFF; } /* * Read a sequence of words from the EEPROM. */ static void lge_read_eeprom(struct lge_softc *sc, caddr_t dest, int off, int cnt) { int i; uint16_t word = 0, *ptr; for (i = 0; i < cnt; i++) { lge_eeprom_getword(sc, off + i, &word); ptr = (uint16_t *)(dest + (i * 2)); *ptr = ntohs(word); } } static int lge_miibus_readreg(device_t dev, int phy, int reg) { struct lge_softc *sc = device_get_softc(dev); int i; /* * If we have a non-PCS PHY, pretend that the internal * autoneg stuff at PHY address 0 isn't there so that * the miibus code will find only the GMII PHY. */ if (sc->lge_pcs == 0 && phy == 0) return(0); CSR_WRITE_4(sc, LGE_GMIICTL, (phy << 8) | reg | LGE_GMIICMD_READ); for (i = 0; i < LGE_TIMEOUT; i++) { if ((CSR_READ_4(sc, LGE_GMIICTL) & LGE_GMIICTL_CMDBUSY) == 0) break; } if (i == LGE_TIMEOUT) { kprintf("lge%d: PHY read timed out\n", sc->lge_unit); return(0); } return(CSR_READ_4(sc, LGE_GMIICTL) >> 16); } static int lge_miibus_writereg(device_t dev, int phy, int reg, int data) { struct lge_softc *sc = device_get_softc(dev); int i; CSR_WRITE_4(sc, LGE_GMIICTL, (data << 16) | (phy << 8) | reg | LGE_GMIICMD_WRITE); for (i = 0; i < LGE_TIMEOUT; i++) { if ((CSR_READ_4(sc, LGE_GMIICTL) & LGE_GMIICTL_CMDBUSY) == 0) break; } if (i == LGE_TIMEOUT) { kprintf("lge%d: PHY write timed out\n", sc->lge_unit); return(0); } return(0); } static void lge_miibus_statchg(device_t dev) { struct lge_softc *sc = device_get_softc(dev); struct mii_data *mii = device_get_softc(sc->lge_miibus); LGE_CLRBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_SPEED); switch (IFM_SUBTYPE(mii->mii_media_active)) { case IFM_1000_T: case IFM_1000_SX: LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_1000); break; case IFM_100_TX: LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_100); break; case IFM_10_T: LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_10); break; default: /* * Choose something, even if it's wrong. Clearing * all the bits will hose autoneg on the internal * PHY. */ LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_1000); break; } if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) LGE_SETBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_FDX); else LGE_CLRBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_FDX); } static void lge_setmulti(struct lge_softc *sc) { struct ifnet *ifp = &sc->arpcom.ac_if; struct ifmultiaddr *ifma; uint32_t h = 0, hashes[2] = { 0, 0 }; /* Make sure multicast hash table is enabled. */ CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1 | LGE_MODE1_RX_MCAST); if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) { CSR_WRITE_4(sc, LGE_MAR0, 0xFFFFFFFF); CSR_WRITE_4(sc, LGE_MAR1, 0xFFFFFFFF); return; } /* first, zot all the existing hash bits */ CSR_WRITE_4(sc, LGE_MAR0, 0); CSR_WRITE_4(sc, LGE_MAR1, 0); /* now program new ones */ TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { if (ifma->ifma_addr->sa_family != AF_LINK) continue; h = ether_crc32_be(LLADDR((struct sockaddr_dl *) ifma->ifma_addr), ETHER_ADDR_LEN) >> 26; if (h < 32) hashes[0] |= (1 << h); else hashes[1] |= (1 << (h - 32)); } CSR_WRITE_4(sc, LGE_MAR0, hashes[0]); CSR_WRITE_4(sc, LGE_MAR1, hashes[1]); return; } static void lge_reset(struct lge_softc *sc) { int i; LGE_SETBIT(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL0 | LGE_MODE1_SOFTRST); for (i = 0; i < LGE_TIMEOUT; i++) { if ((CSR_READ_4(sc, LGE_MODE1) & LGE_MODE1_SOFTRST) == 0) break; } if (i == LGE_TIMEOUT) kprintf("lge%d: reset never