/* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM rcu #if !defined(_TRACE_RCU_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_RCU_H #include #ifdef CONFIG_RCU_TRACE #define TRACE_EVENT_RCU TRACE_EVENT #else #define TRACE_EVENT_RCU TRACE_EVENT_NOP #endif /* * Tracepoint for start/end markers used for utilization calculations. * By convention, the string is of the following forms: * * "Start " -- Mark the start of the specified activity, * such as "context switch". Nesting is permitted. * "End " -- Mark the end of the specified activity. * * An "@" character within "" is a comment character: Data * reduction scripts will ignore the "@" and the remainder of the line. */ TRACE_EVENT(rcu_utilization, TP_PROTO(const char *s), TP_ARGS(s), TP_STRUCT__entry( __field(const char *, s) ), TP_fast_assign( __entry->s = s; ), TP_printk("%s", __entry->s) ); #if defined(CONFIG_TREE_RCU) /* * Tracepoint for grace-period events. Takes a string identifying the * RCU flavor, the grace-period number, and a string identifying the * grace-period-related event as follows: * * "AccReadyCB": CPU accelerates new callbacks to RCU_NEXT_READY_TAIL. * "AccWaitCB": CPU accelerates new callbacks to RCU_WAIT_TAIL. * "newreq": Request a new grace period. * "start": Start a grace period. * "cpustart": CPU first notices a grace-period start. * "cpuqs": CPU passes through a quiescent state. * "cpuonl": CPU comes online. * "cpuofl": CPU goes offline. * "cpuofl-bgp": CPU goes offline while blocking a grace period. * "reqwait": GP kthread sleeps waiting for grace-period request. * "reqwaitsig": GP kthread awakened by signal from reqwait state. * "fqswait": GP kthread waiting until time to force quiescent states. * "fqsstart": GP kthread starts forcing quiescent states. * "fqsend": GP kthread done forcing quiescent states. * "fqswaitsig": GP kthread awakened by signal from fqswait state. * "end": End a grace period. * "cpuend": CPU first notices a grace-period end. */ TRACE_EVENT_RCU(rcu_grace_period, TP_PROTO(const char *rcuname, unsigned long gp_seq, const char *gpevent), TP_ARGS(rcuname, gp_seq, gpevent), TP_STRUCT__entry( __field(const char *, rcuname) __field(long, gp_seq) __field(const char *, gpevent) ), TP_fast_assign( __entry->rcuname = rcuname; __entry->gp_seq = (long)gp_seq; __entry->gpevent = gpevent; ), TP_printk("%s %ld %s", __entry->rcuname, __entry->gp_seq, __entry->gpevent) ); /* * Tracepoint for future grace-period events. The caller should pull * the data from the rcu_node structure, other than rcuname, which comes * from the rcu_state structure, and event, which is one of the following: * * "Cleanup": Clean up rcu_node structure after previous GP. * "CleanupMore": Clean up, and another GP is needed. * "EndWait": Complete wait. * "NoGPkthread": The RCU grace-period kthread has not yet started. * "Prestarted": Someone beat us to the request * "Startedleaf": Leaf node marked for future GP. * "Startedleafroot": All nodes from leaf to root marked for future GP. * "Startedroot": Requested a nocb grace period based on root-node data. * "Startleaf": Request a grace period based on leaf-node data. * "StartWait": Start waiting for the requested grace period. */ TRACE_EVENT_RCU(rcu_future_grace_period, TP_PROTO(const char *rcuname, unsigned long gp_seq, unsigned long gp_seq_req, u8 level, int grplo, int grphi, const char *gpevent), TP_ARGS(rcuname, gp_seq, gp_seq_req, level, grplo, grphi, gpevent), TP_STRUCT__entry( __field(const