1 //===--- SemaDeclObjC.cpp - Semantic Analysis for ObjC Declarations -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements semantic analysis for Objective C declarations.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "TypeLocBuilder.h"
14 #include "clang/AST/ASTConsumer.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/ASTMutationListener.h"
17 #include "clang/AST/DeclObjC.h"
18 #include "clang/AST/Expr.h"
19 #include "clang/AST/ExprObjC.h"
20 #include "clang/AST/RecursiveASTVisitor.h"
21 #include "clang/Basic/SourceManager.h"
22 #include "clang/Basic/TargetInfo.h"
23 #include "clang/Sema/DeclSpec.h"
24 #include "clang/Sema/Lookup.h"
25 #include "clang/Sema/Scope.h"
26 #include "clang/Sema/ScopeInfo.h"
27 #include "clang/Sema/SemaInternal.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/DenseSet.h"
30
31 using namespace clang;
32
33 /// Check whether the given method, which must be in the 'init'
34 /// family, is a valid member of that family.
35 ///
36 /// \param receiverTypeIfCall - if null, check this as if declaring it;
37 /// if non-null, check this as if making a call to it with the given
38 /// receiver type
39 ///
40 /// \return true to indicate that there was an error and appropriate
41 /// actions were taken
checkInitMethod(ObjCMethodDecl * method,QualType receiverTypeIfCall)42 bool Sema::checkInitMethod(ObjCMethodDecl *method,
43 QualType receiverTypeIfCall) {
44 if (method->isInvalidDecl()) return true;
45
46 // This castAs is safe: methods that don't return an object
47 // pointer won't be inferred as inits and will reject an explicit
48 // objc_method_family(init).
49
50 // We ignore protocols here. Should we? What about Class?
51
52 const ObjCObjectType *result =
53 method->getReturnType()->castAs<ObjCObjectPointerType>()->getObjectType();
54
55 if (result->isObjCId()) {
56 return false;
57 } else if (result->isObjCClass()) {
58 // fall through: always an error
59 } else {
60 ObjCInterfaceDecl *resultClass = result->getInterface();
61 assert(resultClass && "unexpected object type!");
62
63 // It's okay for the result type to still be a forward declaration
64 // if we're checking an interface declaration.
65 if (!resultClass->hasDefinition()) {
66 if (receiverTypeIfCall.isNull() &&
67 !isa<ObjCImplementationDecl>(method->getDeclContext()))
68 return false;
69
70 // Otherwise, we try to compare class types.
71 } else {
72 // If this method was declared in a protocol, we can't check
73 // anything unless we have a receiver type that's an interface.
74 const ObjCInterfaceDecl *receiverClass = nullptr;
75 if (isa<ObjCProtocolDecl>(method->getDeclContext())) {
76 if (receiverTypeIfCall.isNull())
77 return false;
78
79 receiverClass = receiverTypeIfCall->castAs<ObjCObjectPointerType>()
80 ->getInterfaceDecl();
81
82 // This can be null for calls to e.g. id<Foo>.
83 if (!receiverClass) return false;
84 } else {
85 receiverClass = method->getClassInterface();
86 assert(receiverClass && "method not associated with a class!");
87 }
88
89 // If either class is a subclass of the other, it's fine.
90 if (receiverClass->isSuperClassOf(resultClass) ||
91 resultClass->isSuperClassOf(receiverClass))
92 return false;
93 }
94 }
95
96 SourceLocation loc = method->getLocation();
97
98 // If we're in a system header, and this is not a call, just make
99 // the method unusable.
100 if (receiverTypeIfCall.isNull() && getSourceManager().isInSystemHeader(loc)) {
101 method->addAttr(UnavailableAttr::CreateImplicit(Context, "",
102 UnavailableAttr::IR_ARCInitReturnsUnrelated, loc));
103 return true;
104 }
105
106 // Otherwise, it's an error.
107 Diag(loc, diag::err_arc_init_method_unrelated_result_type);
108 method->setInvalidDecl();
109 return true;
110 }
111
112 /// Issue a warning if the parameter of the overridden method is non-escaping
113 /// but the parameter of the overriding method is not.
diagnoseNoescape(const ParmVarDecl * NewD,const ParmVarDecl * OldD,Sema & S)114 static bool diagnoseNoescape(const ParmVarDecl *NewD, const ParmVarDecl *OldD,
115 Sema &S) {
116 if (OldD->hasAttr<NoEscapeAttr>() && !NewD->hasAttr<NoEscapeAttr>()) {
117 S.Diag(NewD->getLocation(), diag::warn_overriding_method_missing_noescape);
118 S.Diag(OldD->getLocation(), diag::note_overridden_marked_noescape);
119 return false;
120 }
121
122 return true;
123 }
124
125 /// Produce additional diagnostics if a category conforms to a protocol that
126 /// defines a method taking a non-escaping parameter.
diagnoseNoescape(const ParmVarDecl * NewD,const ParmVarDecl * OldD,const ObjCCategoryDecl * CD,const ObjCProtocolDecl * PD,Sema & S)127 static void diagnoseNoescape(const ParmVarDecl *NewD, const ParmVarDecl *OldD,
128 const ObjCCategoryDecl *CD,
129 const ObjCProtocolDecl *PD, Sema &S) {
130 if (!diagnoseNoescape(NewD, OldD, S))
131 S.Diag(CD->getLocation(), diag::note_cat_conform_to_noescape_prot)
132 << CD->IsClassExtension() << PD
133 << cast<ObjCMethodDecl>(NewD->getDeclContext());
134 }
135
CheckObjCMethodOverride(ObjCMethodDecl * NewMethod,const ObjCMethodDecl * Overridden)136 void Sema::CheckObjCMethodOverride(ObjCMethodDecl *NewMethod,
137 const ObjCMethodDecl *Overridden) {
138 if (Overridden->hasRelatedResultType() &&
139 !NewMethod->hasRelatedResultType()) {
140 // This can only happen when the method follows a naming convention that
141 // implies a related result type, and the original (overridden) method has
142 // a suitable return type, but the new (overriding) method does not have
143 // a suitable return type.
144 QualType ResultType = NewMethod->getReturnType();
145 SourceRange ResultTypeRange = NewMethod->getReturnTypeSourceRange();
146
147 // Figure out which class this method is part of, if any.
148 ObjCInterfaceDecl *CurrentClass
149 = dyn_cast<ObjCInterfaceDecl>(NewMethod->getDeclContext());
150 if (!CurrentClass) {
151 DeclContext *DC = NewMethod->getDeclContext();
152 if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(DC))
153 CurrentClass = Cat->getClassInterface();
154 else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(DC))
155 CurrentClass = Impl->getClassInterface();
156 else if (ObjCCategoryImplDecl *CatImpl
157 = dyn_cast<ObjCCategoryImplDecl>(DC))
158 CurrentClass = CatImpl->getClassInterface();
159 }
160
161 if (CurrentClass) {
162 Diag(NewMethod->getLocation(),
163 diag::warn_related_result_type_compatibility_class)
164 << Context.getObjCInterfaceType(CurrentClass)
165 << ResultType
166 << ResultTypeRange;
167 } else {
168 Diag(NewMethod->getLocation(),
169 diag::warn_related_result_type_compatibility_protocol)
170 << ResultType
171 << ResultTypeRange;
172 }
173
174 if (ObjCMethodFamily Family = Overridden->getMethodFamily())
175 Diag(Overridden->getLocation(),
176 diag::note_related_result_type_family)
177 << /*overridden method*/ 0
178 << Family;
179 else
180 Diag(Overridden->getLocation(),
181 diag::note_related_result_type_overridden);
182 }
183
184 if ((NewMethod->hasAttr<NSReturnsRetainedAttr>() !=
185 Overridden->hasAttr<NSReturnsRetainedAttr>())) {
186 Diag(NewMethod->getLocation(),
187 getLangOpts().ObjCAutoRefCount
188 ? diag::err_nsreturns_retained_attribute_mismatch
189 : diag::warn_nsreturns_retained_attribute_mismatch)
190 << 1;
191 Diag(Overridden->getLocation(), diag::note_previous_decl) << "method";
192 }
193 if ((NewMethod->hasAttr<NSReturnsNotRetainedAttr>() !=
194 Overridden->hasAttr<NSReturnsNotRetainedAttr>())) {
195 Diag(NewMethod->getLocation(),
196 getLangOpts().ObjCAutoRefCount
197 ? diag::err_nsreturns_retained_attribute_mismatch
198 : diag::warn_nsreturns_retained_attribute_mismatch)
199 << 0;
200 Diag(Overridden->getLocation(), diag::note_previous_decl) << "method";
201 }
202
203 ObjCMethodDecl::param_const_iterator oi = Overridden->param_begin(),
204 oe = Overridden->param_end();
205 for (ObjCMethodDecl::param_iterator ni = NewMethod->param_begin(),
206 ne = NewMethod->param_end();
207 ni != ne && oi != oe; ++ni, ++oi) {
208 const ParmVarDecl *oldDecl = (*oi);
209 ParmVarDecl *newDecl = (*ni);
210 if (newDecl->hasAttr<NSConsumedAttr>() !=
211 oldDecl->hasAttr<NSConsumedAttr>()) {
212 Diag(newDecl->getLocation(),
213 getLangOpts().ObjCAutoRefCount
214 ? diag::err_nsconsumed_attribute_mismatch
215 : diag::warn_nsconsumed_attribute_mismatch);
216 Diag(oldDecl->getLocation(), diag::note_previous_decl) << "parameter";
217 }
218
219 diagnoseNoescape(newDecl, oldDecl, *this);
220 }
221 }
222
223 /// Check a method declaration for compatibility with the Objective-C
224 /// ARC conventions.
CheckARCMethodDecl(ObjCMethodDecl * method)225 bool Sema::CheckARCMethodDecl(ObjCMethodDecl *method) {
226 ObjCMethodFamily family = method->getMethodFamily();
227 switch (family) {
228 case OMF_None:
229 case OMF_finalize:
230 case OMF_retain:
231 case OMF_release:
232 case OMF_autorelease:
233 case OMF_retainCount:
234 case OMF_self:
235 case OMF_initialize:
236 case OMF_performSelector:
237 return false;
238
239 case OMF_dealloc:
240 if (!Context.hasSameType(method->getReturnType(), Context.VoidTy)) {
241 SourceRange ResultTypeRange = method->getReturnTypeSourceRange();
242 if (ResultTypeRange.isInvalid())
243 Diag(method->getLocation(), diag::err_dealloc_bad_result_type)
244 << method->getReturnType()
245 << FixItHint::CreateInsertion(method->getSelectorLoc(0), "(void)");
246 else
247 Diag(method->getLocation(), diag::err_dealloc_bad_result_type)
248 << method->getReturnType()
249 << FixItHint::CreateReplacement(ResultTypeRange, "void");
250 return true;
251 }
252 return false;
253
254 case OMF_init:
255 // If the method doesn't obey the init rules, don't bother annotating it.
256 if (checkInitMethod(method, QualType()))
257 return true;
258
259 method->addAttr(NSConsumesSelfAttr::CreateImplicit(Context));
260
261 // Don't add a second copy of this attribute, but otherwise don't
262 // let it be suppressed.
263 if (method->hasAttr<NSReturnsRetainedAttr>())
264 return false;
265 break;
266
267 case OMF_alloc:
268 case OMF_copy:
269 case OMF_mutableCopy:
270 case OMF_new:
271 if (method->hasAttr<NSReturnsRetainedAttr>() ||
272 method->hasAttr<NSReturnsNotRetainedAttr>() ||
273 method->hasAttr<NSReturnsAutoreleasedAttr>())
274 return false;
275 break;
276 }
277
278 method->addAttr(NSReturnsRetainedAttr::CreateImplicit(Context));
279 return false;
280 }
281
DiagnoseObjCImplementedDeprecations(Sema & S,const NamedDecl * ND,SourceLocation ImplLoc)282 static void DiagnoseObjCImplementedDeprecations(Sema &S, const NamedDecl *ND,
283 SourceLocation ImplLoc) {
284 if (!ND)
285 return;
286 bool IsCategory = false;
287 StringRef RealizedPlatform;
288 AvailabilityResult Availability = ND->getAvailability(
289 /*Message=*/nullptr, /*EnclosingVersion=*/VersionTuple(),
290 &RealizedPlatform);
291 if (Availability != AR_Deprecated) {
292 if (isa<ObjCMethodDecl>(ND)) {
293 if (Availability != AR_Unavailable)
294 return;
295 if (RealizedPlatform.empty())
296 RealizedPlatform = S.Context.getTargetInfo().getPlatformName();
297 // Warn about implementing unavailable methods, unless the unavailable
298 // is for an app extension.
299 if (RealizedPlatform.endswith("_app_extension"))
300 return;
301 S.Diag(ImplLoc, diag::warn_unavailable_def);
302 S.Diag(ND->getLocation(), diag::note_method_declared_at)
303 << ND->getDeclName();
304 return;
305 }
306 if (const auto *CD = dyn_cast<ObjCCategoryDecl>(ND)) {
307 if (!CD->getClassInterface()->isDeprecated())
308 return;
309 ND = CD->getClassInterface();
310 IsCategory = true;
311 } else
312 return;
313 }
314 S.Diag(ImplLoc, diag::warn_deprecated_def)
315 << (isa<ObjCMethodDecl>(ND)
316 ? /*Method*/ 0
317 : isa<ObjCCategoryDecl>(ND) || IsCategory ? /*Category*/ 2
318 : /*Class*/ 1);
319 if (isa<ObjCMethodDecl>(ND))
320 S.Diag(ND->getLocation(), diag::note_method_declared_at)
321 << ND->getDeclName();
322 else
323 S.Diag(ND->getLocation(), diag::note_previous_decl)
324 << (isa<ObjCCategoryDecl>(ND) ? "category" : "class");
325 }
326
327 /// AddAnyMethodToGlobalPool - Add any method, instance or factory to global
328 /// pool.
