xref: /qemu/target/arm/cpu.h (revision 374cdc8e)
1 /*
2  * ARM virtual CPU header
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #ifndef ARM_CPU_H
21 #define ARM_CPU_H
22 
23 #include "kvm-consts.h"
24 #include "qemu/cpu-float.h"
25 #include "hw/registerfields.h"
26 #include "cpu-qom.h"
27 #include "exec/cpu-defs.h"
28 #include "exec/gdbstub.h"
29 #include "exec/page-protection.h"
30 #include "qapi/qapi-types-common.h"
31 #include "target/arm/multiprocessing.h"
32 #include "target/arm/gtimer.h"
33 
34 #ifdef TARGET_AARCH64
35 #define KVM_HAVE_MCE_INJECTION 1
36 #endif
37 
38 #define EXCP_UDEF            1   /* undefined instruction */
39 #define EXCP_SWI             2   /* software interrupt */
40 #define EXCP_PREFETCH_ABORT  3
41 #define EXCP_DATA_ABORT      4
42 #define EXCP_IRQ             5
43 #define EXCP_FIQ             6
44 #define EXCP_BKPT            7
45 #define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
46 #define EXCP_KERNEL_TRAP     9   /* Jumped to kernel code page.  */
47 #define EXCP_HVC            11   /* HyperVisor Call */
48 #define EXCP_HYP_TRAP       12
49 #define EXCP_SMC            13   /* Secure Monitor Call */
50 #define EXCP_VIRQ           14
51 #define EXCP_VFIQ           15
52 #define EXCP_SEMIHOST       16   /* semihosting call */
53 #define EXCP_NOCP           17   /* v7M NOCP UsageFault */
54 #define EXCP_INVSTATE       18   /* v7M INVSTATE UsageFault */
55 #define EXCP_STKOF          19   /* v8M STKOF UsageFault */
56 #define EXCP_LAZYFP         20   /* v7M fault during lazy FP stacking */
57 #define EXCP_LSERR          21   /* v8M LSERR SecureFault */
58 #define EXCP_UNALIGNED      22   /* v7M UNALIGNED UsageFault */
59 #define EXCP_DIVBYZERO      23   /* v7M DIVBYZERO UsageFault */
60 #define EXCP_VSERR          24
61 #define EXCP_GPC            25   /* v9 Granule Protection Check Fault */
62 #define EXCP_NMI            26
63 #define EXCP_VINMI          27
64 #define EXCP_VFNMI          28
65 /* NB: add new EXCP_ defines to the array in arm_log_exception() too */
66 
67 #define ARMV7M_EXCP_RESET   1
68 #define ARMV7M_EXCP_NMI     2
69 #define ARMV7M_EXCP_HARD    3
70 #define ARMV7M_EXCP_MEM     4
71 #define ARMV7M_EXCP_BUS     5
72 #define ARMV7M_EXCP_USAGE   6
73 #define ARMV7M_EXCP_SECURE  7
74 #define ARMV7M_EXCP_SVC     11
75 #define ARMV7M_EXCP_DEBUG   12
76 #define ARMV7M_EXCP_PENDSV  14
77 #define ARMV7M_EXCP_SYSTICK 15
78 
79 /* ARM-specific interrupt pending bits.  */
80 #define CPU_INTERRUPT_FIQ   CPU_INTERRUPT_TGT_EXT_1
81 #define CPU_INTERRUPT_VIRQ  CPU_INTERRUPT_TGT_EXT_2
82 #define CPU_INTERRUPT_VFIQ  CPU_INTERRUPT_TGT_EXT_3
83 #define CPU_INTERRUPT_VSERR CPU_INTERRUPT_TGT_INT_0
84 #define CPU_INTERRUPT_NMI   CPU_INTERRUPT_TGT_EXT_4
85 #define CPU_INTERRUPT_VINMI CPU_INTERRUPT_TGT_EXT_0
86 #define CPU_INTERRUPT_VFNMI CPU_INTERRUPT_TGT_INT_1
87 
88 /* The usual mapping for an AArch64 system register to its AArch32
89  * counterpart is for the 32 bit world to have access to the lower
90  * half only (with writes leaving the upper half untouched). It's
91  * therefore useful to be able to pass TCG the offset of the least
92  * significant half of a uint64_t struct member.
93  */
94 #if HOST_BIG_ENDIAN
95 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
96 #define offsetofhigh32(S, M) offsetof(S, M)
97 #else
98 #define offsetoflow32(S, M) offsetof(S, M)
99 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
100 #endif
101 
102 /* ARM-specific extra insn start words:
103  * 1: Conditional execution bits
104  * 2: Partial exception syndrome for data aborts
105  */
106 #define TARGET_INSN_START_EXTRA_WORDS 2
107 
108 /* The 2nd extra word holding syndrome info for data aborts does not use
109  * the upper 6 bits nor the lower 13 bits. We mask and shift it down to
110  * help the sleb128 encoder do a better job.
111  * When restoring the CPU state, we shift it back up.
112  */
113 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
114 #define ARM_INSN_START_WORD2_SHIFT 13
115 
116 /* We currently assume float and double are IEEE single and double
117    precision respectively.
118    Doing runtime conversions is tricky because VFP registers may contain
119    integer values (eg. as the result of a FTOSI instruction).
120    s<2n> maps to the least significant half of d<n>
121    s<2n+1> maps to the most significant half of d<n>
122  */
123 
124 /**
125  * DynamicGDBFeatureInfo:
126  * @desc: Contains the feature descriptions.
127  * @data: A union with data specific to the set of registers
128  *    @cpregs_keys: Array that contains the corresponding Key of
129  *                  a given cpreg with the same order of the cpreg
130  *                  in the XML description.
131  */
132 typedef struct DynamicGDBFeatureInfo {
133     GDBFeature desc;
134     union {
135         struct {
136             uint32_t *keys;
137         } cpregs;
138     } data;
139 } DynamicGDBFeatureInfo;
140 
141 /* CPU state for each instance of a generic timer (in cp15 c14) */
142 typedef struct ARMGenericTimer {
143     uint64_t cval; /* Timer CompareValue register */
144     uint64_t ctl; /* Timer Control register */
145 } ARMGenericTimer;
146 
147 /* Define a maximum sized vector register.
148  * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
149  * For 64-bit, this is a 2048-bit SVE register.
150  *
151  * Note that the mapping between S, D, and Q views of the register bank
152  * differs between AArch64 and AArch32.
153  * In AArch32:
154  *  Qn = regs[n].d[1]:regs[n].d[0]
155  *  Dn = regs[n / 2].d[n & 1]
156  *  Sn = regs[n / 4].d[n % 4 / 2],
157  *       bits 31..0 for even n, and bits 63..32 for odd n
158  *       (and regs[16] to regs[31] are inaccessible)
159  * In AArch64:
160  *  Zn = regs[n].d[*]
161  *  Qn = regs[n].d[1]:regs[n].d[0]
162  *  Dn = regs[n].d[0]
163  *  Sn = regs[n].d[0] bits 31..0
164  *  Hn = regs[n].d[0] bits 15..0
165  *
166  * This corresponds to the architecturally defined mapping between
167  * the two execution states, and means we do not need to explicitly
168  * map these registers when changing states.
169  *
170  * Align the data for use with TCG host vector operations.
171  */
172 
173 #ifdef TARGET_AARCH64
174 # define ARM_MAX_VQ    16
175 #else
176 # define ARM_MAX_VQ    1
177 #endif
178 
179 typedef struct ARMVectorReg {
180     uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
181 } ARMVectorReg;
182 
183 #ifdef TARGET_AARCH64
184 /* In AArch32 mode, predicate registers do not exist at all.  */
185 typedef struct ARMPredicateReg {
186     uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16);
187 } ARMPredicateReg;
188 
189 /* In AArch32 mode, PAC keys do not exist at all.  */
190 typedef struct ARMPACKey {
191     uint64_t lo, hi;
192 } ARMPACKey;
193 #endif
194 
195 /* See the commentary above the TBFLAG field definitions.  */
196 typedef struct CPUARMTBFlags {
197     uint32_t flags;
198     target_ulong flags2;
199 } CPUARMTBFlags;
200 
201 typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
202 
203 typedef struct NVICState NVICState;
204 
205 typedef struct CPUArchState {
206     /* Regs for current mode.  */
207     uint32_t regs[16];
208 
209     /* 32/64 switch only happens when taking and returning from
210      * exceptions so the overlap semantics are taken care of then
211      * instead of having a complicated union.
212      */
213     /* Regs for A64 mode.  */
214     uint64_t xregs[32];
215     uint64_t pc;
216     /* PSTATE isn't an architectural register for ARMv8. However, it is
217      * convenient for us to assemble the underlying state into a 32 bit format
218      * identical to the architectural format used for the SPSR. (This is also
219      * what the Linux kernel's 'pstate' field in signal handlers and KVM's
220      * 'pstate' register are.) Of the PSTATE bits:
221      *  NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
222      *    semantics as for AArch32, as described in the comments on each field)
223      *  nRW (also known as M[4]) is kept, inverted, in env->aarch64
224      *  DAIF (exception masks) are kept in env->daif
225      *  BTYPE is kept in env->btype
226      *  SM and ZA are kept in env->svcr
227      *  all other bits are stored in their correct places in env->pstate
228      */
229     uint32_t pstate;
230     bool aarch64; /* True if CPU is in aarch64 state; inverse of PSTATE.nRW */
231     bool thumb;   /* True if CPU is in thumb mode; cpsr[5] */
232 
233     /* Cached TBFLAGS state.  See below for which bits are included.  */
234     CPUARMTBFlags hflags;
235 
236     /* Frequently accessed CPSR bits are stored separately for efficiency.
237        This contains all the other bits.  Use cpsr_{read,write} to access
238        the whole CPSR.  */
239     uint32_t uncached_cpsr;
240     uint32_t spsr;
241 
242     /* Banked registers.  */
243     uint64_t banked_spsr[8];
244     uint32_t banked_r13[8];
245     uint32_t banked_r14[8];
246 
247     /* These hold r8-r12.  */
248     uint32_t usr_regs[5];
249     uint32_t fiq_regs[5];
250 
251     /* cpsr flag cache for faster execution */
252     uint32_t CF; /* 0 or 1 */
253     uint32_t VF; /* V is the bit 31. All other bits are undefined */
254     uint32_t NF; /* N is bit 31. All other bits are undefined.  */
255     uint32_t ZF; /* Z set if zero.  */
256     uint32_t QF; /* 0 or 1 */
257     uint32_t GE; /* cpsr[19:16] */
258     uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
259     uint32_t btype;  /* BTI branch type.  spsr[11:10].  */
260     uint64_t daif; /* exception masks, in the bits they are in PSTATE */
261     uint64_t svcr; /* PSTATE.{SM,ZA} in the bits they are in SVCR */
262 
263     uint64_t elr_el[4]; /* AArch64 exception link regs  */
264     uint64_t sp_el[4]; /* AArch64 banked stack pointers */
265 
266     /* System control coprocessor (cp15) */
267     struct {
268         uint32_t c0_cpuid;
269         union { /* Cache size selection */
270             struct {
271                 uint64_t _unused_csselr0;
272                 uint64_t csselr_ns;
273                 uint64_t _unused_csselr1;
274                 uint64_t csselr_s;
275             };
276             uint64_t csselr_el[4];
277         };
278         union { /* System control register. */
279             struct {
280                 uint64_t _unused_sctlr;
281                 uint64_t sctlr_ns;
282                 uint64_t hsctlr;
283                 uint64_t sctlr_s;
284             };
285             uint64_t sctlr_el[4];
286         };
287         uint64_t vsctlr; /* Virtualization System control register. */
288         uint64_t cpacr_el1; /* Architectural feature access control register */
289         uint64_t cptr_el[4];  /* ARMv8 feature trap registers */
290         uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
291         uint64_t sder; /* Secure debug enable register. */
292         uint32_t nsacr; /* Non-secure access control register. */
293         union { /* MMU translation table base 0. */
294             struct {
295                 uint64_t _unused_ttbr0_0;
296                 uint64_t ttbr0_ns;
297                 uint64_t _unused_ttbr0_1;
298                 uint64_t ttbr0_s;
299             };
300             uint64_t ttbr0_el[4];
301         };
302         union { /* MMU translation table base 1. */
303             struct {
304                 uint64_t _unused_ttbr1_0;
305                 uint64_t ttbr1_ns;
306                 uint64_t _unused_ttbr1_1;
307                 uint64_t ttbr1_s;
308             };
309             uint64_t ttbr1_el[4];
310         };
311         uint64_t vttbr_el2; /* Virtualization Translation Table Base.  */
312         uint64_t vsttbr_el2; /* Secure Virtualization Translation Table. */
313         /* MMU translation table base control. */
314         uint64_t tcr_el[4];
315         uint64_t vtcr_el2; /* Virtualization Translation Control.  */
316         uint64_t vstcr_el2; /* Secure Virtualization Translation Control. */
317         uint32_t c2_data; /* MPU data cacheable bits.  */
318         uint32_t c2_insn; /* MPU instruction cacheable bits.  */
319         union { /* MMU domain access control register
320                  * MPU write buffer control.
321                  */
322             struct {
323                 uint64_t dacr_ns;
324                 uint64_t dacr_s;
325             };
326             struct {
327                 uint64_t dacr32_el2;
328             };
329         };
330         uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
331         uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
332         uint64_t hcr_el2; /* Hypervisor configuration register */
333         uint64_t hcrx_el2; /* Extended Hypervisor configuration register */
334         uint64_t scr_el3; /* Secure configuration register.  */
335         union { /* Fault status registers.  */
336             struct {
337                 uint64_t ifsr_ns;
338                 uint64_t ifsr_s;
339             };
340             struct {
341                 uint64_t ifsr32_el2;
342             };
343         };
344         union {
345             struct {
346                 uint64_t _unused_dfsr;
347                 uint64_t dfsr_ns;
348                 uint64_t hsr;
349                 uint64_t dfsr_s;
350             };
351             uint64_t esr_el[4];
352         };
353         uint32_t c6_region[8]; /* MPU base/size registers.  */
354         union { /* Fault address registers. */
355             struct {
356                 uint64_t _unused_far0;
357 #if HOST_BIG_ENDIAN
358                 uint32_t ifar_ns;
359                 uint32_t dfar_ns;
360                 uint32_t ifar_s;
361                 uint32_t dfar_s;
362 #else
363                 uint32_t dfar_ns;
364                 uint32_t ifar_ns;
365                 uint32_t dfar_s;
366                 uint32_t ifar_s;
367 #endif
368                 uint64_t _unused_far3;
369             };
370             uint64_t far_el[4];
371         };
372         uint64_t hpfar_el2;
373         uint64_t hstr_el2;
374         union { /* Translation result. */
375             struct {
376                 uint64_t _unused_par_0;
377                 uint64_t par_ns;
378                 uint64_t _unused_par_1;
379                 uint64_t par_s;
380             };
381             uint64_t par_el[4];
382         };
383 
384         uint32_t c9_insn; /* Cache lockdown registers.  */
385         uint32_t c9_data;
386         uint64_t c9_pmcr; /* performance monitor control register */
387         uint64_t c9_pmcnten; /* perf monitor counter enables */
388         uint64_t c9_pmovsr; /* perf monitor overflow status */
389         uint64_t c9_pmuserenr; /* perf monitor user enable */
390         uint64_t c9_pmselr; /* perf monitor counter selection register */
391         uint64_t c9_pminten; /* perf monitor interrupt enables */
392         union { /* Memory attribute redirection */
393             struct {
394 #if HOST_BIG_ENDIAN
395                 uint64_t _unused_mair_0;
396                 uint32_t mair1_ns;
397                 uint32_t mair0_ns;
398                 uint64_t _unused_mair_1;
399                 uint32_t mair1_s;
400                 uint32_t mair0_s;
401 #else
402                 uint64_t _unused_mair_0;
403                 uint32_t mair0_ns;
404                 uint32_t mair1_ns;
405                 uint64_t _unused_mair_1;
406                 uint32_t mair0_s;
407                 uint32_t mair1_s;
408 #endif
409             };
410             uint64_t mair_el[4];
411         };
412         union { /* vector base address register */
413             struct {
414                 uint64_t _unused_vbar;
415                 uint64_t vbar_ns;
416                 uint64_t hvbar;
417                 uint64_t vbar_s;
418             };
419             uint64_t vbar_el[4];
420         };
421         uint32_t mvbar; /* (monitor) vector base address register */
422         uint64_t rvbar; /* rvbar sampled from rvbar property at reset */
423         struct { /* FCSE PID. */
424             uint32_t fcseidr_ns;
425             uint32_t fcseidr_s;
426         };
427         union { /* Context ID. */
428             struct {
429                 uint64_t _unused_contextidr_0;
430                 uint64_t contextidr_ns;
431                 uint64_t _unused_contextidr_1;
432                 uint64_t contextidr_s;
433             };
434             uint64_t contextidr_el[4];
435         };
436         union { /* User RW Thread register. */
437             struct {
438                 uint64_t tpidrurw_ns;
439                 uint64_t tpidrprw_ns;
440                 uint64_t htpidr;
441                 uint64_t _tpidr_el3;
442             };
443             uint64_t tpidr_el[4];
444         };
445         uint64_t tpidr2_el0;
446         /* The secure banks of these registers don't map anywhere */
447         uint64_t tpidrurw_s;
448         uint64_t tpidrprw_s;
449         uint64_t tpidruro_s;
450 
451         union { /* User RO Thread register. */
452             uint64_t tpidruro_ns;
453             uint64_t tpidrro_el[1];
454         };
455         uint64_t c14_cntfrq; /* Counter Frequency register */
456         uint64_t c14_cntkctl; /* Timer Control register */
457         uint64_t cnthctl_el2; /* Counter/Timer Hyp Control register */
458         uint64_t cntvoff_el2; /* Counter Virtual Offset register */
459         uint64_t cntpoff_el2; /* Counter Physical Offset register */
460         ARMGenericTimer c14_timer[NUM_GTIMERS];
461         uint32_t c15_cpar; /* XScale Coprocessor Access Register */
462         uint32_t c15_ticonfig; /* TI925T configuration byte.  */
463         uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
464         uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
465         uint32_t c15_threadid; /* TI debugger thread-ID.  */
466         uint32_t c15_config_base_address; /* SCU base address.  */
467         uint32_t c15_diagnostic; /* diagnostic register */
468         uint32_t c15_power_diagnostic;
469         uint32_t c15_power_control; /* power control */
470         uint64_t dbgbvr[16]; /* breakpoint value registers */
471         uint64_t dbgbcr[16]; /* breakpoint control registers */
472         uint64_t dbgwvr[16]; /* watchpoint value registers */
473         uint64_t dbgwcr[16]; /* watchpoint control registers */
474         uint64_t dbgclaim;   /* DBGCLAIM bits */
475         uint64_t mdscr_el1;
476         uint64_t oslsr_el1; /* OS Lock Status */
477         uint64_t osdlr_el1; /* OS DoubleLock status */
478         uint64_t mdcr_el2;
479         uint64_t mdcr_el3;
480         /* Stores the architectural value of the counter *the last time it was
481          * updated* by pmccntr_op_start. Accesses should always be surrounded
482          * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
483          * architecturally-correct value is being read/set.
484          */
485         uint64_t c15_ccnt;
486         /* Stores the delta between the architectural value and the underlying
487          * cycle count during normal operation. It is used to update c15_ccnt
488          * to be the correct architectural value before accesses. During
489          * accesses, c15_ccnt_delta contains the underlying count being used
490          * for the access, after which it reverts to the delta value in
491          * pmccntr_op_finish.
