//===-- AMDGPUPromoteAlloca.cpp - Promote Allocas -------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // Eliminates allocas by either converting them into vectors or by migrating // them to local address space. // // Two passes are exposed by this file: // - "promote-alloca-to-vector", which runs early in the pipeline and only // promotes to vector. Promotion to vector is almost always profitable // except when the alloca is too big and the promotion would result in // very high register pressure. // - "promote-alloca", which does both promotion to vector and LDS and runs // much later in the pipeline. This runs after SROA because promoting to // LDS is of course less profitable than getting rid of the alloca or // vectorizing it, thus we only want to do it when the only alternative is // lowering the alloca to stack. // // Note that both of them exist for the old and new PMs. The new PM passes are // declared in AMDGPU.h and the legacy PM ones are declared here.s // //===----------------------------------------------------------------------===// #include "AMDGPU.h" #include "GCNSubtarget.h" #include "Utils/AMDGPUBaseInfo.h" #include "llvm/ADT/STLExtras.h" #include "llvm/Analysis/CaptureTracking.h" #include "llvm/Analysis/InstSimplifyFolder.h" #include "llvm/Analysis/InstructionSimplify.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/CodeGen/TargetPassConfig.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/IntrinsicsAMDGPU.h" #include "llvm/IR/IntrinsicsR600.h" #include "llvm/IR/PatternMatch.h" #include "llvm/Pass.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Transforms/Utils/SSAUpdater.h" #define DEBUG_TYPE "amdgpu-promote-alloca" using namespace llvm; namespace { static cl::opt DisablePromoteAllocaToVector("disable-promote-alloca-to-vector", cl::desc("Disable promote alloca to vector"), cl::init(false)); static cl::opt DisablePromoteAllocaToLDS("disable-promote-alloca-to-lds", cl::desc("Disable promote alloca to LDS"), cl::init(false)); static cl::opt PromoteAllocaToVectorLimit( "amdgpu-promote-alloca-to-vector-limit", cl::desc("Maximum byte size to consider promote alloca to vector"), cl::init(0)); // Shared implementation which can do both promotion to vector and to LDS. class AMDGPUPromoteAllocaImpl { private: const TargetMachine &TM; Module *Mod = nullptr; const DataLayout *DL = nullptr; // FIXME: This should be per-kernel. uint32_t LocalMemLimit = 0; uint32_t CurrentLocalMemUsage = 0; unsigned MaxVGPRs; bool IsAMDGCN = false; bool IsAMDHSA = false; std::pair getLocalSizeYZ(IRBuilder<> &Builder); Value *getWorkitemID(IRBuilder<> &Builder, unsigned N); /// BaseAlloca is the alloca root the search started from. /// Val may be that alloca or a recursive user of it. bool collectUsesWithPtrTypes(Value *BaseAlloca, Value *Val, std::vector &WorkList) const; /// Val is a derived pointer from Alloca. OpIdx0/OpIdx1 are the operand /// indices to an instruction with 2 pointer inputs (e.g. select, icmp). /// Returns true if both operands are derived from the same alloca. Val should /// be the same value as one of the input operands of UseInst. bool binaryOpIsDerivedFromSameAlloca(Value *Alloca, Value *Val, Instruction *UseInst, int OpIdx0, int OpIdx1) const; /// Check whether we have enough local memory for promotion. bool hasSufficientLocalMem(const Function &F); bool tryPromoteAllocaToVector(AllocaInst &I); bool tryPromoteAllocaToLDS(AllocaInst &I, bool SufficientLDS); public: AMDGPUPromoteAllocaImpl(TargetMachine &TM) : TM(TM) { const Triple &TT = TM.getTargetTriple(); IsAMDGCN = TT.getArch() == Triple::amdgcn; IsAMDHSA = TT.getOS() == Triple::AMDHSA; } bool run(Function &F, bool PromoteToLDS); }; // FIXME: This can create globals so should be a module pass. class AMDGPUPromoteAlloca : public FunctionPass { public: static char ID; AMDGPUPromoteAlloca() : FunctionPass(ID) {} bool runOnFunction(Function &F) override { if (skipFunction(F)) return false; if (auto *TPC = getAnalysisIfAvailable()) return AMDGPUPromoteAllocaImpl(TPC->getTM()) .run(F, /*PromoteToLDS*/ true); return false; } StringRef getPassName() const override { return "AMDGPU Promote Alloca"; } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.setPreservesCFG(); FunctionPass::getAnalysisUsage(AU); } }; class AMDGPUPromoteAllocaToVector : public FunctionPass { public: static char ID; AMDGPUPromoteAllocaToVector() : FunctionPass(ID) {} bool runOnFunction(Function &F) override { if (skipFunction(F)) return false; if (auto *TPC = getAnalysisIfAvailable()) return AMDGPUPromoteAllocaImpl(TPC->getTM()) .run(F, /*PromoteToLDS*/ false); return false; } StringRef getPassName() const override { return "AMDGPU Promote Alloca to vector"; } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.setPreservesCFG(); FunctionPass::getAnalysisUsage(AU); } }; unsigned getMaxVGPRs(const TargetMachine &TM, const Function &F) { if (!TM.getTargetTriple().isAMDGCN()) return 128; const GCNSubtarget &ST = TM.getSubtarget(F); unsigned MaxVGPRs = ST.getMaxNumVGPRs(ST.getWavesPerEU(F).first); // A non-entry function has only 32 caller preserved registers. // Do not promote alloca which will force spilling unless we know the function // will be inlined. if (!F.hasFnAttribute(Attribute::AlwaysInline) && !AMDGPU::isEntryFunctionCC(F.getCallingConv())) MaxVGPRs = std::min(MaxVGPRs, 32u); return MaxVGPRs; } } // end anonymous namespace char AMDGPUPromoteAlloca::ID = 0; char AMDGPUPromoteAllocaToVector::ID = 0; INITIALIZE_PASS_BEGIN(AMDGPUPromoteAlloca, DEBUG_TYPE, "AMDGPU promote alloca to vector or LDS", false, false) // Move LDS uses from functions to kernels before promote alloca for accurate // estimation of LDS available INITIALIZE_PASS_DEPENDENCY(AMDGPULowerModuleLDSLegacy) INITIALIZE_PASS_END(AMDGPUPromoteAlloca, DEBUG_TYPE, "AMDGPU