1;;; -*-  Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*- ;;;;
2;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3;;;     The data in this file contains enhancments.                    ;;;;;
4;;;                                                                    ;;;;;
5;;;  Copyright (c) 1984,1987 by William Schelter,University of Texas   ;;;;;
6;;;     All rights reserved                                            ;;;;;
7;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
8;;;     (c) Copyright 1982 Massachusetts Institute of Technology         ;;;
9;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
10
11(in-package :maxima)
12
13(macsyma-module asum)
14
15(load-macsyma-macros rzmac)
16
17(declare-top (special opers *a *n $factlim sum msump *i *opers-list opers-list $ratsimpexpons makef $factorial_expand))
18
19(loop for (x y) on '(%cot %tan %csc %sin %sec %cos %coth %tanh %csch %sinh %sech %cosh)
20   by #'cddr do (putprop x y 'recip) (putprop y x 'recip))
21
22(defmvar $zeta%pi t)
23
24;; polynomial predicates and other such things
25
26(defun poly? (exp var)
27  (cond ((or (atom exp) (free exp var)))
28	((member (caar exp) '(mtimes mplus) :test #'eq)
29	 (do ((exp (cdr exp) (cdr exp)))
30	     ((null exp) t)
31	   (and (null (poly? (car exp) var)) (return nil))))
32	((and (eq (caar exp) 'mexpt)
33	      (integerp (caddr exp))
34	      (> (caddr exp) 0))
35	 (poly? (cadr exp) var))))
36
37(defun smono (x var)
38  (smonogen x var t))
39
40(defun smonop (x var)
41  (smonogen x var nil))
42
43(defun smonogen (x var fl)	; fl indicates whether to return *a *n
44  (cond ((free x var) (and fl (setq *n 0 *a x)) t)
45	((atom x) (and fl (setq *n (setq *a 1))) t)
46	((and (listp (car x))
47	      (eq (caar x) 'mtimes))
48	 (do ((x (cdr x) (cdr x))
49	      (a '(1)) (n '(0)))
50	     ((null x)
51	      (and fl (setq *n (addn n nil) *a (muln a nil))) t)
52	   (let (*a *n)
53	     (if (smonogen (car x) var fl)
54		 (and fl (setq a (cons *a a) n (cons *n n)))
55		 (return nil)))))
56	((and (listp (car x))
57	      (eq (caar x) 'mexpt))
58	 (cond ((and (free (caddr x) var) (eq (cadr x) var))
59		(and fl (setq *n (caddr x) *a 1)) t)))))
60
61;; factorial stuff
62
63(defmvar $factlim 100000) ; set to a big integer which will work (not -1)
64(defvar makef nil)
65
66(defmfun $genfact (&rest l)
67  (cons '(%genfact) l))
68
69(defun gfact (n %m i)
70  (cond ((minusp %m) (improper-arg-err %m '$genfact))
71	((= %m 0) 1)
72	(t (prog (ans)
73	      (setq ans n)
74	      a (if (= %m 1) (return ans))
75	      (setq n (m- n i) %m (1- %m) ans (m* ans n))
76	      (go a)))))
77
78;; From Richard Fateman's paper, "Comments on Factorial Programs",
79;; http://www.cs.berkeley.edu/~fateman/papers/factorial.pdf
80;;
81;; k(n,m) = n*(n-m)*(n-2*m)*...
82;;
83;; (k n 1) is n!
84;;
85;; This is much faster (3-4 times) than the original factorial
86;; function.
87
88(defun k (n m)
89  (if (<= n m)
90      n
91      (* (k n (* 2 m))
92	 (k (- n m) (* 2 m)))))
93
94(defun factorial (n)
95  (if (zerop n)
96      1
97      (k n 1)))
98
99;;; Factorial has mirror symmetry
100
101(defprop mfactorial t commutes-with-conjugate)
102
103(defun simpfact (x y z)
104  (oneargcheck x)
105  (setq y (simpcheck (cadr x) z))
106  (cond ((and (mnump y)
107              (eq ($sign y) '$neg)
108              (zerop1 (sub (simplify (list '(%truncate) y)) y)))
109         ;; Negative integer or a real representation of a negative integer.
110         (merror (intl:gettext "factorial: factorial of negative integer ~:M not defined.") y))
111        ((or (floatp y)
112             ($bfloatp y)
113             (and (not (integerp y))
114                  (not (ratnump y))
115                  (or (and (complex-number-p y 'float-or-rational-p)
116                           (or $numer
117                               (floatp ($realpart y))
118                               (floatp ($imagpart y))))
119                      (and (complex-number-p y 'bigfloat-or-number-p)
120                           (or $numer
121                               ($bfloatp ($realpart y))
122                               ($bfloatp ($imagpart y))))))
123             (and (not makef) (ratnump y) (equal (caddr y) 2)))
124         ;; Numerically evaluate for real or complex argument in float or
125         ;; bigfloat precision using the Gamma function
126	 (simplify (list '(%gamma) (add 1 y))))
127        ((eq y '$inf) '$inf)
128        ((and $factorial_expand
129              (mplusp y)
130              (integerp (cadr y)))
131         ;; factorial(n+m) and m integer. Expand.
132         (let ((m (cadr y))
133               (n (simplify (cons '(mplus) (cddr y)))))
134           (cond ((>= m 0)
135                  (mul
136                    (simplify (list '($pochhammer) (add n 1) m))
137                    (simplify (list '(mfactorial) n))))
138                 ((< m 0)
139                  (setq m (- m))
140                  (div
141                    (mul (power -1 m) (simplify (list '(mfactorial) n)))
142                    ;; We factor to get the ordering (n-1)*(n-2)*...
143                    ($factor
144                      (simplify (list '($pochhammer) (mul -1 n) m))))))))
145	((or (not (fixnump y)) (not (> y -1)))
146	 (eqtest (list '(mfactorial) y) x))
147	((or (minusp $factlim) (not (> y $factlim)))
148	 (factorial y))
149	(t (eqtest (list '(mfactorial) y) x))))
150
151(defun makegamma1 (e)
152  (cond ((atom e) e)
153	((eq (caar e) 'mfactorial)
154	 (list '(%gamma) (list '(mplus) 1 (makegamma1 (cadr e)))))
155
156	;; Begin code copied from orthopoly/orthopoly-init.lisp
157	;; Do pochhammer(x,n) ==> gamma(x+n)/gamma(x).