492          */
493         uint64_t c15_ccnt_delta;
494         uint64_t c14_pmevcntr[31];
495         uint64_t c14_pmevcntr_delta[31];
496         uint64_t c14_pmevtyper[31];
497         uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
498         uint64_t vpidr_el2; /* Virtualization Processor ID Register */
499         uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
500         uint64_t tfsr_el[4]; /* tfsre0_el1 is index 0.  */
501         uint64_t gcr_el1;
502         uint64_t rgsr_el1;
503 
504         /* Minimal RAS registers */
505         uint64_t disr_el1;
506         uint64_t vdisr_el2;
507         uint64_t vsesr_el2;
508 
509         /*
510          * Fine-Grained Trap registers. We store these as arrays so the
511          * access checking code doesn't have to manually select
512          * HFGRTR_EL2 vs HFDFGRTR_EL2 etc when looking up the bit to test.
513          * FEAT_FGT2 will add more elements to these arrays.
514          */
515         uint64_t fgt_read[2]; /* HFGRTR, HDFGRTR */
516         uint64_t fgt_write[2]; /* HFGWTR, HDFGWTR */
517         uint64_t fgt_exec[1]; /* HFGITR */
518 
519         /* RME registers */
520         uint64_t gpccr_el3;
521         uint64_t gptbr_el3;
522         uint64_t mfar_el3;
523 
524         /* NV2 register */
525         uint64_t vncr_el2;
526     } cp15;
527 
528     struct {
529         /* M profile has up to 4 stack pointers:
530          * a Main Stack Pointer and a Process Stack Pointer for each
531          * of the Secure and Non-Secure states. (If the CPU doesn't support
532          * the security extension then it has only two SPs.)
533          * In QEMU we always store the currently active SP in regs[13],
534          * and the non-active SP for the current security state in
535          * v7m.other_sp. The stack pointers for the inactive security state
536          * are stored in other_ss_msp and other_ss_psp.
537          * switch_v7m_security_state() is responsible for rearranging them
538          * when we change security state.
539          */
540         uint32_t other_sp;
541         uint32_t other_ss_msp;
542         uint32_t other_ss_psp;
543         uint32_t vecbase[M_REG_NUM_BANKS];
544         uint32_t basepri[M_REG_NUM_BANKS];
545         uint32_t control[M_REG_NUM_BANKS];
546         uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
547         uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
548         uint32_t hfsr; /* HardFault Status */
549         uint32_t dfsr; /* Debug Fault Status Register */
550         uint32_t sfsr; /* Secure Fault Status Register */
551         uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
552         uint32_t bfar; /* BusFault Address */
553         uint32_t sfar; /* Secure Fault Address Register */
554         unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
555         int exception;
556         uint32_t primask[M_REG_NUM_BANKS];
557         uint32_t faultmask[M_REG_NUM_BANKS];
558         uint32_t aircr; /* only holds r/w state if security extn implemented */
559         uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
560         uint32_t csselr[M_REG_NUM_BANKS];
561         uint32_t scr[M_REG_NUM_BANKS];
562         uint32_t msplim[M_REG_NUM_BANKS];
563         uint32_t psplim[M_REG_NUM_BANKS];
564         uint32_t fpcar[M_REG_NUM_BANKS];
565         uint32_t fpccr[M_REG_NUM_BANKS];
566         uint32_t fpdscr[M_REG_NUM_BANKS];
567         uint32_t cpacr[M_REG_NUM_BANKS];
568         uint32_t nsacr;
569         uint32_t ltpsize;
570         uint32_t vpr;
571     } v7m;
572 
573     /* Information associated with an exception about to be taken:
574      * code which raises an exception must set cs->exception_index and
575      * the relevant parts of this structure; the cpu_do_interrupt function
576      * will then set the guest-visible registers as part of the exception
577      * entry process.
578      */
579     struct {
580         uint32_t syndrome; /* AArch64 format syndrome register */
581         uint32_t fsr; /* AArch32 format fault status register info */
582         uint64_t vaddress; /* virtual addr associated with exception, if any */
583         uint32_t target_el; /* EL the exception should be targeted for */
584         /* If we implement EL2 we will also need to store information
585          * about the intermediate physical address for stage 2 faults.
586          */
587     } exception;
588 
589     /* Information associated with an SError */
590     struct {
591         uint8_t pending;
592         uint8_t has_esr;
593         uint64_t esr;
594     } serror;
595 
596     uint8_t ext_dabt_raised; /* Tracking/verifying injection of ext DABT */
597 
598     /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
599     uint32_t irq_line_state;
600 
601     /* Thumb-2 EE state.  */
602     uint32_t teecr;
603     uint32_t teehbr;
604 
605     /* VFP coprocessor state.  */
606     struct {
607         ARMVectorReg zregs[32];
608 
609 #ifdef TARGET_AARCH64
610         /* Store FFR as pregs[16] to make it easier to treat as any other.  */
611 #define FFR_PRED_NUM 16
612         ARMPredicateReg pregs[17];
613         /* Scratch space for aa64 sve predicate temporary.  */
614         ARMPredicateReg preg_tmp;
615 #endif
616 
617         /* We store these fpcsr fields separately for convenience.  */
618         uint32_t qc[4] QEMU_ALIGNED(16);
619         int vec_len;
620         int vec_stride;
621 
622         /*
623          * Floating point status and control registers. Some bits are
624          * stored separately in other fields or in the float_status below.
625          */
626         uint64_t fpsr;
627         uint64_t fpcr;
628 
629         uint32_t xregs[16];
630 
631         /* Scratch space for aa32 neon expansion.  */
632         uint32_t scratch[8];
633 
634         /* There are a number of distinct float control structures:
635          *
636          *  fp_status: is the "normal" fp status.
637          *  fp_status_fp16: used for half-precision calculations
638          *  standard_fp_status : the ARM "Standard FPSCR Value"
639          *  standard_fp_status_fp16 : used for half-precision
640          *       calculations with the ARM "Standard FPSCR Value"
641          *
642          * Half-precision operations are governed by a separate
643          * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
644          * status structure to control this.
645          *
646          * The "Standard FPSCR", ie default-NaN, flush-to-zero,
647          * round-to-nearest and is used by any operations (generally
648          * Neon) which the architecture defines as controlled by the
649          * standard FPSCR value rather than the FPSCR.
650          *
651          * The "standard FPSCR but for fp16 ops" is needed because
652          * the "standard FPSCR" tracks the FPSCR.FZ16 bit rather than
653          * using a fixed value for it.
654          *
655          * To avoid having to transfer exception bits around, we simply
656          * say that the FPSCR cumulative exception flags are the logical
657          * OR of the flags in the four fp statuses. This relies on the
658          * only thing which needs to read the exception flags being
659          * an explicit FPSCR read.
660          */
661         float_status fp_status;
662         float_status fp_status_f16;
663         float_status standard_fp_status;
664         float_status standard_fp_status_f16;
665 
666         uint64_t zcr_el[4];   /* ZCR_EL[1-3] */
667         uint64_t smcr_el[4];  /* SMCR_EL[1-3] */
668     } vfp;
669 
670     uint64_t exclusive_addr;
671     uint64_t exclusive_val;
672     /*
673      * Contains the 'val' for the second 64-bit register of LDXP, which comes
674      * from the higher address, not the high part of a complete 128-bit value.
675      * In some ways it might be more convenient to record the exclusive value
676      * as the low and high halves of a 128 bit data value, but the current
677      * semantics of these fields are baked into the migration format.
678      */
679     uint64_t exclusive_high;
680 
681     /* iwMMXt coprocessor state.  */
682     struct {
683         uint64_t regs[16];
684         uint64_t val;
685 
686         uint32_t cregs[16];
687     } iwmmxt;
688 
689 #ifdef TARGET_AARCH64
690     struct {
691         ARMPACKey apia;
692         ARMPACKey apib;
693         ARMPACKey apda;
694         ARMPACKey apdb;
695         ARMPACKey apga;
696     } keys;
697 
698     uint64_t scxtnum_el[4];
699 
700     /*
701      * SME ZA storage -- 256 x 256 byte array, with bytes in host word order,
702      * as we do with vfp.zregs[].  This corresponds to the architectural ZA
703      * array, where ZA[N] is in the least-significant bytes of env->zarray[N].
704      * When SVL is less than the architectural maximum, the accessible
705      * storage is restricted, such that if the SVL is X bytes the guest can
706      * see only the bottom X elements of zarray[], and only the least
707      * significant X bytes of each element of the array. (In other words,
708      * the observable part is always square.)
709      *
710      * The ZA storage can also be considered as a set of square tiles of
711      * elements of different sizes. The mapping from tiles to the ZA array
712      * is architecturally defined, such that for tiles of elements of esz
713      * bytes, the Nth row (or "horizontal slice") of tile T is in
714      * ZA[T + N * esz]. Note that this means that each tile is not contiguous
715      * in the ZA storage, because its rows are striped through the ZA array.
716      *
717      * Because this is so large, keep this toward the end of the reset area,
718      * to keep the offsets into the rest of the structure smaller.
719      */
720     ARMVectorReg zarray[ARM_MAX_VQ * 16];
721 #endif
722 
723     struct CPUBreakpoint *cpu_breakpoint[16];
724     struct CPUWatchpoint *cpu_watchpoint[16];
725 
726     /* Optional fault info across tlb lookup. */
727     ARMMMUFaultInfo *tlb_fi;
728 
729     /* Fields up to this point are cleared by a CPU reset */
730     struct {} end_reset_fields;
731 
732     /* Fields after this point are preserved across CPU reset. */
733 
734     /* Internal CPU feature flags.  */
735     uint64_t features;
736 
737     /* PMSAv7 MPU */
738     struct {
739         uint32_t *drbar;
740         uint32_t *drsr;
741         uint32_t *dracr;
742         uint32_t rnr[M_REG_NUM_BANKS];
743     } pmsav7;
744 
745     /* PMSAv8 MPU */
746     struct {
747         /* The PMSAv8 implementation also shares some PMSAv7 config
748          * and state:
749          *  pmsav7.rnr (region number register)
750          *  pmsav7_dregion (number of configured regions)
751          */
752         uint32_t *rbar[M_REG_NUM_BANKS];
753         uint32_t *rlar[M_REG_NUM_BANKS];
754         uint32_t *hprbar;
755         uint32_t *hprlar;
756         uint32_t mair0[M_REG_NUM_BANKS];
757         uint32_t mair1[M_REG_NUM_BANKS];
758         uint32_t hprselr;
759     } pmsav8;
760 
761     /* v8M SAU */
762     struct {
763         uint32_t *rbar;
764         uint32_t *rlar;
765         uint32_t rnr;
766         uint32_t ctrl;
767     } sau;
768 
769 #if !defined(CONFIG_USER_ONLY)
770     NVICState *nvic;
771     const struct arm_boot_info *boot_info;
772     /* Store GICv3CPUState to access from this struct */
773     void *gicv3state;
774 #else /* CONFIG_USER_ONLY */
775     /* For usermode syscall translation.  */
776     bool eabi;
777 #endif /* CONFIG_USER_ONLY */
778 
779 #ifdef TARGET_TAGGED_ADDRESSES
780     /* Linux syscall tagged address support */
781     bool tagged_addr_enable;
782 #endif
783 } CPUARMState;
784 
set_feature(CPUARMState * env,int feature)785 static inline void set_feature(CPUARMState *env, int feature)
786 {
787     env->features |= 1ULL << feature;
788 }
789 
unset_feature(CPUARMState * env,int feature)790 static inline void unset_feature(CPUARMState *env, int feature)
791 {
792     env->features &= ~(1ULL << feature);
793 }
794 
795 /**
796  * ARMELChangeHookFn:
797  * type of a function which can be registered via arm_register_el_change_hook()
798  * to get callbacks when the CPU changes its exception level or mode.
799  */
800 typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
801 typedef struct ARMELChangeHook ARMELChangeHook;
802 struct ARMELChangeHook {
803     ARMELChangeHookFn *hook;
804     void *opaque;
805     QLIST_ENTRY(ARMELChangeHook) node;
806 };
807 
808 /* These values map onto the return values for
809  * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
810 typedef enum ARMPSCIState {
811     PSCI_ON = 0,
812     PSCI_OFF = 1,
813     PSCI_ON_PENDING = 2
814 } ARMPSCIState;
815 
816 typedef struct ARMISARegisters ARMISARegisters;
817 
818 /*
819  * In map, each set bit is a supported vector length of (bit-number + 1) * 16
820  * bytes, i.e. each bit number + 1 is the vector length in quadwords.
821  *
822  * While processing properties during initialization, corresponding init bits
823  * are set for bits in sve_vq_map that have been set by properties.
824  *
825  * Bits set in supported represent valid vector lengths for the CPU type.
826  */
827 typedef struct {
828     uint32_t map, init, supported;
829 } ARMVQMap;
830 
831 /**
832  * ARMCPU:
833  * @env: #CPUARMState
834  *
835  * An ARM CPU core.
836  */
837 struct ArchCPU {
838     CPUState parent_obj;
839 
840     CPUARMState env;
841 
842     /* Coprocessor information */
843     GHashTable *cp_regs;
844     /* For marshalling (mostly coprocessor) register state between the
845      * kernel and QEMU (for KVM) and between two QEMUs (for migration),
846      * we use these arrays.
847      */
848     /* List of register indexes managed via these arrays; (full KVM style
849      * 64 bit indexes, not CPRegInfo 32 bit indexes)
850      */
851     uint64_t *cpreg_indexes;
852     /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
853     uint64_t *cpreg_values;
854     /* Length of the indexes, values, reset_values arrays */
855     int32_t cpreg_array_len;
856     /* These are used only for migration: incoming data arrives in
857      * these fields and is sanity checked in post_load before copying
858      * to the working data structures above.
859      */
860     uint64_t *cpreg_vmstate_indexes;
861     uint64_t *cpreg_vmstate_values;
862     int32_t cpreg_vmstate_array_len;
863 
864     DynamicGDBFeatureInfo dyn_sysreg_feature;
865     DynamicGDBFeatureInfo dyn_svereg_feature;
866     DynamicGDBFeatureInfo dyn_m_systemreg_feature;
867     DynamicGDBFeatureInfo dyn_m_secextreg_feature;
868 
869     /* Timers used by the generic (architected) timer */
870     QEMUTimer *gt_timer[NUM_GTIMERS];
871     /*
872      * Timer used by the PMU. Its state is restored after migration by
873      * pmu_op_finish() - it does not need other handling during migration
874      */
875     QEMUTimer *pmu_timer;
876     /* Timer used for WFxT timeouts */
877     QEMUTimer *wfxt_timer;
878 
879     /* GPIO outputs for generic timer */
880     qemu_irq gt_timer_outputs[NUM_GTIMERS];
881     /* GPIO output for GICv3 maintenance interrupt signal */
882     qemu_irq gicv3_maintenance_interrupt;
883     /* GPIO output for the PMU interrupt */
884     qemu_irq pmu_interrupt;
885 
886     /* MemoryRegion to use for secure physical accesses */
887     MemoryRegion *secure_memory;
888 
889     /* MemoryRegion to use for allocation tag accesses */
890     MemoryRegion *tag_memory;
891     MemoryRegion *secure_tag_memory;
892 
893     /* For v8M, pointer to the IDAU interface provided by board/SoC */
894     Object *idau;
895 
896     /* 'compatible' string for this CPU for Linux device trees */
897     const char *dtb_compatible;
898 
899     /* PSCI version for this CPU
900      * Bits[31:16] = Major Version
901      * Bits[15:0] = Minor Version
902      */
903     uint32_t psci_version;
904 
905     /* Current power state, access guarded by BQL */
906     ARMPSCIState power_state;
907 
908     /* CPU has virtualization extension */
909     bool has_el2;
910     /* CPU has security extension */
911     bool has_el3;
912     /* CPU has PMU (Performance Monitor Unit) */
913     bool has_pmu;
914     /* CPU has VFP */
915     bool has_vfp;
916     /* CPU has 32 VFP registers */
917     bool has_vfp_d32;
918     /* CPU has Neon */
919     bool has_neon;
920     /* CPU has M-profile DSP extension */
921     bool has_dsp;
922 
923     /* CPU has memory protection unit */
924     bool has_mpu;
925     /* CPU has MTE enabled in KVM mode */
926     bool kvm_mte;
927     /* PMSAv7 MPU number of supported regions */
928     uint32_t pmsav7_dregion;
929     /* PMSAv8 MPU number of supported hyp regions */
930     uint32_t pmsav8r_hdregion;
931     /* v8M SAU number of supported regions */
932     uint32_t sau_sregion;
933 
934     /* PSCI conduit used to invoke PSCI methods
935      * 0 - disabled, 1 - smc, 2 - hvc
936      */
937     uint32_t psci_conduit;
938 
939     /* For v8M, initial value of the Secure VTOR */
940     uint32_t init_svtor;
941     /* For v8M, initial value of the Non-secure VTOR */
942     uint32_t init_nsvtor;
943 
944     /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
945      * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
946      */
947     uint32_t kvm_target;
948 
949 #ifdef CONFIG_KVM
950     /* KVM init features for this CPU */
951     uint32_t kvm_init_features[7];
952 
953     /* KVM CPU state */
954 
955     /* KVM virtual time adjustment */
956     bool kvm_adjvtime;
957     bool kvm_vtime_dirty;
958     uint64_t kvm_vtime;
959 
960     /* KVM steal time */
961     OnOffAuto kvm_steal_time;
962 #endif /* CONFIG_KVM */
963 
964     /* Uniprocessor system with MP extensions */
965     bool mp_is_up;
966 
967     /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
968      * and the probe failed (so we need to report the error in realize)
969      */
970     bool host_cpu_probe_failed;
971 
972     /* QOM property to indicate we should use the back-compat CNTFRQ default */
973     bool backcompat_cntfrq;
974 
975     /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
976      * register.
977      */
978     int32_t core_count;
979 
980     /* The instance init functions for implementation-specific subclasses
981      * set these fields to specify the implementation-dependent values of
982      * various constant registers and reset values of non-constant
983      * registers.
984      * Some of these might become QOM properties eventually.
985      * Field names match the official register names as defined in the
986      * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
987      * is used for reset values of non-constant registers; no reset_
988      * prefix means a constant register.
989      * Some of these registers are split out into a substructure that
990      * is shared with the translators to control the ISA.
991      *
992      * Note that if you add an ID register to the ARMISARegisters struct
993      * you need to also update the 32-bit and 64-bit versions of the
994      * kvm_arm_get_host_cpu_features() function to correctly populate the
995      * field by reading the value from the KVM vCPU.
996      */
997     struct ARMISARegisters {
998         uint32_t id_isar0;
999         uint32_t id_isar1;
1000         uint32_t id_isar2;
1001         uint32_t id_isar3;
1002         uint32_t id_isar4;
1003         uint32_t id_isar5;
1004         uint32_t id_isar6;
1005         uint32_t id_mmfr0;
1006         uint32_t id_mmfr1;
1007         uint32_t id_mmfr2;
1008         uint32_t id_mmfr3;
1009         uint32_t id_mmfr4;
1010         uint32_t id_mmfr5;
1011         uint32_t id_pfr0;
1012         uint32_t id_pfr1;
1013         uint32_t id_pfr2;
1014         uint32_t mvfr0;
1015         uint32_t mvfr1;
1016         uint32_t mvfr2;
1017         uint32_t id_dfr0;
1018         uint32_t id_dfr1;
1019         uint32_t dbgdidr;
1020         uint32_t dbgdevid;
1021         uint32_t dbgdevid1;
1022         uint64_t id_aa64isar0;
1023         uint64_t id_aa64isar1;
1024         uint64_t id_aa64isar2;
1025         uint64_t id_aa64pfr0;
1026         uint64_t id_aa64pfr1;
1027         uint64_t id_aa64mmfr0;
1028         uint64_t id_aa64mmfr1;
1029         uint64_t id_aa64mmfr2;
1030         uint64_t id_aa64mmfr3;
1031         uint64_t id_aa64dfr0;
1032         uint64_t id_aa64dfr1;
1033         uint64_t id_aa64zfr0;
1034         uint64_t id_aa64smfr0;
1035         uint64_t reset_pmcr_el0;
1036     } isar;
1037     uint64_t midr;
1038     uint32_t revidr;
1039     uint32_t reset_fpsid;
1040     uint64_t ctr;
1041     uint32_t reset_sctlr;
1042     uint64_t pmceid0;
1043     uint64_t pmceid1;
1044     uint32_t id_afr0;
1045     uint64_t id_aa64afr0;
1046     uint64_t id_aa64afr1;
1047     uint64_t clidr;
1048     uint64_t mp_affinity; /* MP ID without feature bits */
1049     /* The elements of this array are the CCSIDR values for each cache,
1050      * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
1051      */
1052     uint64_t ccsidr[16];
1053     uint64_t reset_cbar;
1054     uint32_t reset_auxcr;
1055     bool reset_hivecs;
1056     uint8_t reset_l0gptsz;
1057 
1058     /*
1059      * Intermediate values used during property parsing.