AddAnyMethodToGlobalPool(Decl * D)329 void Sema::AddAnyMethodToGlobalPool(Decl *D) {
330 ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
331
332 // If we don't have a valid method decl, simply return.
333 if (!MDecl)
334 return;
335 if (MDecl->isInstanceMethod())
336 AddInstanceMethodToGlobalPool(MDecl, true);
337 else
338 AddFactoryMethodToGlobalPool(MDecl, true);
339 }
340
341 /// HasExplicitOwnershipAttr - returns true when pointer to ObjC pointer
342 /// has explicit ownership attribute; false otherwise.
343 static bool
HasExplicitOwnershipAttr(Sema & S,ParmVarDecl * Param)344 HasExplicitOwnershipAttr(Sema &S, ParmVarDecl *Param) {
345 QualType T = Param->getType();
346
347 if (const PointerType *PT = T->getAs<PointerType>()) {
348 T = PT->getPointeeType();
349 } else if (const ReferenceType *RT = T->getAs<ReferenceType>()) {
350 T = RT->getPointeeType();
351 } else {
352 return true;
353 }
354
355 // If we have a lifetime qualifier, but it's local, we must have
356 // inferred it. So, it is implicit.
357 return !T.getLocalQualifiers().hasObjCLifetime();
358 }
359
360 /// ActOnStartOfObjCMethodDef - This routine sets up parameters; invisible
361 /// and user declared, in the method definition's AST.
ActOnStartOfObjCMethodDef(Scope * FnBodyScope,Decl * D)362 void Sema::ActOnStartOfObjCMethodDef(Scope *FnBodyScope, Decl *D) {
363 ImplicitlyRetainedSelfLocs.clear();
364 assert((getCurMethodDecl() == nullptr) && "Methodparsing confused");
365 ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
366
367 PushExpressionEvaluationContext(ExprEvalContexts.back().Context);
368
369 // If we don't have a valid method decl, simply return.
370 if (!MDecl)
371 return;
372
373 QualType ResultType = MDecl->getReturnType();
374 if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
375 !MDecl->isInvalidDecl() &&
376 RequireCompleteType(MDecl->getLocation(), ResultType,
377 diag::err_func_def_incomplete_result))
378 MDecl->setInvalidDecl();
379
380 // Allow all of Sema to see that we are entering a method definition.
381 PushDeclContext(FnBodyScope, MDecl);
382 PushFunctionScope();
383
384 // Create Decl objects for each parameter, entrring them in the scope for
385 // binding to their use.
386
387 // Insert the invisible arguments, self and _cmd!
388 MDecl->createImplicitParams(Context, MDecl->getClassInterface());
389
390 PushOnScopeChains(MDecl->getSelfDecl(), FnBodyScope);
391 PushOnScopeChains(MDecl->getCmdDecl(), FnBodyScope);
392
393 // The ObjC parser requires parameter names so there's no need to check.
394 CheckParmsForFunctionDef(MDecl->parameters(),
395 /*CheckParameterNames=*/false);
396
397 // Introduce all of the other parameters into this scope.
398 for (auto *Param : MDecl->parameters()) {
399 if (!Param->isInvalidDecl() &&
400 getLangOpts().ObjCAutoRefCount &&
401 !HasExplicitOwnershipAttr(*this, Param))
402 Diag(Param->getLocation(), diag::warn_arc_strong_pointer_objc_pointer) <<
403 Param->getType();
404
405 if (Param->getIdentifier())
406 PushOnScopeChains(Param, FnBodyScope);
407 }
408
409 // In ARC, disallow definition of retain/release/autorelease/retainCount
410 if (getLangOpts().ObjCAutoRefCount) {
411 switch (MDecl->getMethodFamily()) {
412 case OMF_retain:
413 case OMF_retainCount:
414 case OMF_release:
415 case OMF_autorelease:
416 Diag(MDecl->getLocation(), diag::err_arc_illegal_method_def)
417 << 0 << MDecl->getSelector();
418 break;
419
420 case OMF_None:
421 case OMF_dealloc:
422 case OMF_finalize:
423 case OMF_alloc:
424 case OMF_init:
425 case OMF_mutableCopy:
426 case OMF_copy:
427 case OMF_new:
428 case OMF_self:
429 case OMF_initialize:
430 case OMF_performSelector:
431 break;
432 }
433 }
434
435 // Warn on deprecated methods under -Wdeprecated-implementations,
436 // and prepare for warning on missing super calls.
437 if (ObjCInterfaceDecl *IC = MDecl->getClassInterface()) {
438 ObjCMethodDecl *IMD =
439 IC->lookupMethod(MDecl->getSelector(), MDecl->isInstanceMethod());
440
441 if (IMD) {
442 ObjCImplDecl *ImplDeclOfMethodDef =
443 dyn_cast<ObjCImplDecl>(MDecl->getDeclContext());
444 ObjCContainerDecl *ContDeclOfMethodDecl =
445 dyn_cast<ObjCContainerDecl>(IMD->getDeclContext());
446 ObjCImplDecl *ImplDeclOfMethodDecl = nullptr;
447 if (ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(ContDeclOfMethodDecl))
448 ImplDeclOfMethodDecl = OID->getImplementation();
449 else if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(ContDeclOfMethodDecl)) {
450 if (CD->IsClassExtension()) {
451 if (ObjCInterfaceDecl *OID = CD->getClassInterface())
452 ImplDeclOfMethodDecl = OID->getImplementation();
453 } else
454 ImplDeclOfMethodDecl = CD->getImplementation();
455 }
456 // No need to issue deprecated warning if deprecated mehod in class/category
457 // is being implemented in its own implementation (no overriding is involved).
458 if (!ImplDeclOfMethodDecl || ImplDeclOfMethodDecl != ImplDeclOfMethodDef)
459 DiagnoseObjCImplementedDeprecations(*this, IMD, MDecl->getLocation());
460 }
461
462 if (MDecl->getMethodFamily() == OMF_init) {
463 if (MDecl->isDesignatedInitializerForTheInterface()) {
464 getCurFunction()->ObjCIsDesignatedInit = true;
465 getCurFunction()->ObjCWarnForNoDesignatedInitChain =
466 IC->getSuperClass() != nullptr;
467 } else if (IC->hasDesignatedInitializers()) {
468 getCurFunction()->ObjCIsSecondaryInit = true;
469 getCurFunction()->ObjCWarnForNoInitDelegation = true;
470 }
471 }
472
473 // If this is "dealloc" or "finalize", set some bit here.
474 // Then in ActOnSuperMessage() (SemaExprObjC), set it back to false.
475 // Finally, in ActOnFinishFunctionBody() (SemaDecl), warn if flag is set.
476 // Only do this if the current class actually has a superclass.
477 if (const ObjCInterfaceDecl *SuperClass = IC->getSuperClass()) {
478 ObjCMethodFamily Family = MDecl->getMethodFamily();
479 if (Family == OMF_dealloc) {
480 if (!(getLangOpts().ObjCAutoRefCount ||
481 getLangOpts().getGC() == LangOptions::GCOnly))
482 getCurFunction()->ObjCShouldCallSuper = true;
483
484 } else if (Family == OMF_finalize) {
485 if (Context.getLangOpts().getGC() != LangOptions::NonGC)
486 getCurFunction()->ObjCShouldCallSuper = true;
487
488 } else {
489 const ObjCMethodDecl *SuperMethod =
490 SuperClass->lookupMethod(MDecl->getSelector(),
491 MDecl->isInstanceMethod());
492 getCurFunction()->ObjCShouldCallSuper =
493 (SuperMethod && SuperMethod->hasAttr<ObjCRequiresSuperAttr>());
494 }
495 }
496 }
497 }
498
499 namespace {
500
501 // Callback to only accept typo corrections that are Objective-C classes.
502 // If an ObjCInterfaceDecl* is given to the constructor, then the validation
503 // function will reject corrections to that class.
504 class ObjCInterfaceValidatorCCC final : public CorrectionCandidateCallback {
505 public:
ObjCInterfaceValidatorCCC()506 ObjCInterfaceValidatorCCC() : CurrentIDecl(nullptr) {}
ObjCInterfaceValidatorCCC(ObjCInterfaceDecl * IDecl)507 explicit ObjCInterfaceValidatorCCC(ObjCInterfaceDecl *IDecl)
508 : CurrentIDecl(IDecl) {}
509
ValidateCandidate(const TypoCorrection & candidate)510 bool ValidateCandidate(const TypoCorrection &candidate) override {
511 ObjCInterfaceDecl *ID = candidate.getCorrectionDeclAs<ObjCInterfaceDecl>();
512 return ID && !declaresSameEntity(ID, CurrentIDecl);
513 }
514
clone()515 std::unique_ptr<CorrectionCandidateCallback> clone() override {
516 return std::make_unique<ObjCInterfaceValidatorCCC>(*this);
517 }
518
519 private:
520 ObjCInterfaceDecl *CurrentIDecl;
521 };
522
523 } // end anonymous namespace
524
diagnoseUseOfProtocols(Sema & TheSema,ObjCContainerDecl * CD,ObjCProtocolDecl * const * ProtoRefs,unsigned NumProtoRefs,const SourceLocation * ProtoLocs)525 static void diagnoseUseOfProtocols(Sema &TheSema,
526 ObjCContainerDecl *CD,
527 ObjCProtocolDecl *const *ProtoRefs,
528 unsigned NumProtoRefs,
529 const SourceLocation *ProtoLocs) {
530 assert(ProtoRefs);
531 // Diagnose availability in the context of the ObjC container.
532 Sema::ContextRAII SavedContext(TheSema, CD);
533 for (unsigned i = 0; i < NumProtoRefs; ++i) {
534 (void)TheSema.DiagnoseUseOfDecl(ProtoRefs[i], ProtoLocs[i],
535 /*UnknownObjCClass=*/nullptr,
536 /*ObjCPropertyAccess=*/false,
537 /*AvoidPartialAvailabilityChecks=*/true);
538 }
539 }
540
541 void Sema::
ActOnSuperClassOfClassInterface(Scope * S,SourceLocation AtInterfaceLoc,ObjCInterfaceDecl * IDecl,IdentifierInfo * ClassName,SourceLocation ClassLoc,IdentifierInfo * SuperName,SourceLocation SuperLoc,ArrayRef<ParsedType> SuperTypeArgs,SourceRange SuperTypeArgsRange)542 ActOnSuperClassOfClassInterface(Scope *S,
543 SourceLocation AtInterfaceLoc,
544 ObjCInterfaceDecl *IDecl,
545 IdentifierInfo *ClassName,
546 SourceLocation ClassLoc,
547 IdentifierInfo *SuperName,
548 SourceLocation SuperLoc,
549 ArrayRef<ParsedType> SuperTypeArgs,
550 SourceRange SuperTypeArgsRange) {
551 // Check if a different kind of symbol declared in this scope.
552 NamedDecl *PrevDecl = LookupSingleName(TUScope, SuperName, SuperLoc,
553 LookupOrdinaryName);
554
555 if (!PrevDecl) {
556 // Try to correct for a typo in the superclass name without correcting
557 // to the class we're defining.
558 ObjCInterfaceValidatorCCC CCC(IDecl);
559 if (TypoCorrection Corrected = CorrectTypo(
560 DeclarationNameInfo(SuperName, SuperLoc), LookupOrdinaryName,
561 TUScope, nullptr, CCC, CTK_ErrorRecovery)) {
562 diagnoseTypo(Corrected, PDiag(diag::err_undef_superclass_suggest)
563 << SuperName << ClassName);
564 PrevDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>();
565 }
566 }
567
568 if (declaresSameEntity(PrevDecl, IDecl)) {
569 Diag(SuperLoc, diag::err_recursive_superclass)
570 << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
571 IDecl->setEndOfDefinitionLoc(ClassLoc);
572 } else {
573 ObjCInterfaceDecl *SuperClassDecl =
574 dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
575 QualType SuperClassType;
576
577 // Diagnose classes that inherit from deprecated classes.
578 if (SuperClassDecl) {
579 (void)DiagnoseUseOfDecl(SuperClassDecl, SuperLoc);
580 SuperClassType = Context.getObjCInterfaceType(SuperClassDecl);
581 }
582
583 if (PrevDecl && !SuperClassDecl) {
584 // The previous declaration was not a class decl. Check if we have a
585 // typedef. If we do, get the underlying class type.
586 if (const TypedefNameDecl *TDecl =
587 dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
588 QualType T = TDecl->getUnderlyingType();
589 if (T->isObjCObjectType()) {
590 if (NamedDecl *IDecl = T->castAs<ObjCObjectType>()->getInterface()) {
591 SuperClassDecl = dyn_cast<ObjCInterfaceDecl>(IDecl);
592 SuperClassType = Context.getTypeDeclType(TDecl);
593
594 // This handles the following case:
595 // @interface NewI @end
596 // typedef NewI DeprI __attribute__((deprecated("blah")))
597 // @interface SI : DeprI /* warn here */ @end
598 (void)DiagnoseUseOfDecl(const_cast<TypedefNameDecl*>(TDecl), SuperLoc);
599 }
600 }
601 }
602
603 // This handles the following case:
604 //
605 // typedef int SuperClass;
606 // @interface MyClass : SuperClass {} @end
607 //
608 if (!SuperClassDecl) {
609 Diag(SuperLoc, diag::err_redefinition_different_kind) << SuperName;
610 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
611 }
612 }
613
614 if (!isa_and_nonnull<TypedefNameDecl>(PrevDecl)) {
615 if (!SuperClassDecl)
616 Diag(SuperLoc, diag::err_undef_superclass)
617 << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
618 else if (RequireCompleteType(SuperLoc,
619 SuperClassType,
620 diag::err_forward_superclass,
621 SuperClassDecl->getDeclName(),
622 ClassName,
623 SourceRange(AtInterfaceLoc, ClassLoc))) {
624 SuperClassDecl = nullptr;
625 SuperClassType = QualType();
626 }
627 }
628
629 if (SuperClassType.isNull()) {
630 assert(!SuperClassDecl && "Failed to set SuperClassType?");
631 return;
632 }
633
634 // Handle type arguments on the superclass.