158
159	((eq (caar e) '$pochhammer)
160	 (let ((x (makegamma1 (nth 1 e)))
161	       (n (makegamma1 (nth 2 e))))
162	   (div (take '(%gamma) (add x n)) (take '(%gamma) x))))
163
164	;; (gamma(x/z+1)*z^floor(y))/gamma(x/z-floor(y)+1)
165
166	((eq (caar e) '%genfact)
167	 (let ((x (makegamma1 (nth 1 e)))
168	       (y (makegamma1 (nth 2 e)))
169	       (z (makegamma1 (nth 3 e))))
170	   (setq y (take '($floor) y))
171	   (div
172	    (mul
173	     (take '(%gamma) (add (div x z) 1))
174	     (power z y))
175	    (take '(%gamma) (sub (add (div x z) 1) y)))))
176	;; End code copied from orthopoly/orthopoly-init.lisp
177
178        ;; Double factorial
179
180        ((eq (caar e) '%double_factorial)
181         (let ((x (makegamma1 (nth 1 e))))
182           (mul
183             (power
184               (div 2 '$%pi)
185               (mul
186                 (div 1 4)
187                 (sub 1 (simplify (list '(%cos) (mul '$%pi x))))))
188             (power 2 (div x 2))
189             (simplify (list '(%gamma) (add 1 (div x 2)))))))
190
191	((eq (caar e) '%elliptic_kc)
192	 ;; Complete elliptic integral of the first kind
193	 (cond ((alike1 (cadr e) '((rat simp) 1 2))
194		;; K(1/2) = gamma(1/4)/4/sqrt(pi)
195		'((mtimes simp) ((rat simp) 1 4)
196		  ((mexpt simp) $%pi ((rat simp) -1 2))
197		  ((mexpt simp) ((%gamma simp) ((rat simp) 1 4)) 2)))
198	       ((or (alike1 (cadr e)
199			    '((mtimes simp) ((rat simp) 1 4)
200			      ((mplus simp) 2
201			       ((mexpt simp) 3 ((rat simp) 1 2)))))
202		    (alike1 (cadr e)
203			    '((mplus simp) ((rat simp) 1 2)
204			      ((mtimes simp) ((rat simp) 1 4)
205			       ((mexpt simp) 3 ((rat simp) 1 2)))))
206		    (alike1 (cadr e)
207			    ;; 1/(8-4*sqrt(3))
208			    '((mexpt simp)
209			      ((mplus simp) 8
210			       ((mtimes simp) -4
211				((mexpt simp) 3 ((rat simp) 1 2))))
212			      -1)))
213		;; K((2+sqrt(3)/4))
214		'((mtimes simp) ((rat simp) 1 4)
215		  ((mexpt simp) 3 ((rat simp) 1 4))
216		  ((mexpt simp) $%pi ((rat simp) -1 2))
217		  ((%gamma simp) ((rat simp) 1 6))
218		  ((%gamma simp) ((rat simp) 1 3))))
219	       ((or (alike1 (cadr e)
220			    ;; (2-sqrt(3))/4
221			    '((mtimes simp) ((rat simp) 1 4)
222			      ((mplus simp) 2
223			       ((mtimes simp) -1
224				((mexpt simp) 3 ((rat simp) 1 2))))))
225		    (alike1 (cadr e)
226			    ;; 1/2-sqrt(3)/4
227			    '((mplus simp) ((rat simp) 1 2)
228			      ((mtimes simp) ((rat simp) -1 4)
229			       ((mexpt simp) 3 ((rat simp) 1 2)))))
230		    (alike (cadr e)
231			   ;; 1/(4*sqrt(3)+8)
232			   '((mexpt simp)
233			     ((mplus simp) 8
234			      ((mtimes simp) 4
235			       ((mexpt simp) 3 ((rat simp) 1 2))))
236			     -1)))
237		;; K((2-sqrt(3))/4)
238		'((mtimes simp) ((rat simp) 1 4)
239		  ((mexpt simp) 3 ((rat simp) -1 4))
240		  ((mexpt simp) $%pi ((rat simp) -1 2))
241		  ((%gamma simp) ((rat simp) 1 6))
242		  ((%gamma simp) ((rat simp) 1 3))))
243	       ((or
244		 ;; (3-2*sqrt(2))/(3+2*sqrt(2))
245		 (alike1 (cadr e)
246			 '((mtimes simp)
247			   ((mplus simp) 3
248			    ((mtimes simp) -2
249			     ((mexpt simp) 2 ((rat simp) 1 2))))
250			   ((mexpt simp)
251			    ((mplus simp) 3
252			     ((mtimes simp) 2
253			      ((mexpt simp) 2 ((rat simp) 1 2)))) -1)))
254		 ;; 17 - 12*sqrt(2)
255		 (alike1 (cadr e)
256			 '((mplus simp) 17
257			   ((mtimes simp) -12
258			    ((mexpt simp) 2 ((rat simp) 1 2)))))
259		 ;;   (2*SQRT(2) - 3)/(2*SQRT(2) + 3)
260		 (alike1 (cadr e)
261			 '((mtimes simp) -1
262			   ((mplus simp) -3
263			    ((mtimes simp) 2
264			     ((mexpt simp) 2 ((rat simp) 1 2))))
265			   ((mexpt simp)
266			    ((mplus simp) 3
267			     ((mtimes simp) 2
268			      ((mexpt simp) 2 ((rat simp) 1 2))))
269			    -1))))
270		'((mtimes simp) ((rat simp) 1 8)
271		  ((mexpt simp) 2 ((rat simp) -1 2))
272		  ((mplus simp) 1 ((mexpt simp) 2 ((rat simp) 1 2)))
273		  ((mexpt simp) $%pi ((rat simp) -1 2))
274		  ((mexpt simp) ((%gamma simp) ((rat simp) 1 4)) 2)))
275	       (t
276		;; Give up
277		e)))
278	((eq (caar e) '%elliptic_ec)
279	 ;; Complete elliptic integral of the second kind
280	 (cond ((alike1 (cadr e) '((rat simp) 1 2))
281		;; 2*E(1/2) - K(1/2) = 2*%pi^(3/2)*gamma(1/4)^(-2)
282		'((mplus simp)
283		  ((mtimes simp) ((mexpt simp) $%pi ((rat simp) 3 2))
