1 // SPDX-License-Identifier: GPL-2.0-only
2
3 #ifndef KVM_X86_MMU_SPTE_H
4 #define KVM_X86_MMU_SPTE_H
5
6 #include <asm/vmx.h>
7
8 #include "mmu.h"
9 #include "mmu_internal.h"
10
11 /*
12 * A MMU present SPTE is backed by actual memory and may or may not be present
13 * in hardware. E.g. MMIO SPTEs are not considered present. Use bit 11, as it
14 * is ignored by all flavors of SPTEs and checking a low bit often generates
15 * better code than for a high bit, e.g. 56+. MMU present checks are pervasive
16 * enough that the improved code generation is noticeable in KVM's footprint.
17 */
18 #define SPTE_MMU_PRESENT_MASK BIT_ULL(11)
19
20 /*
21 * TDP SPTES (more specifically, EPT SPTEs) may not have A/D bits, and may also
22 * be restricted to using write-protection (for L2 when CPU dirty logging, i.e.
23 * PML, is enabled). Use bits 52 and 53 to hold the type of A/D tracking that
24 * is must be employed for a given TDP SPTE.
25 *
26 * Note, the "enabled" mask must be '0', as bits 62:52 are _reserved_ for PAE
27 * paging, including NPT PAE. This scheme works because legacy shadow paging
28 * is guaranteed to have A/D bits and write-protection is forced only for
29 * TDP with CPU dirty logging (PML). If NPT ever gains PML-like support, it
30 * must be restricted to 64-bit KVM.
31 */
32 #define SPTE_TDP_AD_SHIFT 52
33 #define SPTE_TDP_AD_MASK (3ULL << SPTE_TDP_AD_SHIFT)
34 #define SPTE_TDP_AD_ENABLED (0ULL << SPTE_TDP_AD_SHIFT)
35 #define SPTE_TDP_AD_DISABLED (1ULL << SPTE_TDP_AD_SHIFT)
36 #define SPTE_TDP_AD_WRPROT_ONLY (2ULL << SPTE_TDP_AD_SHIFT)
37 static_assert(SPTE_TDP_AD_ENABLED == 0);
38
39 #ifdef CONFIG_DYNAMIC_PHYSICAL_MASK
40 #define SPTE_BASE_ADDR_MASK (physical_mask & ~(u64)(PAGE_SIZE-1))
41 #else
42 #define SPTE_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
43 #endif
44
45 #define SPTE_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
46 | shadow_x_mask | shadow_nx_mask | shadow_me_mask)
47
48 #define ACC_EXEC_MASK 1
49 #define ACC_WRITE_MASK PT_WRITABLE_MASK
50 #define ACC_USER_MASK PT_USER_MASK
51 #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
52
53 /* The mask for the R/X bits in EPT PTEs */
54 #define SPTE_EPT_READABLE_MASK 0x1ull
55 #define SPTE_EPT_EXECUTABLE_MASK 0x4ull
56
57 #define SPTE_LEVEL_BITS 9
58 #define SPTE_LEVEL_SHIFT(level) __PT_LEVEL_SHIFT(level, SPTE_LEVEL_BITS)
59 #define SPTE_INDEX(address, level) __PT_INDEX(address, level, SPTE_LEVEL_BITS)
60 #define SPTE_ENT_PER_PAGE __PT_ENT_PER_PAGE(SPTE_LEVEL_BITS)
61
62 /*
63 * The mask/shift to use for saving the original R/X bits when marking the PTE
64 * as not-present for access tracking purposes. We do not save the W bit as the
65 * PTEs being access tracked also need to be dirty tracked, so the W bit will be
66 * restored only when a write is attempted to the page. This mask obviously
67 * must not overlap the A/D type mask.
