/* * To do: * * Don't store drive configuration on the config DB: read each drive's header * to decide where it is. * * Accept any old crap in the config_ functions, and complain when * we try to bring it up. * * When trying to bring volumes up, check that the complete address range * is covered. */ /*- * Copyright (c) 1997, 1998 * Nan Yang Computer Services Limited. All rights reserved. * * This software is distributed under the so-called ``Berkeley * License'': * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Nan Yang Computer * Services Limited. * 4. Neither the name of the Company nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * This software is provided ``as is'', and any express or implied * warranties, including, but not limited to, the implied warranties of * merchantability and fitness for a particular purpose are disclaimed. * In no event shall the company or contributors be liable for any * direct, indirect, incidental, special, exemplary, or consequential * damages (including, but not limited to, procurement of substitute * goods or services; loss of use, data, or profits; or business * interruption) however caused and on any theory of liability, whether * in contract, strict liability, or tort (including negligence or * otherwise) arising in any way out of the use of this software, even if * advised of the possibility of such damage. * * $Id: vinumconfig.c,v 1.30 2000/05/01 09:45:50 grog Exp grog $ * $FreeBSD: src/sys/dev/vinum/vinumconfig.c,v 1.32.2.6 2002/02/03 00:43:35 grog Exp $ * $DragonFly: src/sys/dev/raid/vinum/vinumconfig.c,v 1.12 2007/06/07 22:58:00 corecode Exp $ */ #define STATIC static #include "vinumhdr.h" #include "request.h" #define MAXTOKEN 64 /* maximum number of tokens in a line */ /* * We can afford the luxury of global variables here, * since start_config ensures that these functions * are single-threaded. */ /* These are indices in vinum_conf of the last-mentioned of each kind of object */ static int current_drive; /* note the last drive we mention, for * some defaults */ static int current_plex; /* and the same for the last plex */ static int current_volume; /* and the last volme */ static struct _ioctl_reply *ioctl_reply; /* struct to return via ioctl */ static void made_sd(struct sd *sd); static void made_vol(struct volume *vol); static void made_plex(struct plex *plex); /* These values are used by most of these routines, so set them as globals */ static char *token[MAXTOKEN]; /* pointers to individual tokens */ static int tokens; /* number of tokens */ #define TOCONS 0x01 #define TOTTY 0x02 #define TOLOG 0x04 struct putchar_arg { int flags; struct tty *tty; }; #define MSG_MAX 1024 /* maximum length of a formatted message */ /* * Format an error message and return to the user in the reply. * CARE: This routine is designed to be called only from the * configuration routines, so it assumes it's the owner of * the configuration lock, and unlocks it on exit */ void throw_rude_remark(int error, char *msg,...) { __va_list ap; char *text; static int finishing; /* don't recurse */ int was_finishing; if ((vinum_conf.flags & VF_LOCKED) == 0) /* bug catcher */ panic ("throw_rude_remark: called without config lock"); __va_start(ap, msg); if ((ioctl_reply != NULL) /* we're called from the user */ &&(!(vinum_conf.flags & VF_READING_CONFIG))) { /* and not reading from disk: return msg */ /* * We can't just format to ioctl_reply, since it * may contain our input parameters */ kvasnrprintf(&text, MSG_MAX, 10, msg, ap); strcpy(ioctl_reply->msg, text); ioctl_reply->error = error; /* first byte is the error number */ kvasfree(&text); } else { kprintf("vinum: "); kvprintf(msg, ap); /* print to the console */ kprintf("\n"); } __va_end(ap); if (vinum_conf.flags & VF_READING_CONFIG) { /* go through to the bitter end, */ if ((vinum_conf.flags & VF_READING_CONFIG) /* we're reading from disk, */ &&((daemon_options & daemon_noupdate) == 0)) { log(LOG_NOTICE, "Disabling configuration updates\n"); daemon_options |= daemon_noupdate; } return; } /* * We have a problem here: we want to unlock the * configuration, which implies tidying up, but * if we find an error while tidying up, we could * recurse for ever. Use this kludge to only try * once */ was_finishing = finishing; finishing = 1; finish_config(was_finishing); /* unlock anything we may be holding */ finishing = was_finishing; longjmp(command_fail, error); } /* * Check a volume to see if the plex is already assigned to it. * Return index in volume->plex, or -1 if not assigned */ int my_plex(int volno, int plexno) { int i; struct volume *vol; vol = &VOL[volno]; /* point to volno */ for (i = 0; i < vol->plexes; i++) if (vol->plex[i] == plexno) return i; return -1; /* not found */ } /* * Check a plex to see if the subdisk is already assigned to it. * Return index in plex->sd, or -1 if not assigned */ int my_sd(int plexno, int sdno) { int i; struct plex *plex; plex = &PLEX[plexno]; for (i = 0; i < plex->subdisks; i++) if (plex->sdnos[i] == sdno) return i; return -1; /* not found */ } /* Add plex to the volume if possible */ int give_plex_to_volume(int volno, int plexno) { struct volume *vol; int i; /* * It's not an error for the plex to already * belong to the volume, but we need to check a * number of things to make sure it's done right. * Some day. */ if (my_plex(volno, plexno) >= 0) return plexno; /* that's it */ vol = &VOL[volno]; /* point to volume */ if (vol->plexes == MAXPLEX) /* all plexes allocated */ throw_rude_remark(ENOSPC, "Too many plexes for volume %s", vol->name); else if ((vol->plexes > 0) /* we have other plexes */ &&((vol->flags & VF_CONFIG_SETUPSTATE) == 0)) /* and we're not setting up state */ invalidate_subdisks(&PLEX[plexno], sd_stale); /* make the subdisks invalid */ vol->plex[vol->plexes] = plexno; /* this one */ vol->plexes++; /* add another plex */ PLEX[plexno].volno = volno; /* note the number of our volume */ /* Find out how big our volume is */ for (i = 0; i < vol->plexes; i++) vol->size = u64max(vol->size, PLEX[vol->plex[i]].length); return vol->plexes - 1; /* and return its index */ } /* * Add subdisk to a plex if possible */ int give_sd_to_plex(int plexno, int sdno) { int i; struct plex *plex; struct sd *sd; /* * It's not an error for the sd to already * belong to the plex, but we need to check a * number of things to make sure it's done right. * Some day. */ i = my_sd(plexno, sdno); if (i >= 0) /* does it already belong to us? */ return i; /* that's it */ plex = &PLEX[plexno]; /* point to the plex */ sd = &SD[sdno]; /* and the subdisk */ /* Do we have an offset? Otherwise put it after the last one */ if (sd->plexoffset < 0) { /* no offset specified */ if (plex->subdisks > 0) { struct sd *lastsd = &SD[plex->sdnos[plex->subdisks - 1]]; /* last subdisk */ if (plex->organization == plex_concat) /* concat, */ sd->plexoffset = lastsd->sectors + lastsd->plexoffset; /* starts here */ else /* striped, RAID-4 or RAID-5 */ sd->plexoffset = plex->stripesize * plex->subdisks; /* starts here */ } else /* first subdisk */ sd->plexoffset = 0; /* start at the beginning */ } if (plex->subdisks == MAXSD) /* we already have our maximum */ throw_rude_remark(ENOSPC, /* crap out */ "Can't add %s to %s: plex full", sd->name, plex->name); plex->subdisks++; /* another entry */ if (plex->subdisks >= plex->subdisks_allocated) /* need more space */ EXPAND(plex->sdnos, int, plex->subdisks_allocated, INITIAL_SUBDISKS_IN_PLEX); /* Adjust size of plex and volume. */ if (isparity(plex)) /* RAID-4 or RAID-5 */ plex->length = (plex->subdisks - 1) * sd->sectors; /* size is one disk short */ else plex->length += sd->sectors; /* plex gets this much bigger */ if (plex->volno >= 0) /* we have a volume */ VOL[plex->volno].size = u64max(VOL[plex->volno].size, plex->length); /* adjust its size */ /* * We need to check that the subdisks don't overlap, * but we can't do that until a point where we *must* * know the size of all the subdisks. That's not * here. But we need to sort them by offset */ for (i = 0; i < plex->subdisks - 1; i++) { if (sd->plexoffset < SD[plex->sdnos[i]].plexoffset) { /* it fits before this one */ /* First move any remaining subdisks by one */ int j; for (j = plex->subdisks - 1; j > i; j--) /* move up one at a time */ plex->sdnos[j] = plex->sdnos[j - 1]; plex->sdnos[i] = sdno; sd->plexsdno = i; /* note where we are in the subdisk */ return i; } } /* * The plex doesn't have any subdisk with a * larger offset. Insert it here. */ plex->sdnos[i] = sdno; sd->plexsdno = i; /* note where we are in the subdisk */ sd->plexno = plex->plexno; /* and who we belong to */ return i; } /* * Add a subdisk to drive if possible. The * pointer to the drive must already be stored in * the sd structure, but the drive doesn't know * about the subdisk yet. */ void give_sd_to_drive(int sdno) { struct sd *sd; /* pointer to subdisk */ struct drive *drive; /* and drive */ int fe; /* index in free list */ int sfe; /* and index of subdisk when assigning max */ sd = &SD[sdno]; /* point to sd */ drive = &DRIVE[sd->driveno]; /* and drive */ if (drive->state != drive_up) { update_sd_state(sdno); /* that crashes the subdisk */ return; } if (drive->flags & VF_HOTSPARE) /* the drive is a hot spare, */ throw_rude_remark(ENOSPC, "Can't place %s on hot spare drive %s", sd->name, drive->label.name); if ((drive->sectors_available == 0) /* no space left */ ||(sd->sectors > drive->sectors_available)) { /* or too big, */ sd->driveoffset = -1; /* don't be confusing */ free_sd(sd->sdno); throw_rude_remark(ENOSPC, "No space for %s on %s", sd->name, drive->label.name); return; /* in case we come back here */ } drive->subdisks_used++; /* one more subdisk */ if (sd->sectors == 0) { /* take the largest chunk */ sfe = 0; /* to keep the compiler happy */ for (fe = 0; fe < drive->freelist_entries; fe++) { if (drive->freelist[fe].sectors >= sd->sectors) { /* more space here */ sd->sectors = drive->freelist[fe].sectors; /* take it */ sd->driveoffset = drive->freelist[fe].offset; sfe = fe; /* and note the index for later */ } } if (sd->sectors == 0) { /* no luck, */ sd->driveoffset = -1; /* don't be confusing */ free_sd(sd->sdno); throw_rude_remark(ENOSPC, /* give up */ "No space for %s on %s", sd->name, drive->label.name); } if (sfe < (drive->freelist_entries - 1)) /* not the last one, */ bcopy(&drive->freelist[sfe + 1], &drive->freelist[sfe], (drive->freelist_entries - sfe) * sizeof(struct drive_freelist)); drive->freelist_entries--; /* one less entry */ drive->sectors_available -= sd->sectors; /* and note how much less space we have */ } else if (sd->driveoffset < 0) { /* no offset specified, find one */ for (fe = 0; fe < drive->freelist_entries; fe++) { if (drive->freelist[fe].sectors >= sd->sectors) { /* it'll fit here */ sd->driveoffset = drive->freelist[fe].offset; if (sd->sectors == drive->freelist[fe].sectors) { /* used up the entire entry */ if (fe < (drive->freelist_entries - 1)) /* not the last one, */ bcopy(&drive->freelist[fe + 1], &drive->freelist[fe], (drive->freelist_entries - fe) * sizeof(struct drive_freelist)); drive->freelist_entries--; /* one less entry */ } else { drive->freelist[fe].sectors -= sd->sectors; /* this much less space */ drive->freelist[fe].offset += sd->sectors; /* this much further on */ } drive->sectors_available -= sd->sectors; /* and note how much less space we have */ break; } } if (sd->driveoffset < 0) /* * Didn't find anything. Although the drive has * enough space, it's too fragmented */ { free_sd(sd->sdno); throw_rude_remark(ENOSPC, "No space for %s on %s", sd->name, drive->label.name); } } else { /* specific offset */ /* * For a specific offset to work, the space must be * entirely in a single freelist entry. Look for it. */ u_int64_t sdend = sd->driveoffset + sd->sectors; /* end of our subdisk */ for (fe = 0; fe < drive->freelist_entries; fe++) { u_int64_t dend = drive->freelist[fe].offset + drive->freelist[fe].sectors; /* end of entry */ if (dend >= sdend) { /* fits before here */ if (drive->freelist[fe].offset > sd->driveoffset) { /* starts after the beginning of sd area */ sd->driveoffset = -1; /* don't be confusing */ set_sd_state(sd->sdno, sd_down, setstate_force); throw_rude_remark(ENOSPC, "No space for %s on drive %s at offset %lld", sd->name, drive->label.name, sd->driveoffset); return; } /* * We've found the space, and we can allocate it. * We don't need to say that to the subdisk, which * already knows about it. We need to tell it to * the free list, though. We have four possibilities: * * 1. The subdisk exactly eats up the entry. That's the * same as above. * 2. The subdisk starts at the beginning and leaves space * at the end. * 3. The subdisk starts after the beginning and leaves * space at the end as well: we end up with another * fragment. * 4. The subdisk leaves space at the beginning and finishes * at the end. */ drive->sectors_available -= sd->sectors; /* note how much less space we have */ if (sd->driveoffset == drive->freelist[fe].offset) { /* 1 or 2 */ if (sd->sectors == drive->freelist[fe].sectors) { /* 1: used up the entire entry */ if (fe < (drive->freelist_entries - 1)) /* not the last one, */ bcopy(&drive->freelist[fe + 1], &drive->freelist[fe], (drive->freelist_entries - fe) * sizeof(struct drive_freelist)); drive->freelist_entries--; /* one less entry */ } else { /* 2: space at the end */ drive->freelist[fe].sectors -= sd->sectors; /* this much less space */ drive->freelist[fe].offset += sd->sectors; /* this much further on */ } } else { /* 3 or 4 */ drive->freelist[fe].sectors = sd->driveoffset - drive->freelist[fe].offset; if (dend > sdend) { /* 3: space at the end as well */ if (fe < (drive->freelist_entries - 1)) /* not the last one */ bcopy(&drive->freelist[fe], /* move the rest down */ &drive->freelist[fe + 1], (drive->freelist_entries - fe) * sizeof(struct drive_freelist)); drive->freelist_entries++; /* one less entry */ drive->freelist[fe + 1].offset = sdend; /* second entry starts after sd */ drive->freelist[fe + 1].sectors = dend - sdend; /* and is this long */ } } break; } } } drive->opencount++; /* one more subdisk attached */ } /* Get an empty drive entry from the drive table */ int get_empty_drive(void) { int driveno; struct drive *drive; /* first see if we have one which has been deallocated */ for (driveno = 0; driveno < vinum_conf.drives_allocated; driveno++) { if (DRIVE[driveno].state == drive_unallocated) /* bingo */ break; } if (driveno >= vinum_conf.drives_allocated) /* we've used all our allocation */ EXPAND(DRIVE, struct drive, vinum_conf.drives_allocated, INITIAL_DRIVES); /* got a drive entry. Make it pretty */ drive = &DRIVE[driveno]; bzero(drive, sizeof(struct drive)); drive->driveno = driveno; /* put number in structure */ drive->flags |= VF_NEWBORN; /* newly born drive */ strcpy(drive->devicename, "unknown"); /* and make the name ``unknown'' */ return driveno; /* return the index */ } /* * Find the named drive in vinum_conf.drive, return a pointer * return the index in vinum_conf.drive. * Don't mark the drive as allocated (XXX SMP) * If create != 0, create an entry if it doesn't exist */ /* XXX check if we have it open from attach */ int find_drive(const char *name, int create) { int driveno; struct drive *drive; if (name != NULL) { for (driveno = 0; driveno < vinum_conf.drives_allocated; driveno++) { drive = &DRIVE[driveno]; /* point to drive */ if ((drive->label.name[0] != '\0') /* it has a name */ &&(strcmp(drive->label.name, name) == 0) /* and it's this one */ &&(drive->state > drive_unallocated)) /* and it's a real one: found */ return driveno; } } /* the drive isn't in the list. Add it if he wants */ if (create == 0) /* don't want to create */ return -1; /* give up */ driveno = get_empty_drive(); drive = &DRIVE[driveno]; if (name != NULL) ksnprintf(drive->label.name, sizeof(drive->label.name), "%s", name); drive->state = drive_referenced; /* in use, nothing worthwhile there */ return driveno; /* return the index */ } /* * Find a drive given its device name. * devname must be valid. * Otherwise the same as find_drive above */ int find_drive_by_dev(const char *devname, int create) { int driveno; struct drive *drive; for (driveno = 0; driveno < vinum_conf.drives_allocated; driveno++) { drive = &DRIVE[driveno]; if (strcmp(drive->devicename, devname) == 0 && drive->state > drive_unallocated ) { return driveno; } } if (create == 0) return -1; driveno = get_empty_drive(); drive = &DRIVE[driveno]; ksnprintf(drive->devicename, sizeof(drive->devicename), "%s", devname); /* in use, nothing worthwhile there */ drive->state = drive_referenced; return driveno; } /* Find an empty subdisk in the subdisk table */ int get_empty_sd(void) { int sdno; struct sd *sd; /* first see if we have one which has been deallocated */ for (sdno = 0; sdno < vinum_conf.subdisks_allocated; sdno++) { if (SD[sdno].state == sd_unallocated) /* bingo */ break; } if (sdno >= vinum_conf.subdisks_allocated) /* * We've run out of space. sdno is pointing * where we want it, but at the moment we * don't have the space. Get it. */ EXPAND(SD, struct sd, vinum_conf.subdisks_allocated, INITIAL_SUBDISKS); /* initialize some things */ sd = &SD[sdno]; /* point to it */ bzero(sd, sizeof(struct sd)); /* initialize */ sd->flags |= VF_NEWBORN; /* newly born subdisk */ sd->plexno = -1; /* no plex */ sd->sectors = -1; /* no space */ sd->driveno = -1; /* no drive */ sd->plexoffset = -1; /* and no offsets */ sd->driveoffset = -1; return sdno; /* return the index */ } /* return a drive to the free pool */ void free_drive(struct drive *drive) { if ((drive->state > drive_referenced) /* real drive */ ||(drive->flags & VF_OPEN)) { /* how can it be open without a state? */ LOCKDRIVE(drive); if (drive->flags & VF_OPEN) { /* it's open, */ close_locked_drive(drive); /* close it */ drive->state = drive_down; /* and note the fact */ } if (drive->freelist) Free(drive->freelist); bzero(drive, sizeof(struct drive)); /* this also sets drive_unallocated */ unlockdrive(drive); } } /* * Find the named subdisk in vinum_conf.sd. * * If create != 0, create an entry if it doesn't exist * * Return index in vinum_conf.sd */ int find_subdisk(const char *name, int create) { int sdno; struct sd *sd; for (sdno = 0; sdno < vinum_conf.subdisks_allocated; sdno++) { if (strcmp(SD[sdno].name, name) == 0) /* found it */ return sdno; } /* the subdisk isn't in the list. Add it if he wants */ if (create == 0) /* don't want to create */ return -1; /* give up */ /* Allocate one and insert the name */ sdno = get_empty_sd(); sd = &SD[sdno]; ksnprintf(sd->name, sizeof(sd->name), "%s", name); return sdno; /* return the pointer */ } /* Return space to a drive */ void return_drive_space(int driveno, int64_t offset, int length) { struct drive *drive; int fe; /* free list entry */ u_int64_t sdend; /* end of our subdisk */ u_int64_t dend; /* end of our freelist entry */ drive = &DRIVE[driveno]; if (drive->state == drive_up) { sdend = offset + length; /* end of our subdisk */ /* Look for where to return the sd address space */ for (fe = 0; (fe < drive->freelist_entries) && (drive->freelist[fe].offset < offset); fe++); /* * Now we are pointing to the last entry, the first * with a higher offset than the subdisk, or both. */ if ((fe > 1) /* not the first entry */ &&((fe == drive->freelist_entries) /* gone past the end */ ||(drive->freelist[fe].offset > offset))) /* or past the block were looking for */ fe--; /* point to the block before */ dend = drive->freelist[fe].offset + drive->freelist[fe].sectors; /* end of the entry */ /* * At this point, we are pointing to the correct * place in the free list. A number of possibilities * exist: * * 1. The block to be freed starts at the end of the * block to which we are pointing. This has two * subcases: * * a. The block to be freed ends at the beginning * of the following block. Merge the three * areas into a single block. * * b. The block is shorter than the space between * the current block and the next one. Enlarge * the current block. * * 2. The block to be freed starts after the end * of the block. Again, we have two cases: * * a. It ends before the start of the following block. * Create a new free block. * * b. It ends at the start of the following block. * Enlarge the following block downwards. * * When there is only one free space block, and the * space to be returned is before it, the pointer is * to a non-existent zeroth block. XXX check this */ if (offset == dend) { /* Case 1: it starts at the end of this block */ if ((fe < drive->freelist_entries - 1) /* we're not the last block in the free list */ /* and the subdisk ends at the start of the next block */ &&(sdend == drive->freelist[fe + 1].offset)) { drive->freelist[fe].sectors /* 1a: merge all three blocks */ = drive->freelist[fe + 1].sectors; if (fe < drive->freelist_entries - 2) /* still more blocks after next */ bcopy(&drive->freelist[fe + 2], /* move down one */ &drive->freelist[fe + 1], (drive->freelist_entries - 2 - fe) * sizeof(struct drive_freelist)); drive->freelist_entries--; /* one less entry in the free list */ } else /* 1b: just enlarge this block */ drive->freelist[fe].sectors += length; } else { /* Case 2 */ if (offset > dend) /* it starts after this block */ fe++; /* so look at the next block */ if ((fe < drive->freelist_entries) /* we're not the last block in the free list */ /* and the subdisk ends at the start of this block: case 4 */ &&(sdend == drive->freelist[fe].offset)) { drive->freelist[fe].offset = offset; /* it starts where the sd was */ drive->freelist[fe].sectors += length; /* and it's this much bigger */ } else { /* case 3: non-contiguous */ if (fe < drive->freelist_entries) /* not after the last block, */ bcopy(&drive->freelist[fe], /* move the rest up one entry */ &drive->freelist[fe + 1], (drive->freelist_entries - fe) * sizeof(struct drive_freelist)); drive->freelist_entries++; /* one less entry */ drive->freelist[fe].offset = offset; /* this entry represents the sd */ drive->freelist[fe].sectors = length; } } drive->sectors_available += length; /* the sectors are now available */ } } /* * Free an allocated sd entry. * This performs memory management only. remove() * is responsible for checking relationships. */ void free_sd(int sdno) { struct sd *sd; sd = &SD[sdno]; if ((sd->driveno >= 0) /* we have a drive, */ &&(sd->sectors > 0)) /* and some space on it */ return_drive_space(sd->driveno, /* return the space */ sd->driveoffset, sd->sectors); if (sd->plexno >= 0) PLEX[sd->plexno].subdisks--; /* one less subdisk */ sd->state = sd_unallocated; made_sd(sd); bzero(sd, sizeof(struct sd)); /* and clear it out */ sd->state = sd_unallocated; vinum_conf.subdisks_used--; /* one less sd */ } static void made_sd(struct sd *sd) { if (sd->sd_dev == NULL && sd->state != sd_unallocated) { sd->sd_dev = make_dev(&vinum_ops, VINUM_SD(sd->sdno), UID_ROOT, GID_OPERATOR, 0640, VINUM_BASE "sd/%s", sd->name); #if 0 if (sd->plexno >= 0 && PLEX[sd->plexno].volno >= 0) { make_dev_alias(sd->sd_dev, "vol/%s.plex/%s", VOL[PLEX[sd->plexno].volno].name, plex->name, VOL[plex->volno].name); } #endif } if (sd->sd_dev && sd->state == sd_unallocated) { destroy_dev(sd->sd_dev); sd->sd_dev = NULL; } } static void made_vol(struct volume *vol) { if (vol->vol_dev == NULL && vol->state != volume_unallocated) { vol->vol_dev = make_dev(&vinum_ops, VINUMDEV(vol->volno, 0, 0, VINUM_VOLUME_TYPE), UID_ROOT, GID_OPERATOR, 0640, VINUM_BASE "vol/%s", vol->name); } if (vol->vol_dev && vol->state == volume_unallocated) { destroy_dev(vol->vol_dev); vol->vol_dev = NULL; } } static void made_plex(struct plex *plex) { if (plex->plex_dev == NULL && plex->state != plex_unallocated) { plex->plex_dev = make_dev(&vinum_ops, VINUM_PLEX(plex->plexno), UID_ROOT, GID_OPERATOR, 0640, VINUM_BASE "plex/%s", plex->name); if (plex->volno >= 0) { make_dev_alias(plex->plex_dev, "vol/%s.plex/%s", plex->name, VOL[plex->volno].name); } } if (plex->plex_dev && plex->state == plex_unallocated) { destroy_dev(plex->plex_dev); plex->plex_dev = NULL; } } /* Find an empty plex in the plex table */ int get_empty_plex(void) { int plexno; struct plex *plex; /* if we allocate one */ /* first see if we have one which has been deallocated */ for (plexno = 0; plexno < vinum_conf.plexes_allocated; plexno++) { if (PLEX[plexno].state == plex_unallocated) /* bingo */ break; /* and get out of here */ } if (plexno >= vinum_conf.plexes_allocated) EXPAND(PLEX, struct plex, vinum_conf.plexes_allocated, INITIAL_PLEXES); /* Found a plex. Give it an sd structure */ plex = &PLEX[plexno]; /* this one is ours */ bzero(plex, sizeof(struct plex)); /* polish it up */ plex->sdnos = (int *) Malloc(sizeof(int) * INITIAL_SUBDISKS_IN_PLEX); /* allocate sd table */ CHECKALLOC(plex->sdnos, "vinum: Can't allocate plex subdisk table"); bzero(plex->sdnos, (sizeof(int) * INITIAL_SUBDISKS_IN_PLEX)); /* do we need this? */ plex->flags |= VF_NEWBORN; /* newly born plex */ plex->subdisks = 0; /* no subdisks in use */ plex->subdisks_allocated = INITIAL_SUBDISKS_IN_PLEX; /* and we have space for this many */ plex->organization = plex_disorg; /* and it's not organized */ plex->volno = -1; /* no volume yet */ return plexno; /* return the index */ } /* * Find the named plex in vinum_conf.plex * * If create != 0, create an entry if it doesn't exist * return index in vinum_conf.plex */ int find_plex(const char *name, int create) { int plexno; struct plex *plex; for (plexno = 0; plexno < vinum_conf.plexes_allocated; plexno++) { if (strcmp(PLEX[plexno].name, name) == 0) /* found it */ return plexno; } /* the plex isn't in the list. Add it if he wants */ if (create == 0) /* don't want to create */ return -1; /* give up */ /* Allocate one and insert the name */ plexno = get_empty_plex(); plex = &PLEX[plexno]; /* point to it */ ksnprintf(plex->name, sizeof(plex->name), "%s", name); return plexno; /* return the pointer */ } /* * Free an allocated plex entry * and its associated memory areas */ void free_plex(int plexno) { struct plex *plex; plex = &PLEX[plexno]; if (plex->sdnos) Free(plex->sdnos); if (plex->lock) Free(plex->lock); plex->state = plex_unallocated; made_plex(plex); bzero(plex, sizeof(struct plex)); /* and clear it out */ plex->state = plex_unallocated; } /* Find an empty volume in the volume table */ int get_empty_volume(void) { int volno; struct volume *vol; int i; /* first see if we have one which has been deallocated */ for (volno = 0; volno < vinum_conf.volumes_allocated; volno++) { if (VOL[volno].state == volume_unallocated) /* bingo */ break; } if (volno >= vinum_conf.volumes_allocated) EXPAND(VOL, struct volume, vinum_conf.volumes_allocated, INITIAL_VOLUMES); /* Now initialize fields */ vol = &VOL[volno]; bzero(vol, sizeof(struct volume)); vol->flags |= VF_NEWBORN | VF_CREATED; /* newly born volume */ vol->preferred_plex = ROUND_ROBIN_READPOL; /* round robin */ for (i = 0; i < MAXPLEX; i++) /* mark the plexes missing */ vol->plex[i] = -1; return volno; /* return the index */ } /* * Find the named volume in vinum_conf.volume. * * If create != 0, create an entry if it doesn't exist * return the index in vinum_conf */ int find_volume(const char *name, int create) { int volno; struct volume *vol; for (volno = 0; volno < vinum_conf.volumes_allocated; volno++) { if (strcmp(VOL[volno].name, name) == 0) /* found it */ return volno; } /* the volume isn't in the list. Add it if he wants */ if (create == 0) /* don't want to create */ return -1; /* give up */ /* Allocate one and insert the name */ volno = get_empty_volume(); vol = &VOL[volno]; ksnprintf(vol->name, sizeof(vol->name), "%s", name); vol->blocksize = DEV_BSIZE; /* block size of this volume */ return volno; /* return the pointer */ } /* * Free an allocated volume entry * and its associated memory areas */ void free_volume(int volno) { struct volume *vol; vol = &VOL[volno]; vol->state = volume_unallocated; made_vol(vol); bzero(vol, sizeof(struct volume)); /* and clear it out */ vol->state = volume_unallocated; } /* * Handle a drive definition. We store the information in the global variable * drive, so we don't need to allocate. * * If we find an error, print a message and return */ void config_drive(int update) { enum drive_label_info partition_status; /* info about the partition */ int parameter; int driveno; /* index of drive in vinum_conf */ struct drive *drive; /* and pointer to it */ int otherdriveno; /* index of possible second drive */ int sdno; if (tokens < 2) /* not enough tokens */ throw_rude_remark(EINVAL, "Drive has no name\n"); driveno = find_drive(token[1], 1); /* allocate a drive to initialize */ drive = &DRIVE[driveno]; /* and get a pointer */ if (update && ((drive->flags & VF_NEWBORN) == 0)) /* this drive exists already */ return; /* don't do anything */ drive->flags &= ~VF_NEWBORN; /* no longer newly born */ if (drive->state != drive_referenced) { /* we already know this drive */ /* * XXX Check which definition is more up-to-date. Give * preference for the definition on its own drive. */ return; /* XXX */ } for (parameter = 2; parameter < tokens; parameter++) { /* look at the other tokens */ switch (get_keyword(token[parameter], &keyword_set)) { case kw_device: parameter++; otherdriveno = find_drive_by_dev(token[parameter], 0); /* see if it exists already */ if (otherdriveno >= 0) { /* yup, */ drive->state = drive_unallocated; /* deallocate the drive */ throw_rude_remark(EEXIST, /* and complain */ "Drive %s would have same device as drive %s", token[1], DRIVE[otherdriveno].label.name); } if (drive->devicename[0] == '/') { /* we know this drive... */ if (strcmp(drive->devicename, token[parameter])) /* different name */ close_drive(drive); /* close it if it's open */ else /* no change */ break; } /* * open the device and get the configuration */ ksnprintf(drive->devicename, sizeof(drive->devicename), "%s", token[parameter]); partition_status = read_drive_label(drive, 1); switch (partition_status) { case DL_CANT_OPEN: /* not our kind */ close_drive(drive); if (drive->lasterror == EFTYPE) /* wrong kind of partition */ throw_rude_remark(drive->lasterror, "Drive %s has invalid partition type", drive->label.name); else /* I/O error of some kind */ throw_rude_remark(drive->lasterror, "Can't initialize drive %s", drive->label.name); break; case DL_WRONG_DRIVE: /* valid drive, not the name we expected */ if (vinum_conf.flags & VF_FORCECONFIG) { /* but we'll accept that */ bcopy(token[1], drive->label.name, sizeof(drive->label.name)); break; } close_drive(drive); /* * There's a potential race condition here: * the rude remark refers to a field in an * unallocated drive, which potentially could * be reused. This works because we're the only * thread accessing the config at the moment. */ drive->state = drive_unallocated; /* throw it away completely */ throw_rude_remark(drive->lasterror, "Incorrect drive name %s specified for drive %s", token[1], drive->label.name); break; case DL_DELETED_LABEL: /* it was a drive, but we deleted it */ case DL_NOT_OURS: /* nothing to do with