284		   ((mexpt simp)
285		    ((%gamma simp irreducible) ((rat simp) 1 4)) -2))
286		  ((mtimes simp) ((rat simp) 1 8)
287		   ((mexpt simp) $%pi ((rat simp) -1 2))
288		   ((mexpt simp) ((%gamma simp) ((rat simp) 1 4)) 2))))
289	       ((or (alike1 (cadr e)
290			    '((mtimes simp) ((rat simp) 1 4)
291			      ((mplus simp) 2
292			       ((mtimes simp) -1
293				((mexpt simp) 3 ((rat simp) 1 2))))))
294		    (alike1 (cadr e)
295			    '((mplus simp) ((rat simp) 1 2)
296			      ((mtimes simp) ((rat simp) -1 4)
297			       ((mexpt simp) 3 ((rat simp) 1 2))))))
298		;; E((2-sqrt(3))/4)
299		;;
300		;; %pi/4/sqrt(3) = K*(E-(sqrt(3)+1)/2/sqrt(3)*K)
301		'((mplus simp)
302		  ((mtimes simp) ((mexpt simp) 3 ((rat simp) -1 4))
303		   ((mexpt simp) $%pi ((rat simp) 3 2))
304		   ((mexpt simp) ((%gamma simp) ((rat simp) 1 6)) -1)
305		   ((mexpt simp) ((%gamma simp) ((rat simp) 1 3)) -1))
306		  ((mtimes simp) ((rat simp) 1 8)
307		   ((mexpt simp) 3 ((rat simp) -3 4))
308		   ((mexpt simp) $%pi ((rat simp) -1 2))
309		   ((%gamma simp) ((rat simp) 1 6))
310		   ((%gamma simp) ((rat simp) 1 3)))
311		  ((mtimes simp) ((rat simp) 1 8)
312		   ((mexpt simp) 3 ((rat simp) -1 4))
313		   ((mexpt simp) $%pi ((rat simp) -1 2))
314		   ((%gamma simp) ((rat simp) 1 6))
315		   ((%gamma simp) ((rat simp) 1 3)))))
316	       ((or (alike1 (cadr e)
317			    '((mtimes simp) ((rat simp) 1 4)
318			      ((mplus simp) 2
319			       ((mexpt simp) 3 ((rat simp) 1 2)))))
320		    (alike1 (cadr e)
321			    '((mplus simp) ((rat simp) 1 2)
322			      ((mtimes simp) ((rat simp) 1 4)
323			       ((mexpt simp) 3 ((rat simp) 1 2))))))
324		;; E((2+sqrt(3))/4)
325		;;
326		;; %pi*sqrt(3)/4 = K1*(E1-(sqrt(3)-1)/2/sqrt(3)*K1)
327		'((mplus simp)
328		  ((mtimes simp) 3 ((mexpt simp) 3 ((rat simp) -3 4))
329		   ((mexpt simp) $%pi ((rat simp) 3 2))
330		   ((mexpt simp) ((%gamma simp) ((rat simp) 1 6)) -1)
331		   ((mexpt simp) ((%gamma simp) ((rat simp) 1 3)) -1))
332		  ((mtimes simp) ((rat simp) 3 8)
333		   ((mexpt simp) 3 ((rat simp) -3 4))
334		   ((mexpt simp) $%pi ((rat simp) -1 2))
335		   ((%gamma simp) ((rat simp) 1 6))
336		   ((%gamma simp) ((rat simp) 1 3)))
337		  ((mtimes simp) ((rat simp) -1 8)
338		   ((mexpt simp) 3 ((rat simp) -1 4))
339		   ((mexpt simp) $%pi ((rat simp) -1 2))
340		   ((%gamma simp) ((rat simp) 1 6))
341		   ((%gamma simp) ((rat simp) 1 3)))))
342	       (t
343		e)))
344	(t (recur-apply #'makegamma1 e))))
345
346(defun simpgfact (x vestigial z)
347  (declare (ignore vestigial))
348  (arg-count-check 3 x)
349  (setq z (mapcar #'(lambda (q) (simpcheck q z)) (cdr x)))
350  (let ((a (car z)) (b (take '($floor) (cadr z))) (c (caddr z)))
351    (cond ((and (fixnump a)
352                (fixnump b)
353                (fixnump c))
354           (if (and (> a -1)
355                    (> b -1)
356                    (or (<= c a) (= b 0))
357                    (<= b (/ a c)))
358             (gfact a b c)
359             (merror (intl:gettext "genfact: generalized factorial not defined for given arguments."))))
360	  (t (eqtest (list '(%genfact) a
361			   (if (and (not (atom b))
362				    (eq (caar b) '$floor))
363			       (cadr b)
364			     b)
365			   c)
366		     x)))))
367
368;; sum begins
369
370(defmvar $cauchysum nil
371  "When multiplying together sums with INF as their upper limit,
372causes the Cauchy product to be used rather than the usual product.
373In the Cauchy product the index of the inner summation is a function of
374the index of the outer one rather than varying independently."
375  modified-commands '$sum)
376
377(defmvar $gensumnum 0
378  "The numeric suffix used to generate the next variable of
379summation.  If it is set to FALSE then the index will consist only of
380GENINDEX with no numeric suffix."
381  modified-commands '$sum
382  setting-predicate #'(lambda (x) (or (null x) (integerp x))))
383
384(defmvar $genindex '$i
385  "The alphabetic prefix used to generate the next variable of
386summation when necessary."
387  modified-commands '$sum
388  setting-predicate #'symbolp)
389
390(defmvar $zerobern t)
391(defmvar $simpsum nil)
392(defmvar $simpproduct nil)
393
394(defvar *infsumsimp t)
395
396;; These variables should be initialized where they belong.