68 */
69 #define SHADOW_ACC_TRACK_SAVED_BITS_MASK (SPTE_EPT_READABLE_MASK | \
70 SPTE_EPT_EXECUTABLE_MASK)
71 #define SHADOW_ACC_TRACK_SAVED_BITS_SHIFT 54
72 #define SHADOW_ACC_TRACK_SAVED_MASK (SHADOW_ACC_TRACK_SAVED_BITS_MASK << \
73 SHADOW_ACC_TRACK_SAVED_BITS_SHIFT)
74 static_assert(!(SPTE_TDP_AD_MASK & SHADOW_ACC_TRACK_SAVED_MASK));
75
76 /*
77 * {DEFAULT,EPT}_SPTE_{HOST,MMU}_WRITABLE are used to keep track of why a given
78 * SPTE is write-protected. See is_writable_pte() for details.
79 */
80
81 /* Bits 9 and 10 are ignored by all non-EPT PTEs. */
82 #define DEFAULT_SPTE_HOST_WRITABLE BIT_ULL(9)
83 #define DEFAULT_SPTE_MMU_WRITABLE BIT_ULL(10)
84
85 /*
86 * Low ignored bits are at a premium for EPT, use high ignored bits, taking care
87 * to not overlap the A/D type mask or the saved access bits of access-tracked
88 * SPTEs when A/D bits are disabled.
89 */
90 #define EPT_SPTE_HOST_WRITABLE BIT_ULL(57)
91 #define EPT_SPTE_MMU_WRITABLE BIT_ULL(58)
92
93 static_assert(!(EPT_SPTE_HOST_WRITABLE & SPTE_TDP_AD_MASK));
94 static_assert(!(EPT_SPTE_MMU_WRITABLE & SPTE_TDP_AD_MASK));
95 static_assert(!(EPT_SPTE_HOST_WRITABLE & SHADOW_ACC_TRACK_SAVED_MASK));
96 static_assert(!(EPT_SPTE_MMU_WRITABLE & SHADOW_ACC_TRACK_SAVED_MASK));
97
98 /* Defined only to keep the above static asserts readable. */
99 #undef SHADOW_ACC_TRACK_SAVED_MASK
100
101 /*
102 * Due to limited space in PTEs, the MMIO generation is a 19 bit subset of
103 * the memslots generation and is derived as follows:
104 *
105 * Bits 0-7 of the MMIO generation are propagated to spte bits 3-10
106 * Bits 8-18 of the MMIO generation are propagated to spte bits 52-62
107 *
108 * The KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS flag is intentionally not included in
109 * the MMIO generation number, as doing so would require stealing a bit from
110 * the "real" generation number and thus effectively halve the maximum number
111 * of MMIO generations that can be handled before encountering a wrap (which
112 * requires a full MMU zap). The flag is instead explicitly queried when
113 * checking for MMIO spte cache hits.
114 */
115
116 #define MMIO_SPTE_GEN_LOW_START 3
117 #define MMIO_SPTE_GEN_LOW_END 10
118
119 #define MMIO_SPTE_GEN_HIGH_START 52
120 #define MMIO_SPTE_GEN_HIGH_END 62
121
122 #define MMIO_SPTE_GEN_LOW_MASK GENMASK_ULL(MMIO_SPTE_GEN_LOW_END, \
123 MMIO_SPTE_GEN_LOW_START)
124 #define MMIO_SPTE_GEN_HIGH_MASK GENMASK_ULL(MMIO_SPTE_GEN_HIGH_END, \
125 MMIO_SPTE_GEN_HIGH_START)
126 static_assert(!(SPTE_MMU_PRESENT_MASK &
127 (MMIO_SPTE_GEN_LOW_MASK | MMIO_SPTE_GEN_HIGH_MASK)));
128
129 /*
130 * The SPTE MMIO mask must NOT overlap the MMIO generation bits or the
131 * MMU-present bit. The generation obviously co-exists with the magic MMIO
132 * mask/value, and MMIO SPTEs are considered !MMU-present.
133 *
134 * The SPTE MMIO mask is allowed to use hardware "present" bits (i.e. all EPT
135 * RWX bits), all physical address bits (legal PA bits are used for "fast" MMIO
136 * and so they're off-limits for generation; additional checks ensure the mask
137 * doesn't overlap legal PA bits), and bit 63 (carved out for future usage).