1060      * Once finalized, the values should be read from ID_AA64*.
1061      */
1062     bool prop_pauth;
1063     bool prop_pauth_impdef;
1064     bool prop_pauth_qarma3;
1065     bool prop_lpa2;
1066 
1067     /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
1068     uint8_t dcz_blocksize;
1069     /* GM blocksize, in log_2(words), ie low 4 bits of GMID_EL0 */
1070     uint8_t gm_blocksize;
1071 
1072     uint64_t rvbar_prop; /* Property/input signals.  */
1073 
1074     /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
1075     int gic_num_lrs; /* number of list registers */
1076     int gic_vpribits; /* number of virtual priority bits */
1077     int gic_vprebits; /* number of virtual preemption bits */
1078     int gic_pribits; /* number of physical priority bits */
1079 
1080     /* Whether the cfgend input is high (i.e. this CPU should reset into
1081      * big-endian mode).  This setting isn't used directly: instead it modifies
1082      * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
1083      * architecture version.
1084      */
1085     bool cfgend;
1086 
1087     QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
1088     QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
1089 
1090     int32_t node_id; /* NUMA node this CPU belongs to */
1091 
1092     /* Used to synchronize KVM and QEMU in-kernel device levels */
1093     uint8_t device_irq_level;
1094 
1095     /* Used to set the maximum vector length the cpu will support.  */
1096     uint32_t sve_max_vq;
1097 
1098 #ifdef CONFIG_USER_ONLY
1099     /* Used to set the default vector length at process start. */
1100     uint32_t sve_default_vq;
1101     uint32_t sme_default_vq;
1102 #endif
1103 
1104     ARMVQMap sve_vq;
1105     ARMVQMap sme_vq;
1106 
1107     /* Generic timer counter frequency, in Hz */
1108     uint64_t gt_cntfrq_hz;
1109 };
1110 
1111 typedef struct ARMCPUInfo {
1112     const char *name;
1113     void (*initfn)(Object *obj);
1114     void (*class_init)(ObjectClass *oc, void *data);
1115 } ARMCPUInfo;
1116 
1117 /**
1118  * ARMCPUClass:
1119  * @parent_realize: The parent class' realize handler.
1120  * @parent_phases: The parent class' reset phase handlers.
1121  *
1122  * An ARM CPU model.
1123  */
1124 struct ARMCPUClass {
1125     CPUClass parent_class;
1126 
1127     const ARMCPUInfo *info;
1128     DeviceRealize parent_realize;
1129     ResettablePhases parent_phases;
1130 };
1131 
1132 struct AArch64CPUClass {
1133     ARMCPUClass parent_class;
1134 };
1135 
1136 /* Callback functions for the generic timer's timers. */
1137 void arm_gt_ptimer_cb(void *opaque);
1138 void arm_gt_vtimer_cb(void *opaque);
1139 void arm_gt_htimer_cb(void *opaque);
1140 void arm_gt_stimer_cb(void *opaque);
1141 void arm_gt_hvtimer_cb(void *opaque);
1142 
1143 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu);
1144 void gt_rme_post_el_change(ARMCPU *cpu, void *opaque);
1145 
1146 void arm_cpu_post_init(Object *obj);
1147 
1148 #define ARM_AFF0_SHIFT 0
1149 #define ARM_AFF0_MASK  (0xFFULL << ARM_AFF0_SHIFT)
1150 #define ARM_AFF1_SHIFT 8
1151 #define ARM_AFF1_MASK  (0xFFULL << ARM_AFF1_SHIFT)
1152 #define ARM_AFF2_SHIFT 16
1153 #define ARM_AFF2_MASK  (0xFFULL << ARM_AFF2_SHIFT)
1154 #define ARM_AFF3_SHIFT 32
1155 #define ARM_AFF3_MASK  (0xFFULL << ARM_AFF3_SHIFT)
1156 #define ARM_DEFAULT_CPUS_PER_CLUSTER 8
1157 
1158 #define ARM32_AFFINITY_MASK (ARM_AFF0_MASK | ARM_AFF1_MASK | ARM_AFF2_MASK)
1159 #define ARM64_AFFINITY_MASK \
1160     (ARM_AFF0_MASK | ARM_AFF1_MASK | ARM_AFF2_MASK | ARM_AFF3_MASK)
1161 #define ARM64_AFFINITY_INVALID (~ARM64_AFFINITY_MASK)
1162 
1163 uint64_t arm_build_mp_affinity(int idx, uint8_t clustersz);
1164 
1165 #ifndef CONFIG_USER_ONLY
1166 extern const VMStateDescription vmstate_arm_cpu;
1167 
1168 void arm_cpu_do_interrupt(CPUState *cpu);
1169 void arm_v7m_cpu_do_interrupt(CPUState *cpu);
1170 
1171 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
1172                                          MemTxAttrs *attrs);
1173 #endif /* !CONFIG_USER_ONLY */
1174 
1175 int arm_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
1176 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1177 
1178 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
1179                              int cpuid, DumpState *s);
1180 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
1181                              int cpuid, DumpState *s);
1182 
1183 /**
1184  * arm_emulate_firmware_reset: Emulate firmware CPU reset handling
1185  * @cpu: CPU (which must have been freshly reset)
1186  * @target_el: exception level to put the CPU into
1187  * @secure: whether to put the CPU in secure state
1188  *
1189  * When QEMU is directly running a guest kernel at a lower level than
1190  * EL3 it implicitly emulates some aspects of the guest firmware.
1191  * This includes that on reset we need to configure the parts of the
1192  * CPU corresponding to EL3 so that the real guest code can run at its
1193  * lower exception level. This function does that post-reset CPU setup,
1194  * for when we do direct boot of a guest kernel, and for when we
1195  * emulate PSCI and similar firmware interfaces starting a CPU at a
1196  * lower exception level.
1197  *
1198  * @target_el must be an EL implemented by the CPU between 1 and 3.
1199  * We do not support dropping into a Secure EL other than 3.
1200  *
1201  * It is the responsibility of the caller to call arm_rebuild_hflags().
1202  */
1203 void arm_emulate_firmware_reset(CPUState *cpustate, int target_el);
1204 
1205 #ifdef TARGET_AARCH64
1206 int aarch64_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
1207 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1208 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
1209 void aarch64_sve_change_el(CPUARMState *env, int old_el,
1210                            int new_el, bool el0_a64);
1211 void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask);
1212 
1213 /*
1214  * SVE registers are encoded in KVM's memory in an endianness-invariant format.
1215  * The byte at offset i from the start of the in-memory representation contains
1216  * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the
1217  * lowest offsets are stored in the lowest memory addresses, then that nearly
1218  * matches QEMU's representation, which is to use an array of host-endian
1219  * uint64_t's, where the lower offsets are at the lower indices. To complete
1220  * the translation we just need to byte swap the uint64_t's on big-endian hosts.
1221  */
sve_bswap64(uint64_t * dst,uint64_t * src,int nr)1222 static inline uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr)
1223 {
1224 #if HOST_BIG_ENDIAN
1225     int i;
1226 
1227     for (i = 0; i < nr; ++i) {
1228         dst[i] = bswap64(src[i]);
1229     }
1230 
1231     return dst;
1232 #else
1233     return src;
1234 #endif
1235 }
1236 
1237 #else
aarch64_sve_narrow_vq(CPUARMState * env,unsigned vq)1238 static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
aarch64_sve_change_el(CPUARMState * env,int o,int n,bool a)1239 static inline void aarch64_sve_change_el(CPUARMState *env, int o,
1240                                          int n, bool a)
1241 { }
1242 #endif
1243 
1244 void aarch64_sync_32_to_64(CPUARMState *env);
1245 void aarch64_sync_64_to_32(CPUARMState *env);
1246 
1247 int fp_exception_el(CPUARMState *env, int cur_el);
1248 int sve_exception_el(CPUARMState *env, int cur_el);
1249 int sme_exception_el(CPUARMState *env, int cur_el);
1250 
1251 /**
1252  * sve_vqm1_for_el_sm:
1253  * @env: CPUARMState
1254  * @el: exception level
1255  * @sm: streaming mode
1256  *
1257  * Compute the current vector length for @el & @sm, in units of
1258  * Quadwords Minus 1 -- the same scale used for ZCR_ELx.LEN.
1259  * If @sm, compute for SVL, otherwise NVL.
1260  */
1261 uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm);
1262 
1263 /* Likewise, but using @sm = PSTATE.SM. */
1264 uint32_t sve_vqm1_for_el(CPUARMState *env, int el);
1265 
is_a64(CPUARMState * env)1266 static inline bool is_a64(CPUARMState *env)
1267 {
1268     return env->aarch64;
1269 }
1270 
1271 /**
1272  * pmu_op_start/finish
1273  * @env: CPUARMState
1274  *
1275  * Convert all PMU counters between their delta form (the typical mode when
1276  * they are enabled) and the guest-visible values. These two calls must
1277  * surround any action which might affect the counters.
1278  */
1279 void pmu_op_start(CPUARMState *env);
1280 void pmu_op_finish(CPUARMState *env);
1281 
1282 /*
1283  * Called when a PMU counter is due to overflow
1284  */
1285 void arm_pmu_timer_cb(void *opaque);
1286 
1287 /**
1288  * Functions to register as EL change hooks for PMU mode filtering
1289  */
1290 void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1291 void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1292 
1293 /*
1294  * pmu_init
1295  * @cpu: ARMCPU
1296  *
1297  * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1298  * for the current configuration
1299  */
1300 void pmu_init(ARMCPU *cpu);
1301 
1302 /* SCTLR bit meanings. Several bits have been reused in newer
1303  * versions of the architecture; in that case we define constants
1304  * for both old and new bit meanings. Code which tests against those
1305  * bits should probably check or otherwise arrange that the CPU
1306  * is the architectural version it expects.
1307  */
1308 #define SCTLR_M       (1U << 0)
1309 #define SCTLR_A       (1U << 1)
1310 #define SCTLR_C       (1U << 2)
1311 #define SCTLR_W       (1U << 3) /* up to v6; RAO in v7 */
1312 #define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1313 #define SCTLR_SA      (1U << 3) /* AArch64 only */
1314 #define SCTLR_P       (1U << 4) /* up to v5; RAO in v6 and v7 */
1315 #define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
1316 #define SCTLR_SA0     (1U << 4) /* v8 onward, AArch64 only */
1317 #define SCTLR_D       (1U << 5) /* up to v5; RAO in v6 */
1318 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1319 #define SCTLR_L       (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
1320 #define SCTLR_nAA     (1U << 6) /* when FEAT_LSE2 is implemented */
1321 #define SCTLR_B       (1U << 7) /* up to v6; RAZ in v7 */
1322 #define SCTLR_ITD     (1U << 7) /* v8 onward */
1323 #define SCTLR_S       (1U << 8) /* up to v6; RAZ in v7 */
1324 #define SCTLR_SED     (1U << 8) /* v8 onward */
1325 #define SCTLR_R       (1U << 9) /* up to v6; RAZ in v7 */
1326 #define SCTLR_UMA     (1U << 9) /* v8 onward, AArch64 only */
1327 #define SCTLR_F       (1U << 10) /* up to v6 */
1328 #define SCTLR_SW      (1U << 10) /* v7 */
1329 #define SCTLR_EnRCTX  (1U << 10) /* in v8.0-PredInv */
1330 #define SCTLR_Z       (1U << 11) /* in v7, RES1 in v8 */
1331 #define SCTLR_EOS     (1U << 11) /* v8.5-ExS */
1332 #define SCTLR_I       (1U << 12)
1333 #define SCTLR_V       (1U << 13) /* AArch32 only */
1334 #define SCTLR_EnDB    (1U << 13) /* v8.3, AArch64 only */
1335 #define SCTLR_RR      (1U << 14) /* up to v7 */
1336 #define SCTLR_DZE     (1U << 14) /* v8 onward, AArch64 only */
1337 #define SCTLR_L4      (1U << 15) /* up to v6; RAZ in v7 */
1338 #define SCTLR_UCT     (1U << 15) /* v8 onward, AArch64 only */
1339 #define SCTLR_DT      (1U << 16) /* up to ??, RAO in v6 and v7 */
1340 #define SCTLR_nTWI    (1U << 16) /* v8 onward */
1341 #define SCTLR_HA      (1U << 17) /* up to v7, RES0 in v8 */
1342 #define SCTLR_BR      (1U << 17) /* PMSA only */
1343 #define SCTLR_IT      (1U << 18) /* up to ??, RAO in v6 and v7 */
1344 #define SCTLR_nTWE    (1U << 18) /* v8 onward */
1345 #define SCTLR_WXN     (1U << 19)
1346 #define SCTLR_ST      (1U << 20) /* up to ??, RAZ in v6 */
1347 #define SCTLR_UWXN    (1U << 20) /* v7 onward, AArch32 only */
1348 #define SCTLR_TSCXT   (1U << 20) /* FEAT_CSV2_1p2, AArch64 only */
1349 #define SCTLR_FI      (1U << 21) /* up to v7, v8 RES0 */
1350 #define SCTLR_IESB    (1U << 21) /* v8.2-IESB, AArch64 only */
1351 #define SCTLR_U       (1U << 22) /* up to v6, RAO in v7 */
1352 #define SCTLR_EIS     (1U << 22) /* v8.5-ExS */
1353 #define SCTLR_XP      (1U << 23) /* up to v6; v7 onward RAO */
1354 #define SCTLR_SPAN    (1U << 23) /* v8.1-PAN */
1355 #define SCTLR_VE      (1U << 24) /* up to v7 */
1356 #define SCTLR_E0E     (1U << 24) /* v8 onward, AArch64 only */
1357 #define SCTLR_EE      (1U << 25)
1358 #define SCTLR_L2      (1U << 26) /* up to v6, RAZ in v7 */
1359 #define SCTLR_UCI     (1U << 26) /* v8 onward, AArch64 only */
1360 #define SCTLR_NMFI    (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1361 #define SCTLR_EnDA    (1U << 27) /* v8.3, AArch64 only */
1362 #define SCTLR_TRE     (1U << 28) /* AArch32 only */
1363 #define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1364 #define SCTLR_AFE     (1U << 29) /* AArch32 only */
1365 #define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1366 #define SCTLR_TE      (1U << 30) /* AArch32 only */
1367 #define SCTLR_EnIB    (1U << 30) /* v8.3, AArch64 only */
1368 #define SCTLR_EnIA    (1U << 31) /* v8.3, AArch64 only */
1369 #define SCTLR_DSSBS_32 (1U << 31) /* v8.5, AArch32 only */
1370 #define SCTLR_CMOW    (1ULL << 32) /* FEAT_CMOW */
1371 #define SCTLR_MSCEN   (1ULL << 33) /* FEAT_MOPS */
1372 #define SCTLR_BT0     (1ULL << 35) /* v8.5-BTI */
1373 #define SCTLR_BT1     (1ULL << 36) /* v8.5-BTI */
1374 #define SCTLR_ITFSB   (1ULL << 37) /* v8.5-MemTag */
1375 #define SCTLR_TCF0    (3ULL << 38) /* v8.5-MemTag */
1376 #define SCTLR_TCF     (3ULL << 40) /* v8.5-MemTag */
1377 #define SCTLR_ATA0    (1ULL << 42) /* v8.5-MemTag */
1378 #define SCTLR_ATA     (1ULL << 43) /* v8.5-MemTag */
1379 #define SCTLR_DSSBS_64 (1ULL << 44) /* v8.5, AArch64 only */
1380 #define SCTLR_TWEDEn  (1ULL << 45)  /* FEAT_TWED */
1381 #define SCTLR_TWEDEL  MAKE_64_MASK(46, 4)  /* FEAT_TWED */
1382 #define SCTLR_TMT0    (1ULL << 50) /* FEAT_TME */
1383 #define SCTLR_TMT     (1ULL << 51) /* FEAT_TME */
1384 #define SCTLR_TME0    (1ULL << 52) /* FEAT_TME */
1385 #define SCTLR_TME     (1ULL << 53) /* FEAT_TME */
1386 #define SCTLR_EnASR   (1ULL << 54) /* FEAT_LS64_V */
1387 #define SCTLR_EnAS0   (1ULL << 55) /* FEAT_LS64_ACCDATA */
1388 #define SCTLR_EnALS   (1ULL << 56) /* FEAT_LS64 */
1389 #define SCTLR_EPAN    (1ULL << 57) /* FEAT_PAN3 */
1390 #define SCTLR_EnTP2   (1ULL << 60) /* FEAT_SME */
1391 #define SCTLR_NMI     (1ULL << 61) /* FEAT_NMI */
1392 #define SCTLR_SPINTMASK (1ULL << 62) /* FEAT_NMI */
1393 #define SCTLR_TIDCP   (1ULL << 63) /* FEAT_TIDCP1 */
1394 
1395 #define CPSR_M (0x1fU)
1396 #define CPSR_T (1U << 5)
1397 #define CPSR_F (1U << 6)
1398 #define CPSR_I (1U << 7)
1399 #define CPSR_A (1U << 8)
1400 #define CPSR_E (1U << 9)
1401 #define CPSR_IT_2_7 (0xfc00U)
1402 #define CPSR_GE (0xfU << 16)
1403 #define CPSR_IL (1U << 20)
1404 #define CPSR_DIT (1U << 21)
1405 #define CPSR_PAN (1U << 22)
1406 #define CPSR_SSBS (1U << 23)
1407 #define CPSR_J (1U << 24)
1408 #define CPSR_IT_0_1 (3U << 25)
1409 #define CPSR_Q (1U << 27)
1410 #define CPSR_V (1U << 28)
1411 #define CPSR_C (1U << 29)
1412 #define CPSR_Z (1U << 30)
1413 #define CPSR_N (1U << 31)
1414 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
1415 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
1416 #define ISR_FS (1U << 9)
1417 #define ISR_IS (1U << 10)
1418 
1419 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
1420 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1421     | CPSR_NZCV)
1422 /* Bits writable in user mode.  */
1423 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE | CPSR_E)
1424 /* Execution state bits.  MRS read as zero, MSR writes ignored.  */
1425 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
1426 
1427 /* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1428 #define XPSR_EXCP 0x1ffU
1429 #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1430 #define XPSR_IT_2_7 CPSR_IT_2_7
1431 #define XPSR_GE CPSR_GE
1432 #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1433 #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1434 #define XPSR_IT_0_1 CPSR_IT_0_1
1435 #define XPSR_Q CPSR_Q
1436 #define XPSR_V CPSR_V
1437 #define XPSR_C CPSR_C
1438 #define XPSR_Z CPSR_Z
1439 #define XPSR_N CPSR_N
1440 #define XPSR_NZCV CPSR_NZCV
1441 #define XPSR_IT CPSR_IT
1442 
1443 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
1444  * Only these are valid when in AArch64 mode; in
1445  * AArch32 mode SPSRs are basically CPSR-format.