635 TypeSourceInfo *SuperClassTInfo = nullptr;
636 if (!SuperTypeArgs.empty()) {
637 TypeResult fullSuperClassType = actOnObjCTypeArgsAndProtocolQualifiers(
638 S,
639 SuperLoc,
640 CreateParsedType(SuperClassType,
641 nullptr),
642 SuperTypeArgsRange.getBegin(),
643 SuperTypeArgs,
644 SuperTypeArgsRange.getEnd(),
645 SourceLocation(),
646 { },
647 { },
648 SourceLocation());
649 if (!fullSuperClassType.isUsable())
650 return;
651
652 SuperClassType = GetTypeFromParser(fullSuperClassType.get(),
653 &SuperClassTInfo);
654 }
655
656 if (!SuperClassTInfo) {
657 SuperClassTInfo = Context.getTrivialTypeSourceInfo(SuperClassType,
658 SuperLoc);
659 }
660
661 IDecl->setSuperClass(SuperClassTInfo);
662 IDecl->setEndOfDefinitionLoc(SuperClassTInfo->getTypeLoc().getEndLoc());
663 }
664 }
665
actOnObjCTypeParam(Scope * S,ObjCTypeParamVariance variance,SourceLocation varianceLoc,unsigned index,IdentifierInfo * paramName,SourceLocation paramLoc,SourceLocation colonLoc,ParsedType parsedTypeBound)666 DeclResult Sema::actOnObjCTypeParam(Scope *S,
667 ObjCTypeParamVariance variance,
668 SourceLocation varianceLoc,
669 unsigned index,
670 IdentifierInfo *paramName,
671 SourceLocation paramLoc,
672 SourceLocation colonLoc,
673 ParsedType parsedTypeBound) {
674 // If there was an explicitly-provided type bound, check it.
675 TypeSourceInfo *typeBoundInfo = nullptr;
676 if (parsedTypeBound) {
677 // The type bound can be any Objective-C pointer type.
678 QualType typeBound = GetTypeFromParser(parsedTypeBound, &typeBoundInfo);
679 if (typeBound->isObjCObjectPointerType()) {
680 // okay
681 } else if (typeBound->isObjCObjectType()) {
682 // The user forgot the * on an Objective-C pointer type, e.g.,
683 // "T : NSView".
684 SourceLocation starLoc = getLocForEndOfToken(
685 typeBoundInfo->getTypeLoc().getEndLoc());
686 Diag(typeBoundInfo->getTypeLoc().getBeginLoc(),
687 diag::err_objc_type_param_bound_missing_pointer)
688 << typeBound << paramName
689 << FixItHint::CreateInsertion(starLoc, " *");
690
691 // Create a new type location builder so we can update the type
692 // location information we have.
693 TypeLocBuilder builder;
694 builder.pushFullCopy(typeBoundInfo->getTypeLoc());
695
696 // Create the Objective-C pointer type.
697 typeBound = Context.getObjCObjectPointerType(typeBound);
698 ObjCObjectPointerTypeLoc newT
699 = builder.push<ObjCObjectPointerTypeLoc>(typeBound);
700 newT.setStarLoc(starLoc);
701
702 // Form the new type source information.
703 typeBoundInfo = builder.getTypeSourceInfo(Context, typeBound);
704 } else {
705 // Not a valid type bound.
706 Diag(typeBoundInfo->getTypeLoc().getBeginLoc(),
707 diag::err_objc_type_param_bound_nonobject)
708 << typeBound << paramName;
709
710 // Forget the bound; we'll default to id later.
711 typeBoundInfo = nullptr;
712 }
713
714 // Type bounds cannot have qualifiers (even indirectly) or explicit
715 // nullability.
716 if (typeBoundInfo) {
717 QualType typeBound = typeBoundInfo->getType();
718 TypeLoc qual = typeBoundInfo->getTypeLoc().findExplicitQualifierLoc();
719 if (qual || typeBound.hasQualifiers()) {
720 bool diagnosed = false;
721 SourceRange rangeToRemove;
722 if (qual) {
723 if (auto attr = qual.getAs<AttributedTypeLoc>()) {
724 rangeToRemove = attr.getLocalSourceRange();
725 if (attr.getTypePtr()->getImmediateNullability()) {
726 Diag(attr.getBeginLoc(),
727 diag::err_objc_type_param_bound_explicit_nullability)
728 << paramName << typeBound
729 << FixItHint::CreateRemoval(rangeToRemove);
730 diagnosed = true;
731 }
732 }
733 }
734
735 if (!diagnosed) {
736 Diag(qual ? qual.getBeginLoc()
737 : typeBoundInfo->getTypeLoc().getBeginLoc(),
738 diag::err_objc_type_param_bound_qualified)
739 << paramName << typeBound
740 << typeBound.getQualifiers().getAsString()
741 << FixItHint::CreateRemoval(rangeToRemove);
742 }
743
744 // If the type bound has qualifiers other than CVR, we need to strip
745 // them or we'll probably assert later when trying to apply new
746 // qualifiers.
747 Qualifiers quals = typeBound.getQualifiers();
748 quals.removeCVRQualifiers();
749 if (!quals.empty()) {
750 typeBoundInfo =
751 Context.getTrivialTypeSourceInfo(typeBound.getUnqualifiedType());
752 }
753 }
754 }
755 }
756
757 // If there was no explicit type bound (or we removed it due to an error),
758 // use 'id' instead.
759 if (!typeBoundInfo) {
760 colonLoc = SourceLocation();
761 typeBoundInfo = Context.getTrivialTypeSourceInfo(Context.getObjCIdType());
762 }
763
764 // Create the type parameter.
765 return ObjCTypeParamDecl::Create(Context, CurContext, variance, varianceLoc,
766 index, paramLoc, paramName, colonLoc,
767 typeBoundInfo);
768 }
769
actOnObjCTypeParamList(Scope * S,SourceLocation lAngleLoc,ArrayRef<Decl * > typeParamsIn,SourceLocation rAngleLoc)770 ObjCTypeParamList *Sema::actOnObjCTypeParamList(Scope *S,
771 SourceLocation lAngleLoc,
772 ArrayRef<Decl *> typeParamsIn,
773 SourceLocation rAngleLoc) {
774 // We know that the array only contains Objective-C type parameters.
775 ArrayRef<ObjCTypeParamDecl *>
776 typeParams(
777 reinterpret_cast<ObjCTypeParamDecl * const *>(typeParamsIn.data()),
778 typeParamsIn.size());
779
780 // Diagnose redeclarations of type parameters.
781 // We do this now because Objective-C type parameters aren't pushed into
782 // scope until later (after the instance variable block), but we want the
783 // diagnostics to occur right after we parse the type parameter list.
784 llvm::SmallDenseMap<IdentifierInfo *, ObjCTypeParamDecl *> knownParams;
785 for (auto *typeParam : typeParams) {
786 auto known = knownParams.find(typeParam->getIdentifier());
787 if (known != knownParams.end()) {
788 Diag(typeParam->getLocation(), diag::err_objc_type_param_redecl)
789 << typeParam->getIdentifier()
790 << SourceRange(known->second->getLocation());
791
792 typeParam->setInvalidDecl();
793 } else {
794 knownParams.insert(std::make_pair(typeParam->getIdentifier(), typeParam));
795
796 // Push the type parameter into scope.
797 PushOnScopeChains(typeParam, S, /*AddToContext=*/false);
798 }
799 }
800
801 // Create the parameter list.
802 return ObjCTypeParamList::create(Context, lAngleLoc, typeParams, rAngleLoc);
803 }
804
popObjCTypeParamList(Scope * S,ObjCTypeParamList * typeParamList)805 void Sema::popObjCTypeParamList(Scope *S, ObjCTypeParamList *typeParamList) {
806 for (auto *typeParam : *typeParamList) {
807 if (!typeParam->isInvalidDecl()) {
808 S->RemoveDecl(typeParam);
809 IdResolver.RemoveDecl(typeParam);
810 }
811 }
812 }
813
814 namespace {
815 /// The context in which an Objective-C type parameter list occurs, for use
816 /// in diagnostics.
817 enum class TypeParamListContext {
818 ForwardDeclaration,
819 Definition,
820 Category,
821 Extension
822 };
823 } // end anonymous namespace
824
825 /// Check consistency between two Objective-C type parameter lists, e.g.,
826 /// between a category/extension and an \@interface or between an \@class and an
827 /// \@interface.
checkTypeParamListConsistency(Sema & S,ObjCTypeParamList * prevTypeParams,ObjCTypeParamList * newTypeParams,TypeParamListContext newContext)828 static bool checkTypeParamListConsistency(Sema &S,
829 ObjCTypeParamList *prevTypeParams,
830 ObjCTypeParamList *newTypeParams,
831 TypeParamListContext newContext) {
832 // If the sizes don't match, complain about that.
833 if (prevTypeParams->size() != newTypeParams->size()) {
834 SourceLocation diagLoc;
835 if (newTypeParams->size() > prevTypeParams->size()) {
836 diagLoc = newTypeParams->begin()[prevTypeParams->size()]->getLocation();
837 } else {
838 diagLoc = S.getLocForEndOfToken(newTypeParams->back()->getEndLoc());
839 }
840
841 S.Diag(diagLoc, diag::err_objc_type_param_arity_mismatch)
842 << static_cast<unsigned>(newContext)
843 << (newTypeParams->size() > prevTypeParams->size())
844 << prevTypeParams->size()
845 << newTypeParams->size();
846
847 return true;
848 }
849
850 // Match up the type parameters.
851 for (unsigned i = 0, n = prevTypeParams->size(); i != n; ++i) {
852 ObjCTypeParamDecl *prevTypeParam = prevTypeParams->begin()[i];
853 ObjCTypeParamDecl *newTypeParam = newTypeParams->begin()[i];
854
855 // Check for consistency of the variance.
856 if (newTypeParam->getVariance() != prevTypeParam->getVariance()) {
857 if (newTypeParam->getVariance() == ObjCTypeParamVariance::Invariant &&
858 newContext != TypeParamListContext::Definition) {
859 // When the new type parameter is invariant and is not part
860 // of the definition, just propagate the variance.
861 newTypeParam->setVariance(prevTypeParam->getVariance());
862 } else if (prevTypeParam->getVariance()
863 == ObjCTypeParamVariance::Invariant &&
864 !(isa<ObjCInterfaceDecl>(prevTypeParam->getDeclContext()) &&
865 cast<ObjCInterfaceDecl>(prevTypeParam->getDeclContext())
866 ->getDefinition() == prevTypeParam->getDeclContext())) {
867 // When the old parameter is invariant and was not part of the
868 // definition, just ignore the difference because it doesn't
869 // matter.
870 } else {
871 {
872 // Diagnose the conflict and update the second declaration.
873 SourceLocation diagLoc = newTypeParam->getVarianceLoc();
874 if (diagLoc.isInvalid())
875 diagLoc = newTypeParam->getBeginLoc();
876
877 auto diag = S.Diag(diagLoc,
878 diag::err_objc_type_param_variance_conflict)
879 << static_cast<unsigned>(newTypeParam->getVariance())
880 << newTypeParam->getDeclName()
881 << static_cast<unsigned>(prevTypeParam->getVariance())
882 << prevTypeParam->getDeclName();
883 switch (prevTypeParam->getVariance()) {
884 case ObjCTypeParamVariance::Invariant:
885 diag << FixItHint::CreateRemoval(newTypeParam->getVarianceLoc());
886 break;
887
888 case ObjCTypeParamVariance::Covariant:
889 case ObjCTypeParamVariance::Contravariant: {
890 StringRef newVarianceStr
891 = prevTypeParam->getVariance() == ObjCTypeParamVariance::Covariant
892 ? "__covariant"
893 : "__contravariant";
894 if (newTypeParam->getVariance()
895 == ObjCTypeParamVariance::Invariant) {
896 diag << FixItHint::CreateInsertion(newTypeParam->getBeginLoc(),
897 (newVarianceStr + " ").str());
898 } else {
899 diag << FixItHint::CreateReplacement(newTypeParam->getVarianceLoc(),
900 newVarianceStr);
901 }
902 }
903 }
904 }
905
906 S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here)
907 << prevTypeParam->getDeclName();
908
909 // Override the variance.
910 newTypeParam->setVariance(prevTypeParam->getVariance());
911 }
912 }
913
914 // If the bound types match, there's nothing to do.
915 if (S.Context.hasSameType(prevTypeParam->getUnderlyingType(),
916 newTypeParam->getUnderlyingType()))
917 continue;
918
919 // If the new type parameter's bound was explicit, complain about it being
920 // different from the original.
921 if (newTypeParam->hasExplicitBound()) {
922 SourceRange newBoundRange = newTypeParam->getTypeSourceInfo()
923 ->getTypeLoc().getSourceRange();
924 S.Diag(newBoundRange.getBegin(), diag::err_objc_type_param_bound_conflict)
925 << newTypeParam->getUnderlyingType()
926 << newTypeParam->getDeclName()
927 << prevTypeParam->hasExplicitBound()
928 << prevTypeParam->getUnderlyingType()
929 << (newTypeParam->getDeclName() == prevTypeParam->getDeclName())
930 << prevTypeParam->getDeclName()
931 << FixItHint::CreateReplacement(
932 newBoundRange,
933 prevTypeParam->getUnderlyingType().getAsString(
934 S.Context.getPrintingPolicy()));
935
936 S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here)
937 << prevTypeParam->getDeclName();
938
939 // Override the new type parameter's bound type with the previous type,
940 // so that it's consistent.