138 */
139 #define SPTE_MMIO_ALLOWED_MASK (BIT_ULL(63) | GENMASK_ULL(51, 12) | GENMASK_ULL(2, 0))
140 static_assert(!(SPTE_MMIO_ALLOWED_MASK &
141 (SPTE_MMU_PRESENT_MASK | MMIO_SPTE_GEN_LOW_MASK | MMIO_SPTE_GEN_HIGH_MASK)));
142
143 #define MMIO_SPTE_GEN_LOW_BITS (MMIO_SPTE_GEN_LOW_END - MMIO_SPTE_GEN_LOW_START + 1)
144 #define MMIO_SPTE_GEN_HIGH_BITS (MMIO_SPTE_GEN_HIGH_END - MMIO_SPTE_GEN_HIGH_START + 1)
145
146 /* remember to adjust the comment above as well if you change these */
147 static_assert(MMIO_SPTE_GEN_LOW_BITS == 8 && MMIO_SPTE_GEN_HIGH_BITS == 11);
148
149 #define MMIO_SPTE_GEN_LOW_SHIFT (MMIO_SPTE_GEN_LOW_START - 0)
150 #define MMIO_SPTE_GEN_HIGH_SHIFT (MMIO_SPTE_GEN_HIGH_START - MMIO_SPTE_GEN_LOW_BITS)
151
152 #define MMIO_SPTE_GEN_MASK GENMASK_ULL(MMIO_SPTE_GEN_LOW_BITS + MMIO_SPTE_GEN_HIGH_BITS - 1, 0)
153
154 /*
155 * Non-present SPTE value needs to set bit 63 for TDX, in order to suppress
156 * #VE and get EPT violations on non-present PTEs. We can use the
157 * same value also without TDX for both VMX and SVM:
158 *
159 * For SVM NPT, for non-present spte (bit 0 = 0), other bits are ignored.
160 * For VMX EPT, bit 63 is ignored if #VE is disabled. (EPT_VIOLATION_VE=0)
161 * bit 63 is #VE suppress if #VE is enabled. (EPT_VIOLATION_VE=1)
162 */
163 #ifdef CONFIG_X86_64
164 #define SHADOW_NONPRESENT_VALUE BIT_ULL(63)
165 static_assert(!(SHADOW_NONPRESENT_VALUE & SPTE_MMU_PRESENT_MASK));
166 #else
167 #define SHADOW_NONPRESENT_VALUE 0ULL
168 #endif
169
170 extern u64 __read_mostly shadow_host_writable_mask;
171 extern u64 __read_mostly shadow_mmu_writable_mask;
172 extern u64 __read_mostly shadow_nx_mask;
173 extern u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
174 extern u64 __read_mostly shadow_user_mask;
175 extern u64 __read_mostly shadow_accessed_mask;
176 extern u64 __read_mostly shadow_dirty_mask;
177 extern u64 __read_mostly shadow_mmio_value;
178 extern u64 __read_mostly shadow_mmio_mask;
179 extern u64 __read_mostly shadow_mmio_access_mask;
180 extern u64 __read_mostly shadow_present_mask;
181 extern u64 __read_mostly shadow_memtype_mask;
182 extern u64 __read_mostly shadow_me_value;
183 extern u64 __read_mostly shadow_me_mask;
184
185 /*
186 * SPTEs in MMUs without A/D bits are marked with SPTE_TDP_AD_DISABLED;
187 * shadow_acc_track_mask is the set of bits to be cleared in non-accessed
188 * pages.
189 */
190 extern u64 __read_mostly shadow_acc_track_mask;
191
192 /*
193 * This mask must be set on all non-zero Non-Present or Reserved SPTEs in order
194 * to guard against L1TF attacks.
195 */
196 extern u64 __read_mostly shadow_nonpresent_or_rsvd_mask;
197
198 /*
199 * The number of high-order 1 bits to use in the mask above.