char *, rcuname) __field(long, gp_seq) __field(long, gp_seq_req) __field(u8, level) __field(int, grplo) __field(int, grphi) __field(const char *, gpevent) ), TP_fast_assign( __entry->rcuname = rcuname; __entry->gp_seq = (long)gp_seq; __entry->gp_seq_req = (long)gp_seq_req; __entry->level = level; __entry->grplo = grplo; __entry->grphi = grphi; __entry->gpevent = gpevent; ), TP_printk("%s %ld %ld %u %d %d %s", __entry->rcuname, (long)__entry->gp_seq, (long)__entry->gp_seq_req, __entry->level, __entry->grplo, __entry->grphi, __entry->gpevent) ); /* * Tracepoint for grace-period-initialization events. These are * distinguished by the type of RCU, the new grace-period number, the * rcu_node structure level, the starting and ending CPU covered by the * rcu_node structure, and the mask of CPUs that will be waited for. * All but the type of RCU are extracted from the rcu_node structure. */ TRACE_EVENT_RCU(rcu_grace_period_init, TP_PROTO(const char *rcuname, unsigned long gp_seq, u8 level, int grplo, int grphi, unsigned long qsmask), TP_ARGS(rcuname, gp_seq, level, grplo, grphi, qsmask), TP_STRUCT__entry( __field(const char *, rcuname) __field(long, gp_seq) __field(u8, level) __field(int, grplo) __field(int, grphi) __field(unsigned long, qsmask) ), TP_fast_assign( __entry->rcuname = rcuname; __entry->gp_seq = (long)gp_seq; __entry->level = level; __entry->grplo = grplo; __entry->grphi = grphi; __entry->qsmask = qsmask; ), TP_printk("%s %ld %u %d %d %lx", __entry->rcuname, __entry->gp_seq, __entry->level, __entry->grplo, __entry->grphi, __entry->qsmask) ); /* * Tracepoint for expedited grace-period events. Takes a string identifying * the RCU flavor, the expedited grace-period sequence number, and a string * identifying the grace-period-related event as follows: * * "snap": Captured snapshot of expedited grace period sequence number. * "start": Started a real expedited grace period. * "reset": Started resetting the tree * "select": Started selecting the CPUs to wait on. * "selectofl": Selected CPU partially offline. * "startwait": Started waiting on selected CPUs. * "end": Ended a real expedited grace period. * "endwake": Woke piggybackers up. * "done": Someone else did the expedited grace period for us. */ TRACE_EVENT_RCU(rcu_exp_grace_period, TP_PROTO(const char *rcuname, unsigned long gpseq, const char *gpevent), TP_ARGS(rcuname, gpseq, gpevent), TP_STRUCT__entry( __field(const char *, rcuname) __field(long, gpseq) __field(const char *, gpevent) ), TP_fast_assign( __entry->rcuname = rcuname; __entry->gpseq = (long)gpseq; __entry->gpevent = gpevent; ), TP_printk("%s %ld %s", __entry->rcuname, __entry->gpseq, __entry->gpevent) ); /* * Tracepoint for expedited grace-period funnel-locking events. Takes a * string identifying the RCU flavor, an integer identifying the rcu_node * combining-tree level, another pair of integers identifying the lowest- * and highest-numbered CPU associated with the current rcu_node structure, * and a string. identifying the grace-period-related event as follows: * * "nxtlvl": Advance to next level of rcu_node funnel * "wait": Wait for someone else to do expedited GP */ TRACE_EVENT_RCU(rcu_exp_funnel_lock, TP_PROTO(const char *rcuname, u8 level, int grplo, int grphi, const char *gpevent), TP_ARGS(rcuname, level, grplo, grphi, gpevent), TP_STRUCT__entry( __field(const char *, rcuname) __field(u8, level) __field(int, grplo) __field(int, grphi) __field(const