/* $OpenBSD: eexp.c,v 1.1 2011/07/02 18:11:01 martynas Exp $ */ /* * Copyright (c) 2008 Stephen L. Moshier * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /* xexp.c */ /* exponential function check routine */ /* by Stephen L. Moshier. */ #include "ehead.h" void eexp( x, y ) unsigned short *x, *y; { unsigned short num[NE], den[NE], x2[NE]; long i; unsigned short sign, expchk; /* range reduction theory: x = i + f, 0<=f<1; * e**x = e**i * e**f * e**i = 2**(i/log 2). * Let i/log2 = i1 + f1, 0<=f1<1. * Then e**i = 2**i1 * 2**f1, so * e**x = 2**i1 * e**(log 2 * f1) * e**f. */ if( ecmp(x, ezero) == 0 ) { emov( eone, y ); return; } emov(x, x2); expchk = x2[NE-1]; sign = expchk & 0x8000; x2[NE-1] &= 0x7fff; /* Test for excessively large argument */ expchk &= 0x7fff; if( expchk > (EXONE + 15) ) { eclear( y ); if( sign == 0 ) einfin( y ); return; } eifrac( x2, &i, num ); /* x = i + f */ if( i != 0 ) { ltoe( &i, den ); /* floating point i */ ediv( elog2, den, den ); /* i/log 2 */ eifrac( den, &i, den ); /* i/log 2 = i1 + f1 */ emul( elog2, den, den ); /* log 2 * f1 */ eadd( den, num, x2 ); /* log 2 * f1 + f */ } /*x2[NE-1] -= 1;*/ eldexp( x2, -1L, x2 ); /* divide by 2 */ etanh( x2, x2 ); /* tanh( x/2 ) */ eadd( x2, eone, num ); /* 1 + tanh */ eneg( x2 ); eadd( x2, eone, den ); /* 1 - tanh */ ediv( den, num, y ); /* (1 + tanh)/(1 - tanh) */ /*y[NE-1] += i;*/ if( sign ) { ediv( y, eone, y ); i = -i; } eldexp( y, i, y ); /* multiply by 2**i */ }