200 */
201 #define SHADOW_NONPRESENT_OR_RSVD_MASK_LEN 5
202
203 /*
204 * If a thread running without exclusive control of the MMU lock must perform a
205 * multi-part operation on an SPTE, it can set the SPTE to FROZEN_SPTE as a
206 * non-present intermediate value. Other threads which encounter this value
207 * should not modify the SPTE.
208 *
209 * Use a semi-arbitrary value that doesn't set RWX bits, i.e. is not-present on
210 * both AMD and Intel CPUs, and doesn't set PFN bits, i.e. doesn't create a L1TF
211 * vulnerability.
212 *
213 * Only used by the TDP MMU.
214 */
215 #define FROZEN_SPTE (SHADOW_NONPRESENT_VALUE | 0x5a0ULL)
216
217 /* Frozen SPTEs must not be misconstrued as shadow present PTEs. */
218 static_assert(!(FROZEN_SPTE & SPTE_MMU_PRESENT_MASK));
219
is_frozen_spte(u64 spte)220 static inline bool is_frozen_spte(u64 spte)
221 {
222 return spte == FROZEN_SPTE;
223 }
224
225 /* Get an SPTE's index into its parent's page table (and the spt array). */
spte_index(u64 * sptep)226 static inline int spte_index(u64 *sptep)
227 {
228 return ((unsigned long)sptep / sizeof(*sptep)) & (SPTE_ENT_PER_PAGE - 1);
229 }
230
231 /*
232 * In some cases, we need to preserve the GFN of a non-present or reserved
233 * SPTE when we usurp the upper five bits of the physical address space to
234 * defend against L1TF, e.g. for MMIO SPTEs. To preserve the GFN, we'll
235 * shift bits of the GFN that overlap with shadow_nonpresent_or_rsvd_mask
236 * left into the reserved bits, i.e. the GFN in the SPTE will be split into
237 * high and low parts. This mask covers the lower bits of the GFN.
238 */
239 extern u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask;
240
to_shadow_page(hpa_t shadow_page)241 static inline struct kvm_mmu_page *to_shadow_page(hpa_t shadow_page)
242 {
243 struct page *page = pfn_to_page((shadow_page) >> PAGE_SHIFT);
244
245 return (struct kvm_mmu_page *)page_private(page);
246 }
247
spte_to_child_sp(u64 spte)248 static inline struct kvm_mmu_page *spte_to_child_sp(u64 spte)
249 {
250 return to_shadow_page(spte & SPTE_BASE_ADDR_MASK);
251 }
252
sptep_to_sp(u64 * sptep)253 static inline struct kvm_mmu_page *sptep_to_sp(u64 *sptep)
254 {
255 return to_shadow_page(__pa(sptep));
256 }
257
root_to_sp(hpa_t root)258 static inline struct kvm_mmu_page *root_to_sp(hpa_t root)
259 {
260 if (kvm_mmu_is_dummy_root(root))
261 return NULL;
262
263 /*
264 * The "root" may be a special root, e.g. a PAE entry, treat it as a
265 * SPTE to ensure any non-PA bits are dropped.
266 */
267 return spte_to_child_sp(root);
268 }
269
is_mmio_spte(struct kvm * kvm,u64 spte)270 static inline bool is_mmio_spte(struct kvm *kvm, u64 spte)
271 {
272 return (spte & shadow_mmio_mask) == kvm->arch.shadow_mmio_value &&
273 likely(enable_mmio_caching);
274 }
275
is_shadow_present_pte(u64 pte)276 static inline bool is_shadow_present_pte(u64 pte)
277 {
278 return !!(pte & SPTE_MMU_PRESENT_MASK);
279 }
280
is_ept_ve_possible(u64 spte)281 static inline bool is_ept_ve_possible(u64 spte)
282 {
283 return (shadow_present_mask & VMX_EPT_SUPPRESS_VE_BIT) &&
284 !(spte & VMX_EPT_SUPPRESS_VE_BIT) &&
285 (spte & VMX_EPT_RWX_MASK) != VMX_EPT_MISCONFIG_WX_VALUE;
286 }
287
288 /*
289 * Returns true if A/D bits are supported in hardware and are enabled by KVM.