char *, gpevent) ), TP_fast_assign( __entry->rcuname = rcuname; __entry->level = level; __entry->grplo = grplo; __entry->grphi = grphi; __entry->gpevent = gpevent; ), TP_printk("%s %d %d %d %s", __entry->rcuname, __entry->level, __entry->grplo, __entry->grphi, __entry->gpevent) ); #ifdef CONFIG_RCU_NOCB_CPU /* * Tracepoint for RCU no-CBs CPU callback handoffs. This event is intended * to assist debugging of these handoffs. * * The first argument is the name of the RCU flavor, and the second is * the number of the offloaded CPU are extracted. The third and final * argument is a string as follows: * * "AlreadyAwake": The to-be-awakened rcuo kthread is already awake. * "Bypass": rcuo GP kthread sees non-empty ->nocb_bypass. * "CBSleep": rcuo CB kthread sleeping waiting for CBs. * "Check": rcuo GP kthread checking specified CPU for work. * "DeferredWake": Timer expired or polled check, time to wake. * "DoWake": The to-be-awakened rcuo kthread needs to be awakened. * "EndSleep": Done waiting for GP for !rcu_nocb_poll. * "FirstBQ": New CB to empty ->nocb_bypass (->cblist maybe non-empty). * "FirstBQnoWake": FirstBQ plus rcuo kthread need not be awakened. * "FirstBQwake": FirstBQ plus rcuo kthread must be awakened. * "FirstQ": New CB to empty ->cblist (->nocb_bypass maybe non-empty). * "NeedWaitGP": rcuo GP kthread must wait on a grace period. * "Poll": Start of new polling cycle for rcu_nocb_poll. * "Sleep": Sleep waiting for GP for !rcu_nocb_poll. * "Timer": Deferred-wake timer expired. * "WakeEmptyIsDeferred": Wake rcuo kthread later, first CB to empty list. * "WakeEmpty": Wake rcuo kthread, first CB to empty list. * "WakeNot": Don't wake rcuo kthread. * "WakeNotPoll": Don't wake rcuo kthread because it is polling. * "WakeOvfIsDeferred": Wake rcuo kthread later, CB list is huge. * "WakeBypassIsDeferred": Wake rcuo kthread later, bypass list is contended. * "WokeEmpty": rcuo CB kthread woke to find empty list. */ TRACE_EVENT_RCU(rcu_nocb_wake, TP_PROTO(const char *rcuname, int cpu, const char *reason), TP_ARGS(rcuname, cpu, reason), TP_STRUCT__entry( __field(const char *, rcuname) __field(int, cpu) __field(const char *, reason) ), TP_fast_assign( __entry->rcuname = rcuname; __entry->cpu = cpu; __entry->reason = reason; ), TP_printk("%s %d %s", __entry->rcuname, __entry->cpu, __entry->reason) ); #endif /* * Tracepoint for tasks blocking within preemptible-RCU read-side * critical sections. Track the type of RCU (which one day might * include SRCU), the grace-period number that the task is blocking * (the current or the next), and the task's PID. */ TRACE_EVENT_RCU(rcu_preempt_task, TP_PROTO(const char *rcuname, int pid, unsigned long gp_seq), TP_ARGS(rcuname, pid, gp_seq), TP_STRUCT__entry( __field(const char *, rcuname) __field(long, gp_seq) __field(int, pid) ), TP_fast_assign( __entry->rcuname = rcuname; __entry->gp_seq = (long)gp_seq; __entry->pid = pid; ), TP_printk("%s %ld %d", __entry->rcuname, __entry->gp_seq, __entry->pid) ); /* * Tracepoint for tasks that blocked within a given preemptible-RCU * read-side critical section exiting that critical section. Track the * type of RCU (which one day might include SRCU) and the task's PID. */ TRACE_EVENT_RCU(rcu_unlock_preempted_task, TP_PROTO(const char *rcuname, unsigned long gp_seq, int pid), TP_ARGS(rcuname, gp_seq, pid), TP_STRUCT__entry( __field(const char *, rcuname) __field(long, gp_seq) __field(int, pid) ), TP_fast_assign( __entry->rcuname = rcuname; __entry->gp_seq = (long)gp_seq; __entry->pid = pid; ), TP_printk("%s %ld %d", __entry->rcuname, __entry->gp_seq, __entry->pid) ); /* * Tracepoint for quiescent-state-reporting events. These are * distinguished by the type of RCU, the grace-period number, the * mask of quiescent lower-level entities, the rcu_node structure level, * the starting and ending CPU covered by the rcu_node structure, and * whether there are any blocked tasks blocking the current grace period. * All but the type of RCU are extracted from the rcu_node structure. */ TRACE_EVENT_RCU(rcu_quiescent_state_report, TP_PROTO(const char *rcuname, unsigned long gp_seq, unsigned long mask, unsigned long qsmask, u8 level, int grplo, int grphi, int gp_tasks), TP_ARGS(rcuname, gp_seq, mask, qsmask, level, grplo, grphi, gp_tasks), TP_STRUCT__entry( __field(const char *, rcuname) __field(long, gp_seq) __field(unsigned long, mask) __field(unsigned long, qsmask) __field(u8, level) __field(int, grplo) __field(int, grphi) __field(u8, gp_tasks) ), TP_fast_assign( __entry->rcuname = rcuname; __entry->gp_seq = (long)gp_seq; __entry->mask = mask; __entry->qsmask = qsmask; __entry->level = level; __entry->grplo = grplo; __entry->grphi = grphi; __entry->gp_tasks = gp_tasks; ), TP_printk("%s %ld %lx>%lx %u %d %d %u", __entry->rcuname, __entry->gp_seq, __entry->mask, __entry->qsmask, __entry->level, __entry->grplo, __entry->grphi, __entry->gp_tasks) ); /* * Tracepoint for quiescent states detected by force_quiescent_state(). * These trace events include the type of RCU, the grace-period number * that was blocked by the CPU, the CPU itself, and the type of quiescent * state, which can be "dti" for dyntick-idle mode or "kick" when kicking * a CPU that has been in dyntick-idle mode for too long. */ TRACE_EVENT_RCU(rcu_fqs, TP_PROTO(const char *rcuname, unsigned long gp_seq, int cpu, const char *qsevent), TP_ARGS(rcuname, gp_seq, cpu, qsevent), TP_STRUCT__entry( __field(const char *, rcuname) __field(long, gp_seq) __field(int, cpu) __field(const char *, qsevent) ), TP_fast_assign( __entry->rcuname = rcuname; __entry->gp_seq = (long)gp_seq; __entry->cpu = cpu; __entry->qsevent = qsevent; ), TP_printk("%s %ld %d %s", __entry->rcuname, __entry->gp_seq, __entry->cpu, __entry->qsevent) ); /* * Tracepoint for RCU stall events. Takes a string identifying the RCU flavor * and a string identifying which function detected the RCU stall as follows: * * "StallDetected": Scheduler-tick detects other CPU's stalls. * "SelfDetected": Scheduler-tick detects a current CPU's stall. * "ExpeditedStall": Expedited grace period detects stalls. */ TRACE_EVENT(rcu_stall_warning, TP_PROTO(const char *rcuname, const char *msg), TP_ARGS(rcuname, msg), TP_STRUCT__entry( __field(const char *, rcuname) __field(const char *, msg) ), TP_fast_assign( __entry->rcuname = rcuname; __entry->msg = msg; ), TP_printk("%s %s", __entry->rcuname, __entry->msg) ); #endif /* #if defined(CONFIG_TREE_RCU) */ /* * Tracepoint for dyntick-idle entry/exit events. These take 2 strings * as argument: * polarity: "Start", "End", "StillWatching" for entering, exiting or still not * being in EQS mode. * context: "USER" or "IDLE" or "IRQ". * NMIs nested in IRQs are inferred with nesting > 1 in IRQ context. * * These events also take a pair of numbers, which indicate the nesting * depth before and after the event of interest, and a third number