1446  */
1447 #define PSTATE_SP (1U)
1448 #define PSTATE_M (0xFU)
1449 #define PSTATE_nRW (1U << 4)
1450 #define PSTATE_F (1U << 6)
1451 #define PSTATE_I (1U << 7)
1452 #define PSTATE_A (1U << 8)
1453 #define PSTATE_D (1U << 9)
1454 #define PSTATE_BTYPE (3U << 10)
1455 #define PSTATE_SSBS (1U << 12)
1456 #define PSTATE_ALLINT (1U << 13)
1457 #define PSTATE_IL (1U << 20)
1458 #define PSTATE_SS (1U << 21)
1459 #define PSTATE_PAN (1U << 22)
1460 #define PSTATE_UAO (1U << 23)
1461 #define PSTATE_DIT (1U << 24)
1462 #define PSTATE_TCO (1U << 25)
1463 #define PSTATE_V (1U << 28)
1464 #define PSTATE_C (1U << 29)
1465 #define PSTATE_Z (1U << 30)
1466 #define PSTATE_N (1U << 31)
1467 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
1468 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
1469 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
1470 /* Mode values for AArch64 */
1471 #define PSTATE_MODE_EL3h 13
1472 #define PSTATE_MODE_EL3t 12
1473 #define PSTATE_MODE_EL2h 9
1474 #define PSTATE_MODE_EL2t 8
1475 #define PSTATE_MODE_EL1h 5
1476 #define PSTATE_MODE_EL1t 4
1477 #define PSTATE_MODE_EL0t 0
1478 
1479 /* PSTATE bits that are accessed via SVCR and not stored in SPSR_ELx. */
1480 FIELD(SVCR, SM, 0, 1)
1481 FIELD(SVCR, ZA, 1, 1)
1482 
1483 /* Fields for SMCR_ELx. */
1484 FIELD(SMCR, LEN, 0, 4)
1485 FIELD(SMCR, FA64, 31, 1)
1486 
1487 /* Write a new value to v7m.exception, thus transitioning into or out
1488  * of Handler mode; this may result in a change of active stack pointer.
1489  */
1490 void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1491 
1492 /* Map EL and handler into a PSTATE_MODE.  */
aarch64_pstate_mode(unsigned int el,bool handler)1493 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1494 {
1495     return (el << 2) | handler;
1496 }
1497 
1498 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1499  * interprocessing, so we don't attempt to sync with the cpsr state used by
1500  * the 32 bit decoder.
1501  */
pstate_read(CPUARMState * env)1502 static inline uint32_t pstate_read(CPUARMState *env)
1503 {
1504     int ZF;
1505 
1506     ZF = (env->ZF == 0);
1507     return (env->NF & 0x80000000) | (ZF << 30)
1508         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
1509         | env->pstate | env->daif | (env->btype << 10);
1510 }
1511 
pstate_write(CPUARMState * env,uint32_t val)1512 static inline void pstate_write(CPUARMState *env, uint32_t val)
1513 {
1514     env->ZF = (~val) & PSTATE_Z;
1515     env->NF = val;
1516     env->CF = (val >> 29) & 1;
1517     env->VF = (val << 3) & 0x80000000;
1518     env->daif = val & PSTATE_DAIF;
1519     env->btype = (val >> 10) & 3;
1520     env->pstate = val & ~CACHED_PSTATE_BITS;
1521 }
1522 
1523 /* Return the current CPSR value.  */
1524 uint32_t cpsr_read(CPUARMState *env);
1525 
1526 typedef enum CPSRWriteType {
1527     CPSRWriteByInstr = 0,         /* from guest MSR or CPS */
1528     CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1529     CPSRWriteRaw = 2,
1530         /* trust values, no reg bank switch, no hflags rebuild */
1531     CPSRWriteByGDBStub = 3,       /* from the GDB stub */
1532 } CPSRWriteType;
1533 
1534 /*
1535  * Set the CPSR.  Note that some bits of mask must be all-set or all-clear.
1536  * This will do an arm_rebuild_hflags() if any of the bits in @mask
1537  * correspond to TB flags bits cached in the hflags, unless @write_type
1538  * is CPSRWriteRaw.
1539  */
1540 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1541                 CPSRWriteType write_type);
1542 
1543 /* Return the current xPSR value.  */
xpsr_read(CPUARMState * env)1544 static inline uint32_t xpsr_read(CPUARMState *env)
1545 {
1546     int ZF;
1547     ZF = (env->ZF == 0);
1548     return (env->NF & 0x80000000) | (ZF << 30)
1549         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1550         | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1551         | ((env->condexec_bits & 0xfc) << 8)
1552         | (env->GE << 16)
1553         | env->v7m.exception;
1554 }
1555 
1556 /* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
xpsr_write(CPUARMState * env,uint32_t val,uint32_t mask)1557 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1558 {
1559     if (mask & XPSR_NZCV) {
1560         env->ZF = (~val) & XPSR_Z;
1561         env->NF = val;
1562         env->CF = (val >> 29) & 1;
1563         env->VF = (val << 3) & 0x80000000;
1564     }
1565     if (mask & XPSR_Q) {
1566         env->QF = ((val & XPSR_Q) != 0);
1567     }
1568     if (mask & XPSR_GE) {
1569         env->GE = (val & XPSR_GE) >> 16;
1570     }
1571 #ifndef CONFIG_USER_ONLY
1572     if (mask & XPSR_T) {
1573         env->thumb = ((val & XPSR_T) != 0);
1574     }
1575     if (mask & XPSR_IT_0_1) {
1576         env->condexec_bits &= ~3;
1577         env->condexec_bits |= (val >> 25) & 3;
1578     }
1579     if (mask & XPSR_IT_2_7) {
1580         env->condexec_bits &= 3;
1581         env->condexec_bits |= (val >> 8) & 0xfc;
1582     }
1583     if (mask & XPSR_EXCP) {
1584         /* Note that this only happens on exception exit */
1585         write_v7m_exception(env, val & XPSR_EXCP);
1586     }
1587 #endif
1588 }
1589 
1590 #define HCR_VM        (1ULL << 0)
1591 #define HCR_SWIO      (1ULL << 1)
1592 #define HCR_PTW       (1ULL << 2)
1593 #define HCR_FMO       (1ULL << 3)
1594 #define HCR_IMO       (1ULL << 4)
1595 #define HCR_AMO       (1ULL << 5)
1596 #define HCR_VF        (1ULL << 6)
1597 #define HCR_VI        (1ULL << 7)
1598 #define HCR_VSE       (1ULL << 8)
1599 #define HCR_FB        (1ULL << 9)
1600 #define HCR_BSU_MASK  (3ULL << 10)
1601 #define HCR_DC        (1ULL << 12)
1602 #define HCR_TWI       (1ULL << 13)
1603 #define HCR_TWE       (1ULL << 14)
1604 #define HCR_TID0      (1ULL << 15)
1605 #define HCR_TID1      (1ULL << 16)
1606 #define HCR_TID2      (1ULL << 17)
1607 #define HCR_TID3      (1ULL << 18)
1608 #define HCR_TSC       (1ULL << 19)
1609 #define HCR_TIDCP     (1ULL << 20)
1610 #define HCR_TACR      (1ULL << 21)
1611 #define HCR_TSW       (1ULL << 22)
1612 #define HCR_TPCP      (1ULL << 23)
1613 #define HCR_TPU       (1ULL << 24)
1614 #define HCR_TTLB      (1ULL << 25)
1615 #define HCR_TVM       (1ULL << 26)
1616 #define HCR_TGE       (1ULL << 27)
1617 #define HCR_TDZ       (1ULL << 28)
1618 #define HCR_HCD       (1ULL << 29)
1619 #define HCR_TRVM      (1ULL << 30)
1620 #define HCR_RW        (1ULL << 31)
1621 #define HCR_CD        (1ULL << 32)
1622 #define HCR_ID        (1ULL << 33)
1623 #define HCR_E2H       (1ULL << 34)
1624 #define HCR_TLOR      (1ULL << 35)
1625 #define HCR_TERR      (1ULL << 36)
1626 #define HCR_TEA       (1ULL << 37)
1627 #define HCR_MIOCNCE   (1ULL << 38)
1628 #define HCR_TME       (1ULL << 39)
1629 #define HCR_APK       (1ULL << 40)
1630 #define HCR_API       (1ULL << 41)
1631 #define HCR_NV        (1ULL << 42)
1632 #define HCR_NV1       (1ULL << 43)
1633 #define HCR_AT        (1ULL << 44)
1634 #define HCR_NV2       (1ULL << 45)
1635 #define HCR_FWB       (1ULL << 46)
1636 #define HCR_FIEN      (1ULL << 47)
1637 #define HCR_GPF       (1ULL << 48)
1638 #define HCR_TID4      (1ULL << 49)
1639 #define HCR_TICAB     (1ULL << 50)
1640 #define HCR_AMVOFFEN  (1ULL << 51)
1641 #define HCR_TOCU      (1ULL << 52)
1642 #define HCR_ENSCXT    (1ULL << 53)
1643 #define HCR_TTLBIS    (1ULL << 54)
1644 #define HCR_TTLBOS    (1ULL << 55)
1645 #define HCR_ATA       (1ULL << 56)
1646 #define HCR_DCT       (1ULL << 57)
1647 #define HCR_TID5      (1ULL << 58)
1648 #define HCR_TWEDEN    (1ULL << 59)
1649 #define HCR_TWEDEL    MAKE_64BIT_MASK(60, 4)
1650 
1651 #define SCR_NS                (1ULL << 0)
1652 #define SCR_IRQ               (1ULL << 1)
1653 #define SCR_FIQ               (1ULL << 2)
1654 #define SCR_EA                (1ULL << 3)
1655 #define SCR_FW                (1ULL << 4)
1656 #define SCR_AW                (1ULL << 5)
1657 #define SCR_NET               (1ULL << 6)
1658 #define SCR_SMD               (1ULL << 7)
1659 #define SCR_HCE               (1ULL << 8)
1660 #define SCR_SIF               (1ULL << 9)
1661 #define SCR_RW                (1ULL << 10)
1662 #define SCR_ST                (1ULL << 11)
1663 #define SCR_TWI               (1ULL << 12)
1664 #define SCR_TWE               (1ULL << 13)
1665 #define SCR_TLOR              (1ULL << 14)
1666 #define SCR_TERR              (1ULL << 15)
1667 #define SCR_APK               (1ULL << 16)
1668 #define SCR_API               (1ULL << 17)
1669 #define SCR_EEL2              (1ULL << 18)
1670 #define SCR_EASE              (1ULL << 19)
1671 #define SCR_NMEA              (1ULL << 20)
1672 #define SCR_FIEN              (1ULL << 21)
1673 #define SCR_ENSCXT            (1ULL << 25)
1674 #define SCR_ATA               (1ULL << 26)
1675 #define SCR_FGTEN             (1ULL << 27)
1676 #define SCR_ECVEN             (1ULL << 28)
1677 #define SCR_TWEDEN            (1ULL << 29)
1678 #define SCR_TWEDEL            MAKE_64BIT_MASK(30, 4)
1679 #define SCR_TME               (1ULL << 34)
1680 #define SCR_AMVOFFEN          (1ULL << 35)
1681 #define SCR_ENAS0             (1ULL << 36)
1682 #define SCR_ADEN              (1ULL << 37)
1683 #define SCR_HXEN              (1ULL << 38)
1684 #define SCR_TRNDR             (1ULL << 40)
1685 #define SCR_ENTP2             (1ULL << 41)
1686 #define SCR_GPF               (1ULL << 48)
1687 #define SCR_NSE               (1ULL << 62)
1688 
1689 /* Return the current FPSCR value.  */
1690 uint32_t vfp_get_fpscr(CPUARMState *env);
1691 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1692 
1693 /*
1694  * FPCR, Floating Point Control Register
1695  * FPSR, Floating Point Status Register
1696  *
1697  * For A64 floating point control and status bits are stored in
1698  * two logically distinct registers, FPCR and FPSR. We store these
1699  * in QEMU in vfp.fpcr and vfp.fpsr.
1700  * For A32 there was only one register, FPSCR. The bits are arranged
1701  * such that FPSCR bits map to FPCR or FPSR bits in the same bit positions,
1702  * so we can use appropriate masking to handle FPSCR reads and writes.
1703  * Note that the FPCR has some bits which are not visible in the
1704  * AArch32 view (for FEAT_AFP). Writing the FPSCR leaves these unchanged.
1705  */
1706 
1707 /* FPCR bits */
1708 #define FPCR_IOE    (1 << 8)    /* Invalid Operation exception trap enable */
1709 #define FPCR_DZE    (1 << 9)    /* Divide by Zero exception trap enable */
1710 #define FPCR_OFE    (1 << 10)   /* Overflow exception trap enable */
1711 #define FPCR_UFE    (1 << 11)   /* Underflow exception trap enable */
1712 #define FPCR_IXE    (1 << 12)   /* Inexact exception trap enable */
1713 #define FPCR_EBF    (1 << 13)   /* Extended BFloat16 behaviors */
1714 #define FPCR_IDE    (1 << 15)   /* Input Denormal exception trap enable */
1715 #define FPCR_LEN_MASK (7 << 16) /* LEN, A-profile only */
1716 #define FPCR_FZ16   (1 << 19)   /* ARMv8.2+, FP16 flush-to-zero */
1717 #define FPCR_STRIDE_MASK (3 << 20) /* Stride */
1718 #define FPCR_RMODE_MASK (3 << 22) /* Rounding mode */
1719 #define FPCR_FZ     (1 << 24)   /* Flush-to-zero enable bit */
1720 #define FPCR_DN     (1 << 25)   /* Default NaN enable bit */
1721 #define FPCR_AHP    (1 << 26)   /* Alternative half-precision */
1722 
1723 #define FPCR_LTPSIZE_SHIFT 16   /* LTPSIZE, M-profile only */
1724 #define FPCR_LTPSIZE_MASK (7 << FPCR_LTPSIZE_SHIFT)
1725 #define FPCR_LTPSIZE_LENGTH 3
1726 
1727 /* Cumulative exception trap enable bits */
1728 #define FPCR_EEXC_MASK (FPCR_IOE | FPCR_DZE | FPCR_OFE | FPCR_UFE | FPCR_IXE | FPCR_IDE)
1729 
1730 /* FPSR bits */
1731 #define FPSR_IOC    (1 << 0)    /* Invalid Operation cumulative exception */
1732 #define FPSR_DZC    (1 << 1)    /* Divide by Zero cumulative exception */
1733 #define FPSR_OFC    (1 << 2)    /* Overflow cumulative exception */
1734 #define FPSR_UFC    (1 << 3)    /* Underflow cumulative exception */
1735 #define FPSR_IXC    (1 << 4)    /* Inexact cumulative exception */
1736 #define FPSR_IDC    (1 << 7)    /* Input Denormal cumulative exception */
1737 #define FPSR_QC     (1 << 27)   /* Cumulative saturation bit */
1738 #define FPSR_V      (1 << 28)   /* FP overflow flag */
1739 #define FPSR_C      (1 << 29)   /* FP carry flag */
1740 #define FPSR_Z      (1 << 30)   /* FP zero flag */
1741 #define FPSR_N      (1 << 31)   /* FP negative flag */
1742 
1743 /* Cumulative exception status bits */
1744 #define FPSR_CEXC_MASK (FPSR_IOC | FPSR_DZC | FPSR_OFC | FPSR_UFC | FPSR_IXC | FPSR_IDC)
1745 
1746 #define FPSR_NZCV_MASK (FPSR_N | FPSR_Z | FPSR_C | FPSR_V)
1747 #define FPSR_NZCVQC_MASK (FPSR_NZCV_MASK | FPSR_QC)
1748 
1749 /* A32 FPSCR bits which architecturally map to FPSR bits */
1750 #define FPSCR_FPSR_MASK (FPSR_NZCVQC_MASK | FPSR_CEXC_MASK)
1751 /* A32 FPSCR bits which architecturally map to FPCR bits */
1752 #define FPSCR_FPCR_MASK (FPCR_EEXC_MASK | FPCR_LEN_MASK | FPCR_FZ16 | \
1753                          FPCR_STRIDE_MASK | FPCR_RMODE_MASK | \
1754                          FPCR_FZ | FPCR_DN | FPCR_AHP)
1755 /* These masks don't overlap: each bit lives in only one place */
1756 QEMU_BUILD_BUG_ON(FPSCR_FPSR_MASK & FPSCR_FPCR_MASK);
1757 
1758 /**
1759  * vfp_get_fpsr: read the AArch64 FPSR
1760  * @env: CPU context
1761  *
1762  * Return the current AArch64 FPSR value
1763  */
1764 uint32_t vfp_get_fpsr(CPUARMState *env);
1765 
1766 /**
1767  * vfp_get_fpcr: read the AArch64 FPCR
1768  * @env: CPU context
1769  *
1770  * Return the current AArch64 FPCR value
1771  */
1772 uint32_t vfp_get_fpcr(CPUARMState *env);
1773 
1774 /**
1775  * vfp_set_fpsr: write the AArch64 FPSR
1776  * @env: CPU context
1777  * @value: new value
1778  */
1779 void vfp_set_fpsr(CPUARMState *env, uint32_t value);
1780 
1781 /**
1782  * vfp_set_fpcr: write the AArch64 FPCR
1783  * @env: CPU context
1784  * @value: new value
1785  */
1786 void vfp_set_fpcr(CPUARMState *env, uint32_t value);
1787 
1788 enum arm_cpu_mode {
1789   ARM_CPU_MODE_USR = 0x10,
1790   ARM_CPU_MODE_FIQ = 0x11,
1791   ARM_CPU_MODE_IRQ = 0x12,
1792   ARM_CPU_MODE_SVC = 0x13,
1793   ARM_CPU_MODE_MON = 0x16,
1794   ARM_CPU_MODE_ABT = 0x17,
1795   ARM_CPU_MODE_HYP = 0x1a,
1796   ARM_CPU_MODE_UND = 0x1b,
1797   ARM_CPU_MODE_SYS = 0x1f
1798 };
1799 
1800 /* VFP system registers.  */
1801 #define ARM_VFP_FPSID   0
1802 #define ARM_VFP_FPSCR   1
1803 #define ARM_VFP_MVFR2   5
1804 #define ARM_VFP_MVFR1   6
1805 #define ARM_VFP_MVFR0   7
1806 #define ARM_VFP_FPEXC   8
1807 #define ARM_VFP_FPINST  9
1808 #define ARM_VFP_FPINST2 10
1809 /* These ones are M-profile only */
1810 #define ARM_VFP_FPSCR_NZCVQC 2
1811 #define ARM_VFP_VPR 12
1812 #define ARM_VFP_P0 13
1813 #define ARM_VFP_FPCXT_NS 14
1814 #define ARM_VFP_FPCXT_S 15
1815 
1816 /* QEMU-internal value meaning "FPSCR, but we care only about NZCV" */
1817 #define QEMU_VFP_FPSCR_NZCV 0xffff
1818 
1819 /* iwMMXt coprocessor control registers.  */
1820 #define ARM_IWMMXT_wCID  0
1821 #define ARM_IWMMXT_wCon  1
1822 #define ARM_IWMMXT_wCSSF 2
1823 #define ARM_IWMMXT_wCASF 3
1824 #define ARM_IWMMXT_wCGR0 8
1825 #define ARM_IWMMXT_wCGR1 9
1826 #define ARM_IWMMXT_wCGR2 10
1827 #define ARM_IWMMXT_wCGR3 11
1828 
1829 /* V7M CCR bits */
1830 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1831 FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1832 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1833 FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1834 FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1835 FIELD(V7M_CCR, STKALIGN, 9, 1)
1836 FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
1837 FIELD(V7M_CCR, DC, 16, 1)
1838 FIELD(V7M_CCR, IC, 17, 1)
1839 FIELD(V7M_CCR, BP, 18, 1)
1840 FIELD(V7M_CCR, LOB, 19, 1)
1841 FIELD(V7M_CCR, TRD, 20, 1)
1842 
1843 /* V7M SCR bits */
1844 FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1845 FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1846 FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1847 FIELD(V7M_SCR, SEVONPEND, 4, 1)
1848 
1849 /* V7M AIRCR bits */
1850 FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1851 FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1852 FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1853 FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1854 FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1855 FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1856 FIELD(V7M_AIRCR, PRIS, 14, 1)
1857 FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1858 FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1859 
1860 /* V7M CFSR bits for MMFSR */
1861 FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1862 FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1863 FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1864 FIELD(V7M_CFSR, MSTKERR, 4, 1)
1865 FIELD(V7M_CFSR, MLSPERR, 5, 1)
1866 FIELD(V7M_CFSR, MMARVALID, 7, 1)
1867 
1868 /* V7M CFSR bits for BFSR */
1869 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1870 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1871 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1872 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1873 FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1874 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1875 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1876 
1877 /* V7M CFSR bits for UFSR */
1878 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1879 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1880 FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1881 FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1882 FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
1883 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1884 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1885 
1886 /* V7M CFSR bit masks covering all of the subregister bits */
1887 FIELD(V7M_CFSR, MMFSR, 0, 8)
1888 FIELD(V7M_CFSR, BFSR, 8, 8)
1889 FIELD(V7M_CFSR, UFSR, 16, 16)
1890 
1891 /* V7M HFSR bits */
1892 FIELD(V7M_HFSR, VECTTBL, 1, 1)
1893 FIELD(V7M_HFSR, FORCED, 30, 1)
1894 FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1895 
1896 /* V7M DFSR bits */
1897 FIELD(V7M_DFSR, HALTED, 0, 1)
1898 FIELD(V7M_DFSR, BKPT, 1, 1)
1899 FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1900 FIELD(V7M_DFSR, VCATCH, 3, 1)
1901 FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1902 
1903 /* V7M SFSR bits */
1904 FIELD(V7M_SFSR, INVEP, 0, 1)
1905 FIELD(V7M_SFSR, INVIS, 1, 1)
1906 FIELD(V7M_SFSR, INVER, 2, 1)
1907 FIELD(V7M_SFSR, AUVIOL, 3, 1)
1908 FIELD(V7M_SFSR, INVTRAN, 4, 1)
1909 FIELD(V7M_SFSR, LSPERR, 5, 1)
1910 FIELD(V7M_SFSR, SFARVALID, 6, 1)
1911 FIELD(V7M_SFSR, LSERR, 7, 1)
1912 
1913 /* v7M MPU_CTRL bits */
1914 FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1915 FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1916 FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1917 
1918 /* v7M CLIDR bits */
1919 FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1920 FIELD(V7M_CLIDR, LOUIS, 21, 3)
1921 FIELD(V7M_CLIDR, LOC, 24, 3)
1922 FIELD(V7M_CLIDR, LOUU, 27, 3)
1923 FIELD(V7M_CLIDR, ICB, 30, 2)
1924 
1925 FIELD(V7M_CSSELR, IND, 0, 1)
1926 FIELD(V7M_CSSELR, LEVEL, 1, 3)
1927 /* We use the combination of InD and Level to index into cpu->ccsidr[];
1928  * define a mask for this and check that it doesn't permit running off
1929  * the end of the array.
