//===-- AMDGPULowerKernelAttributes.cpp ------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // /// \file This pass does attempts to make use of reqd_work_group_size metadata /// to eliminate loads from the dispatch packet and to constant fold OpenCL /// get_local_size-like functions. // //===----------------------------------------------------------------------===// #include "AMDGPU.h" #include "Utils/AMDGPUBaseInfo.h" #include "llvm/Analysis/ConstantFolding.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/CodeGen/Passes.h" #include "llvm/CodeGen/TargetPassConfig.h" #include "llvm/IR/Constants.h" #include "llvm/IR/Function.h" #include "llvm/IR/InstIterator.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicsAMDGPU.h" #include "llvm/IR/PatternMatch.h" #include "llvm/Pass.h" #define DEBUG_TYPE "amdgpu-lower-kernel-attributes" using namespace llvm; namespace { // Field offsets in hsa_kernel_dispatch_packet_t. enum DispatchPackedOffsets { WORKGROUP_SIZE_X = 4, WORKGROUP_SIZE_Y = 6, WORKGROUP_SIZE_Z = 8, GRID_SIZE_X = 12, GRID_SIZE_Y = 16, GRID_SIZE_Z = 20 }; // Field offsets to implicit kernel argument pointer. enum ImplicitArgOffsets { HIDDEN_BLOCK_COUNT_X = 0, HIDDEN_BLOCK_COUNT_Y = 4, HIDDEN_BLOCK_COUNT_Z = 8, HIDDEN_GROUP_SIZE_X = 12, HIDDEN_GROUP_SIZE_Y = 14, HIDDEN_GROUP_SIZE_Z = 16, HIDDEN_REMAINDER_X = 18, HIDDEN_REMAINDER_Y = 20, HIDDEN_REMAINDER_Z = 22, }; class AMDGPULowerKernelAttributes : public ModulePass { public: static char ID; AMDGPULowerKernelAttributes() : ModulePass(ID) {} bool runOnModule(Module &M) override; StringRef getPassName() const override { return "AMDGPU Kernel Attributes"; } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.setPreservesAll(); } }; Function *getBasePtrIntrinsic(Module &M, bool IsV5OrAbove) { auto IntrinsicId = IsV5OrAbove ? Intrinsic::amdgcn_implicitarg_ptr : Intrinsic::amdgcn_dispatch_ptr; StringRef Name = Intrinsic::getName(IntrinsicId); return M.getFunction(Name); } } // end anonymous namespace static bool processUse(CallInst *CI, bool IsV5OrAbove) { Function *F = CI->getParent()->getParent(); auto MD = F->getMetadata("reqd_work_group_size"); const bool HasReqdWorkGroupSize = MD && MD->getNumOperands() == 3; const bool HasUniformWorkGroupSize = F->getFnAttribute("uniform-work-group-size").getValueAsBool(); if (!HasReqdWorkGroupSize && !HasUniformWorkGroupSize) return false; Value *BlockCounts[3] = {nullptr, nullptr, nullptr}; Value *GroupSizes[3] = {nullptr, nullptr, nullptr}; Value *Remainders[3] = {nullptr, nullptr, nullptr}; Value *GridSizes[3] = {nullptr, nullptr, nullptr}; const DataLayout &DL = F->getParent()->getDataLayout(); // We expect to see several GEP users, casted to the appropriate type and // loaded. for (User *U : CI->users()) { if (!U->hasOneUse()) continue; int64_t Offset = 0; auto *Load = dyn_cast(U); // Load from ImplicitArgPtr/DispatchPtr? auto *BCI = dyn_cast(U); if (!Load && !BCI) { if (GetPointerBaseWithConstantOffset(U, Offset, DL) != CI) continue; Load = dyn_cast(*U->user_begin()); // Load from GEP? BCI = dyn_cast(*U->user_begin()); } if (BCI) { if (!BCI->hasOneUse()) continue; Load = dyn_cast(*BCI->user_begin()); // Load from BCI? } if (!Load || !Load->isSimple()) continue; unsigned LoadSize = DL.getTypeStoreSize(Load->getType()); // TODO: Handle merged loads. if (IsV5OrAbove) { // Base is ImplicitArgPtr. switch (Offset) { case HIDDEN_BLOCK_COUNT_X: if (LoadSize == 4) BlockCounts[0] = Load; break; case HIDDEN_BLOCK_COUNT_Y: if (LoadSize == 4) BlockCounts[1] = Load; break; case HIDDEN_BLOCK_COUNT_Z: if (LoadSize == 4) BlockCounts[2] = Load; break; case HIDDEN_GROUP_SIZE_X: if (LoadSize == 2) GroupSizes[0] = Load; break; case HIDDEN_GROUP_SIZE_Y: if (LoadSize == 2) GroupSizes[1] = Load; break; case HIDDEN_GROUP_SIZE_Z: if (LoadSize == 2) GroupSizes[2] = Load; break; case HIDDEN_REMAINDER_X: if (LoadSize == 2) Remainders[0] = Load; break; case HIDDEN_REMAINDER_Y: if (LoadSize == 2) Remainders[1] = Load; break; case HIDDEN_REMAINDER_Z: if (LoadSize == 2) Remainders[2] = Load; break; default: break; } } else { // Base is DispatchPtr. switch (Offset) { case WORKGROUP_SIZE_X: if (LoadSize == 2) GroupSizes[0] = Load; break; case WORKGROUP_SIZE_Y: if (LoadSize == 2) GroupSizes[1] = Load; break; case WORKGROUP_SIZE_Z: if (LoadSize == 2) GroupSizes[2] = Load; break; case GRID_SIZE_X: if (LoadSize == 4) GridSizes[0] = Load; break; case GRID_SIZE_Y: if (LoadSize == 4) GridSizes[1] = Load; break; case GRID_SIZE_Z: if (LoadSize == 4) GridSizes[2] = Load; break; default: break; } } } bool MadeChange = false; if (IsV5OrAbove && HasUniformWorkGroupSize) { // Under v5 __ockl_get_local_size returns the value computed by the expression: // // workgroup_id < hidden_block_count ? hidden_group_size : hidden_remainder // // For functions with the attribute uniform-work-group-size=true. we can evaluate // workgroup_id < hidden_block_count as true, and thus hidden_group_size is returned // for __ockl_get_local_size. for (int I = 0; I < 3; ++I) { Value *BlockCount = BlockCounts[I]; if (!BlockCount) continue; using namespace llvm::PatternMatch; auto GroupIDIntrin = I == 0 ? m_Intrinsic() : (I == 1 ? m_Intrinsic() : m_Intrinsic()); for (User *ICmp : BlockCount->users()) { ICmpInst::Predicate Pred; if (match(ICmp, m_ICmp(Pred, GroupIDIntrin, m_Specific(BlockCount)))) { if (Pred != ICmpInst::ICMP_ULT) continue; ICmp->replaceAllUsesWith(llvm::ConstantInt::getTrue(ICmp->getType())); MadeChange = true; } } } // All remainders should be 0 with uniform work group size. for (Value *Remainder : Remainders) { if (!Remainder) continue; Remainder->replaceAllUsesWith(Constant::getNullValue(Remainder->getType())); MadeChange = true; } } else if (HasUniformWorkGroupSize) { // Pre-V5. // Pattern match the code used to handle partial workgroup dispatches in the // library implementation of get_local_size, so the entire function can be // constant folded with a known group size. // // uint r = grid_size - group_id * group_size; // get_local_size = (r < group_size) ? r : group_size; // // If we have uniform-work-group-size (which is the default in OpenCL 1.2), // the grid_size is