that is * the RCU_WATCHING counter. Note that task-related and interrupt-related * events use two separate counters, and that the "++=" and "--=" events * for irq/NMI will change the counter by two, otherwise by one. */ TRACE_EVENT_RCU(rcu_watching, TP_PROTO(const char *polarity, long oldnesting, long newnesting, int counter), TP_ARGS(polarity, oldnesting, newnesting, counter), TP_STRUCT__entry( __field(const char *, polarity) __field(long, oldnesting) __field(long, newnesting) __field(int, counter) ), TP_fast_assign( __entry->polarity = polarity; __entry->oldnesting = oldnesting; __entry->newnesting = newnesting; __entry->counter = counter; ), TP_printk("%s %lx %lx %#3x", __entry->polarity, __entry->oldnesting, __entry->newnesting, __entry->counter & 0xfff) ); /* * Tracepoint for the registration of a single RCU callback function. * The first argument is the type of RCU, the second argument is * a pointer to the RCU callback itself, the third element is the * number of lazy callbacks queued, and the fourth element is the * total number of callbacks queued. */ TRACE_EVENT_RCU(rcu_callback, TP_PROTO(const char *rcuname, struct rcu_head *rhp, long qlen), TP_ARGS(rcuname, rhp, qlen), TP_STRUCT__entry( __field(const char *, rcuname) __field(void *, rhp) __field(void *, func) __field(long, qlen) ), TP_fast_assign( __entry->rcuname = rcuname; __entry->rhp = rhp; __entry->func = rhp->func; __entry->qlen = qlen; ), TP_printk("%s rhp=%p func=%ps %ld", __entry->rcuname, __entry->rhp, __entry->func, __entry->qlen) ); TRACE_EVENT_RCU(rcu_segcb_stats, TP_PROTO(struct rcu_segcblist *rs, const char *ctx), TP_ARGS(rs, ctx), TP_STRUCT__entry( __field(const char *, ctx) __array(unsigned long, gp_seq, RCU_CBLIST_NSEGS) __array(long, seglen, RCU_CBLIST_NSEGS) ), TP_fast_assign( __entry->ctx = ctx; memcpy(__entry->seglen, rs->seglen, RCU_CBLIST_NSEGS * sizeof(long)); memcpy(__entry->gp_seq, rs->gp_seq, RCU_CBLIST_NSEGS * sizeof(unsigned long)); ), TP_printk("%s seglen: (DONE=%ld, WAIT=%ld, NEXT_READY=%ld, NEXT=%ld) " "gp_seq: (DONE=%lu, WAIT=%lu, NEXT_READY=%lu, NEXT=%lu)", __entry->ctx, __entry->seglen[0], __entry->seglen[1], __entry->seglen[2], __entry->seglen[3], __entry->gp_seq[0], __entry->gp_seq[1], __entry->gp_seq[2], __entry->gp_seq[3]) ); /* * Tracepoint for the registration of a single RCU callback of the special * kvfree() form. The first argument is the RCU type, the second argument * is a pointer to the RCU callback, the third argument is the offset * of the callback within the enclosing RCU-protected data structure, * the fourth argument is the number of lazy callbacks queued, and the * fifth argument is the total number of callbacks queued. */ TRACE_EVENT_RCU(rcu_kvfree_callback, TP_PROTO(const char *rcuname, struct rcu_head *rhp, unsigned long offset, long qlen), TP_ARGS(rcuname, rhp, offset, qlen), TP_STRUCT__entry( __field(const char *, rcuname) __field(void *, rhp) __field(unsigned long, offset) __field(long, qlen) ), TP_fast_assign( __entry->rcuname = rcuname; __entry->rhp = rhp; __entry->offset = offset; __entry->qlen = qlen; ), TP_printk("%s rhp=%p func=%ld %ld", __entry->rcuname, __entry->rhp, __entry->offset, __entry->qlen) ); /* * Tracepoint for marking the beginning rcu_do_batch, performed to start * RCU callback invocation. The first argument is the RCU flavor, * the second is the number of lazy callbacks queued, the third is * the total number of callbacks queued, and the