290 * When enabled, KVM uses A/D bits for all non-nested MMUs. Because L1 can
291 * disable A/D bits in EPTP12, SP and SPTE variants are needed to handle the
292 * scenario where KVM is using A/D bits for L1, but not L2.
293 */
kvm_ad_enabled(void)294 static inline bool kvm_ad_enabled(void)
295 {
296 return !!shadow_accessed_mask;
297 }
298
sp_ad_disabled(struct kvm_mmu_page * sp)299 static inline bool sp_ad_disabled(struct kvm_mmu_page *sp)
300 {
301 return sp->role.ad_disabled;
302 }
303
spte_ad_enabled(u64 spte)304 static inline bool spte_ad_enabled(u64 spte)
305 {
306 KVM_MMU_WARN_ON(!is_shadow_present_pte(spte));
307 return (spte & SPTE_TDP_AD_MASK) != SPTE_TDP_AD_DISABLED;
308 }
309
spte_ad_need_write_protect(u64 spte)310 static inline bool spte_ad_need_write_protect(u64 spte)
311 {
312 KVM_MMU_WARN_ON(!is_shadow_present_pte(spte));
313 /*
314 * This is benign for non-TDP SPTEs as SPTE_TDP_AD_ENABLED is '0',
315 * and non-TDP SPTEs will never set these bits. Optimize for 64-bit
316 * TDP and do the A/D type check unconditionally.
317 */
318 return (spte & SPTE_TDP_AD_MASK) != SPTE_TDP_AD_ENABLED;
319 }
320
spte_shadow_accessed_mask(u64 spte)321 static inline u64 spte_shadow_accessed_mask(u64 spte)
322 {
323 KVM_MMU_WARN_ON(!is_shadow_present_pte(spte));
324 return spte_ad_enabled(spte) ? shadow_accessed_mask : 0;
325 }
326
spte_shadow_dirty_mask(u64 spte)327 static inline u64 spte_shadow_dirty_mask(u64 spte)
328 {
329 KVM_MMU_WARN_ON(!is_shadow_present_pte(spte));
330 return spte_ad_enabled(spte) ? shadow_dirty_mask : 0;
331 }
332
is_access_track_spte(u64 spte)333 static inline bool is_access_track_spte(u64 spte)
334 {
335 return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0;
336 }
337
is_large_pte(u64 pte)338 static inline bool is_large_pte(u64 pte)
339 {
340 return pte & PT_PAGE_SIZE_MASK;
341 }
342
is_last_spte(u64 pte,int level)343 static inline bool is_last_spte(u64 pte, int level)
344 {
345 return (level == PG_LEVEL_4K) || is_large_pte(pte);
346 }
347
is_executable_pte(u64 spte)348 static inline bool is_executable_pte(u64 spte)
349 {
350 return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask;
351 }
352
spte_to_pfn(u64 pte)353 static inline kvm_pfn_t spte_to_pfn(u64 pte)
354 {
355 return (pte & SPTE_BASE_ADDR_MASK) >> PAGE_SHIFT;
356 }
357
is_accessed_spte(u64 spte)358 static inline bool is_accessed_spte(u64 spte)
359 {
360 u64 accessed_mask = spte_shadow_accessed_mask(spte);
361
362 return accessed_mask ? spte & accessed_mask
363 : !is_access_track_spte(spte);
364 }
365
is_dirty_spte(u64 spte)366 static inline bool is_dirty_spte(u64 spte)
367 {
368 u64 dirty_mask = spte_shadow_dirty_mask(spte);
369
370 return dirty_mask ? spte & dirty_mask : spte & PT_WRITABLE_MASK;
371 }
372
get_rsvd_bits(struct rsvd_bits_validate * rsvd_check,u64 pte,int level)373 static inline u64 get_rsvd_bits(struct rsvd_bits_validate *rsvd_check, u64 pte,
374 int level)
375 {
376 int bit7 = (pte >> 7) & 1;
377
378 return rsvd_check->rsvd_bits_mask[bit7][level-1];
379 }
380