397
398(defmvar $cflength 1)
399(defmvar $taylordepth 3)
400(defmvar $maxtaydiff 4)
401(defmvar $verbose nil)
402(defvar *trunclist nil)
403(defvar ps-bmt-disrep t)
404(defvar silent-taylor-flag nil)
405
406(defmacro sum-arg (sum)
407  `(cadr ,sum))
408
409(defmacro sum-index (sum)
410  `(caddr ,sum))
411
412(defmacro sum-lower (sum)
413  `(cadddr ,sum))
414
415(defmacro sum-upper (sum)
416  `(cadr (cdddr ,sum)))
417
418(defmspec $sum (l)
419  (arg-count-check 4 l)
420  (setq l (cdr l))
421  (dosum (car l) (cadr l) (meval (caddr l)) (meval (cadddr l)) t :evaluate-summand t))
422
423
424(defmspec $lsum (l)
425  (arg-count-check 3 l)
426  (setq l (cdr l))
427  ;;(or (= (length l) 3) (wna-err '$lsum))
428  (let ((form (car l))
429	(ind (cadr l))
430	(lis (meval (caddr l)))
431	(ans 0))
432    (or (symbolp ind) (merror (intl:gettext "lsum: second argument must be a variable; found ~M") ind))
433    (cond (($listp lis)
434	   (loop for v in (cdr lis)
435	      with lind = (cons ind nil)
436	      for w = (cons v nil)
437	      do
438	      (setq ans (add* ans  (mbinding (lind w) (meval form)))))
439	   ans)
440	  (t `((%lsum) ,form ,ind ,lis)))))
441
442(defun simpsum (x y z)
443  (let (($ratsimpexpons t))
444    (setq y (simplifya (sum-arg x) z)))
445  (simpsum1 y (sum-index x) (simplifya (sum-lower x) z)
446	    (simplifya (sum-upper x) z)))
447
448; This function was SIMPSUM1 until the sum/product code was revised Nov 2005.
449; The revised code punts back to this function since this code knows
450; some simplifications not handled by the revised code. -- Robert Dodier
451
452(defun simpsum1-save (exp i lo hi)
453  (cond ((not (symbolp i)) (merror (intl:gettext "sum: index must be a symbol; found ~M") i))
454	((equal lo hi) (mbinding ((list i) (list hi)) (meval exp)))
455	((and (atom exp)
456	      (not (eq exp i))
457	      (getl '%sum '($outative $linear)))
458	 (freesum exp lo hi 1))
459	((null $simpsum) (list (get '%sum 'msimpind) exp i lo hi))
460	((and (or (eq lo '$minf)
461		  (alike1 lo '((mtimes simp) -1 $inf)))
462	      (equal hi '$inf))
463	 (let ((pos-part (simpsum2 exp i 0 '$inf))
464	       (neg-part (simpsum2 (maxima-substitute (m- i) i exp) i 1 '$inf)))
465	   (cond
466	     ((or (eq neg-part '$und)
467		  (eq pos-part '$und))
468	      '$und)
469	     ((eq pos-part '$inf)
470	      (if (eq neg-part '$minf) '$und '$inf))
471	     ((eq pos-part '$minf)
472	      (if (eq neg-part '$inf) '$und '$minf))
473	     ((or (eq neg-part '$inf) (eq neg-part '$minf))
474	      neg-part)
475	     (t (m+ neg-part pos-part)))))
476	((or (eq lo '$minf)
477	     (alike1 lo '((mtimes simp) -1 '$inf)))
478	 (simpsum2 (maxima-substitute (m- i) i exp) i (m- hi) '$inf))
479	(t (simpsum2 exp i lo hi))))
480
481;; DOSUM, MEVALSUMARG, DO%SUM -- general principles
482
483;;  - evaluate the summand/productand
484;;  - substitute a gensym for the index variable and make assertions (via assume) about the gensym index
485;;  - return 0/1 for empty sum/product. sumhack/prodhack are ignored
486;;  - distribute sum/product over mbags when listarith = true
487
488(defun dosum (expr ind low hi sump &key (evaluate-summand t))
489  (setq low (ratdisrep low) hi (ratdisrep hi)) ;; UGH, GAG WITH ME A SPOON
490  (if (not (symbolp ind))
491      (merror (intl:gettext "~:M: index must be a symbol; found ~M") (if sump '$sum '$product) ind))
492  (unwind-protect
493       (prog (u *i lind l*i *hl)
494	  (setq lind (cons ind nil))
495	  (cond
496	    ((not (fixnump (setq *hl (mfuncall '$floor (m- hi low)))))
497	     (if evaluate-summand (setq expr (mevalsumarg expr ind low hi)))
498	     (return (cons (if sump '(%sum) '(%product))
499			   (list expr ind low hi))))
500	    ((signp l *hl)
501	     (return (if sump 0 1))))
502	  (setq *i low l*i (list *i) u (if sump 0 1))
503	  lo (setq u
504		   (if sump
505		       (add u (resimplify (let* ((foo (mbinding (lind l*i) (meval expr)))
506						 (bar (subst-if-not-freeof *i ind foo)))
507					    bar)))
508		       (mul u (resimplify (let* ((foo (mbinding (lind l*i) (meval expr)))
509						 (bar (subst-if-not-freeof *i ind foo)))
510					    bar)))))
511	  (when (zerop *hl) (return u))
512	  (setq *hl (1- *hl))
513	  (setq *i (car (rplaca l*i (m+ *i 1))))
514	  (go lo))))
515
516(defun subst-if-not-freeof (x y expr)
517  (if ($freeof y expr)
518      expr
519      (if (atom expr)
520	  x
521	  (let* ((args (cdr expr))
522		 (L (eval `(mapcar (lambda (a) (subst-if-not-freeof ',x ',y a)) ',args))))
523	    (cons (car expr) L)))))
524
525(defun mevalsumarg (expr ind low hi)
526  (if (let (($prederror nil))
527	(eq (mevalp `((mlessp) ,hi ,low)) t))
528      0)
529
530  (let ((gensym-ind (gensym)))
531    (if (apparently-integer low)
532	(meval `(($declare) ,gensym-ind $integer)))
533    (assume (list '(mgeqp) gensym-ind low))
534    (if (not (eq hi '$inf))
535	(assume (list '(mgeqp) hi gensym-ind)))
536    (let ((msump t) (foo) (summand))
537      (setq summand
538            (if (and (not (atom expr)) (get (caar expr) 'mevalsumarg-macro))
539		(funcall (get (caar expr) 'mevalsumarg-macro) expr)
540		expr))
541      (let (($simp nil))
542        (setq summand ($substitute gensym-ind ind summand)))
543      (setq foo (mbinding ((list gensym-ind) (list gensym-ind))
544                          (resimplify (meval summand))))
545      ;; At this point we do not switch off simplification to preserve
546      ;; the achieved simplification of the summand (DK 02/2010).