completed\n", sc->lge_unit); /* Wait a little while for the chip to get its brains in order. */ DELAY(1000); } /* * Probe for a Level 1 chip. Check the PCI vendor and device * IDs against our list and return a device name if we find a match. */ static int lge_probe(device_t dev) { struct lge_type *t; uint16_t vendor, product; vendor = pci_get_vendor(dev); product = pci_get_device(dev); for (t = lge_devs; t->lge_name != NULL; t++) { if (vendor == t->lge_vid && product == t->lge_did) { device_set_desc(dev, t->lge_name); return(0); } } return(ENXIO); } /* * Attach the interface. Allocate softc structures, do ifmedia * setup and ethernet/BPF attach. */ static int lge_attach(device_t dev) { uint8_t eaddr[ETHER_ADDR_LEN]; struct lge_softc *sc; struct ifnet *ifp; int unit, error = 0, rid; sc = device_get_softc(dev); unit = device_get_unit(dev); callout_init(&sc->lge_stat_timer); lwkt_serialize_init(&sc->lge_jslot_serializer); /* * Handle power management nonsense. */ if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) { uint32_t iobase, membase, irq; /* Save important PCI config data. */ iobase = pci_read_config(dev, LGE_PCI_LOIO, 4); membase = pci_read_config(dev, LGE_PCI_LOMEM, 4); irq = pci_read_config(dev, LGE_PCI_INTLINE, 4); /* Reset the power state. */ device_printf(dev, "chip is in D%d power mode " "-- setting to D0\n", pci_get_powerstate(dev)); pci_set_powerstate(dev, PCI_POWERSTATE_D0); /* Restore PCI config data. */ pci_write_config(dev, LGE_PCI_LOIO, iobase, 4); pci_write_config(dev, LGE_PCI_LOMEM, membase, 4); pci_write_config(dev, LGE_PCI_INTLINE, irq, 4); } pci_enable_busmaster(dev); rid = LGE_RID; sc->lge_res = bus_alloc_resource_any(dev, LGE_RES, &rid, RF_ACTIVE); if (sc->lge_res == NULL) { kprintf("lge%d: couldn't map ports/memory\n", unit); error = ENXIO; goto fail; } sc->lge_btag = rman_get_bustag(sc->lge_res); sc->lge_bhandle = rman_get_bushandle(sc->lge_res); /* Allocate interrupt */ rid = 0; sc->lge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_SHAREABLE | RF_ACTIVE); if (sc->lge_irq == NULL) { kprintf("lge%d: couldn't map interrupt\n", unit); error = ENXIO; goto fail; } /* Reset the adapter. */ lge_reset(sc); /* * Get station address from the EEPROM. */ lge_read_eeprom(sc, (caddr_t)&eaddr[0], LGE_EE_NODEADDR_0, 1); lge_read_eeprom(sc, (caddr_t)&eaddr[2], LGE_EE_NODEADDR_1, 1); lge_read_eeprom(sc, (caddr_t)&eaddr[4], LGE_EE_NODEADDR_2, 1); sc->lge_unit = unit; sc->lge_ldata = contigmalloc(sizeof(struct lge_list_data), M_DEVBUF, M_WAITOK | M_ZERO, 0, 0xffffffff, PAGE_SIZE, 0); if (sc->lge_ldata == NULL) { kprintf("lge%d: no memory for list buffers!\n", unit); error = ENXIO; goto fail; } /* Try to allocate memory for jumbo buffers. */ if (lge_alloc_jumbo_mem(sc)) { kprintf("lge%d: jumbo buffer allocation failed\n", sc->lge_unit); error = ENXIO; goto fail; } ifp = &sc->arpcom.ac_if; ifp->if_softc = sc; if_initname(ifp, "lge", unit); ifp->if_mtu = ETHERMTU; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = lge_ioctl; ifp->if_start = lge_start; ifp->if_watchdog = lge_watchdog; ifp->if_init = lge_init; ifp->if_baudrate = 1000000000; ifq_set_maxlen(&ifp->if_snd, LGE_TX_LIST_CNT - 1); ifq_set_ready(&ifp->if_snd); ifp->if_capabilities = IFCAP_RXCSUM; ifp->if_capenable = ifp->if_capabilities; if (CSR_READ_4(sc, LGE_GMIIMODE) & LGE_GMIIMODE_PCSENH) sc->lge_pcs = 1; else sc->lge_pcs = 0; /* * Do MII setup. */ if (mii_phy_probe(dev, &sc->lge_miibus, lge_ifmedia_upd, lge_ifmedia_sts)) { kprintf("lge%d: MII without any PHY!