1930  */
1931 FIELD(V7M_CSSELR, INDEX, 0, 4)
1932 
1933 /* v7M FPCCR bits */
1934 FIELD(V7M_FPCCR, LSPACT, 0, 1)
1935 FIELD(V7M_FPCCR, USER, 1, 1)
1936 FIELD(V7M_FPCCR, S, 2, 1)
1937 FIELD(V7M_FPCCR, THREAD, 3, 1)
1938 FIELD(V7M_FPCCR, HFRDY, 4, 1)
1939 FIELD(V7M_FPCCR, MMRDY, 5, 1)
1940 FIELD(V7M_FPCCR, BFRDY, 6, 1)
1941 FIELD(V7M_FPCCR, SFRDY, 7, 1)
1942 FIELD(V7M_FPCCR, MONRDY, 8, 1)
1943 FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1)
1944 FIELD(V7M_FPCCR, UFRDY, 10, 1)
1945 FIELD(V7M_FPCCR, RES0, 11, 15)
1946 FIELD(V7M_FPCCR, TS, 26, 1)
1947 FIELD(V7M_FPCCR, CLRONRETS, 27, 1)
1948 FIELD(V7M_FPCCR, CLRONRET, 28, 1)
1949 FIELD(V7M_FPCCR, LSPENS, 29, 1)
1950 FIELD(V7M_FPCCR, LSPEN, 30, 1)
1951 FIELD(V7M_FPCCR, ASPEN, 31, 1)
1952 /* These bits are banked. Others are non-banked and live in the M_REG_S bank */
1953 #define R_V7M_FPCCR_BANKED_MASK                 \
1954     (R_V7M_FPCCR_LSPACT_MASK |                  \
1955      R_V7M_FPCCR_USER_MASK |                    \
1956      R_V7M_FPCCR_THREAD_MASK |                  \
1957      R_V7M_FPCCR_MMRDY_MASK |                   \
1958      R_V7M_FPCCR_SPLIMVIOL_MASK |               \
1959      R_V7M_FPCCR_UFRDY_MASK |                   \
1960      R_V7M_FPCCR_ASPEN_MASK)
1961 
1962 /* v7M VPR bits */
1963 FIELD(V7M_VPR, P0, 0, 16)
1964 FIELD(V7M_VPR, MASK01, 16, 4)
1965 FIELD(V7M_VPR, MASK23, 20, 4)
1966 
1967 /*
1968  * System register ID fields.
1969  */
1970 FIELD(CLIDR_EL1, CTYPE1, 0, 3)
1971 FIELD(CLIDR_EL1, CTYPE2, 3, 3)
1972 FIELD(CLIDR_EL1, CTYPE3, 6, 3)
1973 FIELD(CLIDR_EL1, CTYPE4, 9, 3)
1974 FIELD(CLIDR_EL1, CTYPE5, 12, 3)
1975 FIELD(CLIDR_EL1, CTYPE6, 15, 3)
1976 FIELD(CLIDR_EL1, CTYPE7, 18, 3)
1977 FIELD(CLIDR_EL1, LOUIS, 21, 3)
1978 FIELD(CLIDR_EL1, LOC, 24, 3)
1979 FIELD(CLIDR_EL1, LOUU, 27, 3)
1980 FIELD(CLIDR_EL1, ICB, 30, 3)
1981 
1982 /* When FEAT_CCIDX is implemented */
1983 FIELD(CCSIDR_EL1, CCIDX_LINESIZE, 0, 3)
1984 FIELD(CCSIDR_EL1, CCIDX_ASSOCIATIVITY, 3, 21)
1985 FIELD(CCSIDR_EL1, CCIDX_NUMSETS, 32, 24)
1986 
1987 /* When FEAT_CCIDX is not implemented */
1988 FIELD(CCSIDR_EL1, LINESIZE, 0, 3)
1989 FIELD(CCSIDR_EL1, ASSOCIATIVITY, 3, 10)
1990 FIELD(CCSIDR_EL1, NUMSETS, 13, 15)
1991 
1992 FIELD(CTR_EL0,  IMINLINE, 0, 4)
1993 FIELD(CTR_EL0,  L1IP, 14, 2)
1994 FIELD(CTR_EL0,  DMINLINE, 16, 4)
1995 FIELD(CTR_EL0,  ERG, 20, 4)
1996 FIELD(CTR_EL0,  CWG, 24, 4)
1997 FIELD(CTR_EL0,  IDC, 28, 1)
1998 FIELD(CTR_EL0,  DIC, 29, 1)
1999 FIELD(CTR_EL0,  TMINLINE, 32, 6)
2000 
2001 FIELD(MIDR_EL1, REVISION, 0, 4)
2002 FIELD(MIDR_EL1, PARTNUM, 4, 12)
2003 FIELD(MIDR_EL1, ARCHITECTURE, 16, 4)
2004 FIELD(MIDR_EL1, VARIANT, 20, 4)
2005 FIELD(MIDR_EL1, IMPLEMENTER, 24, 8)
2006 
2007 FIELD(ID_ISAR0, SWAP, 0, 4)
2008 FIELD(ID_ISAR0, BITCOUNT, 4, 4)
2009 FIELD(ID_ISAR0, BITFIELD, 8, 4)
2010 FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
2011 FIELD(ID_ISAR0, COPROC, 16, 4)
2012 FIELD(ID_ISAR0, DEBUG, 20, 4)
2013 FIELD(ID_ISAR0, DIVIDE, 24, 4)
2014 
2015 FIELD(ID_ISAR1, ENDIAN, 0, 4)
2016 FIELD(ID_ISAR1, EXCEPT, 4, 4)
2017 FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
2018 FIELD(ID_ISAR1, EXTEND, 12, 4)
2019 FIELD(ID_ISAR1, IFTHEN, 16, 4)
2020 FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
2021 FIELD(ID_ISAR1, INTERWORK, 24, 4)
2022 FIELD(ID_ISAR1, JAZELLE, 28, 4)
2023 
2024 FIELD(ID_ISAR2, LOADSTORE, 0, 4)
2025 FIELD(ID_ISAR2, MEMHINT, 4, 4)
2026 FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
2027 FIELD(ID_ISAR2, MULT, 12, 4)
2028 FIELD(ID_ISAR2, MULTS, 16, 4)
2029 FIELD(ID_ISAR2, MULTU, 20, 4)
2030 FIELD(ID_ISAR2, PSR_AR, 24, 4)
2031 FIELD(ID_ISAR2, REVERSAL, 28, 4)
2032 
2033 FIELD(ID_ISAR3, SATURATE, 0, 4)
2034 FIELD(ID_ISAR3, SIMD, 4, 4)
2035 FIELD(ID_ISAR3, SVC, 8, 4)
2036 FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
2037 FIELD(ID_ISAR3, TABBRANCH, 16, 4)
2038 FIELD(ID_ISAR3, T32COPY, 20, 4)
2039 FIELD(ID_ISAR3, TRUENOP, 24, 4)
2040 FIELD(ID_ISAR3, T32EE, 28, 4)
2041 
2042 FIELD(ID_ISAR4, UNPRIV, 0, 4)
2043 FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
2044 FIELD(ID_ISAR4, WRITEBACK, 8, 4)
2045 FIELD(ID_ISAR4, SMC, 12, 4)
2046 FIELD(ID_ISAR4, BARRIER, 16, 4)
2047 FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
2048 FIELD(ID_ISAR4, PSR_M, 24, 4)
2049 FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
2050 
2051 FIELD(ID_ISAR5, SEVL, 0, 4)
2052 FIELD(ID_ISAR5, AES, 4, 4)
2053 FIELD(ID_ISAR5, SHA1, 8, 4)
2054 FIELD(ID_ISAR5, SHA2, 12, 4)
2055 FIELD(ID_ISAR5, CRC32, 16, 4)
2056 FIELD(ID_ISAR5, RDM, 24, 4)
2057 FIELD(ID_ISAR5, VCMA, 28, 4)
2058 
2059 FIELD(ID_ISAR6, JSCVT, 0, 4)
2060 FIELD(ID_ISAR6, DP, 4, 4)
2061 FIELD(ID_ISAR6, FHM, 8, 4)
2062 FIELD(ID_ISAR6, SB, 12, 4)
2063 FIELD(ID_ISAR6, SPECRES, 16, 4)
2064 FIELD(ID_ISAR6, BF16, 20, 4)
2065 FIELD(ID_ISAR6, I8MM, 24, 4)
2066 
2067 FIELD(ID_MMFR0, VMSA, 0, 4)
2068 FIELD(ID_MMFR0, PMSA, 4, 4)
2069 FIELD(ID_MMFR0, OUTERSHR, 8, 4)
2070 FIELD(ID_MMFR0, SHARELVL, 12, 4)
2071 FIELD(ID_MMFR0, TCM, 16, 4)
2072 FIELD(ID_MMFR0, AUXREG, 20, 4)
2073 FIELD(ID_MMFR0, FCSE, 24, 4)
2074 FIELD(ID_MMFR0, INNERSHR, 28, 4)
2075 
2076 FIELD(ID_MMFR1, L1HVDVA, 0, 4)
2077 FIELD(ID_MMFR1, L1UNIVA, 4, 4)
2078 FIELD(ID_MMFR1, L1HVDSW, 8, 4)
2079 FIELD(ID_MMFR1, L1UNISW, 12, 4)
2080 FIELD(ID_MMFR1, L1HVD, 16, 4)
2081 FIELD(ID_MMFR1, L1UNI, 20, 4)
2082 FIELD(ID_MMFR1, L1TSTCLN, 24, 4)
2083 FIELD(ID_MMFR1, BPRED, 28, 4)
2084 
2085 FIELD(ID_MMFR2, L1HVDFG, 0, 4)
2086 FIELD(ID_MMFR2, L1HVDBG, 4, 4)
2087 FIELD(ID_MMFR2, L1HVDRNG, 8, 4)
2088 FIELD(ID_MMFR2, HVDTLB, 12, 4)
2089 FIELD(ID_MMFR2, UNITLB, 16, 4)
2090 FIELD(ID_MMFR2, MEMBARR, 20, 4)
2091 FIELD(ID_MMFR2, WFISTALL, 24, 4)
2092 FIELD(ID_MMFR2, HWACCFLG, 28, 4)
2093 
2094 FIELD(ID_MMFR3, CMAINTVA, 0, 4)
2095 FIELD(ID_MMFR3, CMAINTSW, 4, 4)
2096 FIELD(ID_MMFR3, BPMAINT, 8, 4)
2097 FIELD(ID_MMFR3, MAINTBCST, 12, 4)
2098 FIELD(ID_MMFR3, PAN, 16, 4)
2099 FIELD(ID_MMFR3, COHWALK, 20, 4)
2100 FIELD(ID_MMFR3, CMEMSZ, 24, 4)
2101 FIELD(ID_MMFR3, SUPERSEC, 28, 4)
2102 
2103 FIELD(ID_MMFR4, SPECSEI, 0, 4)
2104 FIELD(ID_MMFR4, AC2, 4, 4)
2105 FIELD(ID_MMFR4, XNX, 8, 4)
2106 FIELD(ID_MMFR4, CNP, 12, 4)
2107 FIELD(ID_MMFR4, HPDS, 16, 4)
2108 FIELD(ID_MMFR4, LSM, 20, 4)
2109 FIELD(ID_MMFR4, CCIDX, 24, 4)
2110 FIELD(ID_MMFR4, EVT, 28, 4)
2111 
2112 FIELD(ID_MMFR5, ETS, 0, 4)
2113 FIELD(ID_MMFR5, NTLBPA, 4, 4)
2114 
2115 FIELD(ID_PFR0, STATE0, 0, 4)
2116 FIELD(ID_PFR0, STATE1, 4, 4)
2117 FIELD(ID_PFR0, STATE2, 8, 4)
2118 FIELD(ID_PFR0, STATE3, 12, 4)
2119 FIELD(ID_PFR0, CSV2, 16, 4)
2120 FIELD(ID_PFR0, AMU, 20, 4)
2121 FIELD(ID_PFR0, DIT, 24, 4)
2122 FIELD(ID_PFR0, RAS, 28, 4)
2123 
2124 FIELD(ID_PFR1, PROGMOD, 0, 4)
2125 FIELD(ID_PFR1, SECURITY, 4, 4)
2126 FIELD(ID_PFR1, MPROGMOD, 8, 4)
2127 FIELD(ID_PFR1, VIRTUALIZATION, 12, 4)
2128 FIELD(ID_PFR1, GENTIMER, 16, 4)
2129 FIELD(ID_PFR1, SEC_FRAC, 20, 4)
2130 FIELD(ID_PFR1, VIRT_FRAC, 24, 4)
2131 FIELD(ID_PFR1, GIC, 28, 4)
2132 
2133 FIELD(ID_PFR2, CSV3, 0, 4)
2134 FIELD(ID_PFR2, SSBS, 4, 4)
2135 FIELD(ID_PFR2, RAS_FRAC, 8, 4)
2136 
2137 FIELD(ID_AA64ISAR0, AES, 4, 4)
2138 FIELD(ID_AA64ISAR0, SHA1, 8, 4)
2139 FIELD(ID_AA64ISAR0, SHA2, 12, 4)
2140 FIELD(ID_AA64ISAR0, CRC32, 16, 4)
2141 FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
2142 FIELD(ID_AA64ISAR0, TME, 24, 4)
2143 FIELD(ID_AA64ISAR0, RDM, 28, 4)
2144 FIELD(ID_AA64ISAR0, SHA3, 32, 4)
2145 FIELD(ID_AA64ISAR0, SM3, 36, 4)
2146 FIELD(ID_AA64ISAR0, SM4, 40, 4)
2147 FIELD(ID_AA64ISAR0, DP, 44, 4)
2148 FIELD(ID_AA64ISAR0, FHM, 48, 4)
2149 FIELD(ID_AA64ISAR0, TS, 52, 4)
2150 FIELD(ID_AA64ISAR0, TLB, 56, 4)
2151 FIELD(ID_AA64ISAR0, RNDR, 60, 4)
2152 
2153 FIELD(ID_AA64ISAR1, DPB, 0, 4)
2154 FIELD(ID_AA64ISAR1, APA, 4, 4)
2155 FIELD(ID_AA64ISAR1, API, 8, 4)
2156 FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
2157 FIELD(ID_AA64ISAR1, FCMA, 16, 4)
2158 FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
2159 FIELD(ID_AA64ISAR1, GPA, 24, 4)
2160 FIELD(ID_AA64ISAR1, GPI, 28, 4)
2161 FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
2162 FIELD(ID_AA64ISAR1, SB, 36, 4)
2163 FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
2164 FIELD(ID_AA64ISAR1, BF16, 44, 4)
2165 FIELD(ID_AA64ISAR1, DGH, 48, 4)
2166 FIELD(ID_AA64ISAR1, I8MM, 52, 4)
2167 FIELD(ID_AA64ISAR1, XS, 56, 4)
2168 FIELD(ID_AA64ISAR1, LS64, 60, 4)
2169 
2170 FIELD(ID_AA64ISAR2, WFXT, 0, 4)
2171 FIELD(ID_AA64ISAR2, RPRES, 4, 4)
2172 FIELD(ID_AA64ISAR2, GPA3, 8, 4)
2173 FIELD(ID_AA64ISAR2, APA3, 12, 4)
2174 FIELD(ID_AA64ISAR2, MOPS, 16, 4)
2175 FIELD(ID_AA64ISAR2, BC, 20, 4)
2176 FIELD(ID_AA64ISAR2, PAC_FRAC, 24, 4)
2177 FIELD(ID_AA64ISAR2, CLRBHB, 28, 4)
2178 FIELD(ID_AA64ISAR2, SYSREG_128, 32, 4)
2179 FIELD(ID_AA64ISAR2, SYSINSTR_128, 36, 4)
2180 FIELD(ID_AA64ISAR2, PRFMSLC, 40, 4)
2181 FIELD(ID_AA64ISAR2, RPRFM, 48, 4)
2182 FIELD(ID_AA64ISAR2, CSSC, 52, 4)
2183 FIELD(ID_AA64ISAR2, ATS1A, 60, 4)
2184 
2185 FIELD(ID_AA64PFR0, EL0, 0, 4)
2186 FIELD(ID_AA64PFR0, EL1, 4, 4)
2187 FIELD(ID_AA64PFR0, EL2, 8, 4)
2188 FIELD(ID_AA64PFR0, EL3, 12, 4)
2189 FIELD(ID_AA64PFR0, FP, 16, 4)
2190 FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
2191 FIELD(ID_AA64PFR0, GIC, 24, 4)
2192 FIELD(ID_AA64PFR0, RAS, 28, 4)
2193 FIELD(ID_AA64PFR0, SVE, 32, 4)
2194 FIELD(ID_AA64PFR0, SEL2, 36, 4)
2195 FIELD(ID_AA64PFR0, MPAM, 40, 4)
2196 FIELD(ID_AA64PFR0, AMU, 44, 4)
2197 FIELD(ID_AA64PFR0, DIT, 48, 4)
2198 FIELD(ID_AA64PFR0, RME, 52, 4)
2199 FIELD(ID_AA64PFR0, CSV2, 56, 4)
2200 FIELD(ID_AA64PFR0, CSV3, 60, 4)
2201 
2202 FIELD(ID_AA64PFR1, BT, 0, 4)
2203 FIELD(ID_AA64PFR1, SSBS, 4, 4)
2204 FIELD(ID_AA64PFR1, MTE, 8, 4)
2205 FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
2206 FIELD(ID_AA64PFR1, MPAM_FRAC, 16, 4)
2207 FIELD(ID_AA64PFR1, SME, 24, 4)
2208 FIELD(ID_AA64PFR1, RNDR_TRAP, 28, 4)
2209 FIELD(ID_AA64PFR1, CSV2_FRAC, 32, 4)
2210 FIELD(ID_AA64PFR1, NMI, 36, 4)
2211 FIELD(ID_AA64PFR1, MTE_FRAC, 40, 4)
2212 FIELD(ID_AA64PFR1, GCS, 44, 4)
2213 FIELD(ID_AA64PFR1, THE, 48, 4)
2214 FIELD(ID_AA64PFR1, MTEX, 52, 4)
2215 FIELD(ID_AA64PFR1, DF2, 56, 4)
2216 FIELD(ID_AA64PFR1, PFAR, 60, 4)
2217 
2218 FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
2219 FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
2220 FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
2221 FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
2222 FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
2223 FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
2224 FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
2225 FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
2226 FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
2227 FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
2228 FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
2229 FIELD(ID_AA64MMFR0, EXS, 44, 4)
2230 FIELD(ID_AA64MMFR0, FGT, 56, 4)
2231 FIELD(ID_AA64MMFR0, ECV, 60, 4)
2232 
2233 FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
2234 FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
2235 FIELD(ID_AA64MMFR1, VH, 8, 4)
2236 FIELD(ID_AA64MMFR1, HPDS, 12, 4)
2237 FIELD(ID_AA64MMFR1, LO, 16, 4)
2238 FIELD(ID_AA64MMFR1, PAN, 20, 4)
2239 FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
2240 FIELD(ID_AA64MMFR1, XNX, 28, 4)