547      (let (($simp t))
548	(setq foo ($substitute ind gensym-ind foo)))
549      (if (not (eq hi '$inf))
550	  (forget (list '(mgeqp) hi gensym-ind)))
551      (forget (list '(mgeqp) gensym-ind low))
552      (if (apparently-integer low)
553	  (meval `(($remove) ,gensym-ind $integer)))
554      foo)))
555
556(defun apparently-integer (x)
557  (or ($integerp x) ($featurep x '$integer)))
558
559(defun do%sum (l op)
560  (if (not (= (length l) 4)) (wna-err op))
561  (let ((ind (cadr l)))
562    (if (mquotep ind) (setq ind (cadr ind)))
563    (if (not (symbolp ind))
564      (merror (intl:gettext "~:M: index must be a symbol; found ~M") op ind))
565    (let ((low (caddr l))
566	  (hi (cadddr l)))
567      (list (mevalsumarg (car l) ind low hi)
568            ind (meval (caddr l)) (meval (cadddr l))))))
569
570(defun simpsum1 (e k lo hi)
571  (with-new-context (context)
572    (let ((acc 0) (n) (sgn) ($prederror nil) (i (gensym)) (ex))
573      (setq lo ($ratdisrep lo))
574      (setq hi ($ratdisrep hi))
575
576      (setq n ($limit (add 1 (sub hi lo))))
577      (setq sgn ($sign n))
578
579      (if (not (eq t (csign lo))) (mfuncall '$assume `((mgeqp) ,i ,lo)))
580      (if (not (eq t (csign hi))) (mfuncall '$assume `((mgeqp) ,hi ,i)))
581
582      (setq ex (subst i k e))
583      (setq ex (subst i k ex))
584
585      (setq acc
586            (cond ((and (eq n '$inf) ($freeof i ex))
587                   (setq sgn (csign ex))
588                   (cond ((eq sgn '$pos) '$inf)
589                         ((eq sgn '$neg) '$minf)
590                         ((eq sgn '$zero) 0)
591                         (t `((%sum simp) ,ex ,i ,lo ,hi))))
592
593                  ((and (mbagp e) $listarith)
594                   (simplifya
595                    `((,(caar e)) ,@(mapcar #'(lambda (s) (mfuncall '$sum s k lo hi)) (margs e))) t))
596
597                  ((or (eq sgn '$neg) (eq sgn '$zero) (eq sgn '$nz)) 0)
598
599                  ((like ex 0) 0)
600
601                  (($freeof i ex) (mult n ex))
602
603                  ((and (integerp n) (eq sgn '$pos) $simpsum)
604                   (dotimes (j n acc)
605                     (setq acc (add acc (resimplify (subst (add j lo) i ex))))))
606
607                  (t
608                   (setq ex (subst '%sum '$sum ex))
609                   `((%sum simp) ,(subst k i ex) ,k ,lo ,hi))))
610
611      (setq acc (subst k i acc))
612
613      ;; If expression is still a summation,
614      ;; punt to previous simplification code.
615
616      (if (and $simpsum (op-equalp acc '$sum '%sum))
617        (let* ((args (cdr acc)) (e (first args)) (i (second args)) (i0 (third args)) (i1 (fourth args)))
618          (setq acc (simpsum1-save e i i0 i1))))
619
620      acc)))
621
622(defun simpprod1 (e k lo hi)
623  (with-new-context (context)
624    (let ((acc 1) (n) (sgn) ($prederror nil) (i (gensym)) (ex) (ex-mag) (realp))
625
626      (setq lo ($ratdisrep lo))
627      (setq hi ($ratdisrep hi))
628      (setq n ($limit (add 1 (sub hi lo))))
629      (setq sgn ($sign n))
630
631      (if (not (eq t (csign lo))) (mfuncall '$assume `((mgeqp) ,i ,lo)))
632      (if (not (eq t (csign hi))) (mfuncall '$assume `((mgeqp) ,hi ,i)))
633
634      (setq ex (subst i k e))
635      (setq ex (subst i k ex))
636
637      (setq acc
638            (cond
639              ((like ex 1) 1)
640
641              ((and (eq n '$inf) ($freeof i ex))
642               (setq ex-mag (mfuncall '$cabs ex))
643               (setq realp (mfuncall '$imagpart ex))
644               (setq realp (mevalp `((mequal) 0 ,realp)))
645
646               (cond ((eq t (mevalp `((mlessp) ,ex-mag 1))) 0)
647                     ((and (eq realp t) (eq t (mevalp `((mgreaterp) ,ex 1)))) '$inf)
648                     ((eq t (mevalp `((mgreaterp) ,ex-mag 1))) '$infinity)
649                     ((eq t (mevalp `((mequal) 1 ,ex-mag))) '$und)
650                     (t `((%product) ,e ,k ,lo ,hi))))
651
652              ((or (eq sgn '$neg) (eq sgn '$zero) (eq sgn '$nz))
653               1)
654
655              ((and (mbagp e) $listarith)
656               (simplifya
657                `((,(caar e)) ,@(mapcar #'(lambda (s) (mfuncall '$product s k lo hi)) (margs e))) t))
658
659              (($freeof i ex) (power ex n))
660
661              ((and (integerp n) (eq sgn '$pos) $simpproduct)
662               (dotimes (j n acc)
663                 (setq acc (mult acc (resimplify (subst (add j lo) i ex))))))
664
665              (t
666               (setq ex (subst '%product '$product ex))
667               `((%product simp) ,(subst k i ex) ,k ,lo ,hi))))
668
669      ;; Hmm, this is curious... don't call existing product simplifications
670      ;; if index range is infinite -- what's up with that??
671
672      (if (and $simpproduct (op-equalp acc '$product '%product) (not (like n '$inf)))
673        (let* ((args (cdr acc)) (e (first args)) (i (second args)) (i0 (third args)) (i1 (fourth args)))
674          (setq acc (simpprod1-save e i i0 i1))))
675
676      (setq acc (subst k i acc))
677      (setq acc (subst '%product '$product acc))
678
679      acc)))
680
681; This function was SIMPPROD1 until the sum/product code was revised Nov 2005.