\n", sc->lge_unit); error = ENXIO; goto fail; } /* * Call MI attach routine. */ ether_ifattach(ifp, eaddr, NULL); ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(sc->lge_irq)); error = bus_setup_intr(dev, sc->lge_irq, INTR_MPSAFE, lge_intr, sc, &sc->lge_intrhand, ifp->if_serializer); if (error) { ether_ifdetach(ifp); kprintf("lge%d: couldn't set up irq\n", unit); goto fail; } return(0); fail: lge_detach(dev); return(error); } static int lge_detach(device_t dev) { struct lge_softc *sc= device_get_softc(dev); struct ifnet *ifp = &sc->arpcom.ac_if; if (device_is_attached(dev)) { lwkt_serialize_enter(ifp->if_serializer); lge_reset(sc); lge_stop(sc); bus_teardown_intr(dev, sc->lge_irq, sc->lge_intrhand); lwkt_serialize_exit(ifp->if_serializer); ether_ifdetach(ifp); } if (sc->lge_miibus) device_delete_child(dev, sc->lge_miibus); bus_generic_detach(dev); if (sc->lge_irq) bus_release_resource(dev, SYS_RES_IRQ, 0, sc->lge_irq); if (sc->lge_res) bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res); if (sc->lge_ldata) contigfree(sc->lge_ldata, sizeof(struct lge_list_data), M_DEVBUF); lge_free_jumbo_mem(sc); return(0); } /* * Initialize the transmit descriptors. */ static int lge_list_tx_init(struct lge_softc *sc) { struct lge_list_data *ld; struct lge_ring_data *cd; int i; cd = &sc->lge_cdata; ld = sc->lge_ldata; for (i = 0; i < LGE_TX_LIST_CNT; i++) { ld->lge_tx_list[i].lge_mbuf = NULL; ld->lge_tx_list[i].lge_ctl = 0; } cd->lge_tx_prod = cd->lge_tx_cons = 0; return(0); } /* * Initialize the RX descriptors and allocate mbufs for them. Note that * we arralge the descriptors in a closed ring, so that the last descriptor * points back to the first. */ static int lge_list_rx_init(struct lge_softc *sc) { struct lge_list_data *ld; struct lge_ring_data *cd; int i; ld = sc->lge_ldata; cd = &sc->lge_cdata; cd->lge_rx_prod = cd->lge_rx_cons = 0; CSR_WRITE_4(sc, LGE_RXDESC_ADDR_HI, 0); for (i = 0; i < LGE_RX_LIST_CNT; i++) { if (CSR_READ_1(sc, LGE_RXCMDFREE_8BIT) == 0) break; if (lge_newbuf(sc, &ld->lge_rx_list[i], NULL) == ENOBUFS) return(ENOBUFS); } /* Clear possible 'rx command queue empty' interrupt. */ CSR_READ_4(sc, LGE_ISR); return(0); } /* * Initialize an RX descriptor and attach an MBUF cluster. */ static int lge_newbuf(struct lge_softc *sc, struct lge_rx_desc *c, struct mbuf *m) { struct mbuf *m_new = NULL; struct lge_jslot *buf; if (m == NULL) { MGETHDR(m_new, M_NOWAIT, MT_DATA); if (m_new == NULL) { kprintf("lge%d: no memory for rx list " "-- packet dropped!\n", sc->lge_unit); return(ENOBUFS); } /* Allocate the jumbo buffer */ buf = lge_jalloc(sc); if (buf == NULL) { #ifdef LGE_VERBOSE kprintf("lge%d: jumbo allocation failed " "-- packet dropped!\n", sc->lge_unit); #endif m_freem(m_new); return(ENOBUFS); } /* Attach the buffer to the mbuf */ m_new->m_ext.ext_arg = buf; m_new->m_ext.ext_buf = buf->lge_buf; m_new->m_ext.ext_free = lge_jfree; m_new->m_ext.ext_ref = lge_jref; m_new->m_ext.ext_size = LGE_JUMBO_FRAMELEN; m_new->m_data = m_new->m_ext.ext_buf; m_new->m_flags |= M_EXT; m_new->m_len = m_new->m_pkthdr.len = m_new->m_ext.ext_size; } else { m_new = m; m_new->m_len = m_new->m_pkthdr.len = LGE_JLEN; m_new->m_data = m_new->m_ext.ext_buf; } /* * Adjust alignment so packet payload begins on a * longword boundary. Mandatory for Alpha, useful on * x86 too. */ m_adj(m_new, ETHER_ALIGN); c->lge_mbuf = m_new; c->lge_fragptr_hi = 0; c->lge_fragptr_lo = vtophys(mtod(m_new, caddr_t)); c->lge_fraglen = m_new->m_len; c->lge_ctl = m_new->m_len | LGE_RXCTL_WANTINTR | LGE_FRAGCNT(1); c->lge_sts = 0; /* * Put this buffer in the RX command FIFO. To do this, * we just write the physical address of the descriptor * into the RX descriptor address registers. Note that * there are two registers, one high DWORD and one low * DWORD, which lets us specify a 64-bit address if * desired. We only use a 32-bit address for now. * Writing to the low DWORD register is what actually * causes the command to be issued, so we do that * last. */ CSR_WRITE_4(sc, LGE_RXDESC_ADDR_LO, vtophys(c)); LGE_INC(sc->lge_cdata.lge_rx_prod, LGE_RX_LIST_CNT); return(0); } static int lge_alloc_jumbo_mem(struct lge_softc *sc) { struct lge_jslot *entry; caddr_t ptr; int i; /* Grab a big chunk o' storage. */ sc->lge_cdata.lge_jumbo_buf = contigmalloc(LGE_JMEM, M_DEVBUF, M_WAITOK, 0, 0xffffffff, PAGE_SIZE, 0); if (sc->lge_cdata.lge_jumbo_buf == NULL) { kprintf("lge%d: no memory for jumbo buffers!\n", sc->lge_unit); return(ENOBUFS); } SLIST_INIT(&sc->lge_jfree_listhead); /* * Now divide it up into 9K pieces and save the addresses * in an array. */ ptr = sc->lge_cdata.lge_jumbo_buf; for (i = 0; i < LGE_JSLOTS; i++) { entry = &sc->lge_cdata.lge_jslots[i]; entry->lge_sc = sc; entry->lge_buf = ptr; entry->lge_inuse = 0; entry->lge_slot = i; SLIST_INSERT_HEAD(&sc->lge_jfree_listhead, entry, jslot_link); ptr += LGE_JLEN; } return(0); } static void lge_free_jumbo_mem(struct lge_softc *sc) { if (sc->lge_cdata.lge_jumbo_buf) contigfree(sc->lge_cdata.lge_jumbo_buf, LGE_JMEM, M_DEVBUF); } /* * Allocate a jumbo buffer. */ static struct lge_jslot * lge_jalloc(struct lge_softc *sc) { struct lge_jslot *entry; lwkt_serialize_enter(&sc->lge_jslot_serializer); entry = SLIST_FIRST(&sc->lge_jfree_listhead); if (entry) { SLIST_REMOVE_HEAD(&sc->lge_jfree_listhead, jslot_link); entry->lge_inuse = 1; } else { #ifdef LGE_VERBOSE kprintf("lge%d: no free jumbo buffers\n", sc->lge_unit); #endif } lwkt_serialize_exit(&sc->lge_jslot_serializer); return(entry); } /* * Adjust usage count on a jumbo buffer. In general this doesn't * get used much because our jumbo buffers don't get passed around * a lot, but it's implemented for correctness. */ static void lge_jref(void *arg) { struct lge_jslot *entry = (struct lge_jslot *)arg; struct lge_softc *sc = entry->lge_sc; if (&sc->lge_cdata.lge_jslots[entry->lge_slot] != entry) panic("lge_jref: asked to reference buffer " "that we don't manage!"); else if (entry->lge_inuse == 0) panic("lge_jref: buffer already free!"); else atomic_add_int(&entry->lge_inuse, 1); } /* * Release a jumbo buffer. */ static void lge_jfree(void *arg) { struct lge_jslot *entry = (struct lge_jslot *)arg; struct lge_softc *sc = entry->lge_sc; if (sc == NULL) panic("lge_jfree: can't find softc pointer!"); if (&sc->lge_cdata.lge_jslots[entry->lge_slot] != entry) { panic("lge_jfree: asked to free buffer that we don't manage!"); } else if (entry->lge_inuse == 0) { panic("lge_jfree: buffer already free!"); } else { lwkt_serialize_enter(&sc->lge_jslot_serializer); atomic_subtract_int(&entry->lge_inuse, 1); if (entry->lge_inuse == 0) { SLIST_INSERT_HEAD(&sc->lge_jfree_listhead, entry, jslot_link); } lwkt_serialize_exit(&sc->lge_jslot_serializer); } } /* * A frame has been uploaded: pass the resulting mbuf chain up to * the higher level protocols. */ static void lge_rxeof(struct lge_softc *sc, int cnt) { struct ifnet *ifp = &sc->arpcom.ac_if; struct mbuf *m; struct lge_rx_desc *cur_rx; int c, i, total_len = 0; uint32_t rxsts, rxctl; /* Find