the rest */ case DL_OURS: break; } /* * read_drive_label overwrites the device name. * If we get here, we can have the drive, * so put it back again */ ksnprintf(drive->devicename, sizeof(drive->devicename), "%s", token[parameter]); break; case kw_state: parameter++; /* skip the keyword */ if (vinum_conf.flags & VF_READING_CONFIG) drive->state = DriveState(token[parameter]); /* set the state */ break; case kw_hotspare: /* this drive is a hot spare */ drive->flags |= VF_HOTSPARE; break; default: close_drive(drive); throw_rude_remark(EINVAL, "Drive %s, invalid keyword: %s", token[1], token[parameter]); } } if (drive->devicename[0] != '/') { drive->state = drive_unallocated; /* deallocate the drive */ throw_rude_remark(EINVAL, "No device name for %s", drive->label.name); } vinum_conf.drives_used++; /* passed all hurdles: one more in use */ /* * If we're replacing a drive, it could be that * we already have subdisks referencing this * drive. Note where they should be and change * their state to obsolete. */ for (sdno = 0; sdno < vinum_conf.subdisks_allocated; sdno++) { if ((SD[sdno].state > sd_referenced) && (SD[sdno].driveno == driveno)) { give_sd_to_drive(sdno); if (SD[sdno].state > sd_stale) SD[sdno].state = sd_stale; } } } /* * Handle a subdisk definition. We store the information in the global variable * sd, so we don't need to allocate. * * If we find an error, print a message and return */ void config_subdisk(int update) { int parameter; int sdno; /* index of sd in vinum_conf */ struct sd *sd; /* and pointer to it */ u_int64_t size; int detached = 0; /* set to 1 if this is a detached subdisk */ int sdindex = -1; /* index in plexes subdisk table */ enum sdstate state = sd_unallocated; /* state to set, if specified */ int autosize = 0; /* set if we autosize in give_sd_to_drive */ int namedsdno; /* index of another with this name */ char partition = 0; /* partition of external subdisk */ sdno = get_empty_sd(); /* allocate an SD to initialize */ sd = &SD[sdno]; /* and get a pointer */ for (parameter = 1; parameter < tokens; parameter++) { /* look at the other tokens */ switch (get_keyword(token[parameter], &keyword_set)) { /* * If we have a 'name' parameter, it must * come first, because we're too lazy to tidy * up dangling refs if it comes later. */ case kw_name: namedsdno = find_subdisk(token[++parameter], 0); /* find an existing sd with this name */ if (namedsdno >= 0) { /* got one */ if (SD[namedsdno].state == sd_referenced) { /* we've been told about this one */ if (parameter > 2) throw_rude_remark(EINVAL, "sd %s: name parameter must come first\n", /* no go */ token[parameter]); else { int i; struct plex *plex; /* for tidying up dangling references */ *sd = SD[namedsdno]; /* copy from the referenced one */ sd->sd_dev = NULL; made_sd(sd); SD[namedsdno].state = sd_unallocated; /* and deallocate the referenced one */ made_sd(&SD[namedsdno]); plex = &PLEX[sd->plexno]; /* now take a look at our plex */ for (i = 0; i < plex->subdisks; i++) { /* look for the pointer */ if (plex->sdnos[i] == namedsdno) /* pointing to the old subdisk */ plex->sdnos[i] = sdno; /* bend it to point here */ } } } if (update) /* are we updating? */ return; /* that's OK, nothing more to do */ else throw_rude_remark(EINVAL, "Duplicate subdisk %s", token[parameter]); } else { ksnprintf(sd->name, sizeof(sd->name), "%s", token[parameter]); } break; case kw_detached: detached = 1; break; case kw_plexoffset: size = sizespec(token[++parameter]); if ((size == -1) /* unallocated */ &&(vinum_conf.flags & VF_READING_CONFIG)) /* reading from disk */ break; /* invalid sd; just ignore it */ if ((size % DEV_BSIZE) != 0) throw_rude_remark(EINVAL, "sd %s, bad plex offset alignment: %lld", sd->name, (long long) size); else sd->plexoffset = size / DEV_BSIZE; break; case kw_driveoffset: size = sizespec(token[++parameter]); if ((size == -1) /* unallocated */ &&(vinum_conf.flags & VF_READING_CONFIG)) /* reading from disk */ break; /* invalid sd; just ignore it */ if ((size % DEV_BSIZE) != 0) throw_rude_remark(EINVAL, "sd %s, bad drive offset alignment: %lld", sd->name, (long long) size); else sd->driveoffset = size / DEV_BSIZE; break; case kw_len: if (get_keyword(token[++parameter], &keyword_set) == kw_max) /* select maximum size from drive */ size = 0; /* this is how we say it :-) */ else size = sizespec(token[parameter]); if ((size % DEV_BSIZE) != 0) throw_rude_remark(EINVAL, "sd %s, length %d not multiple of sector size", sd->name, size); else sd->sectors = size / DEV_BSIZE; /* * We have a problem with autosizing: we need to * give the drive to the plex before we give it * to the drive, in order to be clean if we give * up in the middle, but at this time the size hasn't * been set. Note that we have to fix up after * giving the subdisk to the drive. */ if (size == 0) autosize = 1; /* note that we're autosizing */ break; case kw_drive: sd->driveno = find_drive(token[++parameter], 1); /* insert drive information */ break; case kw_plex: sd->plexno = find_plex(token[++parameter], 1); /* insert plex information */ break; /* * Set the state. We can't do this directly, * because give_sd_to_plex may change it */ case kw_state: parameter++; /* skip the keyword */ if (vinum_conf.flags & VF_READING_CONFIG) state = SdState(token[parameter]); /* set the state */ break; case kw_partition: parameter++; /* skip the keyword */ if ((strlen(token[parameter]) != 1) || (token[parameter][0] < 'a') || (token[parameter][0] > 'p')) throw_rude_remark(EINVAL, "%s: invalid partition %c", sd->name, token[parameter][0]); else partition = token[parameter][0]; break; case kw_retryerrors: sd->flags |= VF_RETRYERRORS; break; default: throw_rude_remark(EINVAL, "%s: invalid keyword: %s", sd->name, token[parameter]); } } /* Check we have a drive name */ if (sd->driveno < 0) { /* didn't specify a drive */ sd->driveno = current_drive; /* set to the current drive */ if (sd->driveno < 0) /* no current drive? */ throw_rude_remark(EINVAL, "Subdisk %s is not associated with a drive", sd->name); } /* * This is tacky. If something goes wrong * with the checks, we may end up losing drive * space. FIXME. */ if (autosize != 0) /* need to find a size, */ give_sd_to_drive(sdno); /* do it before the plex */ /* Check for a plex name */ if ((sd->plexno < 0) /* didn't specify a plex */ &&(!detached)) /* and didn't say not to, */ sd->plexno = current_plex; /* set to the current plex */ if (sd->plexno >= 0) sdindex = give_sd_to_plex(sd->plexno, sdno); /* now tell the plex that it has this sd */ sd->sdno = sdno; /* point to our entry in the table */ /* Does the subdisk have a name? If not, give it one */ if (sd->name[0] == '\0') { /* no name */ char sdsuffix[8]; /* form sd name suffix here */ /* Do we have a plex name? */ if (sdindex >= 0) /* we have a plex */ strcpy(sd->name, PLEX[sd->plexno].name); /* take it from there */ else /* no way */ throw_rude_remark(EINVAL, "Unnamed sd is not associated with a plex"); ksprintf(sdsuffix, ".s%d", sdindex); /* form the suffix */ strcat(sd->name, sdsuffix); /* and add it to the name */ } /* do we have complete info for this subdisk? */ if (sd->sectors < 0) throw_rude_remark(EINVAL, "sd %s has no length spec", sd->name); if (state != sd_unallocated) { /* we had a specific state to set */ sd->state = state; /* do it now */ made_sd(sd); } else if (sd->state == sd_unallocated) { /* no, nothing set yet, */ sd->state = sd_empty; /* must be empty */ made_sd(sd); } if (autosize == 0) /* no autoconfig, do the drive now */ give_sd_to_drive(sdno); vinum_conf.subdisks_used++; /* one more in use */ } /* * Handle a plex definition. */ void config_plex(int update) { int parameter; int plexno; /* index of plex in vinum_conf */ struct plex *plex; /* and pointer to it */ int