promote alloca to vector or LDS", false, false) INITIALIZE_PASS(AMDGPUPromoteAllocaToVector, DEBUG_TYPE "-to-vector", "AMDGPU promote alloca to vector", false, false) char &llvm::AMDGPUPromoteAllocaID = AMDGPUPromoteAlloca::ID; char &llvm::AMDGPUPromoteAllocaToVectorID = AMDGPUPromoteAllocaToVector::ID; PreservedAnalyses AMDGPUPromoteAllocaPass::run(Function &F, FunctionAnalysisManager &AM) { bool Changed = AMDGPUPromoteAllocaImpl(TM).run(F, /*PromoteToLDS*/ true); if (Changed) { PreservedAnalyses PA; PA.preserveSet(); return PA; } return PreservedAnalyses::all(); } PreservedAnalyses AMDGPUPromoteAllocaToVectorPass::run(Function &F, FunctionAnalysisManager &AM) { bool Changed = AMDGPUPromoteAllocaImpl(TM).run(F, /*PromoteToLDS*/ false); if (Changed) { PreservedAnalyses PA; PA.preserveSet(); return PA; } return PreservedAnalyses::all(); } FunctionPass *llvm::createAMDGPUPromoteAlloca() { return new AMDGPUPromoteAlloca(); } FunctionPass *llvm::createAMDGPUPromoteAllocaToVector() { return new AMDGPUPromoteAllocaToVector(); } bool AMDGPUPromoteAllocaImpl::run(Function &F, bool PromoteToLDS) { Mod = F.getParent(); DL = &Mod->getDataLayout(); const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, F); if (!ST.isPromoteAllocaEnabled()) return false; MaxVGPRs = getMaxVGPRs(TM, F); bool SufficientLDS = PromoteToLDS ? hasSufficientLocalMem(F) : false; SmallVector Allocas; for (Instruction &I : F.getEntryBlock()) { if (AllocaInst *AI = dyn_cast(&I)) { // Array allocations are probably not worth handling, since an allocation // of the array type is the canonical form. if (!AI->isStaticAlloca() || AI->isArrayAllocation()) continue; Allocas.push_back(AI); } } bool Changed = false; for (AllocaInst *AI : Allocas) { if (tryPromoteAllocaToVector(*AI)) Changed = true; else if (PromoteToLDS && tryPromoteAllocaToLDS(*AI, SufficientLDS)) Changed = true; } // NOTE: tryPromoteAllocaToVector removes the alloca, so Allocas contains // dangling pointers. If we want to reuse it past this point, the loop above // would need to be updated to remove successfully promoted allocas. return Changed; } struct MemTransferInfo { ConstantInt *SrcIndex = nullptr; ConstantInt *DestIndex = nullptr; }; // Checks if the instruction I is a memset user of the alloca AI that we can // deal with. Currently, only non-volatile memsets that affect the whole alloca // are handled. static bool isSupportedMemset(MemSetInst *I, AllocaInst *AI, const DataLayout &DL) { using namespace PatternMatch; // For now we only care about non-volatile memsets that affect the whole type // (start at index 0 and fill the whole alloca). // // TODO: Now that we moved to PromoteAlloca we could handle any memsets // (except maybe volatile ones?) - we just need to use shufflevector if it // only affects a subset of the vector. const unsigned Size = DL.getTypeStoreSize(AI->getAllocatedType()); return I->getOperand(0) == AI && match(I->getOperand(2), m_SpecificInt(Size)) && !I->isVolatile(); } static Value * calculateVectorIndex(Value *Ptr, const std::map &GEPIdx) { auto *GEP = dyn_cast(Ptr->stripPointerCasts()); if (!GEP) return ConstantInt::getNullValue(Type::getInt32Ty(Ptr->getContext())); auto I = GEPIdx.find(GEP); assert(I != GEPIdx.end() && "Must have entry for GEP!"); return I->second; } static Value *GEPToVectorIndex(GetElementPtrInst *GEP, AllocaInst *Alloca, Type *VecElemTy, const DataLayout &DL) { // TODO: Extracting a "multiple of X" from a GEP might be a useful generic // helper. unsigned BW = DL.getIndexTypeSizeInBits(GEP->getType()); MapVector VarOffsets; APInt ConstOffset(BW, 0); if (GEP->getPointerOperand()->stripPointerCasts() != Alloca || !GEP->collectOffset(DL, BW, VarOffsets, ConstOffset)) return nullptr; unsigned VecElemSize = DL.getTypeAllocSize(VecElemTy); if (VarOffsets.size() > 1) return nullptr; if (VarOffsets.size() == 1) { // Only handle cases where we don't need to insert extra arithmetic // instructions. const auto &VarOffset = VarOffsets.front(); if (!ConstOffset.isZero() || VarOffset.second != VecElemSize) return nullptr; return VarOffset.first; } APInt Quot; uint64_t Rem; APInt::udivrem(ConstOffset, VecElemSize, Quot, Rem); if (Rem != 0) return nullptr; return ConstantInt::get(GEP->getContext(), Quot); } /// Promotes a single user of the alloca to a vector form. /// /// \param Inst Instruction to be promoted. /// \param DL Module Data Layout. /// \param VectorTy Vectorized Type. /// \param VecStoreSize Size of \p VectorTy in bytes. /// \param ElementSize Size of \p VectorTy element type in bytes. /// \param TransferInfo MemTransferInst info map. /// \param GEPVectorIdx GEP -> VectorIdx cache. /// \param CurVal Current value of the vector (e.g. last stored value) /// \param[out] DeferredLoads \p Inst is added to this vector if it can't /// be promoted now. This happens when promoting requires \p /// CurVal, but \p CurVal is nullptr. /// \return the stored value if \p Inst would have written to the alloca, or /// nullptr otherwise. static Value *promoteAllocaUserToVector( Instruction *Inst, const DataLayout &DL, FixedVectorType *VectorTy, unsigned VecStoreSize, unsigned ElementSize, DenseMap &TransferInfo, std::map &GEPVectorIdx, Value *CurVal, SmallVectorImpl &DeferredLoads) { // Note: we use InstSimplifyFolder because it can leverage the DataLayout // to do more folding, especially in the case of vector splats. IRBuilder Builder(Inst->getContext(), InstSimplifyFolder(DL)); Builder.SetInsertPoint(Inst); const auto GetOrLoadCurrentVectorValue = [&]() -> Value * { if (CurVal) return CurVal; // If the current value is not known, insert a dummy load and lower it on // the second pass. LoadInst *Dummy = Builder.CreateLoad(VectorTy, PoisonValue::get(Builder.getPtrTy()), "promotealloca.dummyload"); DeferredLoads.push_back(Dummy); return