__is_rsvd_bits_set(struct rsvd_bits_validate * rsvd_check,u64 pte,int level)381 static inline bool __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check,
382 u64 pte, int level)
383 {
384 return pte & get_rsvd_bits(rsvd_check, pte, level);
385 }
386
__is_bad_mt_xwr(struct rsvd_bits_validate * rsvd_check,u64 pte)387 static inline bool __is_bad_mt_xwr(struct rsvd_bits_validate *rsvd_check,
388 u64 pte)
389 {
390 return rsvd_check->bad_mt_xwr & BIT_ULL(pte & 0x3f);
391 }
392
is_rsvd_spte(struct rsvd_bits_validate * rsvd_check,u64 spte,int level)393 static __always_inline bool is_rsvd_spte(struct rsvd_bits_validate *rsvd_check,
394 u64 spte, int level)
395 {
396 return __is_bad_mt_xwr(rsvd_check, spte) ||
397 __is_rsvd_bits_set(rsvd_check, spte, level);
398 }
399
400 /*
401 * A shadow-present leaf SPTE may be non-writable for 4 possible reasons:
402 *
403 * 1. To intercept writes for dirty logging. KVM write-protects huge pages
404 * so that they can be split down into the dirty logging
405 * granularity (4KiB) whenever the guest writes to them. KVM also
406 * write-protects 4KiB pages so that writes can be recorded in the dirty log
407 * (e.g. if not using PML). SPTEs are write-protected for dirty logging
408 * during the VM-iotcls that enable dirty logging.
409 *
410 * 2. To intercept writes to guest page tables that KVM is shadowing. When a
411 * guest writes to its page table the corresponding shadow page table will
412 * be marked "unsync". That way KVM knows which shadow page tables need to
413 * be updated on the next TLB flush, INVLPG, etc. and which do not.
414 *
415 * 3. To prevent guest writes to read-only memory, such as for memory in a
416 * read-only memslot or guest memory backed by a read-only VMA. Writes to
417 * such pages are disallowed entirely.
418 *
419 * 4. To emulate the Accessed bit for SPTEs without A/D bits. Note, in this
420 * case, the SPTE is access-protected, not just write-protected!
421 *
422 * For cases #1 and #4, KVM can safely make such SPTEs writable without taking
423 * mmu_lock as capturing the Accessed/Dirty state doesn't require taking it.
424 * To differentiate #1 and #4 from #2 and #3, KVM uses two software-only bits
425 * in the SPTE:
426 *
427 * shadow_mmu_writable_mask, aka MMU-writable -
428 * Cleared on SPTEs that KVM is currently write-protecting for shadow paging
429 * purposes (case 2 above).
430 *
431 * shadow_host_writable_mask, aka Host-writable -
432 * Cleared on SPTEs that are not host-writable (case 3 above)
433 *
434 * Note, not all possible combinations of PT_WRITABLE_MASK,
435 * shadow_mmu_writable_mask, and shadow_host_writable_mask are valid. A given
436 * SPTE can be in only one of the following states, which map to the
437 * aforementioned 3 cases:
438 *
439 * shadow_host_writable_mask | shadow_mmu_writable_mask | PT_WRITABLE_MASK
440 * ------------------------- | ------------------------ | ----------------
441 * 1 | 1 | 1 (writable)
442 * 1 | 1 | 0 (case 1)
443 * 1 | 0 | 0 (case 2)
444 * 0 | 0 | 0 (case 3)
445 *
446 * The valid combinations of these bits are checked by
447 * check_spte_writable_invariants() whenever an SPTE is modified.