2241 FIELD(ID_AA64MMFR1, TWED, 32, 4)
2242 FIELD(ID_AA64MMFR1, ETS, 36, 4)
2243 FIELD(ID_AA64MMFR1, HCX, 40, 4)
2244 FIELD(ID_AA64MMFR1, AFP, 44, 4)
2245 FIELD(ID_AA64MMFR1, NTLBPA, 48, 4)
2246 FIELD(ID_AA64MMFR1, TIDCP1, 52, 4)
2247 FIELD(ID_AA64MMFR1, CMOW, 56, 4)
2248 FIELD(ID_AA64MMFR1, ECBHB, 60, 4)
2249 
2250 FIELD(ID_AA64MMFR2, CNP, 0, 4)
2251 FIELD(ID_AA64MMFR2, UAO, 4, 4)
2252 FIELD(ID_AA64MMFR2, LSM, 8, 4)
2253 FIELD(ID_AA64MMFR2, IESB, 12, 4)
2254 FIELD(ID_AA64MMFR2, VARANGE, 16, 4)
2255 FIELD(ID_AA64MMFR2, CCIDX, 20, 4)
2256 FIELD(ID_AA64MMFR2, NV, 24, 4)
2257 FIELD(ID_AA64MMFR2, ST, 28, 4)
2258 FIELD(ID_AA64MMFR2, AT, 32, 4)
2259 FIELD(ID_AA64MMFR2, IDS, 36, 4)
2260 FIELD(ID_AA64MMFR2, FWB, 40, 4)
2261 FIELD(ID_AA64MMFR2, TTL, 48, 4)
2262 FIELD(ID_AA64MMFR2, BBM, 52, 4)
2263 FIELD(ID_AA64MMFR2, EVT, 56, 4)
2264 FIELD(ID_AA64MMFR2, E0PD, 60, 4)
2265 
2266 FIELD(ID_AA64MMFR3, TCRX, 0, 4)
2267 FIELD(ID_AA64MMFR3, SCTLRX, 4, 4)
2268 FIELD(ID_AA64MMFR3, S1PIE, 8, 4)
2269 FIELD(ID_AA64MMFR3, S2PIE, 12, 4)
2270 FIELD(ID_AA64MMFR3, S1POE, 16, 4)
2271 FIELD(ID_AA64MMFR3, S2POE, 20, 4)
2272 FIELD(ID_AA64MMFR3, AIE, 24, 4)
2273 FIELD(ID_AA64MMFR3, MEC, 28, 4)
2274 FIELD(ID_AA64MMFR3, D128, 32, 4)
2275 FIELD(ID_AA64MMFR3, D128_2, 36, 4)
2276 FIELD(ID_AA64MMFR3, SNERR, 40, 4)
2277 FIELD(ID_AA64MMFR3, ANERR, 44, 4)
2278 FIELD(ID_AA64MMFR3, SDERR, 52, 4)
2279 FIELD(ID_AA64MMFR3, ADERR, 56, 4)
2280 FIELD(ID_AA64MMFR3, SPEC_FPACC, 60, 4)
2281 
2282 FIELD(ID_AA64DFR0, DEBUGVER, 0, 4)
2283 FIELD(ID_AA64DFR0, TRACEVER, 4, 4)
2284 FIELD(ID_AA64DFR0, PMUVER, 8, 4)
2285 FIELD(ID_AA64DFR0, BRPS, 12, 4)
2286 FIELD(ID_AA64DFR0, PMSS, 16, 4)
2287 FIELD(ID_AA64DFR0, WRPS, 20, 4)
2288 FIELD(ID_AA64DFR0, SEBEP, 24, 4)
2289 FIELD(ID_AA64DFR0, CTX_CMPS, 28, 4)
2290 FIELD(ID_AA64DFR0, PMSVER, 32, 4)
2291 FIELD(ID_AA64DFR0, DOUBLELOCK, 36, 4)
2292 FIELD(ID_AA64DFR0, TRACEFILT, 40, 4)
2293 FIELD(ID_AA64DFR0, TRACEBUFFER, 44, 4)
2294 FIELD(ID_AA64DFR0, MTPMU, 48, 4)
2295 FIELD(ID_AA64DFR0, BRBE, 52, 4)
2296 FIELD(ID_AA64DFR0, EXTTRCBUFF, 56, 4)
2297 FIELD(ID_AA64DFR0, HPMN0, 60, 4)
2298 
2299 FIELD(ID_AA64ZFR0, SVEVER, 0, 4)
2300 FIELD(ID_AA64ZFR0, AES, 4, 4)
2301 FIELD(ID_AA64ZFR0, BITPERM, 16, 4)
2302 FIELD(ID_AA64ZFR0, BFLOAT16, 20, 4)
2303 FIELD(ID_AA64ZFR0, B16B16, 24, 4)
2304 FIELD(ID_AA64ZFR0, SHA3, 32, 4)
2305 FIELD(ID_AA64ZFR0, SM4, 40, 4)
2306 FIELD(ID_AA64ZFR0, I8MM, 44, 4)
2307 FIELD(ID_AA64ZFR0, F32MM, 52, 4)
2308 FIELD(ID_AA64ZFR0, F64MM, 56, 4)
2309 
2310 FIELD(ID_AA64SMFR0, F32F32, 32, 1)
2311 FIELD(ID_AA64SMFR0, BI32I32, 33, 1)
2312 FIELD(ID_AA64SMFR0, B16F32, 34, 1)
2313 FIELD(ID_AA64SMFR0, F16F32, 35, 1)
2314 FIELD(ID_AA64SMFR0, I8I32, 36, 4)
2315 FIELD(ID_AA64SMFR0, F16F16, 42, 1)
2316 FIELD(ID_AA64SMFR0, B16B16, 43, 1)
2317 FIELD(ID_AA64SMFR0, I16I32, 44, 4)
2318 FIELD(ID_AA64SMFR0, F64F64, 48, 1)
2319 FIELD(ID_AA64SMFR0, I16I64, 52, 4)
2320 FIELD(ID_AA64SMFR0, SMEVER, 56, 4)
2321 FIELD(ID_AA64SMFR0, FA64, 63, 1)
2322 
2323 FIELD(ID_DFR0, COPDBG, 0, 4)
2324 FIELD(ID_DFR0, COPSDBG, 4, 4)
2325 FIELD(ID_DFR0, MMAPDBG, 8, 4)
2326 FIELD(ID_DFR0, COPTRC, 12, 4)
2327 FIELD(ID_DFR0, MMAPTRC, 16, 4)
2328 FIELD(ID_DFR0, MPROFDBG, 20, 4)
2329 FIELD(ID_DFR0, PERFMON, 24, 4)
2330 FIELD(ID_DFR0, TRACEFILT, 28, 4)
2331 
2332 FIELD(ID_DFR1, MTPMU, 0, 4)
2333 FIELD(ID_DFR1, HPMN0, 4, 4)
2334 
2335 FIELD(DBGDIDR, SE_IMP, 12, 1)
2336 FIELD(DBGDIDR, NSUHD_IMP, 14, 1)
2337 FIELD(DBGDIDR, VERSION, 16, 4)
2338 FIELD(DBGDIDR, CTX_CMPS, 20, 4)
2339 FIELD(DBGDIDR, BRPS, 24, 4)
2340 FIELD(DBGDIDR, WRPS, 28, 4)
2341 
2342 FIELD(DBGDEVID, PCSAMPLE, 0, 4)
2343 FIELD(DBGDEVID, WPADDRMASK, 4, 4)
2344 FIELD(DBGDEVID, BPADDRMASK, 8, 4)
2345 FIELD(DBGDEVID, VECTORCATCH, 12, 4)
2346 FIELD(DBGDEVID, VIRTEXTNS, 16, 4)
2347 FIELD(DBGDEVID, DOUBLELOCK, 20, 4)
2348 FIELD(DBGDEVID, AUXREGS, 24, 4)
2349 FIELD(DBGDEVID, CIDMASK, 28, 4)
2350 
2351 FIELD(DBGDEVID1, PCSROFFSET, 0, 4)
2352 
2353 FIELD(MVFR0, SIMDREG, 0, 4)
2354 FIELD(MVFR0, FPSP, 4, 4)
2355 FIELD(MVFR0, FPDP, 8, 4)
2356 FIELD(MVFR0, FPTRAP, 12, 4)
2357 FIELD(MVFR0, FPDIVIDE, 16, 4)
2358 FIELD(MVFR0, FPSQRT, 20, 4)
2359 FIELD(MVFR0, FPSHVEC, 24, 4)
2360 FIELD(MVFR0, FPROUND, 28, 4)
2361 
2362 FIELD(MVFR1, FPFTZ, 0, 4)
2363 FIELD(MVFR1, FPDNAN, 4, 4)
2364 FIELD(MVFR1, SIMDLS, 8, 4) /* A-profile only */
2365 FIELD(MVFR1, SIMDINT, 12, 4) /* A-profile only */
2366 FIELD(MVFR1, SIMDSP, 16, 4) /* A-profile only */
2367 FIELD(MVFR1, SIMDHP, 20, 4) /* A-profile only */
2368 FIELD(MVFR1, MVE, 8, 4) /* M-profile only */
2369 FIELD(MVFR1, FP16, 20, 4) /* M-profile only */
2370 FIELD(MVFR1, FPHP, 24, 4)
2371 FIELD(MVFR1, SIMDFMAC, 28, 4)
2372 
2373 FIELD(MVFR2, SIMDMISC, 0, 4)
2374 FIELD(MVFR2, FPMISC, 4, 4)
2375 
2376 FIELD(GPCCR, PPS, 0, 3)
2377 FIELD(GPCCR, IRGN, 8, 2)
2378 FIELD(GPCCR, ORGN, 10, 2)
2379 FIELD(GPCCR, SH, 12, 2)
2380 FIELD(GPCCR, PGS, 14, 2)
2381 FIELD(GPCCR, GPC, 16, 1)
2382 FIELD(GPCCR, GPCP, 17, 1)
2383 FIELD(GPCCR, L0GPTSZ, 20, 4)
2384 
2385 FIELD(MFAR, FPA, 12, 40)
2386 FIELD(MFAR, NSE, 62, 1)
2387 FIELD(MFAR, NS, 63, 1)
2388 
2389 QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
2390 
2391 /* If adding a feature bit which corresponds to a Linux ELF
2392  * HWCAP bit, remember to update the feature-bit-to-hwcap
2393  * mapping in linux-user/elfload.c:get_elf_hwcap().
2394  */
2395 enum arm_features {
2396     ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
2397     ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
2398     ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
2399     ARM_FEATURE_V6,
2400     ARM_FEATURE_V6K,
2401     ARM_FEATURE_V7,
2402     ARM_FEATURE_THUMB2,
2403     ARM_FEATURE_PMSA,   /* no MMU; may have Memory Protection Unit */
2404     ARM_FEATURE_NEON,
2405     ARM_FEATURE_M, /* Microcontroller profile.  */
2406     ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling.  */
2407     ARM_FEATURE_THUMB2EE,
2408     ARM_FEATURE_V7MP,    /* v7 Multiprocessing Extensions */
2409     ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
2410     ARM_FEATURE_V4T,
2411     ARM_FEATURE_V5,
2412     ARM_FEATURE_STRONGARM,
2413     ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
2414     ARM_FEATURE_GENERIC_TIMER,
2415     ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
2416     ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
2417     ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
2418     ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
2419     ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
2420     ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
2421     ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
2422     ARM_FEATURE_V8,
2423     ARM_FEATURE_AARCH64, /* supports 64 bit mode */
2424     ARM_FEATURE_CBAR, /* has cp15 CBAR */
2425     ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
2426     ARM_FEATURE_EL2, /* has EL2 Virtualization support */
2427     ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
2428     ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
2429     ARM_FEATURE_PMU, /* has PMU support */
2430     ARM_FEATURE_VBAR, /* has cp15 VBAR */
2431     ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
2432     ARM_FEATURE_M_MAIN, /* M profile Main Extension */
2433     ARM_FEATURE_V8_1M, /* M profile extras only in v8.1M and later */
2434     /*
2435      * ARM_FEATURE_BACKCOMPAT_CNTFRQ makes the CPU default cntfrq be 62.5MHz
2436      * if the board doesn't set a value, instead of 1GHz. It is for backwards
2437      * compatibility and used only with CPU definitions that were already
2438      * in QEMU before we changed the default. It should not be set on any
2439      * CPU types added in future.
2440      */
2441     ARM_FEATURE_BACKCOMPAT_CNTFRQ, /* 62.5MHz timer default */
2442 };
2443 
arm_feature(CPUARMState * env,int feature)2444 static inline int arm_feature(CPUARMState *env, int feature)
2445 {
2446     return (env->features & (1ULL << feature)) != 0;
2447 }
2448 
2449 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp);
2450 
2451 /*
2452  * ARM v9 security states.
2453  * The ordering of the enumeration corresponds to the low 2 bits
2454  * of the GPI value, and (except for Root) the concat of NSE:NS.
2455  */
2456 
2457 typedef enum ARMSecuritySpace {
2458     ARMSS_Secure     = 0,
2459     ARMSS_NonSecure  = 1,
2460     ARMSS_Root       = 2,
2461     ARMSS_Realm      = 3,
2462 } ARMSecuritySpace;
2463 
2464 /* Return true if @space is secure, in the pre-v9 sense. */
arm_space_is_secure(ARMSecuritySpace space)2465 static inline bool arm_space_is_secure(ARMSecuritySpace space)
2466 {
2467     return space == ARMSS_Secure || space == ARMSS_Root;
2468 }
2469 
2470 /* Return the ARMSecuritySpace for @secure, assuming !RME or EL[0-2]. */
arm_secure_to_space(bool secure)2471 static inline ARMSecuritySpace arm_secure_to_space(bool secure)
2472 {
2473     return secure ? ARMSS_Secure : ARMSS_NonSecure;
2474 }
2475 
2476 #if !defined(CONFIG_USER_ONLY)
2477 /**
2478  * arm_security_space_below_el3:
2479  * @env: cpu context
2480  *
2481  * Return the security space of exception levels below EL3, following
2482  * an exception return to those levels.  Unlike arm_security_space,
2483  * this doesn't care about the current EL.
2484  */
2485 ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env);
2486 
2487 /**
2488  * arm_is_secure_below_el3:
2489  * @env: cpu context
2490  *
2491  * Return true if exception levels below EL3 are in secure state,
2492  * or would be following an exception return to those levels.
2493  */
arm_is_secure_below_el3(CPUARMState * env)2494 static inline bool arm_is_secure_below_el3(CPUARMState *env)
2495 {
2496     ARMSecuritySpace ss = arm_security_space_below_el3(env);
2497     return ss == ARMSS_Secure;
2498 }
2499 
2500 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
arm_is_el3_or_mon(CPUARMState * env)2501 static inline bool arm_is_el3_or_mon(CPUARMState *env)
2502 {
2503     assert(!arm_feature(env, ARM_FEATURE_M));
2504     if (arm_feature(env, ARM_FEATURE_EL3)) {
2505         if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
2506             /* CPU currently in AArch64 state and EL3 */
2507             return true;
2508         } else if (!is_a64(env) &&
2509                 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
2510             /* CPU currently in AArch32 state and monitor mode */
2511             return true;
2512         }
2513     }
2514     return false;
2515 }
2516 
2517 /**
2518  * arm_security_space:
2519  * @env: cpu context
2520  *
2521  * Return the current security space of the cpu.
2522  */
2523 ARMSecuritySpace arm_security_space(CPUARMState *env);
2524 
2525 /**
2526  * arm_is_secure:
2527  * @env: cpu context
2528  *
2529  * Return true if the processor is in secure state.
2530  */
arm_is_secure(CPUARMState * env)2531 static inline bool arm_is_secure(CPUARMState *env)
2532 {
2533     return arm_space_is_secure(arm_security_space(env));
2534 }
2535 
2536 /*
2537  * Return true if the current security state has AArch64 EL2 or AArch32 Hyp.
2538  * This corresponds to the pseudocode EL2Enabled().