682; The revised code punts back to this function since this code knows
683; some simplifications not handled by the revised code. -- Robert Dodier
684
685(defun simpprod1-save (exp i lo hi)
686  (let (u)
687    (cond ((not (symbolp i)) (merror (intl:gettext "product: index must be a symbol; found ~M") i))
688	  ((alike1 lo hi)
689	   (let ((valist (list i)))
690	     (mbinding (valist (list hi))
691		       (meval exp))))
692	  ((eq ($sign (setq u (m- hi lo))) '$neg)
693	   (cond ((eq ($sign (add2 u 1)) '$zero) 1)
694		 (t (merror (intl:gettext "product: lower bound ~M greater than upper bound ~M") lo hi))))
695	  ((atom exp)
696	   (cond ((null (eq exp i))
697		  (power* exp (list '(mplus) hi 1 (list '(mtimes) -1 lo))))
698		 ((let ((lot (asksign lo)))
699		    (cond ((equal lot '$zero) 0)
700			  ((eq lot '$positive)
701			   (m// (list '(mfactorial) hi)
702				(list '(mfactorial) (list '(mplus) lo -1))))
703			  ((m* (list '(mfactorial)
704				     (list '(mabs) lo))
705			       (cond ((member (asksign hi) '($zero $positive) :test #'eq)
706				      0)
707				     (t (prog1
708					    (m^ -1 (m+ hi lo 1))
709					  (setq hi (list '(mabs) hi)))))
710			       (list '(mfactorial) hi))))))))
711	  ((list '(%product simp) exp i lo hi)))))
712
713
714;; multiplication of sums
715
716(defun gensumindex ()
717  (intern (format nil "~S~D" $genindex (incf $gensumnum))))
718
719(defun sumtimes (x y)
720  (cond ((null x) y)
721	((null y) x)
722	((or (safe-zerop  x) (safe-zerop y)) 0)
723	((or (atom x) (not (eq (caar x) '%sum))) (sumultin x y))
724	((or (atom y) (not (eq (caar y) '%sum))) (sumultin y x))
725	(t (let (u v i j)
726	     (if (great (sum-arg x) (sum-arg y)) (setq u y v x) (setq u x v y))
727	     (setq i (let ((ind (gensumindex)))
728		       (setq u (subst ind (sum-index u) u)) ind))
729	     (setq j (let ((ind (gensumindex)))
730		       (setq v (subst ind (sum-index v) v)) ind))
731	     (if (and $cauchysum (eq (sum-upper u) '$inf)
732		      (eq (sum-upper v) '$inf))
733		 (list '(%sum)
734		       (list '(%sum)
735			     (sumtimes (maxima-substitute j i (sum-arg u))
736				       (maxima-substitute (m- i j) j (sum-arg v)))
737			     j (sum-lower u) (m- i (sum-lower v)))
738		       i (m+ (sum-lower u) (sum-lower v)) '$inf)
739		 (list '(%sum)
740		       (list '(%sum) (sumtimes (sum-arg u) (sum-arg v))
741			     j (sum-lower v) (sum-upper v))
742		       i (sum-lower u) (sum-upper u)))))))
743
744(defun sumultin (x s)	  ; Multiplies x into a sum adjusting indices.
745  (cond ((or (atom s) (not (eq (caar s) '%sum))) (m* x s))
746	((free x (sum-index s))
747	 (list* (car s) (sumultin x (sum-arg s)) (cddr s)))
748	(t (let ((ind (gensumindex)))
749	     (list* (car s)
750		    (sumultin x (subst ind (sum-index s) (sum-arg s)))
751		    ind
752		    (cdddr s))))))
753
754;; addition of sums
755
756(defun sumpls (sum out)
757  (prog (l)
758     (if (null out) (return (cons sum nil)))
759     (setq out (setq l (cons nil out)))
760     a 	(if (null (cdr out)) (return (cons sum (cdr l))))
761     (and (not (atom (cadr out)))
762	  (consp (caadr out))
763	  (eq (caar (cadr out)) '%sum)
764	  (alike1 (sum-arg (cadr out)) (sum-arg sum))
765	  (alike1 (sum-index (cadr out)) (sum-index sum))
766	  (cond ((onediff (sum-upper (cadr out)) (sum-lower sum))
767		 (setq sum (list (car sum)
768				 (sum-arg sum)
769				 (sum-index sum)
770				 (sum-lower (cadr out))
771				 (sum-upper sum)))
772		 (rplacd out (cddr out))
773		 (go a))
774		((onediff (sum-upper sum) (sum-lower (cadr out)))
775		 (setq sum (list (car sum)
776				 (sum-arg sum)
777				 (sum-index sum)
778				 (sum-lower sum)
779				 (sum-upper (cadr out))))
780		 (rplacd out (cddr out))
781		 (go a))))
782     (setq out (cdr out))
783     (go a)))
784
785(defun onediff (x y)
786  (equal 1 (m- y x)))
787
788(defun freesum (e b a q)
789  (m* e q (m- (m+ a 1) b)))
790
791;; linear operator stuff
792
793(defparameter *opers-list '(($linear . linearize1)))
794(defparameter  opers (list '$linear))
795
796(defun oper-apply (e z)
797  (cond ((null opers-list)
798	 (let ((w (get (caar e) 'operators)))
799	   (if w (funcall w e 1 z) (simpargs e z))))
800	((get (caar e) (caar opers-list))
801	 (let ((opers-list (cdr opers-list))
802	       (fun (cdar opers-list)))
803	   (funcall fun e z)))
804	(t (let ((opers-list (cdr opers-list)))
805	     (oper-apply e z)))))
806
807;; Define an operator simplification, the same as antisymmetric, commutative, linear, etc.
808;; Here OP = operator name, FN = function of 1 argument to carry out operator-specific simplification.