448 *
449 * Clearing the MMU-writable bit is always done under the MMU lock and always
450 * accompanied by a TLB flush before dropping the lock to avoid corrupting the
451 * shadow page tables between vCPUs. Write-protecting an SPTE for dirty logging
452 * (which does not clear the MMU-writable bit), does not flush TLBs before
453 * dropping the lock, as it only needs to synchronize guest writes with the
454 * dirty bitmap. Similarly, making the SPTE inaccessible (and non-writable) for
455 * access-tracking via the clear_young() MMU notifier also does not flush TLBs.
456 *
457 * So, there is the problem: clearing the MMU-writable bit can encounter a
458 * write-protected SPTE while CPUs still have writable mappings for that SPTE
459 * cached in their TLB. To address this, KVM always flushes TLBs when
460 * write-protecting SPTEs if the MMU-writable bit is set on the old SPTE.
461 *
462 * The Host-writable bit is not modified on present SPTEs, it is only set or
463 * cleared when an SPTE is first faulted in from non-present and then remains
464 * immutable.
465 */
is_writable_pte(unsigned long pte)466 static inline bool is_writable_pte(unsigned long pte)
467 {
468 return pte & PT_WRITABLE_MASK;
469 }
470
471 /* Note: spte must be a shadow-present leaf SPTE. */
check_spte_writable_invariants(u64 spte)472 static inline void check_spte_writable_invariants(u64 spte)
473 {
474 if (spte & shadow_mmu_writable_mask)
475 WARN_ONCE(!(spte & shadow_host_writable_mask),
476 KBUILD_MODNAME ": MMU-writable SPTE is not Host-writable: %llx",
477 spte);
478 else
479 WARN_ONCE(is_writable_pte(spte),
480 KBUILD_MODNAME ": Writable SPTE is not MMU-writable: %llx", spte);
481 }
482
is_mmu_writable_spte(u64 spte)483 static inline bool is_mmu_writable_spte(u64 spte)
484 {
485 return spte & shadow_mmu_writable_mask;
486 }
487
get_mmio_spte_generation(u64 spte)488 static inline u64 get_mmio_spte_generation(u64 spte)
489 {
490 u64 gen;
491
492 gen = (spte & MMIO_SPTE_GEN_LOW_MASK) >> MMIO_SPTE_GEN_LOW_SHIFT;
493 gen |= (spte & MMIO_SPTE_GEN_HIGH_MASK) >> MMIO_SPTE_GEN_HIGH_SHIFT;
494 return gen;
495 }
496
497 bool spte_has_volatile_bits(u64 spte);
498
499 bool make_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
500 const struct kvm_memory_slot *slot,
501 unsigned int pte_access, gfn_t gfn, kvm_pfn_t pfn,
502 u64 old_spte, bool prefetch, bool can_unsync,
503 bool host_writable, u64 *new_spte);
504 u64 make_huge_page_split_spte(struct kvm *kvm, u64 huge_spte,
505 union kvm_mmu_page_role role, int index);
506 u64 make_nonleaf_spte(u64 *child_pt, bool ad_disabled);
507 u64 make_mmio_spte(struct kvm_vcpu *vcpu, u64 gfn, unsigned int access);
508 u64 mark_spte_for_access_track(u64 spte);
509
510 /* Restore an acc-track PTE back to a regular PTE */
restore_acc_track_spte(u64 spte)511 static inline u64 restore_acc_track_spte(u64 spte)
512 {
513 u64 saved_bits = (spte >> SHADOW_ACC_TRACK_SAVED_BITS_SHIFT)
514 & SHADOW_ACC_TRACK_SAVED_BITS_MASK;
515
516 spte &= ~shadow_acc_track_mask;
517 spte &= ~(SHADOW_ACC_TRACK_SAVED_BITS_MASK <<
518 SHADOW_ACC_TRACK_SAVED_BITS_SHIFT);
519 spte |= saved_bits;
520
521 return spte;
522 }
523
524 void __init kvm_mmu_spte_module_init(void);
525 void kvm_mmu_reset_all_pte_masks(void);
526
527 #endif
528