pindex = MAXPLEX; /* index in volume's plex list */ int detached = 0; /* don't give it to a volume */ int namedplexno; enum plexstate state = plex_init; /* state to set at end */ current_plex = -1; /* forget the previous plex */ plexno = get_empty_plex(); /* allocate a plex */ plex = &PLEX[plexno]; /* and point to it */ plex->plexno = plexno; /* and back to the config */ for (parameter = 1; parameter < tokens; parameter++) { /* look at the other tokens */ switch (get_keyword(token[parameter], &keyword_set)) { /* * If we have a 'name' parameter, it must * come first, because we're too lazy to tidy * up dangling refs if it comes later. */ case kw_name: namedplexno = find_plex(token[++parameter], 0); /* find an existing plex with this name */ if (namedplexno >= 0) { /* plex exists already, */ if (PLEX[namedplexno].state == plex_referenced) { /* we've been told about this one */ if (parameter > 2) /* we've done other things first, */ throw_rude_remark(EINVAL, "plex %s: name parameter must come first\n", /* no go */ token[parameter]); else { int i; struct volume *vol; /* for tidying up dangling references */ *plex = PLEX[namedplexno]; /* get the info */ plex->plex_dev = NULL; made_plex(plex); PLEX[namedplexno].state = plex_unallocated; /* and deallocate the other one */ made_plex(&PLEX[namedplexno]); vol = &VOL[plex->volno]; /* point to the volume */ for (i = 0; i < MAXPLEX; i++) { /* for each plex */ if (vol->plex[i] == namedplexno) vol->plex[i] = plexno; /* bend the pointer */ } } break; /* use this one */ } if (update) /* are we updating? */ return; /* yes: that's OK, just return */ else throw_rude_remark(EINVAL, "Duplicate plex %s", token[parameter]); } else { ksnprintf(plex->name, sizeof(plex->name), "%s", token[parameter]); } break; case kw_detached: detached = 1; break; case kw_org: /* plex organization */ switch (get_keyword(token[++parameter], &keyword_set)) { case kw_concat: plex->organization = plex_concat; break; case kw_striped: { int stripesize = sizespec(token[++parameter]); plex->organization = plex_striped; if (stripesize % DEV_BSIZE != 0) /* not a multiple of block size, */ throw_rude_remark(EINVAL, "plex %s: stripe size %d not a multiple of sector size", plex->name, stripesize); else plex->stripesize = stripesize / DEV_BSIZE; break; } case kw_raid4: { int stripesize = sizespec(token[++parameter]); plex->organization = plex_raid4; if (stripesize % DEV_BSIZE != 0) /* not a multiple of block size, */ throw_rude_remark(EINVAL, "plex %s: stripe size %d not a multiple of sector size", plex->name, stripesize); else plex->stripesize = stripesize / DEV_BSIZE; break; } case kw_raid5: { int stripesize = sizespec(token[++parameter]); plex->organization = plex_raid5; if (stripesize % DEV_BSIZE != 0) /* not a multiple of block size, */ throw_rude_remark(EINVAL, "plex %s: stripe size %d not a multiple of sector size", plex->name, stripesize); else plex->stripesize = stripesize / DEV_BSIZE; break; } default: throw_rude_remark(EINVAL, "Invalid plex organization"); } if (isstriped(plex) && (plex->stripesize == 0)) /* didn't specify a valid stripe size */ throw_rude_remark(EINVAL, "Need a stripe size parameter"); break; case kw_volume: plex->volno = find_volume(token[++parameter], 1); /* insert a pointer to the volume */ break; case kw_sd: /* add a subdisk */ { int sdno; sdno = find_subdisk(token[++parameter], 1); /* find a subdisk */ SD[sdno].plexoffset = sizespec(token[++parameter]); /* get the offset */ give_sd_to_plex(plexno, sdno); /* and insert it there */ break; } case kw_state: parameter++; /* skip the keyword */ if (vinum_conf.flags & VF_READING_CONFIG) state = PlexState(token[parameter]); /* set the state */ break; default: throw_rude_remark(EINVAL, "plex %s, invalid keyword: %s", plex->name, token[parameter]); } } if (plex->organization == plex_disorg) throw_rude_remark(EINVAL, "No plex organization specified"); if ((plex->volno < 0) /* we don't have a volume */ &&(!detached)) /* and we wouldn't object */ plex->volno = current_volume; if (plex->volno >= 0) pindex = give_plex_to_volume(plex->volno, plexno); /* Now tell the volume that it has this plex */ /* Does the plex have a name? If not, give it one */ if (plex->name[0] == '\0') { /* no name */ char plexsuffix[8]; /* form plex name suffix here */ /* Do we have a volume name? */ if (plex->volno >= 0) /* we have a volume */ strcpy(plex->name, /* take it from there */ VOL[plex->volno].name); else /* no way */ throw_rude_remark(EINVAL, "Unnamed plex is not associated with a volume"); ksprintf(plexsuffix, ".p%d", pindex); /* form the suffix */ strcat(plex->name, plexsuffix); /* and add it to the name */ } if (isstriped(plex)) { plex->lock = (struct rangelock *) Malloc(PLEX_LOCKS * sizeof(struct rangelock)); CHECKALLOC(plex->lock, "vinum: Can't allocate lock table\n"); bzero((char *) plex->lock, PLEX_LOCKS * sizeof(struct rangelock)); } /* Note the last plex we configured */ current_plex = plexno; plex->state = state; /* set whatever state we chose */ made_plex(plex); vinum_conf.plexes_used++; /* one more in use */ } /* * Handle a volume definition. * If we find an error, print a message, deallocate the nascent volume, and return */ void config_volume(int update) { int parameter; int volno; struct volume *vol; /* collect volume info here */ int i; if (tokens < 2) /* not enough tokens */ throw_rude_remark(EINVAL, "Volume has no name"); current_volume = -1; /* forget the previous volume */ volno = find_volume(token[1], 1); /* allocate a volume to initialize */ vol = &VOL[volno]; /* and get a pointer */ if (update && ((vol->flags & VF_CREATED) == 0)) /* this volume exists already */ return; /* don't do anything */ vol->flags &= ~VF_CREATED; /* it exists now */ for (parameter = 2; parameter < tokens; parameter++) { /* look at all tokens */ switch (get_keyword(token[parameter], &keyword_set)) { case kw_plex: { int plexno; /* index of this plex */ int myplexno; /* and index if it's already ours */ plexno = find_plex(token[++parameter], 1); /* find a plex */ if (plexno < 0) /* couldn't */ break; /* we've already had an error message */ myplexno = my_plex(volno, plexno); /* does it already belong to us? */ if (myplexno > 0) /* yes, shouldn't get it again */ throw_rude_remark(EINVAL, "Plex %s already belongs to volume %s", token[parameter], vol->name); else if (vol->plexes + 1 > 8) /* another entry */ throw_rude_remark(EINVAL, "Too many plexes for volume %s", vol->name); vol->plex[vol->plexes] = plexno; vol->plexes++; PLEX[plexno].state = plex_referenced; /* we know something about it */ PLEX[plexno].volno = volno; /* and this volume references it */ } break; case kw_readpol: switch (get_keyword(token[++parameter], &keyword_set)) { /* decide what to do */ case kw_round: vol->preferred_plex = ROUND_ROBIN_READPOL; /* default */ break; case kw_prefer: { int myplexno; /* index of this plex */ myplexno = find_plex(token[++parameter], 1); /* find a plex */ if (myplexno < 0) /* couldn't */ break; /* we've already had an error message */ myplexno = my_plex(volno, myplexno); /* does it already belong to us? */ if (myplexno > 0) /* yes */ vol->preferred_plex = myplexno; /* just note the index */ else if (++vol->plexes > 8) /* another entry */ throw_rude_remark(EINVAL, "Too many plexes"); else { /* space for the new plex */ vol->plex[vol->plexes - 1] = myplexno; /* add it to our list */ vol->preferred_plex = vol->plexes - 1; /* and note the index */ } } break; default: throw_rude_remark(EINVAL, "Invalid read policy"); } case kw_setupstate: vol->flags |= VF_CONFIG_SETUPSTATE; /* set the volume up later on */ break; case kw_state: parameter++; /* skip the keyword */ if (vinum_conf.flags & VF_READING_CONFIG) { vol->state = VolState(token[parameter]); /* set the state */ made_vol(vol); } break; /* * XXX experimental ideas. These are not * documented, and will not be until I * decide they're worth keeping */ case kw_writethrough: /* set writethrough mode */ vol->flags |= VF_WRITETHROUGH; break; case kw_writeback: /* set writeback mode */ vol->flags &= ~VF_WRITETHROUGH; break; case kw_raw: vol->flags |= VF_RAW; /* raw volume (no label) */ break; default: throw_rude_remark(EINVAL, "volume %s, invalid keyword: %s", vol->name, token[parameter]); } } current_volume = volno; /* note last referred volume */ vol->volno = volno; /* also note in volume */ /* * Before we can actually use the volume, we need * a volume label. We could start to fake one here, * but it will be a lot easier when we have some * to copy from the drives, so defer it until we * set up the configuration. XXX */ if (vol->state == volume_unallocated) { vol->state = volume_down; /* now ready to bring up at the end */ made_vol(vol); } /* Find out how big our volume is */ for (i = 0; i < vol->plexes; i++) vol->size = u64max(vol->size, PLEX[vol->plex[i]].length); vinum_conf.volumes_used++; /* one more in use */ } /* * Parse a config entry. CARE! This destroys the original contents of the * config entry, which we don't really need after this. More specifically, it * places \0 characters at the end of each token. * * Return 0 if all is well, otherwise EINVAL for invalid keyword, * or ENOENT if 'read' command doesn't find any drives. */ int parse_config(char *cptr, struct keywordset *keyset, int update) { int status; status = 0; /* until proven otherwise */ tokens = tokenize(cptr, token); /* chop up into tokens */ if (tokens <= 0) /* screwed up or empty line */ return tokens; /* give up */ if (token[0][0] == '#') /* comment line */ return 0; switch (get_keyword(token[0], keyset)) { /* decide what to do */ case kw_read: /* read config from a specified drive */ status = vinum_scandisk(&token[1], tokens - 1); /* read the config from disk */ break; case kw_drive: config_drive(update); break; case kw_subdisk: config_subdisk(update); break; case kw_plex: config_plex(update); break; case kw_volume: config_volume(update); break; /* Anything else is invalid in this context */ default: throw_rude_remark(EINVAL, /* should we die? */ "Invalid configuration information: %s", token[0]); } return status; } /* * parse a line handed in from userland via ioctl. * This differs only by the error reporting mechanism: * we return the error indication in the reply to the * ioctl, so we need to set a global static pointer in * this file. This technique works because we have * ensured that configuration is performed in a single- * threaded manner */ int parse_user_config(char *cptr, struct keywordset *keyset) { int status; ioctl_reply = (struct _ioctl_reply *) cptr; status = parse_config(cptr, keyset, 0); if (status == ENOENT) /* from scandisk, but it can't tell us */ strcpy(ioctl_reply->msg, "no drives found"); ioctl_reply = NULL; /* don't do this again */ return status; } /* Remove an object */ void remove(struct vinum_ioctl_msg *msg) { struct vinum_ioctl_msg message = *msg; /* make a copy to hand on */ ioctl_reply = (struct _ioctl_reply *) msg; /* reinstate the address to reply to */ ioctl_reply->error = 0; /* no error, */ ioctl_reply->msg[0] = '\0'; /* no message */ switch (message.type) { case drive_object: remove_drive_entry(message.index, message.force); updateconfig(0); return; case sd_object: remove_sd_entry(message.index, message.force, message.recurse); updateconfig(0); return; case plex_object: remove_plex_entry(message.index, message.force, message.recurse); updateconfig(0); return; case volume_object: remove_volume_entry(message.index, message.force, message.recurse); updateconfig(0); return; default: ioctl_reply->error = EINVAL; strcpy(ioctl_reply->msg, "Invalid object type"); } } /* Remove a drive. */ void remove_drive_entry(int driveno, int force) { struct drive *drive = &DRIVE[driveno]; int sdno; if ((driveno > vinum_conf.drives_allocated) /* not a valid drive */ ||(drive->state == drive_unallocated)) { /* or nothing there */ ioctl_reply->error = EINVAL; strcpy(ioctl_reply->msg, "No such drive"); } else if (drive->opencount > 0) { /* we have subdisks */ if (force) { /* do it at any cost */ for (sdno = 0; sdno < vinum_conf.subdisks_allocated; sdno++) { if ((SD[sdno].state != sd_unallocated) /* subdisk is allocated */ &&(SD[sdno].driveno == driveno)) /* and it belongs to this drive */ remove_sd_entry(sdno, force, 0); } remove_drive(driveno); /* now remove it */ vinum_conf.drives_used--; /* one less drive */ } else ioctl_reply->error = EBUSY; /* can't do that */ } else { remove_drive(driveno); /* just remove it */ vinum_conf.drives_used--; /* one less drive */ } } /* remove a subdisk */ void remove_sd_entry(int sdno, int force, int recurse) { struct sd *sd = &SD[sdno]; if ((sdno > vinum_conf.subdisks_allocated) /* not a valid sd */ ||(sd->state == sd_unallocated)) { /* or nothing there */ ioctl_reply->error = EINVAL; strcpy(ioctl_reply->msg, "No such subdisk"); } else if (sd->flags & VF_OPEN) { /* we're open */ ioctl_reply->error = EBUSY; /* no getting around that */ return; } else if (sd->plexno >= 0) { /* we have a plex */ if (force) { /* do it at any cost */ struct plex *plex = &PLEX[sd->plexno]; /* point to our plex */ int mysdno; for (mysdno = 0; /* look for ourselves */ mysdno < plex->subdisks && &SD[plex->sdnos[mysdno]] != sd; mysdno++); if (mysdno == plex->subdisks) /* didn't find it */ log(LOG_ERR, "Error removing subdisk %s: not found in plex %s\n", SD[mysdno].name, plex->name); else { /* remove the subdisk from plex */ if (mysdno < (plex->subdisks - 1)) /* not the last subdisk */ bcopy(&plex->sdnos[mysdno + 1], &plex->sdnos[mysdno], (plex->subdisks - 1 - mysdno) * sizeof(int)); plex->subdisks--; sd->plexno = -1; /* disown the subdisk */ } /* * Removing a subdisk from a striped or * RAID-4 or RAID-5 plex really tears the * hell out of the structure, and it needs * to be reinitialized. */ if (plex->organization != plex_concat) /* not concatenated, */ set_plex_state(plex->plexno, plex_faulty, setstate_force); /* need to reinitialize */ log(LOG_INFO, "vinum: removing %s\n", sd->name); free_sd(sdno); } else ioctl_reply->error = EBUSY; /* can't do that */ } else { log(LOG_INFO, "vinum: removing %s\n", sd->name); free_sd(sdno); } } /* remove a plex */ void remove_plex_entry(int plexno, int force, int recurse) { struct plex *plex = &PLEX[plexno]; int sdno; if ((plexno > vinum_conf.plexes_allocated) /* not a valid plex */ ||(plex->state == plex_unallocated)) { /* or nothing there */ ioctl_reply->error = EINVAL; strcpy(ioctl_reply->msg, "No such plex"); } else if (plex->flags & VF_OPEN) { /* we're open */ ioctl_reply->error = EBUSY; /* no getting around that */ return; } if (plex->subdisks) { if (force) { /* do it anyway */ if (recurse) { /* remove all below */ int sds = plex->subdisks; for (sdno = 0; sdno < sds; sdno++) free_sd(plex->sdnos[sdno]); /* free all subdisks */ } else { /* just tear them out */ int sds = plex->subdisks; for (sdno = 0; sdno < sds; sdno++) SD[plex->sdnos[sdno]].plexno = -1; /* no plex any more */ } } else { /* can't do it without force */ ioctl_reply->error = EBUSY; /* can't do that */ return; } } if (plex->volno >= 0) { /* we are part of a volume */ if (force) { /* do it at any cost */ struct volume *vol = &VOL[plex->volno]; int myplexno; for (myplexno = 0; myplexno < vol->plexes; myplexno++) if (vol->plex[myplexno] == plexno) /* found it */ break; if (myplexno == vol->plexes) /* didn't find it. Huh? */ log(LOG_ERR, "Error removing plex %s: not found in volume %s\n", plex->name, vol->name); if (myplexno < (vol->plexes - 1)) /* not the last plex in the list */ bcopy(&vol->plex[myplexno + 