809;; 1. push operator name onto OPERS
810;; 2. update $OPPROPERTIES
811;; 3. push operator name and glue code onto *OPERS-LIST
812;; 4. declare operator name as a feature, so declare(..., <op>) is recognized
813
814(defmfun $define_opproperty (op fn)
815  (unless (symbolp op)
816    (merror "define_opproperty: first argument must be a symbol; found: ~M" op))
817  (unless (or (symbolp fn) (and (consp fn) (eq (caar fn) 'lambda)))
818    (merror "define_opproperty: second argument must be a symbol or lambda expression; found: ~M" fn))
819  (push op opers)
820  (setq $opproperties (cons '(mlist simp) (reverse opers)))
821  (let
822    ((fn-glue (coerce (if (symbolp fn)
823                        `(lambda (e z)
824                           (declare (ignorable z))
825                           (if (or (fboundp ',fn) (mget ',fn 'mexpr))
826                             (let ((e1 (let ($simp) (mfuncall ',fn e))))
827                               (if ($mapatom e1) e1 (oper-apply e1 nil)))
828                             (list '(,fn) (let ((*opers-list (cdr *opers-list))) (oper-apply e z)))))
829                        `(lambda (e z)
830                           (declare (ignore z))
831                           (let ((e1 (let ($simp) (mfuncall ',fn e))))
832                             (if ($mapatom e1) e1 (oper-apply e1 nil)))))
833                      'function)))
834    (push `(,op . ,fn-glue) *opers-list))
835  (mfuncall '$declare op '$feature))
836
837(defun linearize1 (e z)		; z = t means args already simplified.
838  (linearize2 (cons (car e) (mapcar #'(lambda (q) (simpcheck q z)) (cdr e)))
839	      nil))
840
841(defun opident (op)
842  (cond ((eq op 'mplus) 0)
843	((eq op 'mtimes) 1)))
844
845(defun rem-const (e)			;removes constantp stuff
846  (do ((l (cdr e) (cdr l))
847       (a (list (opident (caar e))))
848       (b (list (opident (caar e)))))
849      ((null l)
850       (cons (simplifya (cons (list (caar e)) a) nil)
851	     (simplifya (cons (list (caar e)) b) nil)))
852    (if ($constantp (car l))
853	(setq a (cons (car l) a))
854	(setq b (cons (car l) b)))))
855
856(defun linearize2 (e times)
857  (cond ((linearconst e))
858	((atom (cadr e)) (oper-apply e t))
859	((eq (caar (cadr e)) 'mplus)
860	 (addn (mapcar #'(lambda (q)
861			   (linearize2 (list* (car e) q (cddr e)) nil))
862		       (cdr (cadr e)))
863	       t))
864	((and (eq (caar (cadr e)) 'mtimes) (null times))
865	 (let ((z (if (and (cddr e)
866			   (or (atom (caddr e))
867			       ($subvarp (caddr e))))
868		      (partition (cadr e) (caddr e) 1)
869		      (rem-const (cadr e))))
870	       (w))
871	   (setq w (linearize2 (list* (car e)
872				      (simplifya (cdr z) t)
873				      (cddr e))
874			       t))
875	   (linearize3 w e (car z))))
876	(t (oper-apply e t))))
877
878(defun linearconst (e)
879  (if (or (mnump (cadr e))
880	  (constant (cadr e))
881	  (and (cddr e)
882	       (or (atom (caddr e)) (member 'array (cdar (caddr e)) :test #'eq))
883	       (free (cadr e) (caddr e))))
884      (if (or (zerop1 (cadr e))
885	      (and (member (caar e) '(%sum %integrate) :test #'eq)
886		   (= (length e) 5)
887		   (or (eq (cadddr e) '$minf)
888		       (member (car (cddddr e)) '($inf $infinity) :test #'eq))
889		   (eq ($asksign (cadr e)) '$zero)))
890	  0
891	  (let ((w (oper-apply (list* (car e) 1 (cddr e)) t)))
892	    (linearize3 w e (cadr e))))))
893
894(defun linearize3 (w e x)
895  (let (w1)
896    (if (and (member w '($inf $minf $infinity) :test #'eq) (safe-zerop x))
897	(merror (intl:gettext "LINEARIZE3: undefined form 0*inf: ~M") e))
898    (setq w (mul2 (simplifya x t) w))
899    (cond ((or (atom w) (getl (caar w) '($outative $linear))) (setq w1 1))
900	  ((eq (caar w) 'mtimes)
901	   (setq w1 (cons '(mtimes) nil))
902	   (do ((w2 (cdr w) (cdr w2)))
903	       ((null w2) (setq w1 (nreverse w1)))
904	     (if (or (atom (car w2))
905		     (not (getl (caaar w2) '($outative $linear))))
906		 (setq w1 (cons (car w2) w1)))))
907	  (t (setq w1 w)))
908    (if (and (not (atom w1)) (or (among '$inf w1) (among '$minf w1)))
909	(infsimp w)
910	w)))
911
912(setq opers (cons '$additive opers)
913      *opers-list (cons '($additive . additive) *opers-list))
914
915(defun rem-opers-p (p)
916  (cond ((eq (caar opers-list) p)
917	 (setq opers-list (cdr p)))
918	((do ((l opers-list (cdr l)))
919	     ((null l))
920	   (if (eq (caar (cdr l)) p)
921	       (return (rplacd l (cddr l))))))))
922
923(defun additive (e z)
924  (cond ((get (caar e) '$outative)  ; Really a linearize!