fourth argument is * the current RCU-callback batch limit. */ TRACE_EVENT_RCU(rcu_batch_start, TP_PROTO(const char *rcuname, long qlen, long blimit), TP_ARGS(rcuname, qlen, blimit), TP_STRUCT__entry( __field(const char *, rcuname) __field(long, qlen) __field(long, blimit) ), TP_fast_assign( __entry->rcuname = rcuname; __entry->qlen = qlen; __entry->blimit = blimit; ), TP_printk("%s CBs=%ld bl=%ld", __entry->rcuname, __entry->qlen, __entry->blimit) ); /* * Tracepoint for the invocation of a single RCU callback function. * The first argument is the type of RCU, and the second argument is * a pointer to the RCU callback itself. */ TRACE_EVENT_RCU(rcu_invoke_callback, TP_PROTO(const char *rcuname, struct rcu_head *rhp), TP_ARGS(rcuname, rhp), TP_STRUCT__entry( __field(const char *, rcuname) __field(void *, rhp) __field(void *, func) ), TP_fast_assign( __entry->rcuname = rcuname; __entry->rhp = rhp; __entry->func = rhp->func; ), TP_printk("%s rhp=%p func=%ps", __entry->rcuname, __entry->rhp, __entry->func) ); /* * Tracepoint for the invocation of a single RCU callback of the special * kvfree() form. The first argument is the RCU flavor, the second * argument is a pointer to the RCU callback, and the third argument * is the offset of the callback within the enclosing RCU-protected * data structure. */ TRACE_EVENT_RCU(rcu_invoke_kvfree_callback, TP_PROTO(const char *rcuname, struct rcu_head *rhp, unsigned long offset), TP_ARGS(rcuname, rhp, offset), TP_STRUCT__entry( __field(const char *, rcuname) __field(void *, rhp) __field(unsigned long, offset) ), TP_fast_assign( __entry->rcuname = rcuname; __entry->rhp = rhp; __entry->offset = offset; ), TP_printk("%s rhp=%p func=%ld", __entry->rcuname, __entry->rhp, __entry->offset) ); /* * Tracepoint for the invocation of a single RCU callback of the special * kfree_bulk() form. The first argument is the RCU flavor, the second * argument is a number of elements in array to free, the third is an * address of the array holding nr_records entries. */ TRACE_EVENT_RCU(rcu_invoke_kfree_bulk_callback, TP_PROTO(const char *rcuname, unsigned long nr_records, void **p), TP_ARGS(rcuname, nr_records, p), TP_STRUCT__entry( __field(const char *, rcuname) __field(unsigned long, nr_records) __field(void **, p) ), TP_fast_assign( __entry->rcuname = rcuname; __entry->nr_records = nr_records; __entry->p = p; ), TP_printk("%s bulk=0x%p nr_records=%lu", __entry->rcuname, __entry->p, __entry->nr_records) ); /* * Tracepoint for a normal synchronize_rcu() states. The first argument * is the RCU flavor, the second argument is a pointer to rcu_head the * last one is an event. */ TRACE_EVENT_RCU(rcu_sr_normal, TP_PROTO(const char *rcuname, struct rcu_head *rhp, const char *srevent), TP_ARGS(rcuname, rhp, srevent), TP_STRUCT__entry( __field(const char *, rcuname) __field(void *, rhp) __field(const char *, srevent) ), TP_fast_assign( __entry->rcuname = rcuname; __entry->rhp = rhp; __entry->srevent = srevent; ), TP_printk("%s rhp=0x%p event=%s", __entry->rcuname, __entry->rhp, __entry->srevent) ); /* * Tracepoint for exiting rcu_do_batch after RCU callbacks have been * invoked. The first argument is the name of the RCU flavor, * the second argument is number of callbacks actually invoked, * the third argument (cb) is whether or not any of the callbacks that * were ready to invoke at the beginning of this batch are still * queued, the fourth argument (nr) is the return value of