2539  */
arm_is_el2_enabled_secstate(CPUARMState * env,ARMSecuritySpace space)2540 static inline bool arm_is_el2_enabled_secstate(CPUARMState *env,
2541                                                ARMSecuritySpace space)
2542 {
2543     assert(space != ARMSS_Root);
2544     return arm_feature(env, ARM_FEATURE_EL2)
2545            && (space != ARMSS_Secure || (env->cp15.scr_el3 & SCR_EEL2));
2546 }
2547 
arm_is_el2_enabled(CPUARMState * env)2548 static inline bool arm_is_el2_enabled(CPUARMState *env)
2549 {
2550     return arm_is_el2_enabled_secstate(env, arm_security_space_below_el3(env));
2551 }
2552 
2553 #else
arm_security_space_below_el3(CPUARMState * env)2554 static inline ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env)
2555 {
2556     return ARMSS_NonSecure;
2557 }
2558 
arm_is_secure_below_el3(CPUARMState * env)2559 static inline bool arm_is_secure_below_el3(CPUARMState *env)
2560 {
2561     return false;
2562 }
2563 
arm_security_space(CPUARMState * env)2564 static inline ARMSecuritySpace arm_security_space(CPUARMState *env)
2565 {
2566     return ARMSS_NonSecure;
2567 }
2568 
arm_is_secure(CPUARMState * env)2569 static inline bool arm_is_secure(CPUARMState *env)
2570 {
2571     return false;
2572 }
2573 
arm_is_el2_enabled_secstate(CPUARMState * env,ARMSecuritySpace space)2574 static inline bool arm_is_el2_enabled_secstate(CPUARMState *env,
2575                                                ARMSecuritySpace space)
2576 {
2577     return false;
2578 }
2579 
arm_is_el2_enabled(CPUARMState * env)2580 static inline bool arm_is_el2_enabled(CPUARMState *env)
2581 {
2582     return false;
2583 }
2584 #endif
2585 
2586 /**
2587  * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
2588  * E.g. when in secure state, fields in HCR_EL2 are suppressed,
2589  * "for all purposes other than a direct read or write access of HCR_EL2."
2590  * Not included here is HCR_RW.
2591  */
2592 uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, ARMSecuritySpace space);
2593 uint64_t arm_hcr_el2_eff(CPUARMState *env);
2594 uint64_t arm_hcrx_el2_eff(CPUARMState *env);
2595 
2596 /* Return true if the specified exception level is running in AArch64 state. */
arm_el_is_aa64(CPUARMState * env,int el)2597 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
2598 {
2599     /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
2600      * and if we're not in EL0 then the state of EL0 isn't well defined.)
2601      */
2602     assert(el >= 1 && el <= 3);
2603     bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
2604 
2605     /* The highest exception level is always at the maximum supported
2606      * register width, and then lower levels have a register width controlled
2607      * by bits in the SCR or HCR registers.
2608      */
2609     if (el == 3) {
2610         return aa64;
2611     }
2612 
2613     if (arm_feature(env, ARM_FEATURE_EL3) &&
2614         ((env->cp15.scr_el3 & SCR_NS) || !(env->cp15.scr_el3 & SCR_EEL2))) {
2615         aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
2616     }
2617 
2618     if (el == 2) {
2619         return aa64;
2620     }
2621 
2622     if (arm_is_el2_enabled(env)) {
2623         aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
2624     }
2625 
2626     return aa64;
2627 }
2628 
2629 /* Function for determining whether guest cp register reads and writes should
2630  * access the secure or non-secure bank of a cp register.  When EL3 is
2631  * operating in AArch32 state, the NS-bit determines whether the secure
2632  * instance of a cp register should be used. When EL3 is AArch64 (or if
2633  * it doesn't exist at all) then there is no register banking, and all
2634  * accesses are to the non-secure version.
2635  */
access_secure_reg(CPUARMState * env)2636 static inline bool access_secure_reg(CPUARMState *env)
2637 {
2638     bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
2639                 !arm_el_is_aa64(env, 3) &&
2640                 !(env->cp15.scr_el3 & SCR_NS));
2641 
2642     return ret;
2643 }
2644 
2645 /* Macros for accessing a specified CP register bank */
2646 #define A32_BANKED_REG_GET(_env, _regname, _secure)    \
2647     ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
2648 
2649 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val)   \
2650     do {                                                \
2651         if (_secure) {                                   \
2652             (_env)->cp15._regname##_s = (_val);            \
2653         } else {                                        \
2654             (_env)->cp15._regname##_ns = (_val);           \
2655         }                                               \
2656     } while (0)
2657 
2658 /* Macros for automatically accessing a specific CP register bank depending on
2659  * the current secure state of the system.  These macros are not intended for
2660  * supporting instruction translation reads/writes as these are dependent
2661  * solely on the SCR.NS bit and not the mode.
2662  */
2663 #define A32_BANKED_CURRENT_REG_GET(_env, _regname)        \
2664     A32_BANKED_REG_GET((_env), _regname,                \
2665                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
2666 
2667 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val)                       \
2668     A32_BANKED_REG_SET((_env), _regname,                                    \
2669                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
2670                        (_val))
2671 
2672 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
2673                                  uint32_t cur_el, bool secure);
2674 
2675 /* Return the highest implemented Exception Level */
arm_highest_el(CPUARMState * env)2676 static inline int arm_highest_el(CPUARMState *env)
2677 {
2678     if (arm_feature(env, ARM_FEATURE_EL3)) {
2679         return 3;
2680     }
2681     if (arm_feature(env, ARM_FEATURE_EL2)) {
2682         return 2;
2683     }
2684     return 1;
2685 }
2686 
2687 /* Return true if a v7M CPU is in Handler mode */
arm_v7m_is_handler_mode(CPUARMState * env)2688 static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2689 {
2690     return env->v7m.exception != 0;
2691 }
2692 
2693 /* Return the current Exception Level (as per ARMv8; note that this differs
2694  * from the ARMv7 Privilege Level).
2695  */
arm_current_el(CPUARMState * env)2696 static inline int arm_current_el(CPUARMState *env)
2697 {
2698     if (arm_feature(env, ARM_FEATURE_M)) {
2699         return arm_v7m_is_handler_mode(env) ||
2700             !(env->v7m.control[env->v7m.secure] & 1);
2701     }
2702 
2703     if (is_a64(env)) {
2704         return extract32(env->pstate, 2, 2);
2705     }
2706 
2707     switch (env->uncached_cpsr & 0x1f) {
2708     case ARM_CPU_MODE_USR:
2709         return 0;
2710     case ARM_CPU_MODE_HYP:
2711         return 2;
2712     case ARM_CPU_MODE_MON:
2713         return 3;
2714     default:
2715         if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2716             /* If EL3 is 32-bit then all secure privileged modes run in
2717              * EL3
2718              */
2719             return 3;
2720         }
2721 
2722         return 1;
2723     }
2724 }
2725 
2726 /**
2727  * write_list_to_cpustate
2728  * @cpu: ARMCPU
2729  *
2730  * For each register listed in the ARMCPU cpreg_indexes list, write
2731  * its value from the cpreg_values list into the ARMCPUState structure.
2732  * This updates TCG's working data structures from KVM data or
2733  * from incoming migration state.
2734  *
2735  * Returns: true if all register values were updated correctly,
2736  * false if some register was unknown or could not be written.
2737  * Note that we do not stop early on failure -- we will attempt
2738  * writing all registers in the list.
2739  */
2740 bool write_list_to_cpustate(ARMCPU *cpu);
2741 
2742 /**
2743  * write_cpustate_to_list:
2744  * @cpu: ARMCPU
2745  * @kvm_sync: true if this is for syncing back to KVM
2746  *
2747  * For each register listed in the ARMCPU cpreg_indexes list, write
2748  * its value from the ARMCPUState structure into the cpreg_values list.
2749  * This is used to copy info from TCG's working data structures into
2750  * KVM or for outbound migration.
2751  *
2752  * @kvm_sync is true if we are doing this in order to sync the
2753  * register state back to KVM. In this case we will only update
2754  * values in the list if the previous list->cpustate sync actually
2755  * successfully wrote the CPU state. Otherwise we will keep the value
2756  * that is in the list.
2757  *
2758  * Returns: true if all register values were read correctly,
2759  * false if some register was unknown or could not be read.
2760  * Note that we do not stop early on failure -- we will attempt
2761  * reading all registers in the list.
2762  */
2763 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);
2764 
2765 #define ARM_CPUID_TI915T      0x54029152
2766 #define ARM_CPUID_TI925T      0x54029252
2767 
2768 #define CPU_RESOLVING_TYPE TYPE_ARM_CPU
2769 
2770 #define TYPE_ARM_HOST_CPU "host-" TYPE_ARM_CPU
2771 
2772 /* ARM has the following "translation regimes" (as the ARM ARM calls them):
2773  *
2774  * If EL3 is 64-bit:
2775  *  + NonSecure EL1 & 0 stage 1
2776  *  + NonSecure EL1 & 0 stage 2
2777  *  + NonSecure EL2
2778  *  + NonSecure EL2 & 0   (ARMv8.1-VHE)
2779  *  + Secure EL1 & 0 stage 1
2780  *  + Secure EL1 & 0 stage 2 (FEAT_SEL2)
2781  *  + Secure EL2 (FEAT_SEL2)
2782  *  + Secure EL2 & 0 (FEAT_SEL2)
2783  *  + Realm EL1 & 0 stage 1 (FEAT_RME)
2784  *  + Realm EL1 & 0 stage 2 (FEAT_RME)
2785  *  + Realm EL2 (FEAT_RME)
2786  *  + EL3
2787  * If EL3 is 32-bit:
2788  *  + NonSecure PL1 & 0 stage 1
2789  *  + NonSecure PL1 & 0 stage 2
2790  *  + NonSecure PL2
2791  *  + Secure PL1 & 0
2792  * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2793  *
2794  * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2795  *  1. we need to split the "EL1 & 0" and "EL2 & 0" regimes into two mmu_idxes,
2796  *     because they may differ in access permissions even if the VA->PA map is
2797  *     the same
2798  *  2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2799  *     translation, which means that we have one mmu_idx that deals with two
2800  *     concatenated translation regimes [this sort of combined s1+2 TLB is
2801  *     architecturally permitted]
2802  *  3. we don't need to allocate an mmu_idx to translations that we won't be
2803  *     handling via the TLB. The only way to do a stage 1 translation without
2804  *     the immediate stage 2 translation is via the ATS or AT system insns,
2805  *     which can be slow-pathed and always do a page table walk.
2806  *     The only use of stage 2 translations is either as part of an s1+2
2807  *     lookup or when loading the descriptors during a stage 1 page table walk,
2808  *     and in both those cases we don't use the TLB.
2809  *  4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2810  *     translation regimes, because they map reasonably well to each other
2811  *     and they can't both be active at the same time.
2812  *  5. we want to be able to use the TLB for accesses done as part of a
2813  *     stage1 page table walk, rather than having to walk the stage2 page
2814  *     table over and over.
2815  *  6. we need separate EL1/EL2 mmu_idx for handling the Privileged Access
2816  *     Never (PAN) bit within PSTATE.
2817  *  7. we fold together most secure and non-secure regimes for A-profile,
2818  *     because there are no banked system registers for aarch64, so the
2819  *     process of switching between secure and non-secure is
2820  *     already heavyweight.
2821  *  8. we cannot fold together Stage 2 Secure and Stage 2 NonSecure,
2822  *     because both are in use simultaneously for Secure EL2.
2823  *
2824  * This gives us the following list of cases:
2825  *
2826  * EL0 EL1&0 stage 1+2 (aka NS PL0 PL1&0 stage 1+2)
2827  * EL1 EL1&0 stage 1+2 (aka NS PL1 PL1&0 stage 1+2)
2828  * EL1 EL1&0 stage 1+2 +PAN (aka NS PL1 P1&0 stage 1+2 +PAN)
2829  * EL0 EL2&0
2830  * EL2 EL2&0
2831  * EL2 EL2&0 +PAN
2832  * EL2 (aka NS PL2)
2833  * EL3 (aka AArch32 S PL1 PL1&0)
2834  * AArch32 S PL0 PL1&0 (we call this EL30_0)
2835  * AArch32 S PL1 PL1&0 +PAN (we call this EL30_3_PAN)
2836  * Stage2 Secure
2837  * Stage2 NonSecure
2838  * plus one TLB per Physical address space: S, NS, Realm, Root
2839  *
2840  * for a total of 16 different mmu_idx.
2841  *
2842  * R profile CPUs have an MPU, but can use the same set of MMU indexes
2843  * as A profile. They only need to distinguish EL0 and EL1 (and
2844  * EL2 for cores like the Cortex-R52).
2845  *
2846  * M profile CPUs are rather different as they do not have a true MMU.
2847  * They have the following different MMU indexes:
2848  *  User
2849  *  Privileged
2850  *  User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2851  *  Privileged, execution priority negative (ditto)
2852  * If the CPU supports the v8M Security Extension then there are also:
2853  *  Secure User
2854  *  Secure Privileged
2855  *  Secure User, execution priority negative
2856  *  Secure Privileged, execution priority negative
2857  *
2858  * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2859  * are not quite the same -- different CPU types (most notably M profile
2860  * vs A/R profile) would like to use MMU indexes with different semantics,
2861  * but since we don't ever need to use all of those in a single CPU we
2862  * can avoid having to set NB_MMU_MODES to "total number of A profile MMU
2863  * modes + total number of M profile MMU modes". The lower bits of
2864  * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2865  * the same for any particular CPU.
2866  * Variables of type ARMMUIdx are always full values, and the core
2867  * index values are in variables of type 'int'.
2868  *
2869  * Our enumeration includes at the end some entries which are not "true"
2870  * mmu_idx values in that they don't have corresponding TLBs and are only
2871  * valid for doing slow path page table walks.
2872  *
2873  * The constant names here are patterned after the general style of the names
2874  * of the AT/ATS operations.
2875  * The values used are carefully arranged to make mmu_idx => EL lookup easy.
2876  * For M profile we arrange them to have a bit for priv, a bit for negpri
2877  * and a bit for secure.
2878  */
2879 #define ARM_MMU_IDX_A     0x10  /* A profile */
2880 #define ARM_MMU_IDX_NOTLB 0x20  /* does not have a TLB */
2881 #define ARM_MMU_IDX_M     0x40  /* M profile */
2882 
2883 /* Meanings of the bits for M profile mmu idx values */
2884 #define ARM_MMU_IDX_M_PRIV   0x1
2885 #define ARM_MMU_IDX_M_NEGPRI 0x2
2886 #define ARM_MMU_IDX_M_S      0x4  /* Secure */
2887 
2888 #define ARM_MMU_IDX_TYPE_MASK \
2889     (ARM_MMU_IDX_A | ARM_MMU_IDX_M | ARM_MMU_IDX_NOTLB)
2890 #define ARM_MMU_IDX_COREIDX_MASK 0xf
2891 
2892 typedef enum ARMMMUIdx {
2893     /*
2894      * A-profile.
2895      */
2896     ARMMMUIdx_E10_0     = 0 | ARM_MMU_IDX_A,
2897     ARMMMUIdx_E20_0     = 1 | ARM_MMU_IDX_A,
2898     ARMMMUIdx_E10_1     = 2 | ARM_MMU_IDX_A,
2899     ARMMMUIdx_E20_2     = 3 | ARM_MMU_IDX_A,
2900     ARMMMUIdx_E10_1_PAN = 4 | ARM_MMU_IDX_A,
2901     ARMMMUIdx_E20_2_PAN = 5 | ARM_MMU_IDX_A,
2902     ARMMMUIdx_E2        = 6 | ARM_MMU_IDX_A,
2903     ARMMMUIdx_E3        = 7 | ARM_MMU_IDX_A,
2904     ARMMMUIdx_E30_0     = 8 | ARM_MMU_IDX_A,
2905     ARMMMUIdx_E30_3_PAN = 9 | ARM_MMU_IDX_A,
2906 
2907     /*
2908      * Used for second stage of an S12 page table walk, or for descriptor
2909      * loads during first stage of an S1 page table walk.  Note that both
2910      * are in use simultaneously for SecureEL2: the security state for
2911      * the S2 ptw is selected by the NS bit from the S1 ptw.
2912      */
2913     ARMMMUIdx_Stage2_S  = 10 | ARM_MMU_IDX_A,
2914     ARMMMUIdx_Stage2    = 11 | ARM_MMU_IDX_A,
2915 
2916     /* TLBs with 1-1 mapping to the physical address spaces. */
2917     ARMMMUIdx_Phys_S     = 12 | ARM_MMU_IDX_A,
2918     ARMMMUIdx_Phys_NS    = 13 | ARM_MMU_IDX_A,
2919     ARMMMUIdx_Phys_Root  = 14 | ARM_MMU_IDX_A,
2920     ARMMMUIdx_Phys_Realm = 15 | ARM_MMU_IDX_A,
2921 
2922     /*
2923      * These are not allocated TLBs and are used only for AT system
2924      * instructions or for the first stage of an S12 page table walk.
2925      */
2926     ARMMMUIdx_Stage1_E0 = 0 | ARM_MMU_IDX_NOTLB,
2927     ARMMMUIdx_Stage1_E1 = 1 | ARM_MMU_IDX_NOTLB,
2928     ARMMMUIdx_Stage1_E1_PAN = 2 | ARM_MMU_IDX_NOTLB,
2929 
2930     /*
2931      * M-profile.
2932      */
2933     ARMMMUIdx_MUser = ARM_MMU_IDX_M,
2934     ARMMMUIdx_MPriv = ARM_MMU_IDX_M | ARM_MMU_IDX_M_PRIV,
2935     ARMMMUIdx_MUserNegPri = ARMMMUIdx_MUser | ARM_MMU_IDX_M_NEGPRI,
2936     ARMMMUIdx_MPrivNegPri = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_NEGPRI,
2937     ARMMMUIdx_MSUser = ARMMMUIdx_MUser | ARM_MMU_IDX_M_S,
2938     ARMMMUIdx_MSPriv = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_S,
2939     ARMMMUIdx_MSUserNegPri = ARMMMUIdx_MUserNegPri | ARM_MMU_IDX_M_S,
2940     ARMMMUIdx_MSPrivNegPri = ARMMMUIdx_MPrivNegPri | ARM_MMU_IDX_M_S,
2941 } ARMMMUIdx;
2942 
2943 /*
2944  * Bit macros for the core-mmu-index values for each index,
2945  * for use when calling tlb_flush_by_mmuidx() and friends.
2946  */
2947 #define TO_CORE_BIT(NAME) \
2948     ARMMMUIdxBit_##NAME = 1 << (ARMMMUIdx_##NAME & ARM_MMU_IDX_COREIDX_MASK)
2949 
2950 typedef enum ARMMMUIdxBit {
2951     TO_CORE_BIT(E10_0),
2952     TO_CORE_BIT(E20_0),
2953     TO_CORE_BIT(E10_1),
2954     TO_CORE_BIT(E10_1_PAN),
2955     TO_CORE_BIT(E2),
2956     TO_CORE_BIT(E20_2),
2957     TO_CORE_BIT(E20_2_PAN),
2958     TO_CORE_BIT(E3),
2959     TO_CORE_BIT(E30_0),
2960     TO_CORE_BIT(E30_3_PAN),
2961     TO_CORE_BIT(Stage2),
2962     TO_CORE_BIT(Stage2_S),
2963 
2964     TO_CORE_BIT(MUser),
2965     TO_CORE_BIT(MPriv),
2966     TO_CORE_BIT(MUserNegPri),
2967     TO_CORE_BIT(MPrivNegPri),
2968     TO_CORE_BIT(MSUser),
2969     TO_CORE_BIT(MSPriv),
2970     TO_CORE_BIT(MSUserNegPri),
2971     TO_CORE_BIT(MSPrivNegPri),
2972 } ARMMMUIdxBit;
2973 
2974 #undef TO_CORE_BIT
2975 
2976 #define MMU_USER_IDX 0
2977 
2978 /* Indexes used when registering address spaces with cpu_address_space_init */
2979 typedef enum ARMASIdx {
2980     ARMASIdx_NS = 0,
2981     ARMASIdx_S = 1,
2982     ARMASIdx_TagNS = 2,
2983     ARMASIdx_TagS = 3,
2984 } ARMASIdx;
2985 
arm_space_to_phys(ARMSecuritySpace space)2986 static inline ARMMMUIdx arm_space_to_phys(ARMSecuritySpace space)
2987 {
2988     /* Assert the relative order of the physical mmu indexes. */
2989     QEMU_BUILD_BUG_ON(ARMSS_Secure != 0);
2990     QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_NS != ARMMMUIdx_Phys_S + ARMSS_NonSecure);
2991     QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_Root != ARMMMUIdx_Phys_S + ARMSS_Root);
2992     QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_Realm != ARMMMUIdx_Phys_S + ARMSS_Realm);
2993 
2994     return ARMMMUIdx_Phys_S + space;
2995 }
2996 
arm_phys_to_space(ARMMMUIdx idx)2997 static inline ARMSecuritySpace arm_phys_to_space(ARMMMUIdx idx)
2998 {
2999     assert(idx >= ARMMMUIdx_Phys_S && idx <= ARMMMUIdx_Phys_Realm);
3000     return idx - ARMMMUIdx_Phys_S;
3001 }
3002 
arm_v7m_csselr_razwi(ARMCPU * cpu)3003 static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
3004 {
3005     /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
3006      * CSSELR is RAZ/WI.