941 S.Context.adjustObjCTypeParamBoundType(prevTypeParam, newTypeParam);
942 continue;
943 }
944
945 // The new type parameter got the implicit bound of 'id'. That's okay for
946 // categories and extensions (overwrite it later), but not for forward
947 // declarations and @interfaces, because those must be standalone.
948 if (newContext == TypeParamListContext::ForwardDeclaration ||
949 newContext == TypeParamListContext::Definition) {
950 // Diagnose this problem for forward declarations and definitions.
951 SourceLocation insertionLoc
952 = S.getLocForEndOfToken(newTypeParam->getLocation());
953 std::string newCode
954 = " : " + prevTypeParam->getUnderlyingType().getAsString(
955 S.Context.getPrintingPolicy());
956 S.Diag(newTypeParam->getLocation(),
957 diag::err_objc_type_param_bound_missing)
958 << prevTypeParam->getUnderlyingType()
959 << newTypeParam->getDeclName()
960 << (newContext == TypeParamListContext::ForwardDeclaration)
961 << FixItHint::CreateInsertion(insertionLoc, newCode);
962
963 S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here)
964 << prevTypeParam->getDeclName();
965 }
966
967 // Update the new type parameter's bound to match the previous one.
968 S.Context.adjustObjCTypeParamBoundType(prevTypeParam, newTypeParam);
969 }
970
971 return false;
972 }
973
ActOnStartClassInterface(Scope * S,SourceLocation AtInterfaceLoc,IdentifierInfo * ClassName,SourceLocation ClassLoc,ObjCTypeParamList * typeParamList,IdentifierInfo * SuperName,SourceLocation SuperLoc,ArrayRef<ParsedType> SuperTypeArgs,SourceRange SuperTypeArgsRange,Decl * const * ProtoRefs,unsigned NumProtoRefs,const SourceLocation * ProtoLocs,SourceLocation EndProtoLoc,const ParsedAttributesView & AttrList,SkipBodyInfo * SkipBody)974 ObjCInterfaceDecl *Sema::ActOnStartClassInterface(
975 Scope *S, SourceLocation AtInterfaceLoc, IdentifierInfo *ClassName,
976 SourceLocation ClassLoc, ObjCTypeParamList *typeParamList,
977 IdentifierInfo *SuperName, SourceLocation SuperLoc,
978 ArrayRef<ParsedType> SuperTypeArgs, SourceRange SuperTypeArgsRange,
979 Decl *const *ProtoRefs, unsigned NumProtoRefs,
980 const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc,
981 const ParsedAttributesView &AttrList, SkipBodyInfo *SkipBody) {
982 assert(ClassName && "Missing class identifier");
983
984 // Check for another declaration kind with the same name.
985 NamedDecl *PrevDecl =
986 LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName,
987 forRedeclarationInCurContext());
988
989 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
990 Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
991 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
992 }
993
994 // Create a declaration to describe this @interface.
995 ObjCInterfaceDecl* PrevIDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
996
997 if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) {
998 // A previous decl with a different name is because of
999 // @compatibility_alias, for example:
1000 // \code
1001 // @class NewImage;
1002 // @compatibility_alias OldImage NewImage;
1003 // \endcode
1004 // A lookup for 'OldImage' will return the 'NewImage' decl.
1005 //
1006 // In such a case use the real declaration name, instead of the alias one,
1007 // otherwise we will break IdentifierResolver and redecls-chain invariants.
1008 // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl
1009 // has been aliased.
1010 ClassName = PrevIDecl->getIdentifier();
1011 }
1012
1013 // If there was a forward declaration with type parameters, check
1014 // for consistency.
1015 if (PrevIDecl) {
1016 if (ObjCTypeParamList *prevTypeParamList = PrevIDecl->getTypeParamList()) {
1017 if (typeParamList) {
1018 // Both have type parameter lists; check for consistency.
1019 if (checkTypeParamListConsistency(*this, prevTypeParamList,
1020 typeParamList,
1021 TypeParamListContext::Definition)) {
1022 typeParamList = nullptr;
1023 }
1024 } else {
1025 Diag(ClassLoc, diag::err_objc_parameterized_forward_class_first)
1026 << ClassName;
1027 Diag(prevTypeParamList->getLAngleLoc(), diag::note_previous_decl)
1028 << ClassName;
1029
1030 // Clone the type parameter list.
1031 SmallVector<ObjCTypeParamDecl *, 4> clonedTypeParams;
1032 for (auto *typeParam : *prevTypeParamList) {
1033 clonedTypeParams.push_back(
1034 ObjCTypeParamDecl::Create(
1035 Context,
1036 CurContext,
1037 typeParam->getVariance(),
1038 SourceLocation(),
1039 typeParam->getIndex(),
1040 SourceLocation(),
1041 typeParam->getIdentifier(),
1042 SourceLocation(),
1043 Context.getTrivialTypeSourceInfo(typeParam->getUnderlyingType())));
1044 }
1045
1046 typeParamList = ObjCTypeParamList::create(Context,
1047 SourceLocation(),
1048 clonedTypeParams,
1049 SourceLocation());
1050 }
1051 }
1052 }
1053
1054 ObjCInterfaceDecl *IDecl
1055 = ObjCInterfaceDecl::Create(Context, CurContext, AtInterfaceLoc, ClassName,
1056 typeParamList, PrevIDecl, ClassLoc);
1057 if (PrevIDecl) {
1058 // Class already seen. Was it a definition?
1059 if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) {
1060 if (SkipBody && !hasVisibleDefinition(Def)) {
1061 SkipBody->CheckSameAsPrevious = true;
1062 SkipBody->New = IDecl;
1063 SkipBody->Previous = Def;
1064 } else {
1065 Diag(AtInterfaceLoc, diag::err_duplicate_class_def)
1066 << PrevIDecl->getDeclName();
1067 Diag(Def->getLocation(), diag::note_previous_definition);
1068 IDecl->setInvalidDecl();
1069 }
1070 }
1071 }
1072
1073 ProcessDeclAttributeList(TUScope, IDecl, AttrList);
1074 AddPragmaAttributes(TUScope, IDecl);
1075
1076 // Merge attributes from previous declarations.
1077 if (PrevIDecl)
1078 mergeDeclAttributes(IDecl, PrevIDecl);
1079
1080 PushOnScopeChains(IDecl, TUScope);
1081
1082 // Start the definition of this class. If we're in a redefinition case, there
1083 // may already be a definition, so we'll end up adding to it.
1084 if (SkipBody && SkipBody->CheckSameAsPrevious)
1085 IDecl->startDuplicateDefinitionForComparison();
1086 else if (!IDecl->hasDefinition())
1087 IDecl->startDefinition();
1088
1089 if (SuperName) {
1090 // Diagnose availability in the context of the @interface.
1091 ContextRAII SavedContext(*this, IDecl);
1092
1093 ActOnSuperClassOfClassInterface(S, AtInterfaceLoc, IDecl,
1094 ClassName, ClassLoc,
1095 SuperName, SuperLoc, SuperTypeArgs,
1096 SuperTypeArgsRange);
1097 } else { // we have a root class.
1098 IDecl->setEndOfDefinitionLoc(ClassLoc);
1099 }
1100
1101 // Check then save referenced protocols.
1102 if (NumProtoRefs) {
1103 diagnoseUseOfProtocols(*this, IDecl, (ObjCProtocolDecl*const*)ProtoRefs,
1104 NumProtoRefs, ProtoLocs);
1105 IDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
1106 ProtoLocs, Context);
1107 IDecl->setEndOfDefinitionLoc(EndProtoLoc);
1108 }
1109
1110 CheckObjCDeclScope(IDecl);
1111 ActOnObjCContainerStartDefinition(IDecl);
1112 return IDecl;
1113 }
1114
1115 /// ActOnTypedefedProtocols - this action finds protocol list as part of the
1116 /// typedef'ed use for a qualified super class and adds them to the list
1117 /// of the protocols.
ActOnTypedefedProtocols(SmallVectorImpl<Decl * > & ProtocolRefs,SmallVectorImpl<SourceLocation> & ProtocolLocs,IdentifierInfo * SuperName,SourceLocation SuperLoc)1118 void Sema::ActOnTypedefedProtocols(SmallVectorImpl<Decl *> &ProtocolRefs,
1119 SmallVectorImpl<SourceLocation> &ProtocolLocs,
1120 IdentifierInfo *SuperName,
1121 SourceLocation SuperLoc) {
1122 if (!SuperName)
1123 return;
1124 NamedDecl* IDecl = LookupSingleName(TUScope, SuperName, SuperLoc,
1125 LookupOrdinaryName);
1126 if (!IDecl)
1127 return;
1128
1129 if (const TypedefNameDecl *TDecl = dyn_cast_or_null<TypedefNameDecl>(IDecl)) {
1130 QualType T = TDecl->getUnderlyingType();
1131 if (T->isObjCObjectType())
1132 if (const ObjCObjectType *OPT = T->getAs<ObjCObjectType>()) {
1133 ProtocolRefs.append(OPT->qual_begin(), OPT->qual_end());
1134 // FIXME: Consider whether this should be an invalid loc since the loc
1135 // is not actually pointing to a protocol name reference but to the
1136 // typedef reference. Note that the base class name loc is also pointing
1137 // at the typedef.
1138 ProtocolLocs.append(OPT->getNumProtocols(), SuperLoc);
1139 }
1140 }
1141 }
1142
1143 /// ActOnCompatibilityAlias - this action is called after complete parsing of
1144 /// a \@compatibility_alias declaration. It sets up the alias relationships.
ActOnCompatibilityAlias(SourceLocation AtLoc,IdentifierInfo * AliasName,SourceLocation AliasLocation,IdentifierInfo * ClassName,SourceLocation ClassLocation)1145 Decl *Sema::ActOnCompatibilityAlias(SourceLocation AtLoc,
1146 IdentifierInfo *AliasName,
1147 SourceLocation AliasLocation,
1148 IdentifierInfo *ClassName,
1149 SourceLocation ClassLocation) {
1150 // Look for previous declaration of alias name
1151 NamedDecl *ADecl =
1152 LookupSingleName(TUScope, AliasName, AliasLocation, LookupOrdinaryName,
1153 forRedeclarationInCurContext());
1154 if (ADecl) {
1155 Diag(AliasLocation, diag::err_conflicting_aliasing_type) << AliasName;
1156 Diag(ADecl->getLocation(), diag::note_previous_declaration);
1157 return nullptr;
1158 }
1159 // Check for class declaration
1160 NamedDecl *CDeclU =
1161 LookupSingleName(TUScope, ClassName, ClassLocation, LookupOrdinaryName,
1162 forRedeclarationInCurContext());
1163 if (const TypedefNameDecl *TDecl =
1164 dyn_cast_or_null<TypedefNameDecl>(CDeclU)) {
1165 QualType T = TDecl->getUnderlyingType();
1166 if (T->isObjCObjectType()) {
1167 if (NamedDecl *IDecl = T->castAs<ObjCObjectType>()->getInterface()) {
1168 ClassName = IDecl->getIdentifier();
1169 CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation,
1170 LookupOrdinaryName,
1171 forRedeclarationInCurContext());
1172 }
1173 }
1174 }
1175 ObjCInterfaceDecl *CDecl = dyn_cast_or_null<ObjCInterfaceDecl>(CDeclU);
1176 if (!CDecl) {
1177 Diag(ClassLocation, diag::warn_undef_interface) << ClassName;
1178 if (CDeclU)
1179 Diag(CDeclU->getLocation(), diag::note_previous_declaration);
1180 return nullptr;
1181 }
1182
1183 // Everything checked out, instantiate a new alias declaration AST.
1184 ObjCCompatibleAliasDecl *AliasDecl =
1185 ObjCCompatibleAliasDecl::Create(Context, CurContext, AtLoc, AliasName, CDecl);
1186
1187 if (!CheckObjCDeclScope(AliasDecl))
1188 PushOnScopeChains(AliasDecl, TUScope);
1189
1190 return AliasDecl;
1191 }
1192
CheckForwardProtocolDeclarationForCircularDependency(IdentifierInfo * PName,SourceLocation & Ploc,SourceLocation PrevLoc,const ObjCList<ObjCProtocolDecl> & PList)1193 bool Sema::CheckForwardProtocolDeclarationForCircularDependency(
1194 IdentifierInfo *PName,
1195 SourceLocation &Ploc, SourceLocation PrevLoc,
1196 const ObjCList<ObjCProtocolDecl> &PList) {
1197
1198 bool res = false;
1199 for (ObjCList<ObjCProtocolDecl>::iterator I = PList.begin(),
1200 E = PList.end(); I != E; ++I) {
1201 if (ObjCProtocolDecl *PDecl = LookupProtocol((*I)->getIdentifier(),
1202 Ploc)) {
1203 if (PDecl->getIdentifier() == PName) {
1204 Diag(Ploc, diag::err_protocol_has_circular_dependency);
1205 Diag(PrevLoc, diag::note_previous_definition);
1206 res = true;
1207 }
1208
1209 if (!PDecl->hasDefinition())
1210 continue;
1211
1212 if (CheckForwardProtocolDeclarationForCircularDependency(PName, Ploc,
1213 PDecl->getLocation(), PDecl->getReferencedProtocols()))
1214 res = true;
1215 }
1216 }
1217 return res;
1218 }
1219
ActOnStartProtocolInterface(SourceLocation AtProtoInterfaceLoc,IdentifierInfo * ProtocolName,SourceLocation ProtocolLoc,Decl * const * ProtoRefs,unsigned NumProtoRefs,const SourceLocation * ProtoLocs,SourceLocation EndProtoLoc,const ParsedAttributesView & AttrList,SkipBodyInfo * SkipBody)1220 ObjCProtocolDecl *Sema::ActOnStartProtocolInterface(
1221 SourceLocation AtProtoInterfaceLoc, IdentifierInfo *ProtocolName,
1222 SourceLocation ProtocolLoc, Decl *const *ProtoRefs, unsigned NumProtoRefs,
1223 const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc,
1224 const ParsedAttributesView &AttrList, SkipBodyInfo *SkipBody) {
1225 bool err = false;
1226 // FIXME: Deal with AttrList.