Dummy; }; const auto CreateTempPtrIntCast = [&Builder, DL](Value *Val, Type *PtrTy) -> Value * { assert(DL.getTypeStoreSize(Val->getType()) == DL.getTypeStoreSize(PtrTy)); const unsigned Size = DL.getTypeStoreSizeInBits(PtrTy); if (!PtrTy->isVectorTy()) return Builder.CreateBitOrPointerCast(Val, Builder.getIntNTy(Size)); const unsigned NumPtrElts = cast(PtrTy)->getNumElements(); // If we want to cast to cast, e.g. a <2 x ptr> into a <4 x i32>, we need to // first cast the ptr vector to <2 x i64>. assert((Size % NumPtrElts == 0) && "Vector size not divisble"); Type *EltTy = Builder.getIntNTy(Size / NumPtrElts); return Builder.CreateBitOrPointerCast( Val, FixedVectorType::get(EltTy, NumPtrElts)); }; Type *VecEltTy = VectorTy->getElementType(); switch (Inst->getOpcode()) { case Instruction::Load: { // Loads can only be lowered if the value is known. if (!CurVal) { DeferredLoads.push_back(cast(Inst)); return nullptr; } Value *Index = calculateVectorIndex( cast(Inst)->getPointerOperand(), GEPVectorIdx); // We're loading the full vector. Type *AccessTy = Inst->getType(); TypeSize AccessSize = DL.getTypeStoreSize(AccessTy); if (AccessSize == VecStoreSize && cast(Index)->isZeroValue()) { if (AccessTy->isPtrOrPtrVectorTy()) CurVal = CreateTempPtrIntCast(CurVal, AccessTy); else if (CurVal->getType()->isPtrOrPtrVectorTy()) CurVal = CreateTempPtrIntCast(CurVal, CurVal->getType()); Value *NewVal = Builder.CreateBitOrPointerCast(CurVal, AccessTy); Inst->replaceAllUsesWith(NewVal); return nullptr; } // Loading a subvector. if (isa(AccessTy)) { assert(AccessSize.isKnownMultipleOf(DL.getTypeStoreSize(VecEltTy))); const unsigned NumLoadedElts = AccessSize / DL.getTypeStoreSize(VecEltTy); auto *SubVecTy = FixedVectorType::get(VecEltTy, NumLoadedElts); assert(DL.getTypeStoreSize(SubVecTy) == DL.getTypeStoreSize(AccessTy)); Value *SubVec = PoisonValue::get(SubVecTy); for (unsigned K = 0; K < NumLoadedElts; ++K) { Value *CurIdx = Builder.CreateAdd(Index, ConstantInt::get(Index->getType(), K)); SubVec = Builder.CreateInsertElement( SubVec, Builder.CreateExtractElement(CurVal, CurIdx), K); } if (AccessTy->isPtrOrPtrVectorTy()) SubVec = CreateTempPtrIntCast(SubVec, AccessTy); else if (SubVecTy->isPtrOrPtrVectorTy()) SubVec = CreateTempPtrIntCast(SubVec, SubVecTy); SubVec = Builder.CreateBitOrPointerCast(SubVec, AccessTy); Inst->replaceAllUsesWith(SubVec); return nullptr; } // We're loading one element. Value *ExtractElement = Builder.CreateExtractElement(CurVal, Index); if (AccessTy != VecEltTy) ExtractElement = Builder.CreateBitOrPointerCast(ExtractElement, AccessTy); Inst->replaceAllUsesWith(ExtractElement); return nullptr; } case Instruction::Store: { // For stores, it's a bit trickier and it depends on whether we're storing // the full vector or not. If we're storing the full vector, we don't need // to know the current value. If this is a store of a single element, we // need to know the value. StoreInst *SI = cast(Inst); Value *Index = calculateVectorIndex(SI->getPointerOperand(), GEPVectorIdx); Value *Val = SI->getValueOperand(); // We're storing the full vector, we can handle this without knowing CurVal. Type *AccessTy = Val->getType(); TypeSize AccessSize = DL.getTypeStoreSize(AccessTy); if (AccessSize == VecStoreSize && cast(Index)->isZeroValue()) { if (AccessTy->isPtrOrPtrVectorTy()) Val = CreateTempPtrIntCast(Val, AccessTy); else if (VectorTy->isPtrOrPtrVectorTy()) Val = CreateTempPtrIntCast(Val, VectorTy); return Builder.CreateBitOrPointerCast(Val, VectorTy); } // Storing a subvector. if (isa(AccessTy)) { assert(AccessSize.isKnownMultipleOf(DL.getTypeStoreSize(VecEltTy))); const unsigned NumWrittenElts = AccessSize / DL.getTypeStoreSize(VecEltTy); const unsigned NumVecElts = VectorTy->getNumElements(); auto *SubVecTy = FixedVectorType::get(VecEltTy, NumWrittenElts); assert(DL.getTypeStoreSize(SubVecTy) == DL.getTypeStoreSize(AccessTy)); if (SubVecTy->isPtrOrPtrVectorTy()) Val = CreateTempPtrIntCast(Val, SubVecTy); else if (AccessTy->isPtrOrPtrVectorTy()) Val = CreateTempPtrIntCast(Val, AccessTy); Val = Builder.CreateBitOrPointerCast(Val, SubVecTy); Value *CurVec = GetOrLoadCurrentVectorValue(); for (unsigned K = 0, NumElts = std::min(NumWrittenElts, NumVecElts); K < NumElts; ++K) { Value *CurIdx = Builder.CreateAdd(Index, ConstantInt::get(Index->getType(), K)); CurVec = Builder.CreateInsertElement( CurVec, Builder.CreateExtractElement(Val, K), CurIdx); } return CurVec; } if (Val->getType() != VecEltTy) Val = Builder.CreateBitOrPointerCast(Val, VecEltTy); return Builder.CreateInsertElement(GetOrLoadCurrentVectorValue(), Val, Index); } case Instruction::Call: { if (auto *MTI = dyn_cast(Inst)) { // For memcpy, we need to know curval. ConstantInt *Length = cast(MTI->getLength()); unsigned NumCopied = Length->getZExtValue() / ElementSize; MemTransferInfo *TI = &TransferInfo[MTI]; unsigned SrcBegin = TI->SrcIndex->getZExtValue(); unsigned DestBegin = TI->DestIndex->getZExtValue(); SmallVector Mask; for (unsigned Idx = 0; Idx < VectorTy->getNumElements(); ++Idx) { if (Idx >= DestBegin && Idx < DestBegin + NumCopied) { Mask.push_back(SrcBegin++); } else { Mask.push_back(Idx); } } return Builder.CreateShuffleVector(GetOrLoadCurrentVectorValue(), Mask); } if (auto *MSI = dyn_cast(Inst)) { // For memset, we don't need to know the previous value because we // currently only allow memsets that cover the whole alloca. Value *Elt = MSI->getOperand(1); const unsigned BytesPerElt = DL.getTypeStoreSize(VecEltTy); if (BytesPerElt > 1) { Value *EltBytes = Builder.CreateVectorSplat(BytesPerElt, Elt); // If the element type of the vector is a pointer, we need to first cast // to an integer, then use a PtrCast. if (VecEltTy->isPointerTy()) { Type *PtrInt = Builder.getIntNTy(BytesPerElt * 8); Elt = Builder.CreateBitCast(EltBytes, PtrInt); Elt = Builder.CreateIntToPtr(Elt, VecEltTy); } else Elt = Builder.CreateBitCast(EltBytes, VecEltTy); } return Builder.CreateVectorSplat(VectorTy->getElementCount(), Elt); } if (auto *Intr = dyn_cast(Inst)) { if (Intr->getIntrinsicID() == Intrinsic::objectsize) { Intr->replaceAllUsesWith( Builder.getIntN(Intr->getType()->getIntegerBitWidth(), DL.getTypeAllocSize(VectorTy))); return nullptr; } } llvm_unreachable("Unsupported call when promoting alloca to vector"); } default: llvm_unreachable("Inconsistency in instructions promotable to vector"); } llvm_unreachable("Did not return after promoting instruction!"); } static bool isSupportedAccessType(FixedVectorType *VecTy, Type *AccessTy, const DataLayout &DL) { // Access as a vector type can work if the size of the access vector is a // multiple of the size of the alloca's vector element type. // // Examples: // - VecTy = <8 x float>, AccessTy = <4 x float> -> OK // - VecTy = <4 x double>, AccessTy = <2 x float> -> OK // - VecTy = <4 x double>, AccessTy = <3 x float> -> NOT OK // - 3*32 is not a multiple of 64 // // We could handle more complicated cases, but it'd make things a lot more // complicated. if (isa(AccessTy)) { TypeSize AccTS = DL.getTypeStoreSize(AccessTy); TypeSize VecTS = DL.getTypeStoreSize(VecTy->getElementType()); return AccTS.isKnownMultipleOf(VecTS); } return CastInst::isBitOrNoopPointerCastable(VecTy->getElementType(), AccessTy, DL); } /// Iterates over an instruction worklist that may contain multiple instructions /// from the same basic block, but in a different order. template static void forEachWorkListItem(const InstContainer &WorkList, std::function Fn) { // Bucket up uses of the alloca by the block they occur in. // This is important because we have to handle multiple defs/uses in a block // ourselves: SSAUpdater is purely for cross-block references. DenseMap> UsesByBlock; for (Instruction *User : WorkList) UsesByBlock[User->getParent()].insert(User); for (Instruction *User : WorkList) { BasicBlock *BB = User->getParent(); auto &BlockUses = UsesByBlock[BB]; // Already processed, skip. if (BlockUses.empty()) continue; // Only user in the block, directly process it. if (BlockUses.size() == 1) { Fn(User); continue; } // Multiple users in the block, do a linear scan to see users in order. for (Instruction &Inst : *BB) { if (!BlockUses.contains(&Inst)) continue; Fn(&Inst); } // Clear the block so we know it's been processed. BlockUses.clear(); } } // FIXME: Should try to pick the most likely to be profitable allocas first. bool AMDGPUPromoteAllocaImpl::tryPromoteAllocaToVector(AllocaInst &Alloca) { LLVM_DEBUG(dbgs() << "Trying to promote to vector: " << Alloca << '\n'); if (DisablePromoteAllocaToVector) { LLVM_DEBUG(dbgs() << " Promote alloca to vector is disabled\n"); return false; } Type *AllocaTy = Alloca.getAllocatedType(); auto *VectorTy = dyn_cast(AllocaTy); if (auto *ArrayTy = dyn_cast(AllocaTy)) { if (VectorType::isValidElementType(ArrayTy->getElementType()) && ArrayTy->getNumElements() > 0) VectorTy = FixedVectorType::get(ArrayTy->getElementType(), ArrayTy->getNumElements()); } // Use up to 1/4 of available register budget for vectorization. unsigned Limit = PromoteAllocaToVectorLimit ? PromoteAllocaToVectorLimit * 8 : (MaxVGPRs * 32); if (DL->getTypeSizeInBits(AllocaTy) * 4 > Limit) { LLVM_DEBUG(dbgs() << " Alloca too big for vectorization with " << MaxVGPRs << " registers available\n"); return false; } // FIXME: There is no reason why we can't support larger arrays, we // are just being conservative for now. // FIXME: We also reject alloca's of the form [ 2 x [ 2 x i32 ]] or // equivalent. Potentially these could also be promoted but we don't currently // handle this case if (!VectorTy) { LLVM_DEBUG(dbgs() << " Cannot convert type to vector\n"); return false; } if (VectorTy->getNumElements() > 16 || VectorTy->getNumElements() < 2) { LLVM_DEBUG(dbgs() << " " << *VectorTy << " has an unsupported number of elements\n"); return false; } std::map GEPVectorIdx; SmallVector WorkList; SmallVector UsersToRemove; SmallVector DeferredInsts; SmallVector Uses; DenseMap TransferInfo; const auto RejectUser = [&](Instruction *Inst, Twine Msg) { LLVM_DEBUG(dbgs() << " Cannot promote alloca to vector: " << Msg << "\n" << " " << *Inst << "\n"); return false; }; for (Use &U : Alloca.uses()) Uses.push_back(&U); LLVM_DEBUG(dbgs() << " Attempting promotion to: " << *VectorTy << "\n"); Type *VecEltTy = VectorTy->getElementType(); unsigned ElementSize = DL->getTypeSizeInBits(VecEltTy) / 8; while (!Uses.empty()) { Use *U = Uses.pop_back_val(); Instruction *Inst = cast(U->getUser()); if (Value *Ptr = getLoadStorePointerOperand(Inst)) { // This is a store of the pointer, not to the pointer. if (isa(Inst) && U->getOperandNo() != StoreInst::getPointerOperandIndex()) return RejectUser(Inst, "pointer is being stored"); Type *AccessTy = getLoadStoreType(Inst); if (AccessTy->isAggregateType()) return RejectUser(Inst, "unsupported load/store as aggregate"); assert(!AccessTy->isAggregateType() || AccessTy->isArrayTy()); // Check that this is a simple access of a vector element. bool IsSimple = isa(Inst) ? cast(Inst)->isSimple() : cast(Inst)->isSimple(); if (!IsSimple) return RejectUser(Inst, "not a simple load or store"); Ptr = Ptr->stripPointerCasts(); // Alloca already accessed as vector. if (Ptr == &Alloca && DL->getTypeStoreSize(Alloca.getAllocatedType()) == DL->getTypeStoreSize(AccessTy)) { WorkList.push_back(Inst); continue; } if (!isSupportedAccessType(VectorTy, AccessTy, *DL)) return RejectUser(Inst, "not a supported access type"); WorkList.push_back(Inst); continue; } if (isa(Inst)) { // Look through bitcasts. for (Use &U : Inst->uses()) Uses.push_back(&U); UsersToRemove.push_back(Inst); continue; } if (auto *GEP = dyn_cast(Inst)) { // If