out how many frames were processed. */ c = cnt; i = sc->lge_cdata.lge_rx_cons; /* Suck them in. */ while(c) { struct mbuf *m0 = NULL; cur_rx = &sc->lge_ldata->lge_rx_list[i]; rxctl = cur_rx->lge_ctl; rxsts = cur_rx->lge_sts; m = cur_rx->lge_mbuf; cur_rx->lge_mbuf = NULL; total_len = LGE_RXBYTES(cur_rx); LGE_INC(i, LGE_RX_LIST_CNT); c--; /* * If an error occurs, update stats, clear the * status word and leave the mbuf cluster in place: * it should simply get re-used next time this descriptor * comes up in the ring. */ if (rxctl & LGE_RXCTL_ERRMASK) { IFNET_STAT_INC(ifp, ierrors, 1); lge_newbuf(sc, &LGE_RXTAIL(sc), m); continue; } if (lge_newbuf(sc, &LGE_RXTAIL(sc), NULL) == ENOBUFS) { m0 = m_devget(mtod(m, char *) - ETHER_ALIGN, total_len + ETHER_ALIGN, 0, ifp); lge_newbuf(sc, &LGE_RXTAIL(sc), m); if (m0 == NULL) { kprintf("lge%d: no receive buffers " "available -- packet dropped!\n", sc->lge_unit); IFNET_STAT_INC(ifp, ierrors, 1); continue; } m_adj(m0, ETHER_ALIGN); m = m0; } else { m->m_pkthdr.rcvif = ifp; m->m_pkthdr.len = m->m_len = total_len; } IFNET_STAT_INC(ifp, ipackets, 1); /* Do IP checksum checking. */ if (rxsts & LGE_RXSTS_ISIP) m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; if (!(rxsts & LGE_RXSTS_IPCSUMERR)) m->m_pkthdr.csum_flags |= CSUM_IP_VALID; if ((rxsts & LGE_RXSTS_ISTCP && !(rxsts & LGE_RXSTS_TCPCSUMERR)) || (rxsts & LGE_RXSTS_ISUDP && !(rxsts & LGE_RXSTS_UDPCSUMERR))) { m->m_pkthdr.csum_flags |= CSUM_DATA_VALID|CSUM_PSEUDO_HDR| CSUM_FRAG_NOT_CHECKED; m->m_pkthdr.csum_data = 0xffff; } ifp->if_input(ifp, m, NULL, -1); } sc->lge_cdata.lge_rx_cons = i; } static void lge_rxeoc(struct lge_softc *sc) { struct ifnet *ifp = &sc->arpcom.ac_if; ifp->if_flags &= ~IFF_RUNNING; lge_init(sc); } /* * A frame was downloaded to the chip. It's safe for us to clean up * the list buffers. */ static void lge_txeof(struct lge_softc *sc) { struct ifnet *ifp = &sc->arpcom.ac_if; struct lge_tx_desc *cur_tx = NULL; uint32_t idx, txdone; /* Clear the timeout timer. */ ifp->if_timer = 0; /* * Go through our tx list and free mbufs for those * frames that have been transmitted. */ idx = sc->lge_cdata.lge_tx_cons; txdone = CSR_READ_1(sc, LGE_TXDMADONE_8BIT); while (idx != sc->lge_cdata.lge_tx_prod && txdone) { cur_tx = &sc->lge_ldata->lge_tx_list[idx]; IFNET_STAT_INC(ifp, opackets, 1); if (cur_tx->lge_mbuf != NULL) { m_freem(cur_tx->lge_mbuf); cur_tx->lge_mbuf = NULL; } cur_tx->lge_ctl = 0; txdone--; LGE_INC(idx, LGE_TX_LIST_CNT); ifp->if_timer = 0; } sc->lge_cdata.lge_tx_cons = idx; if (cur_tx != NULL) ifq_clr_oactive(&ifp->if_snd); } static void lge_tick(void *xsc) { struct lge_softc *sc = xsc; struct ifnet *ifp = &sc->arpcom.ac_if; lwkt_serialize_enter(ifp->if_serializer); lge_tick_serialized(xsc); lwkt_serialize_exit(ifp->if_serializer); } static void lge_tick_serialized(void *xsc) { struct lge_softc *sc = xsc; struct mii_data *mii; struct ifnet *ifp = &sc->arpcom.ac_if; CSR_WRITE_4(sc, LGE_STATSIDX, LGE_STATS_SINGLE_COLL_PKTS); IFNET_STAT_INC(ifp, collisions, CSR_READ_4(sc, LGE_STATSVAL)); CSR_WRITE_4(sc, LGE_STATSIDX, LGE_STATS_MULTI_COLL_PKTS); IFNET_STAT_INC(ifp, collisions, CSR_READ_4(sc, LGE_STATSVAL)); if (!sc->lge_link) { mii = device_get_softc(sc->lge_miibus); mii_tick(mii); mii_pollstat(mii); if (mii->mii_media_status & IFM_ACTIVE && IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) { sc->lge_link++; if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX|| IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) kprintf("lge%d: gigabit link up\n", sc->lge_unit); if (!ifq_is_empty(&ifp->if_snd)) if_devstart(ifp); } } callout_reset(&sc->lge_stat_timer, hz, lge_tick, sc); } static void lge_intr(void *arg) { struct lge_softc *sc = arg; struct ifnet *ifp = &sc->arpcom.ac_if; uint32_t status; /* Supress unwanted interrupts */ if ((ifp->if_flags & IFF_UP) == 0) { lge_stop(sc); return; } for (;;) { /* * Reading the ISR register clears all interrupts, and * clears the 'interrupts enabled' bit in the IMR * register. */ status = CSR_READ_4(sc, LGE_ISR); if ((status & LGE_INTRS) == 0) break; if ((status & (LGE_ISR_TXCMDFIFO_EMPTY|LGE_ISR_TXDMA_DONE))) lge_txeof(sc); if (status & LGE_ISR_RXDMA_DONE) lge_rxeof(sc, LGE_RX_DMACNT(status)); if (status & LGE_ISR_RXCMDFIFO_EMPTY) lge_rxeoc(sc); if (status & LGE_ISR_PHY_INTR) { sc->lge_link = 0; callout_stop(&sc->lge_stat_timer); lge_tick_serialized(sc); } } /* Re-enable interrupts. */ CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL0|LGE_IMR_INTR_ENB); if (!ifq_is_empty(&ifp->if_snd)) if_devstart(ifp); } /* * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data * pointers to the fragment pointers. */ static int lge_encap(struct lge_softc *sc, struct mbuf *m_head, uint32_t *txidx) { struct lge_frag *f = NULL; struct lge_tx_desc *cur_tx; struct mbuf *m; int frag = 0, tot_len = 0; /* * Start packing the mbufs in this chain into * the fragment pointers. Stop when we run out * of fragments or hit the end of the mbuf chain. */ m = m_head; cur_tx = &sc->lge_ldata->lge_tx_list[*txidx]; frag = 0; for (m = m_head; m != NULL; m = m->m_next) { if (m->m_len != 0) { if (frag == LGE_FRAG_CNT) break; tot_len += m->m_len; f = &cur_tx->lge_frags[frag]; f->lge_fraglen = m->m_len; f->lge_fragptr_lo = vtophys(mtod(m, vm_offset_t)); f->lge_fragptr_hi = 0; frag++; } } /* Caller should make sure that 'm_head' is not excessive fragmented */ KASSERT(m == NULL, ("too many fragments")); cur_tx->lge_mbuf = m_head; cur_tx->lge_ctl = LGE_TXCTL_WANTINTR|LGE_FRAGCNT(frag)|tot_len; LGE_INC((*txidx), LGE_TX_LIST_CNT); /* Queue for transmit */ CSR_WRITE_4(sc, LGE_TXDESC_ADDR_LO, vtophys(cur_tx)); return(0); } /* * Main transmit routine. To avoid having to do mbuf copies, we put pointers * to the mbuf data regions directly in the transmit lists. We also save a * copy of the pointers since the transmit list fragment pointers are * physical addresses. */ static void lge_start(struct ifnet *ifp, struct ifaltq_subque *ifsq) { struct lge_softc *sc = ifp->if_softc; struct mbuf *m_head = NULL, *m_defragged; uint32_t idx; int need_timer; ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq); if (!sc->lge_link) { ifq_purge(&ifp->if_snd); return; } idx = sc->lge_cdata.lge_tx_prod; if (ifq_is_oactive(&ifp->if_snd)) return; need_timer = 0; while(sc->lge_ldata->lge_tx_list[idx].lge_mbuf == NULL) { struct mbuf *m; int frags; if (CSR_READ_1(sc, LGE_TXCMDFREE_8BIT) == 0) { ifq_set_oactive(&ifp->if_snd); break; } m_defragged = NULL; m_head = ifq_dequeue(&ifp->if_snd); if (m_head == NULL) break; again: frags = 0; for (m = m_head; m != NULL; m = m->m_next) ++frags; if (frags > LGE_FRAG_CNT) { if (m_defragged != NULL) { /* * Even after defragmentation, there * are still too many fragments, so * drop this packet. */ m_freem(m_head); continue; } m_defragged = m_defrag(m_head, M_NOWAIT); if (m_defragged == NULL) { m_freem(m_head); continue; } m_head = m_defragged; /* Recount # of fragments */ goto again; } lge_encap(sc, m_head, &idx); need_timer = 