1227 assert(ProtocolName && "Missing protocol identifier");
1228 ObjCProtocolDecl *PrevDecl = LookupProtocol(ProtocolName, ProtocolLoc,
1229 forRedeclarationInCurContext());
1230 ObjCProtocolDecl *PDecl = nullptr;
1231 if (ObjCProtocolDecl *Def = PrevDecl? PrevDecl->getDefinition() : nullptr) {
1232 // Create a new protocol that is completely distinct from previous
1233 // declarations, and do not make this protocol available for name lookup.
1234 // That way, we'll end up completely ignoring the duplicate.
1235 // FIXME: Can we turn this into an error?
1236 PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName,
1237 ProtocolLoc, AtProtoInterfaceLoc,
1238 /*PrevDecl=*/Def);
1239
1240 if (SkipBody && !hasVisibleDefinition(Def)) {
1241 SkipBody->CheckSameAsPrevious = true;
1242 SkipBody->New = PDecl;
1243 SkipBody->Previous = Def;
1244 } else {
1245 // If we already have a definition, complain.
1246 Diag(ProtocolLoc, diag::warn_duplicate_protocol_def) << ProtocolName;
1247 Diag(Def->getLocation(), diag::note_previous_definition);
1248 }
1249
1250 // If we are using modules, add the decl to the context in order to
1251 // serialize something meaningful.
1252 if (getLangOpts().Modules)
1253 PushOnScopeChains(PDecl, TUScope);
1254 PDecl->startDuplicateDefinitionForComparison();
1255 } else {
1256 if (PrevDecl) {
1257 // Check for circular dependencies among protocol declarations. This can
1258 // only happen if this protocol was forward-declared.
1259 ObjCList<ObjCProtocolDecl> PList;
1260 PList.set((ObjCProtocolDecl *const*)ProtoRefs, NumProtoRefs, Context);
1261 err = CheckForwardProtocolDeclarationForCircularDependency(
1262 ProtocolName, ProtocolLoc, PrevDecl->getLocation(), PList);
1263 }
1264
1265 // Create the new declaration.
1266 PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName,
1267 ProtocolLoc, AtProtoInterfaceLoc,
1268 /*PrevDecl=*/PrevDecl);
1269
1270 PushOnScopeChains(PDecl, TUScope);
1271 PDecl->startDefinition();
1272 }
1273
1274 ProcessDeclAttributeList(TUScope, PDecl, AttrList);
1275 AddPragmaAttributes(TUScope, PDecl);
1276
1277 // Merge attributes from previous declarations.
1278 if (PrevDecl)
1279 mergeDeclAttributes(PDecl, PrevDecl);
1280
1281 if (!err && NumProtoRefs ) {
1282 /// Check then save referenced protocols.
1283 diagnoseUseOfProtocols(*this, PDecl, (ObjCProtocolDecl*const*)ProtoRefs,
1284 NumProtoRefs, ProtoLocs);
1285 PDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
1286 ProtoLocs, Context);
1287 }
1288
1289 CheckObjCDeclScope(PDecl);
1290 ActOnObjCContainerStartDefinition(PDecl);
1291 return PDecl;
1292 }
1293
NestedProtocolHasNoDefinition(ObjCProtocolDecl * PDecl,ObjCProtocolDecl * & UndefinedProtocol)1294 static bool NestedProtocolHasNoDefinition(ObjCProtocolDecl *PDecl,
1295 ObjCProtocolDecl *&UndefinedProtocol) {
1296 if (!PDecl->hasDefinition() ||
1297 !PDecl->getDefinition()->isUnconditionallyVisible()) {
1298 UndefinedProtocol = PDecl;
1299 return true;
1300 }
1301
1302 for (auto *PI : PDecl->protocols())
1303 if (NestedProtocolHasNoDefinition(PI, UndefinedProtocol)) {
1304 UndefinedProtocol = PI;
1305 return true;
1306 }
1307 return false;
1308 }
1309
1310 /// FindProtocolDeclaration - This routine looks up protocols and
1311 /// issues an error if they are not declared. It returns list of
1312 /// protocol declarations in its 'Protocols' argument.
1313 void
FindProtocolDeclaration(bool WarnOnDeclarations,bool ForObjCContainer,ArrayRef<IdentifierLocPair> ProtocolId,SmallVectorImpl<Decl * > & Protocols)1314 Sema::FindProtocolDeclaration(bool WarnOnDeclarations, bool ForObjCContainer,
1315 ArrayRef<IdentifierLocPair> ProtocolId,
1316 SmallVectorImpl<Decl *> &Protocols) {
1317 for (const IdentifierLocPair &Pair : ProtocolId) {
1318 ObjCProtocolDecl *PDecl = LookupProtocol(Pair.first, Pair.second);
1319 if (!PDecl) {
1320 DeclFilterCCC<ObjCProtocolDecl> CCC{};
1321 TypoCorrection Corrected = CorrectTypo(
1322 DeclarationNameInfo(Pair.first, Pair.second), LookupObjCProtocolName,
1323 TUScope, nullptr, CCC, CTK_ErrorRecovery);
1324 if ((PDecl = Corrected.getCorrectionDeclAs<ObjCProtocolDecl>()))
1325 diagnoseTypo(Corrected, PDiag(diag::err_undeclared_protocol_suggest)
1326 << Pair.first);
1327 }
1328
1329 if (!PDecl) {
1330 Diag(Pair.second, diag::err_undeclared_protocol) << Pair.first;
1331 continue;
1332 }
1333 // If this is a forward protocol declaration, get its definition.
1334 if (!PDecl->isThisDeclarationADefinition() && PDecl->getDefinition())
1335 PDecl = PDecl->getDefinition();
1336
1337 // For an objc container, delay protocol reference checking until after we
1338 // can set the objc decl as the availability context, otherwise check now.
1339 if (!ForObjCContainer) {
1340 (void)DiagnoseUseOfDecl(PDecl, Pair.second);
1341 }
1342
1343 // If this is a forward declaration and we are supposed to warn in this
1344 // case, do it.
1345 // FIXME: Recover nicely in the hidden case.
1346 ObjCProtocolDecl *UndefinedProtocol;
1347
1348 if (WarnOnDeclarations &&
1349 NestedProtocolHasNoDefinition(PDecl, UndefinedProtocol)) {
1350 Diag(Pair.second, diag::warn_undef_protocolref) << Pair.first;
1351 Diag(UndefinedProtocol->getLocation(), diag::note_protocol_decl_undefined)
1352 << UndefinedProtocol;
1353 }
1354 Protocols.push_back(PDecl);
1355 }
1356 }
1357
1358 namespace {
1359 // Callback to only accept typo corrections that are either
1360 // Objective-C protocols or valid Objective-C type arguments.
1361 class ObjCTypeArgOrProtocolValidatorCCC final
1362 : public CorrectionCandidateCallback {
1363 ASTContext &Context;
1364 Sema::LookupNameKind LookupKind;
1365 public:
ObjCTypeArgOrProtocolValidatorCCC(ASTContext & context,Sema::LookupNameKind lookupKind)1366 ObjCTypeArgOrProtocolValidatorCCC(ASTContext &context,
1367 Sema::LookupNameKind lookupKind)
1368 : Context(context), LookupKind(lookupKind) { }
1369
ValidateCandidate(const TypoCorrection & candidate)1370 bool ValidateCandidate(const TypoCorrection &candidate) override {
1371 // If we're allowed to find protocols and we have a protocol, accept it.
1372 if (LookupKind != Sema::LookupOrdinaryName) {
1373 if (candidate.getCorrectionDeclAs<ObjCProtocolDecl>())
1374 return true;
1375 }
1376
1377 // If we're allowed to find type names and we have one, accept it.
1378 if (LookupKind != Sema::LookupObjCProtocolName) {
1379 // If we have a type declaration, we might accept this result.
1380 if (auto typeDecl = candidate.getCorrectionDeclAs<TypeDecl>()) {
1381 // If we found a tag declaration outside of C++, skip it. This
1382 // can happy because we look for any name when there is no
1383 // bias to protocol or type names.
1384 if (isa<RecordDecl>(typeDecl) && !Context.getLangOpts().CPlusPlus)
1385 return false;
1386
1387 // Make sure the type is something we would accept as a type
1388 // argument.
1389 auto type = Context.getTypeDeclType(typeDecl);
1390 if (type->isObjCObjectPointerType() ||
1391 type->isBlockPointerType() ||
1392 type->isDependentType() ||
1393 type->isObjCObjectType())
1394 return true;
1395
1396 return false;
1397 }
1398
1399 // If we have an Objective-C class type, accept it; there will
1400 // be another fix to add the '*'.
1401 if (candidate.getCorrectionDeclAs<ObjCInterfaceDecl>())
1402 return true;
1403
1404 return false;
1405 }
1406
1407 return false;
1408 }
1409
clone()1410 std::unique_ptr<CorrectionCandidateCallback> clone() override {
1411 return std::make_unique<ObjCTypeArgOrProtocolValidatorCCC>(*this);
1412 }
1413 };
1414 } // end anonymous namespace
1415
DiagnoseTypeArgsAndProtocols(IdentifierInfo * ProtocolId,SourceLocation ProtocolLoc,IdentifierInfo * TypeArgId,SourceLocation TypeArgLoc,bool SelectProtocolFirst)1416 void Sema::DiagnoseTypeArgsAndProtocols(IdentifierInfo *ProtocolId,
1417 SourceLocation ProtocolLoc,
1418 IdentifierInfo *TypeArgId,
1419 SourceLocation TypeArgLoc,
1420 bool SelectProtocolFirst) {
1421 Diag(TypeArgLoc, diag::err_objc_type_args_and_protocols)
1422 << SelectProtocolFirst << TypeArgId << ProtocolId
1423 << SourceRange(ProtocolLoc);
1424 }
1425
actOnObjCTypeArgsOrProtocolQualifiers(Scope * S,ParsedType baseType,SourceLocation lAngleLoc,ArrayRef<IdentifierInfo * > identifiers,ArrayRef<SourceLocation> identifierLocs,SourceLocation rAngleLoc,SourceLocation & typeArgsLAngleLoc,SmallVectorImpl<ParsedType> & typeArgs,SourceLocation & typeArgsRAngleLoc,SourceLocation & protocolLAngleLoc,SmallVectorImpl<Decl * > & protocols,SourceLocation & protocolRAngleLoc,bool warnOnIncompleteProtocols)1426 void Sema::actOnObjCTypeArgsOrProtocolQualifiers(
1427 Scope *S,
1428 ParsedType baseType,
1429 SourceLocation lAngleLoc,
1430 ArrayRef<IdentifierInfo *> identifiers,
1431 ArrayRef<SourceLocation> identifierLocs,
1432 SourceLocation rAngleLoc,
1433 SourceLocation &typeArgsLAngleLoc,
1434 SmallVectorImpl<ParsedType> &typeArgs,
1435 SourceLocation &typeArgsRAngleLoc,
1436 SourceLocation &protocolLAngleLoc,
1437 SmallVectorImpl<Decl *> &protocols,
1438 SourceLocation &protocolRAngleLoc,
1439 bool warnOnIncompleteProtocols) {
1440 // Local function that updates the declaration specifiers with
1441 // protocol information.
1442 unsigned numProtocolsResolved = 0;
1443 auto resolvedAsProtocols = [&] {
1444 assert(numProtocolsResolved == identifiers.size() && "Unresolved protocols");
1445
1446 // Determine whether the base type is a parameterized class, in
1447 // which case we want to warn about typos such as
1448 // "NSArray<NSObject>" (that should be NSArray<NSObject *>).
1449 ObjCInterfaceDecl *baseClass = nullptr;
1450 QualType base = GetTypeFromParser(baseType, nullptr);
1451 bool allAreTypeNames = false;
1452 SourceLocation firstClassNameLoc;
1453 if (!base.isNull()) {
1454 if (const auto *objcObjectType = base->getAs<ObjCObjectType>()) {
1455 baseClass = objcObjectType->getInterface();
1456 if (baseClass) {
1457 if (auto typeParams = baseClass->getTypeParamList()) {
1458 if (typeParams->size() == numProtocolsResolved) {
1459 // Note that we should be looking for type names, too.
1460 allAreTypeNames = true;
1461 }
1462 }
1463 }
1464 }
1465 }
1466
1467 for (unsigned i = 0, n = protocols.size(); i != n; ++i) {
1468 ObjCProtocolDecl *&proto
1469 = reinterpret_cast<ObjCProtocolDecl *&>(protocols[i]);
1470 // For an objc container, delay protocol reference checking until after we
1471 // can set the objc decl as the availability context, otherwise check now.
1472 if (!warnOnIncompleteProtocols) {
1473 (void)DiagnoseUseOfDecl(proto, identifierLocs[i]);
1474 }
1475
1476 // If this is a forward protocol declaration, get its definition.
1477 if (!proto->isThisDeclarationADefinition() && proto->getDefinition())
1478 proto = proto->getDefinition();
1479
1480 // If this is a forward declaration and we are supposed to warn in this
1481 // case, do it.
1482 // FIXME: Recover nicely in the hidden case.