1], &vol->plex[myplexno], vol->plexes - 1 - myplexno); vol->plexes--; } else { ioctl_reply->error = EBUSY; /* can't do that */ return; } } log(LOG_INFO, "vinum: removing %s\n", plex->name); free_plex(plexno); vinum_conf.plexes_used--; /* one less plex */ } /* remove a volume */ void remove_volume_entry(int volno, int force, int recurse) { struct volume *vol = &VOL[volno]; int plexno; if ((volno > vinum_conf.volumes_allocated) /* not a valid volume */ ||(vol->state == volume_unallocated)) { /* or nothing there */ ioctl_reply->error = EINVAL; strcpy(ioctl_reply->msg, "No such volume"); } else if (vol->flags & VF_OPEN) /* we're open */ ioctl_reply->error = EBUSY; /* no getting around that */ else if (vol->plexes) { if (recurse && force) { /* remove all below */ int plexes = vol->plexes; /* for (plexno = plexes - 1; plexno >= 0; plexno--) */ for (plexno = 0; plexno < plexes; plexno++) remove_plex_entry(vol->plex[plexno], force, recurse); log(LOG_INFO, "vinum: removing %s\n", vol->name); free_volume(volno); vinum_conf.volumes_used--; /* one less volume */ } else ioctl_reply->error = EBUSY; /* can't do that */ } else { log(LOG_INFO, "vinum: removing %s\n", vol->name); free_volume(volno); vinum_conf.volumes_used--; /* one less volume */ } } /* Currently called only from ioctl */ void update_sd_config(int sdno, int diskconfig) { if (!diskconfig) set_sd_state(sdno, sd_up, setstate_configuring); SD[sdno].flags &= ~VF_NEWBORN; } void update_plex_config(int plexno, int diskconfig) { u_int64_t size; int sdno; struct plex *plex = &PLEX[plexno]; enum plexstate state = plex_up; /* state we want the plex in */ int remainder; /* size of fractional stripe at end */ int added_plex; /* set if we add a plex to a volume */ int required_sds; /* number of subdisks we need */ struct sd *sd; struct volume *vol; int data_sds = 0; /* number of sds carrying data */ if (plex->state < plex_init) /* not a real plex, */ return; added_plex = 0; if (plex->volno >= 0) { /* we have a volume */ vol = &VOL[plex->volno]; /* * If we're newly born, * and the volume isn't, * and it has other plexes, * and we didn't read this mess from disk, * we were added later. */ if ((plex->flags & VF_NEWBORN) && ((vol->flags & VF_NEWBORN) == 0) && (vol->plexes > 0) && (diskconfig == 0)) { added_plex = 1; state = plex_down; /* so take ourselves down */ } } /* * Check that our subdisks make sense. For * striped, RAID-4 and RAID-5 plexes, we need at * least two subdisks, and they must all be the * same size. */ if (plex->organization == plex_striped) { data_sds = plex->subdisks; required_sds = 2; } else if (isparity(plex)) { /* RAID 4 or 5 */ data_sds = plex->subdisks - 1; required_sds = 3; } else required_sds = 0; if (required_sds > 0) { /* striped, RAID-4 or RAID-5 */ if (plex->subdisks < required_sds) { log(LOG_ERR, "vinum: plex %s does not have at least %d subdisks\n", plex->name, required_sds); state = plex_faulty; } /* * Now see if the plex size is a multiple of * the stripe size. If not, trim off the end * of each subdisk and return it to the drive. */ if (plex->length > 0) { if (data_sds > 0) { if (plex->stripesize > 0) { remainder = (int) (plex->length /* are we exact? */ % ((u_int64_t) plex->stripesize * data_sds)); if (remainder) { /* no */ log(LOG_INFO, "vinum: removing %d blocks of partial stripe at the end of %s\n", remainder, plex->name); plex->length -= remainder; /* shorten the plex */ remainder /= data_sds; /* spread the remainder amongst the sds */ for (sdno = 0; sdno < plex->subdisks; sdno++) { sd = &SD[plex->sdnos[sdno]]; /* point to the subdisk */ return_drive_space(sd->driveno, /* return the space */ sd->driveoffset + sd->sectors - remainder, remainder); sd->sectors -= remainder; /* and shorten it */ } } } else /* no data sds, */ plex->length = 0; /* reset length */ } } } size = 0; for (sdno = 0; sdno < plex->subdisks; sdno++) { sd = &SD[plex->sdnos[sdno]]; if (isstriped(plex) && (sdno > 0) && (sd->sectors != SD[plex->sdnos[sdno - 1]].sectors)) { log(LOG_ERR, "vinum: %s must have equal sized subdisks\n", plex->name); state = plex_down; } size += sd->sectors; if (added_plex) { /* we were added later */ sd->state = sd_stale; /* stale until proven otherwise */ made_sd(sd); } } if (plex->subdisks) { /* plex has subdisks, calculate size */ /* * XXX We shouldn't need to calculate the size any * more. Check this some time */ if (isparity(plex)) size = size / plex->subdisks * (plex->subdisks - 1); /* less space for RAID-4 and RAID-5 */ if (plex->length != size) log(LOG_INFO, "Correcting length of %s: was %lld, is %lld\n", plex->name, (long long) plex->length, (long long) size); plex->length = size; } else { /* no subdisks, */ plex->length = 0; /* no size */ state = plex_down; /* take it down */ } update_plex_state(plexno); /* set the state */ plex->flags &= ~VF_NEWBORN; } void update_volume_config(int volno, int diskconfig) { struct volume *vol = &VOL[volno]; struct plex *plex; int plexno; if (vol->state != volume_unallocated) /* * Recalculate the size of the volume, * which might change if the original * plexes were not a multiple of the * stripe size. */ { vol->size = 0; for (plexno = 0; plexno < vol->plexes; plexno++) { plex = &PLEX[vol->plex[plexno]]; vol->size = u64max(plex->length, vol->size); plex->volplexno = plexno; /* note it in the plex */ } } vol->flags &= ~VF_NEWBORN; /* no longer newly born */ } /* * Update the global configuration. * diskconfig is != 0 if we're reading in a config * from disk. In this case, we don't try to * bring the devices up, though we will bring * them down if there's some error which got * missed when writing to disk. */ void updateconfig(int diskconfig) { int plexno; int volno; for (plexno = 0; plexno < vinum_conf.plexes_allocated; plexno++) update_plex_config(plexno, diskconfig); for (volno = 0; volno < vinum_conf.volumes_allocated; volno++) { if (VOL[volno].state > volume_uninit) { VOL[volno].flags &= ~VF_CONFIG_SETUPSTATE; /* no more setupstate */ update_volume_state(volno); update_volume_config(volno, diskconfig); } } save_config(); } /* * Start manual changes to the configuration and lock out * others who may wish to do so. * XXX why do we need this and lock_config too? */ int start_config(int force) { int error; current_drive = -1; /* note the last drive we mention, for * some defaults */ current_plex = -1; /* and the same for the last plex */ current_volume = -1; /* and the last volume */ while ((vinum_conf.flags & VF_CONFIGURING) != 0) { vinum_conf.flags |= VF_WILL_CONFIGURE; if ((error = tsleep(&vinum_conf, PCATCH, "vincfg", 0)) != 0) return error; } /* * We need two flags here: VF_CONFIGURING * tells other processes to hold off (this * function), and VF_CONFIG_INCOMPLETE * tells the state change routines not to * propagate incrememntal state changes */ vinum_conf.flags |= VF_CONFIGURING | VF_CONFIG_INCOMPLETE; if (force) vinum_conf.flags |= VF_FORCECONFIG; /* overwrite differently named drives */ current_drive = -1; /* reset the defaults */ current_plex = -1; /* and the same for the last plex */ current_volume = -1; /* and the last volme */ return 0; } /* * Update the config if update is 1, and unlock * it. We won't update the configuration if we * are called in a recursive loop via throw_rude_remark. */ void finish_config(int update) { /* we've finished our config */ vinum_conf.flags &= ~(VF_CONFIG_INCOMPLETE | VF_READING_CONFIG | VF_FORCECONFIG); if (update) updateconfig(0); /* so update things */ else updateconfig(1); /* do some updates only */ vinum_conf.flags &= ~VF_CONFIGURING; /* and now other people can take a turn */ if ((vinum_conf.flags & VF_WILL_CONFIGURE) != 0) { vinum_conf.flags &= ~VF_WILL_CONFIGURE; wakeup_one(&vinum_conf); } } /* Local Variables: */ /* fill-column: 50 */ /* End: */