we can't compute a vector index from this GEP, then we can't // promote this alloca to vector. Value *Index = GEPToVectorIndex(GEP, &Alloca, VecEltTy, *DL); if (!Index) return RejectUser(Inst, "cannot compute vector index for GEP"); GEPVectorIdx[GEP] = Index; for (Use &U : Inst->uses()) Uses.push_back(&U); UsersToRemove.push_back(Inst); continue; } if (MemSetInst *MSI = dyn_cast(Inst); MSI && isSupportedMemset(MSI, &Alloca, *DL)) { WorkList.push_back(Inst); continue; } if (MemTransferInst *TransferInst = dyn_cast(Inst)) { if (TransferInst->isVolatile()) return RejectUser(Inst, "mem transfer inst is volatile"); ConstantInt *Len = dyn_cast(TransferInst->getLength()); if (!Len || (Len->getZExtValue() % ElementSize)) return RejectUser(Inst, "mem transfer inst length is non-constant or " "not a multiple of the vector element size"); if (!TransferInfo.count(TransferInst)) { DeferredInsts.push_back(Inst); WorkList.push_back(Inst); TransferInfo[TransferInst] = MemTransferInfo(); } auto getPointerIndexOfAlloca = [&](Value *Ptr) -> ConstantInt * { GetElementPtrInst *GEP = dyn_cast(Ptr); if (Ptr != &Alloca && !GEPVectorIdx.count(GEP)) return nullptr; return dyn_cast(calculateVectorIndex(Ptr, GEPVectorIdx)); }; unsigned OpNum = U->getOperandNo(); MemTransferInfo *TI = &TransferInfo[TransferInst]; if (OpNum == 0) { Value *Dest = TransferInst->getDest(); ConstantInt *Index = getPointerIndexOfAlloca(Dest); if (!Index) return RejectUser(Inst, "could not calculate constant dest index"); TI->DestIndex = Index; } else { assert(OpNum == 1); Value *Src = TransferInst->getSource(); ConstantInt *Index = getPointerIndexOfAlloca(Src); if (!Index) return RejectUser(Inst, "could not calculate constant src index"); TI->SrcIndex = Index; } continue; } if (auto *Intr = dyn_cast(Inst)) { if (Intr->getIntrinsicID() == Intrinsic::objectsize) { WorkList.push_back(Inst); continue; } } // Ignore assume-like intrinsics and comparisons used in assumes. if (isAssumeLikeIntrinsic(Inst)) { if (!Inst->use_empty()) return RejectUser(Inst, "assume-like intrinsic cannot have any users"); UsersToRemove.push_back(Inst); continue; } if (isa(Inst) && all_of(Inst->users(), [](User *U) { return isAssumeLikeIntrinsic(cast(U)); })) { UsersToRemove.push_back(Inst); continue; } return RejectUser(Inst, "unhandled alloca user"); } while (!DeferredInsts.empty()) { Instruction *Inst = DeferredInsts.pop_back_val(); MemTransferInst *TransferInst = cast(Inst); // TODO: Support the case if the pointers are from different alloca or // from different address spaces. MemTransferInfo &Info = TransferInfo[TransferInst]; if (!Info.SrcIndex || !Info.DestIndex) return RejectUser( Inst, "mem transfer inst is missing constant src and/or dst index"); } LLVM_DEBUG(dbgs() << " Converting alloca to vector " << *AllocaTy << " -> " << *VectorTy << '\n'); const unsigned VecStoreSize = DL->getTypeStoreSize(VectorTy); // Alloca is uninitialized memory. Imitate that by making the first value // undef. SSAUpdater Updater; Updater.Initialize(VectorTy, "promotealloca"); Updater.AddAvailableValue(Alloca.getParent(), UndefValue::get(VectorTy)); // First handle the initial worklist. SmallVector DeferredLoads; forEachWorkListItem(WorkList, [&](Instruction *I) { BasicBlock *BB = I->getParent(); // On the first pass, we only take values that are trivially known, i.e. // where AddAvailableValue was already called in this block. Value *Result = promoteAllocaUserToVector( I, *DL, VectorTy, VecStoreSize, ElementSize, TransferInfo, GEPVectorIdx, Updater.FindValueForBlock(BB), DeferredLoads); if (Result) Updater.AddAvailableValue(BB, Result); }); // Then handle deferred loads. forEachWorkListItem(DeferredLoads, [&](Instruction *I) { SmallVector NewDLs; BasicBlock *BB = I->getParent(); // On the second pass, we use GetValueInMiddleOfBlock to guarantee we always // get a value, inserting PHIs as needed. Value *Result = promoteAllocaUserToVector( I, *DL, VectorTy, VecStoreSize, ElementSize, TransferInfo, GEPVectorIdx, Updater.GetValueInMiddleOfBlock(I->getParent()), NewDLs); if (Result) Updater.AddAvailableValue(BB, Result); assert(NewDLs.empty() && "No more deferred loads should be queued!"); }); // Delete all instructions. On the first pass, new dummy loads may have been // added so we need to collect them too. DenseSet InstsToDelete(WorkList.begin(), WorkList.end()); InstsToDelete.insert(DeferredLoads.begin(), DeferredLoads.end()); for (Instruction *I : InstsToDelete) { assert(I->use_empty()); I->eraseFromParent(); } // Delete all the users that are known to be removeable. for (Instruction *I : reverse(UsersToRemove)) { I->dropDroppableUses(); assert(I->use_empty()); I->eraseFromParent(); } // Alloca should now be dead too. assert(Alloca.use_empty()); Alloca.eraseFromParent(); return true; } std::pair AMDGPUPromoteAllocaImpl::getLocalSizeYZ(IRBuilder<> &Builder) { Function &F = *Builder.GetInsertBlock()->getParent(); const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, F); if (!IsAMDHSA) { Function *LocalSizeYFn = Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_y); Function *LocalSizeZFn = Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_z); CallInst *LocalSizeY = Builder.CreateCall(LocalSizeYFn, {}); CallInst *LocalSizeZ = Builder.CreateCall(LocalSizeZFn, {}); ST.makeLIDRangeMetadata(LocalSizeY); ST.makeLIDRangeMetadata(LocalSizeZ); return std::pair(LocalSizeY, LocalSizeZ); } // We must read the size out of the dispatch pointer. assert(IsAMDGCN); // We are indexing into this struct, and want to extract the workgroup_size_* // fields. // // typedef struct hsa_kernel_dispatch_packet_s { // uint16_t header; // uint16_t setup; // uint16_t workgroup_size_x ; // uint16_t workgroup_size_y; // uint16_t workgroup_size_z; // uint16_t reserved0; // uint32_t grid_size_x ; // uint32_t grid_size_y ; // uint32_t grid_size_z; // // uint32_t private_segment_size; // uint32_t group_segment_size; // uint64_t kernel_object; // // #ifdef HSA_LARGE_MODEL // void *kernarg_address; // #elif defined HSA_LITTLE_ENDIAN // void *kernarg_address; // uint32_t reserved1; // #else // uint32_t reserved1; // void *kernarg_address; // #endif // uint64_t reserved2; // hsa_signal_t completion_signal; // uint64_t wrapper // } hsa_kernel_dispatch_packet_t // Function *DispatchPtrFn = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_dispatch_ptr); CallInst *DispatchPtr = Builder.CreateCall(DispatchPtrFn, {}); DispatchPtr->addRetAttr(Attribute::NoAlias); DispatchPtr->addRetAttr(Attribute::NonNull); F.removeFnAttr("amdgpu-no-dispatch-ptr"); // Size of the dispatch packet struct. DispatchPtr->addDereferenceableRetAttr(64); Type *I32Ty = Type::getInt32Ty(Mod->getContext()); Value *CastDispatchPtr = Builder.CreateBitCast( DispatchPtr, PointerType::get(I32Ty, AMDGPUAS::CONSTANT_ADDRESS)); // We could do a single 64-bit load here, but it's likely that the basic // 32-bit and extract sequence is already present, and it is probably easier // to CSE this. The loads should be mergeable later anyway. Value *GEPXY = Builder.CreateConstInBoundsGEP1_64(I32Ty, CastDispatchPtr, 1); LoadInst *LoadXY = Builder.CreateAlignedLoad(I32Ty, GEPXY, Align(4)); Value *GEPZU = Builder.CreateConstInBoundsGEP1_64(I32Ty, CastDispatchPtr, 2); LoadInst *LoadZU = Builder.CreateAlignedLoad(I32Ty, GEPZU, Align(4)); MDNode *MD = MDNode::get(Mod->getContext(), std::nullopt); LoadXY->setMetadata(LLVMContext::MD_invariant_load, MD); LoadZU->setMetadata(LLVMContext::MD_invariant_load, MD); ST.makeLIDRangeMetadata(LoadZU); // Extract y component. Upper half of LoadZU should be zero already. Value *Y = Builder.CreateLShr(LoadXY, 16); return std::pair(Y, LoadZU); } Value *AMDGPUPromoteAllocaImpl::getWorkitemID(IRBuilder<> &Builder, unsigned N) { Function *F = Builder.GetInsertBlock()->getParent(); const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, *F); Intrinsic::ID IntrID = Intrinsic::not_intrinsic; StringRef AttrName; switch (N) { case 0: IntrID = IsAMDGCN ? (Intrinsic::ID)Intrinsic::amdgcn_workitem_id_x : (Intrinsic::ID)Intrinsic::r600_read_tidig_x; AttrName = "amdgpu-no-workitem-id-x"; break; case 1: IntrID = IsAMDGCN ? (Intrinsic::ID)Intrinsic::amdgcn_workitem_id_y : (Intrinsic::ID)Intrinsic::r600_read_tidig_y; AttrName = "amdgpu-no-workitem-id-y"; break; case 2: IntrID = IsAMDGCN ? (Intrinsic::ID)Intrinsic::amdgcn_workitem_id_z : (Intrinsic::ID)Intrinsic::r600_read_tidig_z; AttrName = "amdgpu-no-workitem-id-z"; break; default: llvm_unreachable("invalid dimension"); } Function *WorkitemIdFn = Intrinsic::getDeclaration(Mod, IntrID); CallInst *CI = Builder.CreateCall(WorkitemIdFn); ST.makeLIDRangeMetadata(CI); F->removeFnAttr(AttrName); return CI; } static bool isCallPromotable(CallInst *CI) { IntrinsicInst *II = dyn_cast(CI); if (!II) return false; switch (II->getIntrinsicID()) { case Intrinsic::memcpy: case Intrinsic::memmove: case Intrinsic::memset: case Intrinsic::lifetime_start: case Intrinsic::lifetime_end: case Intrinsic::invariant_start: case Intrinsic::invariant_end: case Intrinsic::launder_invariant_group: case Intrinsic::strip_invariant_group: case Intrinsic::objectsize: return true; default: return false; } } bool AMDGPUPromoteAllocaImpl::binaryOpIsDerivedFromSameAlloca( Value *BaseAlloca, Value *Val, Instruction *Inst, int OpIdx0, int OpIdx1) const { // Figure out which operand is the one we might not be promoting. Value *OtherOp = Inst->getOperand(OpIdx0); if (Val == OtherOp) OtherOp = Inst->getOperand(OpIdx1); if (isa(OtherOp)) return true; Value *OtherObj = getUnderlyingObject(OtherOp); if (!isa(OtherObj)) return false; // TODO: We should be able to replace undefs with the right pointer type. // TODO: If we know the other base object is another promotable // alloca, not necessarily this alloca, we can do this. The // important part is both must have the same address space at // the end. if (OtherObj != BaseAlloca) { LLVM_DEBUG( dbgs() << "Found a binary instruction with another alloca object\n"); return false; } return true; } bool AMDGPUPromoteAllocaImpl::collectUsesWithPtrTypes( Value *BaseAlloca, Value *Val, std::vector &WorkList) const { for (User *User : Val->users()) { if (is_contained(WorkList, User)) continue; if (CallInst *CI = dyn_cast(User)) { if (!isCallPromotable(CI)) return false; WorkList.push_back(User); continue; } Instruction *UseInst = cast(User); if (UseInst->getOpcode() == Instruction::PtrToInt) return false; if (LoadInst *LI = dyn_cast(UseInst)) { if (LI->isVolatile()) return false; continue; } if (StoreInst *SI = dyn_cast(UseInst)) { if (SI->isVolatile()) return false; // Reject if the stored value is not the pointer operand. if (SI->getPointerOperand() != Val) return false; } else if (AtomicRMWInst *RMW = dyn_cast(UseInst)) { if (RMW->isVolatile()) return false; } else if (AtomicCmpXchgInst *CAS = dyn_cast(UseInst)) { if (CAS->isVolatile()) return false; } // Only promote a select if we know that the other select operand // is from another pointer that will also be promoted. if (ICmpInst *ICmp = dyn_cast(UseInst)) { if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, ICmp, 0, 1)) return false; // May need to rewrite constant operands. WorkList.push_back(ICmp); } if (UseInst->getOpcode() == Instruction::AddrSpaceCast) { // Give up if the pointer may be captured. if (PointerMayBeCaptured(UseInst, true, true)) return false; // Don't collect the users of this. WorkList.push_back(User); continue; } // Do not promote vector/aggregate type instructions. It is hard to track // their users. if (isa(User) || isa(User)) return false; if (!User->getType()->isPointerTy()) continue; if (GetElementPtrInst *GEP = dyn_cast(UseInst)) { // Be conservative if an address could be computed outside the bounds of // the alloca. if (!GEP->isInBounds()) return false; } // Only promote a select if we know that the other select operand is from // another pointer that will also be promoted. if (SelectInst *SI = dyn_cast(UseInst)) { if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, SI, 1, 2)) return false; } // Repeat for phis. if (PHINode *Phi = dyn_cast(UseInst)) { // TODO: Handle more complex cases. We should be able to replace loops // over arrays. switch (Phi->getNumIncomingValues()) { case 1: break; case 2: if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, Phi, 0, 1)) return false; break; default: return false; } } WorkList.push_back(User); if (!collectUsesWithPtrTypes(BaseAlloca, User, WorkList)) return false; } return true; } bool AMDGPUPromoteAllocaImpl::hasSufficientLocalMem(const Function &F) { FunctionType *FTy = F.getFunctionType(); const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, F); // If the function has any arguments in the local address space, then it's // possible these arguments require the entire local memory space, so // we cannot use local memory in the pass. for (Type *ParamTy : FTy->params()) { PointerType *PtrTy = dyn_cast(ParamTy); if (PtrTy && PtrTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) { LocalMemLimit = 0; LLVM_DEBUG(dbgs() << "Function has local memory argument. Promoting to " "local memory disabled.\n"); return false; } } LocalMemLimit = ST.getAddressableLocalMemorySize(); if (LocalMemLimit == 0) return false; SmallVector Stack; SmallPtrSet VisitedConstants; SmallPtrSet UsedLDS; auto visitUsers = [&](const GlobalVariable *GV, const Constant *Val) -> bool { for (const User *U : Val->users()) { if (const Instruction *Use = dyn_cast(U)) { if (Use->getParent()->getParent() == &F) return true; } else { const Constant *C = cast(U); if (VisitedConstants.insert(C).second) Stack.push_back(C); } } return false; }; for (GlobalVariable &GV : Mod->globals()) { if (GV.getAddressSpace() != AMDGPUAS::LOCAL_ADDRESS) continue; if (visitUsers(&GV, &GV)) { UsedLDS.insert(&GV); Stack.clear(); continue; } // For any ConstantExpr uses, we need to recursively search the users until // we see a function. while (!Stack.empty()) { const Constant *C = Stack.pop_back_val(); if (visitUsers(&GV, C)) { UsedLDS.insert(&GV); Stack.clear(); break; } } } const DataLayout &DL = Mod->getDataLayout(); SmallVector, 16> AllocatedSizes; AllocatedSizes.reserve(UsedLDS.size()); for (const GlobalVariable *GV : UsedLDS) { Align Alignment = DL.getValueOrABITypeAlignment(GV->getAlign(), GV->getValueType()); uint64_t AllocSize = DL.getTypeAllocSize(GV->getValueType()); // HIP uses an extern unsized array in local address space for dynamically // allocated shared memory. In that case, we have to disable the promotion. if (GV->hasExternalLinkage() && AllocSize == 0) { LocalMemLimit = 0; LLVM_DEBUG(dbgs() << "Function has a reference to externally allocated " "local memory. Promoting to local memory " "disabled.\n"); return false; } AllocatedSizes.emplace_back(AllocSize, Alignment); } // Sort to try to estimate the worst case alignment padding // // FIXME: We should really do something to fix the addresses to a more optimal // value instead llvm::sort(AllocatedSizes, llvm::less_second()); // Check how much local memory is being used by global objects CurrentLocalMemUsage = 0; // FIXME: Try to account for padding here. The real padding and address is // currently determined from the inverse order of uses in the function when // legalizing, which could also potentially change. We try to estimate the // worst case here, but we probably should fix the addresses earlier. for (auto Alloc : AllocatedSizes) { CurrentLocalMemUsage = alignTo(CurrentLocalMemUsage, Alloc.second); CurrentLocalMemUsage += Alloc.first; } unsigned MaxOccupancy = ST.getOccupancyWithLocalMemSize(CurrentLocalMemUsage, F); // Restrict local memory usage so that we don't drastically reduce occupancy, // unless it is already significantly reduced. // TODO: Have some sort of hint or other heuristics to guess occupancy based // on other factors.. unsigned OccupancyHint = ST.getWavesPerEU(F).second; if (OccupancyHint == 0) OccupancyHint = 7; // Clamp to max value. OccupancyHint = std::min(OccupancyHint, ST.getMaxWavesPerEU()); // Check the hint but ignore it if it's obviously wrong from the existing LDS // usage. MaxOccupancy = std::min(OccupancyHint, MaxOccupancy); // Round up to the next tier of usage. unsigned MaxSizeWithWaveCount = ST.getMaxLocalMemSizeWithWaveCount(MaxOccupancy, F); // Program is possibly broken by using more local mem than available. if (CurrentLocalMemUsage > MaxSizeWithWaveCount) return false; LocalMemLimit = MaxSizeWithWaveCount; LLVM_DEBUG(dbgs() << F.getName() << " uses " << CurrentLocalMemUsage << " bytes of LDS\n" << " Rounding size to " << MaxSizeWithWaveCount << " with a maximum occupancy of " << MaxOccupancy << '\n' << " and " << (LocalMemLimit - CurrentLocalMemUsage) << " available for promotion\n"); return true; } // FIXME: Should try to pick the most likely to be profitable allocas first. bool AMDGPUPromoteAllocaImpl::tryPromoteAllocaToLDS(AllocaInst &I, bool SufficientLDS) { LLVM_DEBUG(dbgs() << "Trying to promote to LDS: " << I << '\n'); if (DisablePromoteAllocaToLDS) { LLVM_DEBUG(dbgs() << " Promote alloca to LDS is disabled\n"); return false; } const DataLayout &DL = Mod->getDataLayout(); IRBuilder<> Builder(&I); const Function &ContainingFunction = *I.getParent()->getParent(); CallingConv::ID CC = ContainingFunction.getCallingConv(); // Don't promote the alloca to LDS for shader calling conventions as the work // item ID intrinsics are not supported for these calling conventions. // Furthermore not all LDS is available for some of the stages. switch (CC) { case CallingConv::AMDGPU_KERNEL: case CallingConv::SPIR_KERNEL: break; default: LLVM_DEBUG( dbgs() << " promote alloca to LDS not supported with calling convention.