1483 ObjCProtocolDecl *forwardDecl = nullptr;
1484 if (warnOnIncompleteProtocols &&
1485 NestedProtocolHasNoDefinition(proto, forwardDecl)) {
1486 Diag(identifierLocs[i], diag::warn_undef_protocolref)
1487 << proto->getDeclName();
1488 Diag(forwardDecl->getLocation(), diag::note_protocol_decl_undefined)
1489 << forwardDecl;
1490 }
1491
1492 // If everything this far has been a type name (and we care
1493 // about such things), check whether this name refers to a type
1494 // as well.
1495 if (allAreTypeNames) {
1496 if (auto *decl = LookupSingleName(S, identifiers[i], identifierLocs[i],
1497 LookupOrdinaryName)) {
1498 if (isa<ObjCInterfaceDecl>(decl)) {
1499 if (firstClassNameLoc.isInvalid())
1500 firstClassNameLoc = identifierLocs[i];
1501 } else if (!isa<TypeDecl>(decl)) {
1502 // Not a type.
1503 allAreTypeNames = false;
1504 }
1505 } else {
1506 allAreTypeNames = false;
1507 }
1508 }
1509 }
1510
1511 // All of the protocols listed also have type names, and at least
1512 // one is an Objective-C class name. Check whether all of the
1513 // protocol conformances are declared by the base class itself, in
1514 // which case we warn.
1515 if (allAreTypeNames && firstClassNameLoc.isValid()) {
1516 llvm::SmallPtrSet<ObjCProtocolDecl*, 8> knownProtocols;
1517 Context.CollectInheritedProtocols(baseClass, knownProtocols);
1518 bool allProtocolsDeclared = true;
1519 for (auto *proto : protocols) {
1520 if (knownProtocols.count(static_cast<ObjCProtocolDecl *>(proto)) == 0) {
1521 allProtocolsDeclared = false;
1522 break;
1523 }
1524 }
1525
1526 if (allProtocolsDeclared) {
1527 Diag(firstClassNameLoc, diag::warn_objc_redundant_qualified_class_type)
1528 << baseClass->getDeclName() << SourceRange(lAngleLoc, rAngleLoc)
1529 << FixItHint::CreateInsertion(getLocForEndOfToken(firstClassNameLoc),
1530 " *");
1531 }
1532 }
1533
1534 protocolLAngleLoc = lAngleLoc;
1535 protocolRAngleLoc = rAngleLoc;
1536 assert(protocols.size() == identifierLocs.size());
1537 };
1538
1539 // Attempt to resolve all of the identifiers as protocols.
1540 for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1541 ObjCProtocolDecl *proto = LookupProtocol(identifiers[i], identifierLocs[i]);
1542 protocols.push_back(proto);
1543 if (proto)
1544 ++numProtocolsResolved;
1545 }
1546
1547 // If all of the names were protocols, these were protocol qualifiers.
1548 if (numProtocolsResolved == identifiers.size())
1549 return resolvedAsProtocols();
1550
1551 // Attempt to resolve all of the identifiers as type names or
1552 // Objective-C class names. The latter is technically ill-formed,
1553 // but is probably something like \c NSArray<NSView *> missing the
1554 // \c*.
1555 typedef llvm::PointerUnion<TypeDecl *, ObjCInterfaceDecl *> TypeOrClassDecl;
1556 SmallVector<TypeOrClassDecl, 4> typeDecls;
1557 unsigned numTypeDeclsResolved = 0;
1558 for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1559 NamedDecl *decl = LookupSingleName(S, identifiers[i], identifierLocs[i],
1560 LookupOrdinaryName);
1561 if (!decl) {
1562 typeDecls.push_back(TypeOrClassDecl());
1563 continue;
1564 }
1565
1566 if (auto typeDecl = dyn_cast<TypeDecl>(decl)) {
1567 typeDecls.push_back(typeDecl);
1568 ++numTypeDeclsResolved;
1569 continue;
1570 }
1571
1572 if (auto objcClass = dyn_cast<ObjCInterfaceDecl>(decl)) {
1573 typeDecls.push_back(objcClass);
1574 ++numTypeDeclsResolved;
1575 continue;
1576 }
1577
1578 typeDecls.push_back(TypeOrClassDecl());
1579 }
1580
1581 AttributeFactory attrFactory;
1582
1583 // Local function that forms a reference to the given type or
1584 // Objective-C class declaration.
1585 auto resolveTypeReference = [&](TypeOrClassDecl typeDecl, SourceLocation loc)
1586 -> TypeResult {
1587 // Form declaration specifiers. They simply refer to the type.
1588 DeclSpec DS(attrFactory);
1589 const char* prevSpec; // unused
1590 unsigned diagID; // unused
1591 QualType type;
1592 if (auto *actualTypeDecl = typeDecl.dyn_cast<TypeDecl *>())
1593 type = Context.getTypeDeclType(actualTypeDecl);
1594 else
1595 type = Context.getObjCInterfaceType(typeDecl.get<ObjCInterfaceDecl *>());
1596 TypeSourceInfo *parsedTSInfo = Context.getTrivialTypeSourceInfo(type, loc);
1597 ParsedType parsedType = CreateParsedType(type, parsedTSInfo);
1598 DS.SetTypeSpecType(DeclSpec::TST_typename, loc, prevSpec, diagID,
1599 parsedType, Context.getPrintingPolicy());
1600 // Use the identifier location for the type source range.
1601 DS.SetRangeStart(loc);
1602 DS.SetRangeEnd(loc);
1603
1604 // Form the declarator.
1605 Declarator D(DS, ParsedAttributesView::none(), DeclaratorContext::TypeName);
1606
1607 // If we have a typedef of an Objective-C class type that is missing a '*',
1608 // add the '*'.
1609 if (type->getAs<ObjCInterfaceType>()) {
1610 SourceLocation starLoc = getLocForEndOfToken(loc);
1611 D.AddTypeInfo(DeclaratorChunk::getPointer(/*TypeQuals=*/0, starLoc,
1612 SourceLocation(),
1613 SourceLocation(),
1614 SourceLocation(),
1615 SourceLocation(),
1616 SourceLocation()),
1617 starLoc);
1618
1619 // Diagnose the missing '*'.
1620 Diag(loc, diag::err_objc_type_arg_missing_star)
1621 << type
1622 << FixItHint::CreateInsertion(starLoc, " *");
1623 }
1624
1625 // Convert this to a type.
1626 return ActOnTypeName(S, D);
1627 };
1628
1629 // Local function that updates the declaration specifiers with
1630 // type argument information.
1631 auto resolvedAsTypeDecls = [&] {
1632 // We did not resolve these as protocols.
1633 protocols.clear();
1634
1635 assert(numTypeDeclsResolved == identifiers.size() && "Unresolved type decl");
1636 // Map type declarations to type arguments.
1637 for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1638 // Map type reference to a type.
1639 TypeResult type = resolveTypeReference(typeDecls[i], identifierLocs[i]);
1640 if (!type.isUsable()) {
1641 typeArgs.clear();
1642 return;
1643 }
1644
1645 typeArgs.push_back(type.get());
1646 }
1647
1648 typeArgsLAngleLoc = lAngleLoc;
1649 typeArgsRAngleLoc = rAngleLoc;
1650 };
1651
1652 // If all of the identifiers can be resolved as type names or
1653 // Objective-C class names, we have type arguments.
1654 if (numTypeDeclsResolved == identifiers.size())
1655 return resolvedAsTypeDecls();
1656
1657 // Error recovery: some names weren't found, or we have a mix of
1658 // type and protocol names. Go resolve all of the unresolved names
1659 // and complain if we can't find a consistent answer.
1660 LookupNameKind lookupKind = LookupAnyName;
1661 for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1662 // If we already have a protocol or type. Check whether it is the
1663 // right thing.
1664 if (protocols[i] || typeDecls[i]) {
1665 // If we haven't figured out whether we want types or protocols
1666 // yet, try to figure it out from this name.
1667 if (lookupKind == LookupAnyName) {
1668 // If this name refers to both a protocol and a type (e.g., \c
1669 // NSObject), don't conclude anything yet.
1670 if (protocols[i] && typeDecls[i])
1671 continue;
1672
1673 // Otherwise, let this name decide whether we'll be correcting
1674 // toward types or protocols.
1675 lookupKind = protocols[i] ? LookupObjCProtocolName
1676 : LookupOrdinaryName;
1677 continue;
1678 }
1679
1680 // If we want protocols and we have a protocol, there's nothing
1681 // more to do.
1682 if (lookupKind == LookupObjCProtocolName && protocols[i])
1683 continue;
1684
1685 // If we want types and we have a type declaration, there's
1686 // nothing more to do.
1687 if (lookupKind == LookupOrdinaryName && typeDecls[i])
1688 continue;
1689
1690 // We have a conflict: some names refer to protocols and others
1691 // refer to types.
1692 DiagnoseTypeArgsAndProtocols(identifiers[0], identifierLocs[0],
1693 identifiers[i], identifierLocs[i],
1694 protocols[i] != nullptr);
1695
1696 protocols.clear();
1697 typeArgs.clear();
1698 return;
1699 }
1700
1701 // Perform typo correction on the name.
1702 ObjCTypeArgOrProtocolValidatorCCC CCC(Context, lookupKind);
1703 TypoCorrection corrected =
1704 CorrectTypo(DeclarationNameInfo(identifiers[i], identifierLocs[i]),
1705 lookupKind, S, nullptr, CCC, CTK_ErrorRecovery);
1706 if (corrected) {
1707 // Did we find a protocol?
1708 if (auto proto = corrected.getCorrectionDeclAs<ObjCProtocolDecl>()) {
1709 diagnoseTypo(corrected,
1710 PDiag(diag::err_undeclared_protocol_suggest)
1711 << identifiers[i]);
1712 lookupKind = LookupObjCProtocolName;
1713 protocols[i] = proto;
1714 ++numProtocolsResolved;
1715 continue;
1716 }
1717
1718 // Did we find a type?
1719 if (auto typeDecl = corrected.getCorrectionDeclAs<TypeDecl>()) {
1720 diagnoseTypo(corrected,
1721 PDiag(diag::err_unknown_typename_suggest)
1722 << identifiers[i]);
1723 lookupKind = LookupOrdinaryName;
1724 typeDecls[i] = typeDecl;
1725 ++numTypeDeclsResolved;
1726 continue;
1727 }
1728
1729 // Did we find an Objective-C class?
1730 if (auto objcClass = corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) {
1731 diagnoseTypo(corrected,
1732 PDiag(diag::err_unknown_type_or_class_name_suggest)
1733 << identifiers[i] << true);
1734 lookupKind = LookupOrdinaryName;
1735 typeDecls[i] = objcClass;
1736 ++numTypeDeclsResolved;
1737 continue;
1738 }
1739 }
1740
1741 // We couldn't find anything.
1742 Diag(identifierLocs[i],
1743 (lookupKind == LookupAnyName ? diag::err_objc_type_arg_missing
1744 : lookupKind == LookupObjCProtocolName ? diag::err_undeclared_protocol
1745 : diag::err_unknown_typename))
1746 << identifiers[i];
1747 protocols.clear();
1748 typeArgs.clear();
1749 return;
1750 }
1751
1752 // If all of the names were (corrected to) protocols, these were
1753 // protocol qualifiers.
1754 if (numProtocolsResolved == identifiers.size())
1755 return resolvedAsProtocols();
1756
1757 // Otherwise, all of the names were (corrected to) types.
1758 assert(numTypeDeclsResolved == identifiers.size() && "Not all types?");
1759 return resolvedAsTypeDecls();
1760 }
1761
1762 /// DiagnoseClassExtensionDupMethods - Check for duplicate declaration of
1763 /// a class method in its extension.
1764 ///
DiagnoseClassExtensionDupMethods(ObjCCategoryDecl * CAT,ObjCInterfaceDecl * ID)1765 void Sema::DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT,
1766 ObjCInterfaceDecl *ID) {
1767 if (!ID)
1768 return; // Possibly due to previous error
1769
1770 llvm::DenseMap<Selector, const ObjCMethodDecl*> MethodMap;
1771 for (auto *MD : ID->methods())
1772 MethodMap[MD->getSelector()] = MD;
1773
1774 if (MethodMap.empty())
1775 return;
1776 for (const auto *Method : CAT->methods()) {
1777 const ObjCMethodDecl *&PrevMethod = MethodMap[Method->getSelector()];
1778 if (PrevMethod &&
1779 (PrevMethod->isInstanceMethod() == Method->isInstanceMethod()) &&
1780 !MatchTwoMethodDeclarations(Method, PrevMethod)) {
1781 Diag(Method->getLocation(), diag::err_duplicate_method_decl)
1782 << Method->getDeclName();
1783 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
1784 }
1785 }
1786 }
1787
1788 /// ActOnForwardProtocolDeclaration - Handle \@protocol foo;
1789 Sema::DeclGroupPtrTy
ActOnForwardProtocolDeclaration(SourceLocation AtProtocolLoc,ArrayRef<IdentifierLocPair> IdentList,const ParsedAttributesView & attrList)1790 Sema::ActOnForwardProtocolDeclaration(SourceLocation AtProtocolLoc,
1791 ArrayRef<IdentifierLocPair> IdentList,
1792 const ParsedAttributesView &attrList) {
1793 SmallVector<Decl *, 8> DeclsInGroup;
1794 for (const IdentifierLocPair &IdentPair : IdentList) {
1795 IdentifierInfo *Ident = IdentPair.first;
1796 ObjCProtocolDecl *PrevDecl = LookupProtocol(Ident, IdentPair.second,
1797 forRedeclarationInCurContext());
1798 ObjCProtocolDecl *PDecl
1799 = ObjCProtocolDecl::Create(Context, CurContext, Ident,
1800 IdentPair.second, AtProtocolLoc,
1801 PrevDecl);
1802
1803 PushOnScopeChains(PDecl, TUScope);
1804 CheckObjCDeclScope(PDecl);
1805
1806 ProcessDeclAttributeList(TUScope, PDecl, attrList);
1807 AddPragmaAttributes(TUScope, PDecl);
1808
1809 if (PrevDecl)
1810 mergeDeclAttributes(PDecl, PrevDecl);
1811
1812 DeclsInGroup.push_back(PDecl);
1813 }
1814
1815 return BuildDeclaratorGroup(DeclsInGroup);
1816 }
1817
ActOnStartCategoryInterface(SourceLocation AtInterfaceLoc,IdentifierInfo * ClassName,SourceLocation ClassLoc,ObjCTypeParamList * typeParamList,IdentifierInfo * CategoryName,SourceLocation CategoryLoc,Decl * const * ProtoRefs,unsigned NumProtoRefs,const SourceLocation * ProtoLocs,SourceLocation EndProtoLoc,const ParsedAttributesView & AttrList)1818 ObjCCategoryDecl *Sema::ActOnStartCategoryInterface(
1819 SourceLocation AtInterfaceLoc, IdentifierInfo *ClassName,
1820 SourceLocation ClassLoc, ObjCTypeParamList *typeParamList,
1821 IdentifierInfo *CategoryName, SourceLocation CategoryLoc,
1822 Decl *const *ProtoRefs, unsigned NumProtoRefs,
1823 const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc,
1824 const ParsedAttributesView &AttrList) {
1825 ObjCCategoryDecl *CDecl;
1826 ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
1827
1828 /// Check that class of this category is already completely declared.