required to be a multiple of group_size). In this case: // // grid_size - (group_id * group_size) < group_size // -> // grid_size < group_size + (group_id * group_size) // // (grid_size / group_size) < 1 + group_id // // grid_size / group_size is at least 1, so we can conclude the select // condition is false (except for group_id == 0, where the select result is // the same). for (int I = 0; I < 3; ++I) { Value *GroupSize = GroupSizes[I]; Value *GridSize = GridSizes[I]; if (!GroupSize || !GridSize) continue; using namespace llvm::PatternMatch; auto GroupIDIntrin = I == 0 ? m_Intrinsic() : (I == 1 ? m_Intrinsic() : m_Intrinsic()); for (User *U : GroupSize->users()) { auto *ZextGroupSize = dyn_cast(U); if (!ZextGroupSize) continue; for (User *UMin : ZextGroupSize->users()) { if (match(UMin, m_UMin(m_Sub(m_Specific(GridSize), m_Mul(GroupIDIntrin, m_Specific(ZextGroupSize))), m_Specific(ZextGroupSize)))) { if (HasReqdWorkGroupSize) { ConstantInt *KnownSize = mdconst::extract(MD->getOperand(I)); UMin->replaceAllUsesWith(ConstantFoldIntegerCast( KnownSize, UMin->getType(), false, DL)); } else { UMin->replaceAllUsesWith(ZextGroupSize); } MadeChange = true; } } } } } // If reqd_work_group_size is set, we can replace work group size with it. if (!HasReqdWorkGroupSize) return MadeChange; for (int I = 0; I < 3; I++) { Value *GroupSize = GroupSizes[I]; if (!GroupSize) continue; ConstantInt *KnownSize = mdconst::extract(MD->getOperand(I)); GroupSize->replaceAllUsesWith( ConstantFoldIntegerCast(KnownSize, GroupSize->getType(), false, DL)); MadeChange = true; } return MadeChange; } // TODO: Move makeLIDRangeMetadata usage into here. Seem to not get // TargetPassConfig for subtarget. bool AMDGPULowerKernelAttributes::runOnModule(Module &M) { bool MadeChange = false; bool IsV5OrAbove = AMDGPU::getAMDHSACodeObjectVersion(M) >= AMDGPU::AMDHSA_COV5; Function *BasePtr = getBasePtrIntrinsic(M, IsV5OrAbove); if (!BasePtr) // ImplicitArgPtr/DispatchPtr not used. return false; SmallPtrSet HandledUses; for (auto *U : BasePtr->users()) { CallInst *CI = cast(U); if (HandledUses.insert(CI).second) { if (processUse(CI, IsV5OrAbove)) MadeChange = true; } } return MadeChange; } INITIALIZE_PASS_BEGIN(AMDGPULowerKernelAttributes, DEBUG_TYPE, "AMDGPU Kernel Attributes", false, false) INITIALIZE_PASS_END(AMDGPULowerKernelAttributes, DEBUG_TYPE, "AMDGPU Kernel Attributes", false, false) char AMDGPULowerKernelAttributes::ID = 0; ModulePass *llvm::createAMDGPULowerKernelAttributesPass() { return new AMDGPULowerKernelAttributes(); } PreservedAnalyses AMDGPULowerKernelAttributesPass::run(Function &F, FunctionAnalysisManager &AM) { bool IsV5OrAbove = AMDGPU::getAMDHSACodeObjectVersion(*F.getParent()) >= AMDGPU::AMDHSA_COV5; Function *BasePtr = getBasePtrIntrinsic(*F.getParent(), IsV5OrAbove); if (!BasePtr) // ImplicitArgPtr/DispatchPtr not used. return PreservedAnalyses::all(); for (Instruction &I : instructions(F)) { if (CallInst *CI = dyn_cast(&I)) { if (CI->getCalledFunction() == BasePtr) processUse(CI, IsV5OrAbove); } } return PreservedAnalyses::all(); }