1; BPF_MTAP(ifp, m_head); } if (!need_timer) return; sc->lge_cdata.lge_tx_prod = idx; /* * Set a timeout in case the chip goes out to lunch. */ ifp->if_timer = 5; } static void lge_init(void *xsc) { struct lge_softc *sc = xsc; struct ifnet *ifp = &sc->arpcom.ac_if; if (ifp->if_flags & IFF_RUNNING) return; /* * Cancel pending I/O and free all RX/TX buffers. */ lge_stop(sc); lge_reset(sc); /* Set MAC address */ CSR_WRITE_4(sc, LGE_PAR0, *(uint32_t *)(&sc->arpcom.ac_enaddr[0])); CSR_WRITE_4(sc, LGE_PAR1, *(uint32_t *)(&sc->arpcom.ac_enaddr[4])); /* Init circular RX list. */ if (lge_list_rx_init(sc) == ENOBUFS) { kprintf("lge%d: initialization failed: no " "memory for rx buffers\n", sc->lge_unit); lge_stop(sc); return; } /* * Init tx descriptors. */ lge_list_tx_init(sc); /* Set initial value for MODE1 register. */ CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_UCAST | LGE_MODE1_TX_CRC | LGE_MODE1_TXPAD | LGE_MODE1_RX_FLOWCTL | LGE_MODE1_SETRST_CTL0 | LGE_MODE1_SETRST_CTL1 | LGE_MODE1_SETRST_CTL2); /* If we want promiscuous mode, set the allframes bit. */ if (ifp->if_flags & IFF_PROMISC) { CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1 | LGE_MODE1_RX_PROMISC); } else { CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_PROMISC); } /* * Set the capture broadcast bit to capture broadcast frames. */ if (ifp->if_flags & IFF_BROADCAST) { CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1 | LGE_MODE1_RX_BCAST); } else { CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_BCAST); } /* Packet padding workaround? */ CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RMVPAD); /* No error frames */ CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_ERRPKTS); /* Receive large frames */ CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1 | LGE_MODE1_RX_GIANTS); /* Workaround: disable RX/TX flow control */ CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_TX_FLOWCTL); CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_FLOWCTL); /* Make sure to strip CRC from received frames */ CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_CRC); /* Turn off magic packet mode */ CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_MPACK_ENB); /* Turn off all VLAN stuff */ CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_VLAN_RX | LGE_MODE1_VLAN_TX | LGE_MODE1_VLAN_STRIP | LGE_MODE1_VLAN_INSERT); /* Workarond: FIFO overflow */ CSR_WRITE_2(sc, LGE_RXFIFO_HIWAT, 0x3FFF); CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL1|LGE_IMR_RXFIFO_WAT); /* * Load the multicast filter. */ lge_setmulti(sc); /* * Enable hardware checksum validation for all received IPv4 * packets, do not reject packets with bad checksums. */ CSR_WRITE_4(sc, LGE_MODE2, LGE_MODE2_RX_IPCSUM | LGE_MODE2_RX_TCPCSUM | LGE_MODE2_RX_UDPCSUM | LGE_MODE2_RX_ERRCSUM); /* * Enable the delivery of PHY interrupts based on * link/speed/duplex status chalges. */ CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL0 | LGE_MODE1_GMIIPOLL); /* Enable receiver and transmitter. */ CSR_WRITE_4(sc, LGE_RXDESC_ADDR_HI, 0); CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1 | LGE_MODE1_RX_ENB); CSR_WRITE_4(sc, LGE_TXDESC_ADDR_HI, 0); CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1 | LGE_MODE1_TX_ENB); /* * Enable interrupts. */ CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL0 | LGE_IMR_SETRST_CTL1 | LGE_IMR_INTR_ENB|LGE_INTRS); lge_ifmedia_upd(ifp); ifp->if_flags |= IFF_RUNNING; ifq_clr_oactive(&ifp->if_snd); callout_reset(&sc->lge_stat_timer, hz, lge_tick, sc); } /* * Set