1829
1830 if (!IDecl
1831 || RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
1832 diag::err_category_forward_interface,
1833 CategoryName == nullptr)) {
1834 // Create an invalid ObjCCategoryDecl to serve as context for
1835 // the enclosing method declarations. We mark the decl invalid
1836 // to make it clear that this isn't a valid AST.
1837 CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
1838 ClassLoc, CategoryLoc, CategoryName,
1839 IDecl, typeParamList);
1840 CDecl->setInvalidDecl();
1841 CurContext->addDecl(CDecl);
1842
1843 if (!IDecl)
1844 Diag(ClassLoc, diag::err_undef_interface) << ClassName;
1845 ActOnObjCContainerStartDefinition(CDecl);
1846 return CDecl;
1847 }
1848
1849 if (!CategoryName && IDecl->getImplementation()) {
1850 Diag(ClassLoc, diag::err_class_extension_after_impl) << ClassName;
1851 Diag(IDecl->getImplementation()->getLocation(),
1852 diag::note_implementation_declared);
1853 }
1854
1855 if (CategoryName) {
1856 /// Check for duplicate interface declaration for this category
1857 if (ObjCCategoryDecl *Previous
1858 = IDecl->FindCategoryDeclaration(CategoryName)) {
1859 // Class extensions can be declared multiple times, categories cannot.
1860 Diag(CategoryLoc, diag::warn_dup_category_def)
1861 << ClassName << CategoryName;
1862 Diag(Previous->getLocation(), diag::note_previous_definition);
1863 }
1864 }
1865
1866 // If we have a type parameter list, check it.
1867 if (typeParamList) {
1868 if (auto prevTypeParamList = IDecl->getTypeParamList()) {
1869 if (checkTypeParamListConsistency(*this, prevTypeParamList, typeParamList,
1870 CategoryName
1871 ? TypeParamListContext::Category
1872 : TypeParamListContext::Extension))
1873 typeParamList = nullptr;
1874 } else {
1875 Diag(typeParamList->getLAngleLoc(),
1876 diag::err_objc_parameterized_category_nonclass)
1877 << (CategoryName != nullptr)
1878 << ClassName
1879 << typeParamList->getSourceRange();
1880
1881 typeParamList = nullptr;
1882 }
1883 }
1884
1885 CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
1886 ClassLoc, CategoryLoc, CategoryName, IDecl,
1887 typeParamList);
1888 // FIXME: PushOnScopeChains?
1889 CurContext->addDecl(CDecl);
1890
1891 // Process the attributes before looking at protocols to ensure that the
1892 // availability attribute is attached to the category to provide availability
1893 // checking for protocol uses.
1894 ProcessDeclAttributeList(TUScope, CDecl, AttrList);
1895 AddPragmaAttributes(TUScope, CDecl);
1896
1897 if (NumProtoRefs) {
1898 diagnoseUseOfProtocols(*this, CDecl, (ObjCProtocolDecl*const*)ProtoRefs,
1899 NumProtoRefs, ProtoLocs);
1900 CDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
1901 ProtoLocs, Context);
1902 // Protocols in the class extension belong to the class.
1903 if (CDecl->IsClassExtension())
1904 IDecl->mergeClassExtensionProtocolList((ObjCProtocolDecl*const*)ProtoRefs,
1905 NumProtoRefs, Context);
1906 }
1907
1908 CheckObjCDeclScope(CDecl);
1909 ActOnObjCContainerStartDefinition(CDecl);
1910 return CDecl;
1911 }
1912
1913 /// ActOnStartCategoryImplementation - Perform semantic checks on the
1914 /// category implementation declaration and build an ObjCCategoryImplDecl
1915 /// object.
ActOnStartCategoryImplementation(SourceLocation AtCatImplLoc,IdentifierInfo * ClassName,SourceLocation ClassLoc,IdentifierInfo * CatName,SourceLocation CatLoc,const ParsedAttributesView & Attrs)1916 ObjCCategoryImplDecl *Sema::ActOnStartCategoryImplementation(
1917 SourceLocation AtCatImplLoc, IdentifierInfo *ClassName,
1918 SourceLocation ClassLoc, IdentifierInfo *CatName, SourceLocation CatLoc,
1919 const ParsedAttributesView &Attrs) {
1920 ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
1921 ObjCCategoryDecl *CatIDecl = nullptr;
1922 if (IDecl && IDecl->hasDefinition()) {
1923 CatIDecl = IDecl->FindCategoryDeclaration(CatName);
1924 if (!CatIDecl) {
1925 // Category @implementation with no corresponding @interface.
1926 // Create and install one.
1927 CatIDecl = ObjCCategoryDecl::Create(Context, CurContext, AtCatImplLoc,
1928 ClassLoc, CatLoc,
1929 CatName, IDecl,
1930 /*typeParamList=*/nullptr);
1931 CatIDecl->setImplicit();
1932 }
1933 }
1934
1935 ObjCCategoryImplDecl *CDecl =
1936 ObjCCategoryImplDecl::Create(Context, CurContext, CatName, IDecl,
1937 ClassLoc, AtCatImplLoc, CatLoc);
1938 /// Check that class of this category is already completely declared.
1939 if (!IDecl) {
1940 Diag(ClassLoc, diag::err_undef_interface) << ClassName;
1941 CDecl->setInvalidDecl();
1942 } else if (RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
1943 diag::err_undef_interface)) {
1944 CDecl->setInvalidDecl();
1945 }
1946
1947 ProcessDeclAttributeList(TUScope, CDecl, Attrs);
1948 AddPragmaAttributes(TUScope, CDecl);
1949
1950 // FIXME: PushOnScopeChains?
1951 CurContext->addDecl(CDecl);
1952
1953 // If the interface has the objc_runtime_visible attribute, we
1954 // cannot implement a category for it.
1955 if (IDecl && IDecl->hasAttr<ObjCRuntimeVisibleAttr>()) {
1956 Diag(ClassLoc, diag::err_objc_runtime_visible_category)
1957 << IDecl->getDeclName();
1958 }
1959
1960 /// Check that CatName, category name, is not used in another implementation.
1961 if (CatIDecl) {
1962 if (CatIDecl->getImplementation()) {
1963 Diag(ClassLoc, diag::err_dup_implementation_category) << ClassName
1964 << CatName;
1965 Diag(CatIDecl->getImplementation()->getLocation(),
1966 diag::note_previous_definition);
1967 CDecl->setInvalidDecl();
1968 } else {
1969 CatIDecl->setImplementation(CDecl);
1970 // Warn on implementating category of deprecated class under
1971 // -Wdeprecated-implementations flag.
1972 DiagnoseObjCImplementedDeprecations(*this, CatIDecl,
1973 CDecl->getLocation());
1974 }
1975 }
1976
1977 CheckObjCDeclScope(CDecl);
1978 ActOnObjCContainerStartDefinition(CDecl);
1979 return CDecl;
1980 }
1981
ActOnStartClassImplementation(SourceLocation AtClassImplLoc,IdentifierInfo * ClassName,SourceLocation ClassLoc,IdentifierInfo * SuperClassname,SourceLocation SuperClassLoc,const ParsedAttributesView & Attrs)1982 ObjCImplementationDecl *Sema::ActOnStartClassImplementation(
1983 SourceLocation AtClassImplLoc, IdentifierInfo *ClassName,
1984 SourceLocation ClassLoc, IdentifierInfo *SuperClassname,
1985 SourceLocation SuperClassLoc, const ParsedAttributesView &Attrs) {
1986 ObjCInterfaceDecl *IDecl = nullptr;
1987 // Check for another declaration kind with the same name.
1988 NamedDecl *PrevDecl
1989 = LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName,
1990 forRedeclarationInCurContext());
1991 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
1992 Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
1993 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1994 } else if ((IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl))) {
1995 // FIXME: This will produce an error if the definition of the interface has
1996 // been imported from a module but is not visible.
1997 RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
1998 diag::warn_undef_interface);
1999 } else {
2000 // We did not find anything with the name ClassName; try to correct for
2001 // typos in the class name.
2002 ObjCInterfaceValidatorCCC CCC{};
2003 TypoCorrection Corrected =
2004 CorrectTypo(DeclarationNameInfo(ClassName, ClassLoc),
2005 LookupOrdinaryName, TUScope, nullptr, CCC, CTK_NonError);
2006 if (Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) {
2007 // Suggest the (potentially) correct interface name. Don't provide a
2008 // code-modification hint or use the typo name for recovery, because
2009 // this is just a warning. The program may actually be correct.
2010 diagnoseTypo(Corrected,
2011 PDiag(diag::warn_undef_interface_suggest) << ClassName,
2012 /*ErrorRecovery*/false);
2013 } else {
2014 Diag(ClassLoc, diag::warn_undef_interface) << ClassName;
2015 }
2016 }
2017
2018 // Check that super class name is valid class name
2019 ObjCInterfaceDecl *SDecl = nullptr;
2020 if (SuperClassname) {
2021 // Check if a different kind of symbol declared in this scope.
2022 PrevDecl = LookupSingleName(TUScope, SuperClassname, SuperClassLoc,
2023 LookupOrdinaryName);
2024 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
2025 Diag(SuperClassLoc, diag::err_redefinition_different_kind)
2026 << SuperClassname;
2027 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2028 } else {
2029 SDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
2030 if (SDecl && !SDecl->hasDefinition())
2031 SDecl = nullptr;
2032 if (!SDecl)
2033 Diag(SuperClassLoc, diag::err_undef_superclass)
2034 << SuperClassname << ClassName;
2035 else if (IDecl && !declaresSameEntity(IDecl->getSuperClass(), SDecl)) {
2036 // This implementation and its interface do not have the same
2037 // super class.
2038 Diag(SuperClassLoc, diag::err_conflicting_super_class)
2039 << SDecl->getDeclName();
2040 Diag(SDecl->getLocation(), diag::note_previous_definition);
2041 }
2042 }
2043 }
2044
2045 if (!IDecl) {
2046 // Legacy case of @implementation with no corresponding @interface.
2047 // Build, chain & install the interface decl into the identifier.
2048
2049 // FIXME: Do we support attributes on the @implementation? If so we should
2050 // copy them over.
2051 IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtClassImplLoc,
2052 ClassName, /*typeParamList=*/nullptr,
2053 /*PrevDecl=*/nullptr, ClassLoc,
2054 true);
2055 AddPragmaAttributes(TUScope, IDecl);
2056 IDecl->startDefinition();
2057 if (SDecl) {
2058 IDecl->setSuperClass(Context.getTrivialTypeSourceInfo(
2059 Context.getObjCInterfaceType(SDecl),
2060 SuperClassLoc));
2061 IDecl->setEndOfDefinitionLoc(SuperClassLoc);
2062 } else {
2063 IDecl->setEndOfDefinitionLoc(ClassLoc);
2064 }
2065
2066 PushOnScopeChains(IDecl, TUScope);
2067 } else {
2068 // Mark the interface as being completed, even if it was just as
2069 // @class ....;
2070 // declaration; the user cannot reopen it.
2071 if (!IDecl->hasDefinition())
2072 IDecl->startDefinition();
2073 }
2074
2075 ObjCImplementationDecl* IMPDecl =
2076 ObjCImplementationDecl::Create(Context, CurContext, IDecl, SDecl,
2077 ClassLoc, AtClassImplLoc, SuperClassLoc);
2078
2079 ProcessDeclAttributeList(TUScope, IMPDecl, Attrs);
2080 AddPragmaAttributes(TUScope, IMPDecl);
2081
2082 if (CheckObjCDeclScope(IMPDecl)) {
2083 ActOnObjCContainerStartDefinition(IMPDecl);
2084 return IMPDecl;
2085 }
2086
2087 // Check that there is no duplicate implementation of this class.
2088 if (IDecl->getImplementation()) {
2089 // FIXME: Don't leak everything!
2090 Diag(ClassLoc, diag::err_dup_implementation_class) << ClassName;
2091 Diag(IDecl->getImplementation()->getLocation(),
2092 diag::note_previous_definition);
2093 IMPDecl->setInvalidDecl();
2094 } else { // add it to the list.