\n"); return false; } // Not likely to have sufficient local memory for promotion. if (!SufficientLDS) return false; const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, ContainingFunction); unsigned WorkGroupSize = ST.getFlatWorkGroupSizes(ContainingFunction).second; Align Alignment = DL.getValueOrABITypeAlignment(I.getAlign(), I.getAllocatedType()); // FIXME: This computed padding is likely wrong since it depends on inverse // usage order. // // FIXME: It is also possible that if we're allowed to use all of the memory // could end up using more than the maximum due to alignment padding. uint32_t NewSize = alignTo(CurrentLocalMemUsage, Alignment); uint32_t AllocSize = WorkGroupSize * DL.getTypeAllocSize(I.getAllocatedType()); NewSize += AllocSize; if (NewSize > LocalMemLimit) { LLVM_DEBUG(dbgs() << " " << AllocSize << " bytes of local memory not available to promote\n"); return false; } CurrentLocalMemUsage = NewSize; std::vector WorkList; if (!collectUsesWithPtrTypes(&I, &I, WorkList)) { LLVM_DEBUG(dbgs() << " Do not know how to convert all uses\n"); return false; } LLVM_DEBUG(dbgs() << "Promoting alloca to local memory\n"); Function *F = I.getParent()->getParent(); Type *GVTy = ArrayType::get(I.getAllocatedType(), WorkGroupSize); GlobalVariable *GV = new GlobalVariable( *Mod, GVTy, false, GlobalValue::InternalLinkage, PoisonValue::get(GVTy), Twine(F->getName()) + Twine('.') + I.getName(), nullptr, GlobalVariable::NotThreadLocal, AMDGPUAS::LOCAL_ADDRESS); GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); GV->setAlignment(I.getAlign()); Value *TCntY, *TCntZ; std::tie(TCntY, TCntZ) = getLocalSizeYZ(Builder); Value *TIdX = getWorkitemID(Builder, 0); Value *TIdY = getWorkitemID(Builder, 1); Value *TIdZ = getWorkitemID(Builder, 2); Value *Tmp0 = Builder.CreateMul(TCntY, TCntZ, "", true, true); Tmp0 = Builder.CreateMul(Tmp0, TIdX); Value *Tmp1 = Builder.CreateMul(TIdY, TCntZ, "", true, true); Value *TID = Builder.CreateAdd(Tmp0, Tmp1); TID = Builder.CreateAdd(TID, TIdZ); LLVMContext &Context = Mod->getContext(); Value *Indices[] = {Constant::getNullValue(Type::getInt32Ty(Context)), TID}; Value *Offset = Builder.CreateInBoundsGEP(GVTy, GV, Indices); I.mutateType(Offset->getType()); I.replaceAllUsesWith(Offset); I.eraseFromParent(); SmallVector DeferredIntrs; for (Value *V : WorkList) { CallInst *Call = dyn_cast(V); if (!Call) { if (ICmpInst *CI = dyn_cast(V)) { PointerType *NewTy = PointerType::get(Context, AMDGPUAS::LOCAL_ADDRESS); if (isa(CI->getOperand(0))) CI->setOperand(0, ConstantPointerNull::get(NewTy)); if (isa(CI->getOperand(1))) CI->setOperand(1, ConstantPointerNull::get(NewTy)); continue; } // The operand's value should be corrected on its own and we don't want to // touch the users. if (isa(V)) continue; PointerType *NewTy = PointerType::get(Context, AMDGPUAS::LOCAL_ADDRESS); // FIXME: It doesn't really make sense to try to do this for all // instructions. V->mutateType(NewTy); // Adjust the types of any constant operands. if (SelectInst *SI = dyn_cast(V)) { if (isa(SI->getOperand(1))) SI->setOperand(1, ConstantPointerNull::get(NewTy)); if (isa(SI->getOperand(2))) SI->setOperand(2, ConstantPointerNull::get(NewTy)); } else if (PHINode *Phi = dyn_cast(V)) { for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) { if (isa(Phi->getIncomingValue(I))) Phi->setIncomingValue(I, ConstantPointerNull::get(NewTy)); } } continue; } IntrinsicInst *Intr = cast(Call); Builder.SetInsertPoint(Intr); switch (Intr->getIntrinsicID()) { case Intrinsic::lifetime_start: case Intrinsic::lifetime_end: // These intrinsics are for address space 0 only Intr->eraseFromParent(); continue; case Intrinsic::memcpy: case Intrinsic::memmove: // These have 2 pointer operands. In case if second pointer also needs // to be replaced we defer processing of these intrinsics until all // other values are processed. DeferredIntrs.push_back(Intr); continue; case Intrinsic::memset: { MemSetInst *MemSet = cast(Intr); Builder.CreateMemSet(MemSet->getRawDest(), MemSet->getValue(), MemSet->getLength(), MemSet->getDestAlign(), MemSet->isVolatile()); Intr->eraseFromParent(); continue; } case Intrinsic::invariant_start: case Intrinsic::invariant_end: case Intrinsic::launder_invariant_group: case Intrinsic::strip_invariant_group: Intr->eraseFromParent(); // FIXME: I think the invariant marker should still theoretically apply, // but the intrinsics need to be changed to accept pointers with any // address space. continue; case Intrinsic::objectsize: { Value *Src = Intr->getOperand(0); Function *ObjectSize = Intrinsic::getDeclaration( Mod, Intrinsic::objectsize, {Intr->getType(), PointerType::get(Context, AMDGPUAS::LOCAL_ADDRESS)}); CallInst *NewCall = Builder.CreateCall( ObjectSize, {Src, Intr->getOperand(1), Intr->getOperand(2), Intr->getOperand(3)}); Intr->replaceAllUsesWith(NewCall); Intr->eraseFromParent(); continue; } default: Intr->print(errs()); llvm_unreachable("Don't know how to promote alloca intrinsic use."); } } for (IntrinsicInst *Intr : DeferredIntrs) { Builder.SetInsertPoint(Intr); Intrinsic::ID ID = Intr->getIntrinsicID(); assert(ID == Intrinsic::memcpy || ID == Intrinsic::memmove); MemTransferInst *MI = cast(Intr); auto *B = Builder.CreateMemTransferInst( ID, MI->getRawDest(), MI->getDestAlign(), MI->getRawSource(), MI->getSourceAlign(), MI->getLength(), MI->isVolatile()); for (unsigned I = 0; I != 2; ++I) { if (uint64_t Bytes = Intr->getParamDereferenceableBytes(I)) { B->addDereferenceableParamAttr(I, Bytes); } } Intr->eraseFromParent(); } return true; }