need_resched(), * the fifth argument (iit) is 1 if the current task is the idle task, * and the sixth argument (risk) is the return value from * rcu_is_callbacks_kthread(). */ TRACE_EVENT_RCU(rcu_batch_end, TP_PROTO(const char *rcuname, int callbacks_invoked, char cb, char nr, char iit, char risk), TP_ARGS(rcuname, callbacks_invoked, cb, nr, iit, risk), TP_STRUCT__entry( __field(const char *, rcuname) __field(int, callbacks_invoked) __field(char, cb) __field(char, nr) __field(char, iit) __field(char, risk) ), TP_fast_assign( __entry->rcuname = rcuname; __entry->callbacks_invoked = callbacks_invoked; __entry->cb = cb; __entry->nr = nr; __entry->iit = iit; __entry->risk = risk; ), TP_printk("%s CBs-invoked=%d idle=%c%c%c%c", __entry->rcuname, __entry->callbacks_invoked, __entry->cb ? 'C' : '.', __entry->nr ? 'S' : '.', __entry->iit ? 'I' : '.', __entry->risk ? 'R' : '.') ); /* * Tracepoint for rcutorture readers. The first argument is the name * of the RCU flavor from rcutorture's viewpoint and the second argument * is the callback address. The third argument is the start time in * seconds, and the last two arguments are the grace period numbers * at the beginning and end of the read, respectively. Note that the * callback address can be NULL. */ #define RCUTORTURENAME_LEN 8 TRACE_EVENT_RCU(rcu_torture_read, TP_PROTO(const char *rcutorturename, struct rcu_head *rhp, unsigned long secs, unsigned long c_old, unsigned long c), TP_ARGS(rcutorturename, rhp, secs, c_old, c), TP_STRUCT__entry( __array(char, rcutorturename, RCUTORTURENAME_LEN) __field(struct rcu_head *, rhp) __field(unsigned long, secs) __field(unsigned long, c_old) __field(unsigned long, c) ), TP_fast_assign( strscpy(__entry->rcutorturename, rcutorturename, RCUTORTURENAME_LEN); __entry->rhp = rhp; __entry->secs = secs; __entry->c_old = c_old; __entry->c = c; ), TP_printk("%s torture read %p %luus c: %lu %lu", __entry->rcutorturename, __entry->rhp, __entry->secs, __entry->c_old, __entry->c) ); /* * Tracepoint for rcu_barrier() execution. The string "s" describes * the rcu_barrier phase: * "Begin": rcu_barrier() started. * "CB": An rcu_barrier_callback() invoked a callback, not the last. * "EarlyExit": rcu_barrier() piggybacked, thus early exit. * "Inc1": rcu_barrier() piggyback check counter incremented. * "Inc2": rcu_barrier() piggyback check counter incremented. * "IRQ": An rcu_barrier_callback() callback posted on remote CPU. * "IRQNQ": An rcu_barrier_callback() callback found no callbacks. * "LastCB": An rcu_barrier_callback() invoked the last callback. * "NQ": rcu_barrier() found a CPU with no callbacks. * "OnlineQ": rcu_barrier() found online CPU with callbacks. * The "cpu" argument is the CPU or -1 if meaningless, the "cnt" argument * is the count of remaining callbacks, and "done" is the piggybacking count. */ TRACE_EVENT_RCU(rcu_barrier, TP_PROTO(const char *rcuname, const char *s, int cpu, int cnt, unsigned long done), TP_ARGS(rcuname, s, cpu, cnt, done), TP_STRUCT__entry( __field(const char *, rcuname) __field(const char *, s) __field(int, cpu) __field(int, cnt) __field(unsigned long, done) ), TP_fast_assign( __entry->rcuname = rcuname; __entry->s = s; __entry->cpu = cpu; __entry->cnt = cnt; __entry->done = done; ), TP_printk("%s %s cpu %d remaining %d # %lu", __entry->rcuname, __entry->s, __entry->cpu, __entry->cnt, __entry->done) ); #endif /* _TRACE_RCU_H */ /* This part must be outside protection */ #include