925         (setq opers-list (copy-list opers-list))
926         (rem-opers-p '$outative)
927         (linearize1 e z))
928        ((mplusp (cadr e))
929         (addn (mapcar #'(lambda (q)
930                           (let ((opers-list *opers-list))
931                             (oper-apply (list* (car e) q (cddr e)) z)))
932                       (cdr (cadr e)))
933               z))
934        (t (oper-apply e z))))
935
936(setq opers (cons '$multiplicative opers)
937      *opers-list (cons '($multiplicative . multiplicative) *opers-list))
938
939(defun multiplicative (e z)
940  (cond ((mtimesp (cadr e))
941         (muln (mapcar #'(lambda (q)
942                           (let ((opers-list *opers-list))
943                             (oper-apply (list* (car e) q (cddr e)) z)))
944                       (cdr (cadr e)))
945               z))
946        (t (oper-apply e z))))
947
948(setq opers (cons '$outative opers)
949      *opers-list (cons '($outative . outative) *opers-list))
950
951(defun outative (e z)
952  (setq e (cons (car e) (mapcar #'(lambda (q) (simpcheck q z)) (cdr e))))
953  (cond ((get (caar e) '$additive)
954	 (setq opers-list (copy-list opers-list ))
955	 (rem-opers-p '$additive)
956	 (linearize1 e t))
957	((linearconst e))
958	((mtimesp (cadr e))
959	 (let ((u (if (and (cddr e)
960			   (or (atom (caddr e))
961			       ($subvarp (caddr e))))
962		      (partition (cadr e) (caddr e) 1)
963		      (rem-const (cadr e))))
964	       (w))
965	   (setq w (oper-apply (list* (car e)
966				      (simplifya (cdr u) t)
967				      (cddr e))
968			       t))
969	   (linearize3 w e (car u))))
970	(t (oper-apply e t))))
971
972(defprop %sum t $outative)
973(defprop %sum t opers)
974(defprop %integrate t $outative)
975(defprop %integrate t opers)
976(defprop %limit t $outative)
977(defprop %limit t opers)
978
979(setq opers (cons '$evenfun opers)
980      *opers-list (cons '($evenfun . evenfun) *opers-list))
981
982(setq opers (cons '$oddfun opers)
983      *opers-list (cons '($oddfun . oddfun) *opers-list))
984
985(defun evenfun (e z)
986  (if (or (null (cdr e)) (cddr e))
987      (merror (intl:gettext "Function declared 'even' takes exactly one argument; found ~M") e))
988  (let ((arg (simpcheck (cadr e) z)))
989    (oper-apply (list (car e) (if (mminusp arg) (neg arg) arg)) t)))
990
991(defun oddfun (e z)
992  (if (or (null (cdr e)) (cddr e))
993      (merror (intl:gettext "Function declared 'odd' takes exactly one argument; found ~M") e))
994  (let ((arg (simpcheck (cadr e) z)))
995    (if (mminusp arg) (neg (oper-apply (list (car e) (neg arg)) t))
996	(oper-apply (list (car e) arg) t))))
997
998(setq opers (cons '$commutative opers)
999      *opers-list (cons '($commutative . commutative1) *opers-list))
1000
1001(setq opers (cons '$symmetric opers)
1002      *opers-list (cons '($symmetric . commutative1) *opers-list))
1003
1004(defun commutative1 (e z)
1005  (oper-apply (cons (car e)
1006		    (reverse
1007		     (sort (mapcar #'(lambda (q) (simpcheck q z))
1008				   (cdr e))
1009			   'great)))
1010	      t))
1011
1012(setq opers (cons '$antisymmetric opers)
1013      *opers-list (cons '($antisymmetric . antisym) *opers-list))
1014
1015(defun antisym (e z)
1016  (when (and $dotscrules (mnctimesp e))
1017    (let ($dotexptsimp)
1018      (setq e (simpnct e 1 nil))))
1019  (if ($atom e) e (antisym1 e z)))
1020
1021(defun antisym1 (e z)
1022  (let ((antisym-sign nil)
1023	(l (mapcar #'(lambda (q) (simpcheck q z)) (cdr e))))
1024    (when (or (not (eq (caar e) 'mnctimes)) (freel l 'mnctimes))
1025      (multiple-value-setq (l antisym-sign) (bbsort1 l)))
1026    (cond ((equal l 0) 0)
1027	  ((prog1
1028	       (null antisym-sign)
1029	     (setq e (oper-apply (cons (car e) l) t)))
1030	   e)
1031	  (t (neg e)))))
1032
1033(defun bbsort1 (l)
1034  (prog (sl sl1 antisym-sign)
1035     (if (or (null l) (null (cdr l))) (return (values l antisym-sign))
1036	 (setq sl (list nil (car l))))
1037     loop (setq l (cdr l))
1038     (if (null l) (return (values (nreverse (cdr sl)) antisym-sign)))
1039     (setq sl1 sl)
1040     loop1(cond ((null (cdr sl1)) (rplacd sl1 (cons (car l) nil)))
1041		((alike1 (car l) (cadr sl1)) (return (values 0 nil)))
1042		((great (car l) (cadr sl1)) (rplacd sl1 (cons (car l) (cdr sl1))))
1043		(t (setq antisym-sign (not antisym-sign) sl1 (cdr sl1)) (go loop1)))
1044     (go loop)))
1045
1046(setq opers (cons '$nary opers)
1047      *opers-list (cons '($nary . nary1) *opers-list))
1048
1049(defun nary1 (e z)
1050  (oper-apply (nary2 e z) z))
1051
1052(defun nary2 (e z)
1053  (do
1054    ((l (cdr e) (cdr l)) (ans) (some-change))
1055
1056    ((null l)
1057     (if some-change
1058       (nary2 (cons (car e) (nreverse ans)) z)
1059       (simpargs e z)))
1060
1061    (setq
1062      ans (if (and (not (atom (car l))) (eq (caaar l) (caar e)))
1063            (progn
1064              (setq some-change t)
1065              (nconc (reverse (cdar l)) ans))
1066            (cons (car l) ans)))))
1067
1068(setq opers (cons '$lassociative opers)
1069      *opers-list (cons '($lassociative . lassociative) *opers-list))
1070
1071(defun lassociative (e z)
1072  (let*
1073    ((ans0 (oper-apply (cons (car e) (total-nary e)) z))
1074     (ans (if (consp ans0) (cdr ans0))))
1075    (cond ((or (null (cddr ans)) (not (eq (caar ans0) (caar e)))) ans0)
1076          ((do ((newans (list (car e) (car ans) (cadr ans))
1077                        (list (car e) newans (car ans)))
1078                (ans (cddr ans) (cdr ans)))
1079               ((null ans) newans))))))
1080
1081(setq opers (cons '$rassociative opers)
1082      *opers-list (cons '($rassociative . rassociative) *opers-list))
1083
1084(defun rassociative (e z)
1085  (let*
1086    ((ans0 (oper-apply (cons (car e) (total-nary e)) z))
1087     (ans (if (consp ans0) (cdr ans0))))
1088    (cond ((or (null (cddr ans)) (not (eq (caar ans0) (caar e)))) ans0)
1089	  (t (setq ans (nreverse ans))
1090	     (do ((newans (list (car e) (cadr ans) (car ans))
1091			  (list (car e) (car ans) newans))
1092		  (ans (cddr ans) (cdr ans)))
1093		 ((null ans) newans))))))
1094
1095(defun total-nary (e)
1096  (do ((l (cdr e) (cdr l)) (ans))
1097      ((null l) (nreverse ans))
1098    (setq ans (if (and (not (atom (car l))) (eq (caaar l) (caar e)))
1099		  (nconc (reverse (total-nary (car l))) ans)
1100		  (cons (car l) ans)))))
1101
1102(defparameter $opproperties (cons '(mlist simp) (reverse opers)))
1103