media options. */ static int lge_ifmedia_upd(struct ifnet *ifp) { struct lge_softc *sc = ifp->if_softc; struct mii_data *mii = device_get_softc(sc->lge_miibus); sc->lge_link = 0; if (mii->mii_instance) { struct mii_softc *miisc; LIST_FOREACH(miisc, &mii->mii_phys, mii_list) mii_phy_reset(miisc); } mii_mediachg(mii); return(0); } /* * Report current media status. */ static void lge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) { struct lge_softc *sc = ifp->if_softc; struct mii_data *mii; mii = device_get_softc(sc->lge_miibus); mii_pollstat(mii); ifmr->ifm_active = mii->mii_media_active; ifmr->ifm_status = mii->mii_media_status; } static int lge_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr) { struct lge_softc *sc = ifp->if_softc; struct ifreq *ifr = (struct ifreq *) data; struct mii_data *mii; int error = 0; switch(command) { case SIOCSIFMTU: if (ifr->ifr_mtu > LGE_JUMBO_MTU) error = EINVAL; else ifp->if_mtu = ifr->ifr_mtu; break; case SIOCSIFFLAGS: if (ifp->if_flags & IFF_UP) { if (ifp->if_flags & IFF_RUNNING && ifp->if_flags & IFF_PROMISC && !(sc->lge_if_flags & IFF_PROMISC)) { CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1| LGE_MODE1_RX_PROMISC); } else if (ifp->if_flags & IFF_RUNNING && !(ifp->if_flags & IFF_PROMISC) && sc->lge_if_flags & IFF_PROMISC) { CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_PROMISC); } else { ifp->if_flags &= ~IFF_RUNNING; lge_init(sc); } } else { if (ifp->if_flags & IFF_RUNNING) lge_stop(sc); } sc->lge_if_flags = ifp->if_flags; error = 0; break; case SIOCADDMULTI: case SIOCDELMULTI: lge_setmulti(sc); error = 0; break; case SIOCGIFMEDIA: case SIOCSIFMEDIA: mii = device_get_softc(sc->lge_miibus); error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command); break; default: error = ether_ioctl(ifp, command, data); break; } return(error); } static void lge_watchdog(struct ifnet *ifp) { struct lge_softc *sc = ifp->if_softc; IFNET_STAT_INC(ifp, oerrors, 1); kprintf("lge%d: watchdog timeout\n", sc->lge_unit); lge_stop(sc); lge_reset(sc); ifp->if_flags &= ~IFF_RUNNING; lge_init(sc); if (!ifq_is_empty(&ifp->if_snd)) if_devstart(ifp); } /* * Stop the adapter and free any mbufs allocated to the * RX and TX lists. */ static void lge_stop(struct lge_softc *sc) { struct ifnet *ifp = &sc->arpcom.ac_if; int i; ifp->if_timer = 0; callout_stop(&sc->lge_stat_timer); CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_INTR_ENB); /* Disable receiver and transmitter. */ CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_ENB|LGE_MODE1_TX_ENB); sc->lge_link = 0; /* * Free data in the RX lists. */ for (i = 0; i < LGE_RX_LIST_CNT; i++) { if (sc->lge_ldata->lge_rx_list[i].lge_mbuf != NULL) { m_freem(sc->lge_ldata->lge_rx_list[i].lge_mbuf); sc->lge_ldata->lge_rx_list[i].lge_mbuf = NULL; } } bzero(&sc->lge_ldata->lge_rx_list, sizeof(sc->lge_ldata->lge_rx_list)); /* * Free the TX list buffers. */ for (i = 0; i < LGE_TX_LIST_CNT; i++) { if (sc->lge_ldata->lge_tx_list[i].lge_mbuf != NULL) { m_freem(sc->lge_ldata->lge_tx_list[i].lge_mbuf); sc->lge_ldata->lge_tx_list[i].lge_mbuf = NULL; } } bzero(&sc->lge_ldata->lge_tx_list, sizeof(sc->lge_ldata->lge_tx_list)); ifp->if_flags &= ~IFF_RUNNING; ifq_clr_oactive(&ifp->if_snd); } /* * Stop all chip I/O so that the kernel's probe routines don't * get confused by errant DMAs when rebooting. */ static void lge_shutdown(device_t dev) { struct lge_softc *sc = device_get_softc(dev); lge_reset(sc); lge_stop(sc); }