3007      */
3008     return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
3009 }
3010 
arm_sctlr_b(CPUARMState * env)3011 static inline bool arm_sctlr_b(CPUARMState *env)
3012 {
3013     return
3014         /* We need not implement SCTLR.ITD in user-mode emulation, so
3015          * let linux-user ignore the fact that it conflicts with SCTLR_B.
3016          * This lets people run BE32 binaries with "-cpu any".
3017          */
3018 #ifndef CONFIG_USER_ONLY
3019         !arm_feature(env, ARM_FEATURE_V7) &&
3020 #endif
3021         (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
3022 }
3023 
3024 uint64_t arm_sctlr(CPUARMState *env, int el);
3025 
arm_cpu_data_is_big_endian_a32(CPUARMState * env,bool sctlr_b)3026 static inline bool arm_cpu_data_is_big_endian_a32(CPUARMState *env,
3027                                                   bool sctlr_b)
3028 {
3029 #ifdef CONFIG_USER_ONLY
3030     /*
3031      * In system mode, BE32 is modelled in line with the
3032      * architecture (as word-invariant big-endianness), where loads
3033      * and stores are done little endian but from addresses which
3034      * are adjusted by XORing with the appropriate constant. So the
3035      * endianness to use for the raw data access is not affected by
3036      * SCTLR.B.
3037      * In user mode, however, we model BE32 as byte-invariant
3038      * big-endianness (because user-only code cannot tell the
3039      * difference), and so we need to use a data access endianness
3040      * that depends on SCTLR.B.
3041      */
3042     if (sctlr_b) {
3043         return true;
3044     }
3045 #endif
3046     /* In 32bit endianness is determined by looking at CPSR's E bit */
3047     return env->uncached_cpsr & CPSR_E;
3048 }
3049 
arm_cpu_data_is_big_endian_a64(int el,uint64_t sctlr)3050 static inline bool arm_cpu_data_is_big_endian_a64(int el, uint64_t sctlr)
3051 {
3052     return sctlr & (el ? SCTLR_EE : SCTLR_E0E);
3053 }
3054 
3055 /* Return true if the processor is in big-endian mode. */
arm_cpu_data_is_big_endian(CPUARMState * env)3056 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
3057 {
3058     if (!is_a64(env)) {
3059         return arm_cpu_data_is_big_endian_a32(env, arm_sctlr_b(env));
3060     } else {
3061         int cur_el = arm_current_el(env);
3062         uint64_t sctlr = arm_sctlr(env, cur_el);
3063         return arm_cpu_data_is_big_endian_a64(cur_el, sctlr);
3064     }
3065 }
3066 
3067 #include "exec/cpu-all.h"
3068 
3069 /*
3070  * We have more than 32-bits worth of state per TB, so we split the data
3071  * between tb->flags and tb->cs_base, which is otherwise unused for ARM.
3072  * We collect these two parts in CPUARMTBFlags where they are named
3073  * flags and flags2 respectively.
3074  *
3075  * The flags that are shared between all execution modes, TBFLAG_ANY,
3076  * are stored in flags.  The flags that are specific to a given mode
3077  * are stores in flags2.  Since cs_base is sized on the configured
3078  * address size, flags2 always has 64-bits for A64, and a minimum of
3079  * 32-bits for A32 and M32.
3080  *
3081  * The bits for 32-bit A-profile and M-profile partially overlap:
3082  *
3083  *  31         23         11 10             0
3084  * +-------------+----------+----------------+
3085  * |             |          |   TBFLAG_A32   |
3086  * | TBFLAG_AM32 |          +-----+----------+
3087  * |             |                |TBFLAG_M32|
3088  * +-------------+----------------+----------+
3089  *  31         23                6 5        0
3090  *
3091  * Unless otherwise noted, these bits are cached in env->hflags.
3092  */
3093 FIELD(TBFLAG_ANY, AARCH64_STATE, 0, 1)
3094 FIELD(TBFLAG_ANY, SS_ACTIVE, 1, 1)
3095 FIELD(TBFLAG_ANY, PSTATE__SS, 2, 1)      /* Not cached. */
3096 FIELD(TBFLAG_ANY, BE_DATA, 3, 1)
3097 FIELD(TBFLAG_ANY, MMUIDX, 4, 4)
3098 /* Target EL if we take a floating-point-disabled exception */
3099 FIELD(TBFLAG_ANY, FPEXC_EL, 8, 2)
3100 /* Memory operations require alignment: SCTLR_ELx.A or CCR.UNALIGN_TRP */
3101 FIELD(TBFLAG_ANY, ALIGN_MEM, 10, 1)
3102 FIELD(TBFLAG_ANY, PSTATE__IL, 11, 1)
3103 FIELD(TBFLAG_ANY, FGT_ACTIVE, 12, 1)
3104 FIELD(TBFLAG_ANY, FGT_SVC, 13, 1)
3105 
3106 /*
3107  * Bit usage when in AArch32 state, both A- and M-profile.
3108  */
3109 FIELD(TBFLAG_AM32, CONDEXEC, 24, 8)      /* Not cached. */
3110 FIELD(TBFLAG_AM32, THUMB, 23, 1)         /* Not cached. */
3111 
3112 /*
3113  * Bit usage when in AArch32 state, for A-profile only.
3114  */
3115 FIELD(TBFLAG_A32, VECLEN, 0, 3)         /* Not cached. */
3116 FIELD(TBFLAG_A32, VECSTRIDE, 3, 2)     /* Not cached. */
3117 /*
3118  * We store the bottom two bits of the CPAR as TB flags and handle
3119  * checks on the other bits at runtime. This shares the same bits as
3120  * VECSTRIDE, which is OK as no XScale CPU has VFP.
3121  * Not cached, because VECLEN+VECSTRIDE are not cached.
3122  */
3123 FIELD(TBFLAG_A32, XSCALE_CPAR, 5, 2)
3124 FIELD(TBFLAG_A32, VFPEN, 7, 1)         /* Partially cached, minus FPEXC. */
3125 FIELD(TBFLAG_A32, SCTLR__B, 8, 1)      /* Cannot overlap with SCTLR_B */
3126 FIELD(TBFLAG_A32, HSTR_ACTIVE, 9, 1)
3127 /*
3128  * Indicates whether cp register reads and writes by guest code should access
3129  * the secure or nonsecure bank of banked registers; note that this is not
3130  * the same thing as the current security state of the processor!
3131  */
3132 FIELD(TBFLAG_A32, NS, 10, 1)
3133 /*
3134  * Indicates that SME Streaming mode is active, and SMCR_ELx.FA64 is not.
3135  * This requires an SME trap from AArch32 mode when using NEON.
3136  */
3137 FIELD(TBFLAG_A32, SME_TRAP_NONSTREAMING, 11, 1)
3138 
3139 /*
3140  * Bit usage when in AArch32 state, for M-profile only.
3141  */
3142 /* Handler (ie not Thread) mode */
3143 FIELD(TBFLAG_M32, HANDLER, 0, 1)
3144 /* Whether we should generate stack-limit checks */
3145 FIELD(TBFLAG_M32, STACKCHECK, 1, 1)
3146 /* Set if FPCCR.LSPACT is set */
3147 FIELD(TBFLAG_M32, LSPACT, 2, 1)                 /* Not cached. */
3148 /* Set if we must create a new FP context */
3149 FIELD(TBFLAG_M32, NEW_FP_CTXT_NEEDED, 3, 1)     /* Not cached. */
3150 /* Set if FPCCR.S does not match current security state */
3151 FIELD(TBFLAG_M32, FPCCR_S_WRONG, 4, 1)          /* Not cached. */
3152 /* Set if MVE insns are definitely not predicated by VPR or LTPSIZE */
3153 FIELD(TBFLAG_M32, MVE_NO_PRED, 5, 1)            /* Not cached. */
3154 /* Set if in secure mode */
3155 FIELD(TBFLAG_M32, SECURE, 6, 1)
3156 
3157 /*
3158  * Bit usage when in AArch64 state
3159  */
3160 FIELD(TBFLAG_A64, TBII, 0, 2)
3161 FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
3162 /* The current vector length, either NVL or SVL. */
3163 FIELD(TBFLAG_A64, VL, 4, 4)
3164 FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
3165 FIELD(TBFLAG_A64, BT, 9, 1)
3166 FIELD(TBFLAG_A64, BTYPE, 10, 2)         /* Not cached. */
3167 FIELD(TBFLAG_A64, TBID, 12, 2)
3168 FIELD(TBFLAG_A64, UNPRIV, 14, 1)
3169 FIELD(TBFLAG_A64, ATA, 15, 1)
3170 FIELD(TBFLAG_A64, TCMA, 16, 2)
3171 FIELD(TBFLAG_A64, MTE_ACTIVE, 18, 1)
3172 FIELD(TBFLAG_A64, MTE0_ACTIVE, 19, 1)
3173 FIELD(TBFLAG_A64, SMEEXC_EL, 20, 2)
3174 FIELD(TBFLAG_A64, PSTATE_SM, 22, 1)
3175 FIELD(TBFLAG_A64, PSTATE_ZA, 23, 1)
3176 FIELD(TBFLAG_A64, SVL, 24, 4)
3177 /* Indicates that SME Streaming mode is active, and SMCR_ELx.FA64 is not. */
3178 FIELD(TBFLAG_A64, SME_TRAP_NONSTREAMING, 28, 1)
3179 FIELD(TBFLAG_A64, TRAP_ERET, 29, 1)
3180 FIELD(TBFLAG_A64, NAA, 30, 1)
3181 FIELD(TBFLAG_A64, ATA0, 31, 1)
3182 FIELD(TBFLAG_A64, NV, 32, 1)
3183 FIELD(TBFLAG_A64, NV1, 33, 1)
3184 FIELD(TBFLAG_A64, NV2, 34, 1)
3185 /* Set if FEAT_NV2 RAM accesses use the EL2&0 translation regime */
3186 FIELD(TBFLAG_A64, NV2_MEM_E20, 35, 1)
3187 /* Set if FEAT_NV2 RAM accesses are big-endian */
3188 FIELD(TBFLAG_A64, NV2_MEM_BE, 36, 1)
3189 
3190 /*
3191  * Helpers for using the above. Note that only the A64 accessors use
3192  * FIELD_DP64() and FIELD_EX64(), because in the other cases the flags
3193  * word either is or might be 32 bits only.
3194  */
3195 #define DP_TBFLAG_ANY(DST, WHICH, VAL) \
3196     (DST.flags = FIELD_DP32(DST.flags, TBFLAG_ANY, WHICH, VAL))
3197 #define DP_TBFLAG_A64(DST, WHICH, VAL) \
3198     (DST.flags2 = FIELD_DP64(DST.flags2, TBFLAG_A64, WHICH, VAL))
3199 #define DP_TBFLAG_A32(DST, WHICH, VAL) \
3200     (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A32, WHICH, VAL))
3201 #define DP_TBFLAG_M32(DST, WHICH, VAL) \
3202     (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_M32, WHICH, VAL))
3203 #define DP_TBFLAG_AM32(DST, WHICH, VAL) \
3204     (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_AM32, WHICH, VAL))
3205 
3206 #define EX_TBFLAG_ANY(IN, WHICH)   FIELD_EX32(IN.flags, TBFLAG_ANY, WHICH)
3207 #define EX_TBFLAG_A64(IN, WHICH)   FIELD_EX64(IN.flags2, TBFLAG_A64, WHICH)
3208 #define EX_TBFLAG_A32(IN, WHICH)   FIELD_EX32(IN.flags2, TBFLAG_A32, WHICH)
3209 #define EX_TBFLAG_M32(IN, WHICH)   FIELD_EX32(IN.flags2, TBFLAG_M32, WHICH)
3210 #define EX_TBFLAG_AM32(IN, WHICH)  FIELD_EX32(IN.flags2, TBFLAG_AM32, WHICH)
3211 
3212 /**
3213  * sve_vq
3214  * @env: the cpu context
3215  *
3216  * Return the VL cached within env->hflags, in units of quadwords.
3217  */
sve_vq(CPUARMState * env)3218 static inline int sve_vq(CPUARMState *env)
3219 {
3220     return EX_TBFLAG_A64(env->hflags, VL) + 1;
3221 }
3222 
3223 /**
3224  * sme_vq
3225  * @env: the cpu context
3226  *
3227  * Return the SVL cached within env->hflags, in units of quadwords.
3228  */
sme_vq(CPUARMState * env)3229 static inline int sme_vq(CPUARMState *env)
3230 {
3231     return EX_TBFLAG_A64(env->hflags, SVL) + 1;
3232 }
3233 
bswap_code(bool sctlr_b)3234 static inline bool bswap_code(bool sctlr_b)
3235 {
3236 #ifdef CONFIG_USER_ONLY
3237     /* BE8 (SCTLR.B = 0, TARGET_BIG_ENDIAN = 1) is mixed endian.
3238      * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_BIG_ENDIAN=0
3239      * would also end up as a mixed-endian mode with BE code, LE data.
3240      */
3241     return TARGET_BIG_ENDIAN ^ sctlr_b;
3242 #else
3243     /* All code access in ARM is little endian, and there are no loaders
3244      * doing swaps that need to be reversed
3245      */
3246     return 0;
3247 #endif
3248 }
3249 
3250 #ifdef CONFIG_USER_ONLY
arm_cpu_bswap_data(CPUARMState * env)3251 static inline bool arm_cpu_bswap_data(CPUARMState *env)
3252 {
3253     return TARGET_BIG_ENDIAN ^ arm_cpu_data_is_big_endian(env);
3254 }
3255 #endif
3256 
3257 void cpu_get_tb_cpu_state(CPUARMState *env, vaddr *pc,
3258                           uint64_t *cs_base, uint32_t *flags);
3259 
3260 enum {
3261     QEMU_PSCI_CONDUIT_DISABLED = 0,
3262     QEMU_PSCI_CONDUIT_SMC = 1,
3263     QEMU_PSCI_CONDUIT_HVC = 2,
3264 };
3265 
3266 #ifndef CONFIG_USER_ONLY
3267 /* Return the address space index to use for a memory access */
arm_asidx_from_attrs(CPUState * cs,MemTxAttrs attrs)3268 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3269 {
3270     return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3271 }
3272 
3273 /* Return the AddressSpace to use for a memory access
3274  * (which depends on whether the access is S or NS, and whether
3275  * the board gave us a separate AddressSpace for S accesses).
3276  */
arm_addressspace(CPUState * cs,MemTxAttrs attrs)3277 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3278 {
3279     return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3280 }
3281 #endif
3282 
3283 /**
3284  * arm_register_pre_el_change_hook:
3285  * Register a hook function which will be called immediately before this
3286  * CPU changes exception level or mode. The hook function will be
3287  * passed a pointer to the ARMCPU and the opaque data pointer passed
3288  * to this function when the hook was registered.
3289  *
3290  * Note that if a pre-change hook is called, any registered post-change hooks
3291  * are guaranteed to subsequently be called.
3292  */
3293 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
3294                                  void *opaque);
3295 /**
3296  * arm_register_el_change_hook:
3297  * Register a hook function which will be called immediately after this
3298  * CPU changes exception level or mode. The hook function will be
3299  * passed a pointer to the ARMCPU and the opaque data pointer passed
3300  * to this function when the hook was registered.
3301  *
3302  * Note that any registered hooks registered here are guaranteed to be called
3303  * if pre-change hooks have been.
3304  */
3305 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3306         *opaque);
3307 
3308 /**
3309  * arm_rebuild_hflags:
3310  * Rebuild the cached TBFLAGS for arbitrary changed processor state.
3311  */
3312 void arm_rebuild_hflags(CPUARMState *env);
3313 
3314 /**
3315  * aa32_vfp_dreg:
3316  * Return a pointer to the Dn register within env in 32-bit mode.
3317  */
aa32_vfp_dreg(CPUARMState * env,unsigned regno)3318 static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3319 {
3320     return &env->vfp.zregs[regno >> 1].d[regno & 1];
3321 }
3322 
3323 /**
3324  * aa32_vfp_qreg:
3325  * Return a pointer to the Qn register within env in 32-bit mode.
3326  */
aa32_vfp_qreg(CPUARMState * env,unsigned regno)3327 static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3328 {
3329     return &env->vfp.zregs[regno].d[0];
3330 }
3331 
3332 /**
3333  * aa64_vfp_qreg:
3334  * Return a pointer to the Qn register within env in 64-bit mode.
3335  */
aa64_vfp_qreg(CPUARMState * env,unsigned regno)3336 static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3337 {
3338     return &env->vfp.zregs[regno].d[0];
3339 }
3340 
3341 /* Shared between translate-sve.c and sve_helper.c.  */
3342 extern const uint64_t pred_esz_masks[5];
3343 
3344 /*
3345  * AArch64 usage of the PAGE_TARGET_* bits for linux-user.
3346  * Note that with the Linux kernel, PROT_MTE may not be cleared by mprotect
3347  * mprotect but PROT_BTI may be cleared.  C.f. the kernel's VM_ARCH_CLEAR.
3348  */
3349 #define PAGE_BTI            PAGE_TARGET_1
3350 #define PAGE_MTE            PAGE_TARGET_2
3351 #define PAGE_TARGET_STICKY  PAGE_MTE
3352 
3353 /* We associate one allocation tag per 16 bytes, the minimum.  */
3354 #define LOG2_TAG_GRANULE 4
3355 #define TAG_GRANULE      (1 << LOG2_TAG_GRANULE)
3356 
3357 #ifdef CONFIG_USER_ONLY
3358 #define TARGET_PAGE_DATA_SIZE (TARGET_PAGE_SIZE >> (LOG2_TAG_GRANULE + 1))
3359 #endif
3360 
3361 #ifdef TARGET_TAGGED_ADDRESSES
3362 /**
3363  * cpu_untagged_addr:
3364  * @cs: CPU context
3365  * @x: tagged address
3366  *
3367  * Remove any address tag from @x.  This is explicitly related to the
3368  * linux syscall TIF_TAGGED_ADDR setting, not TBI in general.
3369  *
3370  * There should be a better place to put this, but we need this in
3371  * include/exec/cpu_ldst.h, and not some place linux-user specific.
3372  */
cpu_untagged_addr(CPUState * cs,target_ulong x)3373 static inline target_ulong cpu_untagged_addr(CPUState *cs, target_ulong x)
3374 {
3375     CPUARMState *env = cpu_env(cs);
3376     if (env->tagged_addr_enable) {
3377         /*
3378          * TBI is enabled for userspace but not kernelspace addresses.
3379          * Only clear the tag if bit 55 is clear.
3380          */
3381         x &= sextract64(x, 0, 56);
3382     }
3383     return x;
3384 }
3385 #endif
3386 
3387 #endif
3388