2095 IDecl->setImplementation(IMPDecl);
2096 PushOnScopeChains(IMPDecl, TUScope);
2097 // Warn on implementating deprecated class under
2098 // -Wdeprecated-implementations flag.
2099 DiagnoseObjCImplementedDeprecations(*this, IDecl, IMPDecl->getLocation());
2100 }
2101
2102 // If the superclass has the objc_runtime_visible attribute, we
2103 // cannot implement a subclass of it.
2104 if (IDecl->getSuperClass() &&
2105 IDecl->getSuperClass()->hasAttr<ObjCRuntimeVisibleAttr>()) {
2106 Diag(ClassLoc, diag::err_objc_runtime_visible_subclass)
2107 << IDecl->getDeclName()
2108 << IDecl->getSuperClass()->getDeclName();
2109 }
2110
2111 ActOnObjCContainerStartDefinition(IMPDecl);
2112 return IMPDecl;
2113 }
2114
2115 Sema::DeclGroupPtrTy
ActOnFinishObjCImplementation(Decl * ObjCImpDecl,ArrayRef<Decl * > Decls)2116 Sema::ActOnFinishObjCImplementation(Decl *ObjCImpDecl, ArrayRef<Decl *> Decls) {
2117 SmallVector<Decl *, 64> DeclsInGroup;
2118 DeclsInGroup.reserve(Decls.size() + 1);
2119
2120 for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
2121 Decl *Dcl = Decls[i];
2122 if (!Dcl)
2123 continue;
2124 if (Dcl->getDeclContext()->isFileContext())
2125 Dcl->setTopLevelDeclInObjCContainer();
2126 DeclsInGroup.push_back(Dcl);
2127 }
2128
2129 DeclsInGroup.push_back(ObjCImpDecl);
2130
2131 return BuildDeclaratorGroup(DeclsInGroup);
2132 }
2133
CheckImplementationIvars(ObjCImplementationDecl * ImpDecl,ObjCIvarDecl ** ivars,unsigned numIvars,SourceLocation RBrace)2134 void Sema::CheckImplementationIvars(ObjCImplementationDecl *ImpDecl,
2135 ObjCIvarDecl **ivars, unsigned numIvars,
2136 SourceLocation RBrace) {
2137 assert(ImpDecl && "missing implementation decl");
2138 ObjCInterfaceDecl* IDecl = ImpDecl->getClassInterface();
2139 if (!IDecl)
2140 return;
2141 /// Check case of non-existing \@interface decl.
2142 /// (legacy objective-c \@implementation decl without an \@interface decl).
2143 /// Add implementations's ivar to the synthesize class's ivar list.
2144 if (IDecl->isImplicitInterfaceDecl()) {
2145 IDecl->setEndOfDefinitionLoc(RBrace);
2146 // Add ivar's to class's DeclContext.
2147 for (unsigned i = 0, e = numIvars; i != e; ++i) {
2148 ivars[i]->setLexicalDeclContext(ImpDecl);
2149 // In a 'fragile' runtime the ivar was added to the implicit
2150 // ObjCInterfaceDecl while in a 'non-fragile' runtime the ivar is
2151 // only in the ObjCImplementationDecl. In the non-fragile case the ivar
2152 // therefore also needs to be propagated to the ObjCInterfaceDecl.
2153 if (!LangOpts.ObjCRuntime.isFragile())
2154 IDecl->makeDeclVisibleInContext(ivars[i]);
2155 ImpDecl->addDecl(ivars[i]);
2156 }
2157
2158 return;
2159 }
2160 // If implementation has empty ivar list, just return.
2161 if (numIvars == 0)
2162 return;
2163
2164 assert(ivars && "missing @implementation ivars");
2165 if (LangOpts.ObjCRuntime.isNonFragile()) {
2166 if (ImpDecl->getSuperClass())
2167 Diag(ImpDecl->getLocation(), diag::warn_on_superclass_use);
2168 for (unsigned i = 0; i < numIvars; i++) {
2169 ObjCIvarDecl* ImplIvar = ivars[i];
2170 if (const ObjCIvarDecl *ClsIvar =
2171 IDecl->getIvarDecl(ImplIvar->getIdentifier())) {
2172 Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration);
2173 Diag(ClsIvar->getLocation(), diag::note_previous_definition);
2174 continue;
2175 }
2176 // Check class extensions (unnamed categories) for duplicate ivars.
2177 for (const auto *CDecl : IDecl->visible_extensions()) {
2178 if (const ObjCIvarDecl *ClsExtIvar =
2179 CDecl->getIvarDecl(ImplIvar->getIdentifier())) {
2180 Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration);
2181 Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
2182 continue;
2183 }
2184 }
2185 // Instance ivar to Implementation's DeclContext.
2186 ImplIvar->setLexicalDeclContext(ImpDecl);
2187 IDecl->makeDeclVisibleInContext(ImplIvar);
2188 ImpDecl->addDecl(ImplIvar);
2189 }
2190 return;
2191 }
2192 // Check interface's Ivar list against those in the implementation.
2193 // names and types must match.
2194 //
2195 unsigned j = 0;
2196 ObjCInterfaceDecl::ivar_iterator
2197 IVI = IDecl->ivar_begin(), IVE = IDecl->ivar_end();
2198 for (; numIvars > 0 && IVI != IVE; ++IVI) {
2199 ObjCIvarDecl* ImplIvar = ivars[j++];
2200 ObjCIvarDecl* ClsIvar = *IVI;
2201 assert (ImplIvar && "missing implementation ivar");
2202 assert (ClsIvar && "missing class ivar");
2203
2204 // First, make sure the types match.
2205 if (!Context.hasSameType(ImplIvar->getType(), ClsIvar->getType())) {
2206 Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_type)
2207 << ImplIvar->getIdentifier()
2208 << ImplIvar->getType() << ClsIvar->getType();
2209 Diag(ClsIvar->getLocation(), diag::note_previous_definition);
2210 } else if (ImplIvar->isBitField() && ClsIvar->isBitField() &&
2211 ImplIvar->getBitWidthValue(Context) !=
2212 ClsIvar->getBitWidthValue(Context)) {
2213 Diag(ImplIvar->getBitWidth()->getBeginLoc(),
2214 diag::err_conflicting_ivar_bitwidth)
2215 << ImplIvar->getIdentifier();
2216 Diag(ClsIvar->getBitWidth()->getBeginLoc(),
2217 diag::note_previous_definition);
2218 }
2219 // Make sure the names are identical.
2220 if (ImplIvar->getIdentifier() != ClsIvar->getIdentifier()) {
2221 Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_name)
2222 << ImplIvar->getIdentifier() << ClsIvar->getIdentifier();
2223 Diag(ClsIvar->getLocation(), diag::note_previous_definition);
2224 }
2225 --numIvars;
2226 }
2227
2228 if (numIvars > 0)
2229 Diag(ivars[j]->getLocation(), diag::err_inconsistent_ivar_count);
2230 else if (IVI != IVE)
2231 Diag(IVI->getLocation(), diag::err_inconsistent_ivar_count);
2232 }
2233
WarnUndefinedMethod(Sema & S,ObjCImplDecl * Impl,ObjCMethodDecl * method,bool & IncompleteImpl,unsigned DiagID,NamedDecl * NeededFor=nullptr)2234 static void WarnUndefinedMethod(Sema &S, ObjCImplDecl *Impl,
2235 ObjCMethodDecl *method, bool &IncompleteImpl,
2236 unsigned DiagID,
2237 NamedDecl *NeededFor = nullptr) {
2238 // No point warning no definition of method which is 'unavailable'.
2239 if (method->getAvailability() == AR_Unavailable)
2240 return;
2241
2242 // FIXME: For now ignore 'IncompleteImpl'.
2243 // Previously we grouped all unimplemented methods under a single
2244 // warning, but some users strongly voiced that they would prefer
2245 // separate warnings. We will give that approach a try, as that
2246 // matches what we do with protocols.
2247 {
2248 const Sema::SemaDiagnosticBuilder &B = S.Diag(Impl->getLocation(), DiagID);
2249 B << method;
2250 if (NeededFor)
2251 B << NeededFor;
2252
2253 // Add an empty definition at the end of the @implementation.
2254 std::string FixItStr;
2255 llvm::raw_string_ostream Out(FixItStr);
2256 method->print(Out, Impl->getASTContext().getPrintingPolicy());
2257 Out << " {\n}\n\n";
2258
2259 SourceLocation Loc = Impl->getAtEndRange().getBegin();
2260 B << FixItHint::CreateInsertion(Loc, FixItStr);
2261 }
2262
2263 // Issue a note to the original declaration.
2264 SourceLocation MethodLoc = method->getBeginLoc();
2265 if (MethodLoc.isValid())
2266 S.Diag(MethodLoc, diag::note_method_declared_at) << method;
2267 }
2268
2269 /// Determines if type B can be substituted for type A. Returns true if we can
2270 /// guarantee that anything that the user will do to an object of type A can
2271 /// also be done to an object of type B. This is trivially true if the two
2272 /// types are the same, or if B is a subclass of A. It becomes more complex
2273 /// in cases where protocols are involved.
2274 ///
2275 /// Object types in Objective-C describe the minimum requirements for an
2276 /// object, rather than providing a complete description of a type. For
2277 /// example, if A is a subclass of B, then B* may refer to an instance of A.
2278 /// The principle of substitutability means that we may use an instance of A
2279 /// anywhere that we may use an instance of B - it will implement all of the
2280 /// ivars of B and all of the methods of B.
2281 ///
2282 /// This substitutability is important when type checking methods, because
2283 /// the implementation may have stricter type definitions than the interface.
2284 /// The interface specifies minimum requirements, but the implementation may
2285 /// have more accurate ones. For example, a method may privately accept
2286 /// instances of B, but only publish that it accepts instances of A. Any
2287 /// object passed to it will be type checked against B, and so will implicitly
2288 /// by a valid A*. Similarly, a method may return a subclass of the class that
2289 /// it is declared as returning.
2290 ///
2291 /// This is most important when considering subclassing. A method in a
2292 /// subclass must accept any object as an argument that its superclass's
2293 /// implementation accepts. It may, however, accept a more general type
2294 /// without breaking substitutability (i.e. you can still use the subclass
2295 /// anywhere that you can use the superclass, but not vice versa). The
2296 /// converse requirement applies to return types: the return type for a
2297 /// subclass method must be a valid object of the kind that the superclass
2298 /// advertises, but it may be specified more accurately. This avoids the need
2299 /// for explicit down-casting by callers.
2300 ///
2301 /// Note: This is a stricter requirement than for assignment.
isObjCTypeSubstitutable(ASTContext & Context,const ObjCObjectPointerType * A,const ObjCObjectPointerType * B,bool rejectId)2302 static bool isObjCTypeSubstitutable(ASTContext &Context,
2303 const ObjCObjectPointerType *A,
2304 const ObjCObjectPointerType *B,
2305 bool rejectId) {
2306 // Reject a protocol-unqualified id.
2307 if (rejectId && B->isObjCIdType()) return false;
2308
2309 // If B is a qualified id, then A must also be a qualified id and it must
2310 // implement all of the protocols in B. It may not be a qualified class.
2311 // For example, MyClass<A> can be assigned to id<A>, but MyClass<A> is a
2312 // stricter definition so it is not substitutable for id<A>.
2313 if (B->isObjCQualifiedIdType()) {
2314 return A->isObjCQualifiedIdType() &&
2315 Context.ObjCQualifiedIdTypesAreCompatible(A, B, false);
2316 }
2317
2318 /*
2319 // id is a special type that bypasses type checking completely. We want a
2320 // warning when it is used in one place but not another.
2321 if (C.isObjCIdType(A) || C.isObjCIdType(B)) return false;
2322
2323
2324 // If B is a qualified id, then A must also be a qualified id (which it isn't
2325 // if we've got this far)
2326 if (B->isObjCQualifiedIdType()) return false;
2327 */
2328
2329 // Now we know that A and B are (potentially-qualified) class types. The
2330 // normal rules for assignment apply.
2331 return Context.canAssignObjCInterfaces(A, B);
2332 }
2333
getTypeRange(TypeSourceInfo * TSI)2334 static SourceRange getTypeRange(TypeSourceInfo *TSI) {
2335 return (TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange());
2336 }
2337
2338 /// Determine whether two set of Objective-C declaration qualifiers conflict.
objcModifiersConflict(Decl::ObjCDeclQualifier x,Decl::ObjCDeclQualifier y)2339 static bool objcModifiersConflict(Decl::ObjCDeclQualifier x,
2340 Decl::ObjCDeclQualifier y) {
2341 return (x & ~Decl::OBJC_TQ_CSNullability) !=
2342 (y & ~Decl::OBJC_TQ_CSNullability);
2343 }
2344
CheckMethodOverrideReturn(Sema & S,ObjCMethodDecl * MethodImpl,ObjCMethodDecl * MethodDecl,bool IsProtocolMethodDecl,bool IsOverridingMode,bool Warn)2345 static bool CheckMethodOverrideReturn(Sema &S,
2346 ObjCMethodDecl *MethodImpl,
2347 ObjCMethodDecl *MethodDecl,
2348 bool IsProtocolMethodDecl,
2349 bool IsOverridingMode,
2350 bool Warn) {
2351 if (IsProtocolMethodDecl &&
2352 objcModifiersConflict(MethodDecl->getObjCDeclQualifier(),
2353 MethodImpl->getObjCDeclQualifier())) {
2354 if (Warn) {
2355 S.Diag(MethodImpl->getLocation(),
2356 (IsOverridingMode
2357 ? diag::warn_conflicting_overriding_ret_type_modifiers
2358 : diag::warn_conflicting_ret_type_modifiers))
2359 << MethodImpl->getDeclName()
2360 << MethodImpl->getReturnTypeSourceRange();
2361 S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration)
2362 << MethodDecl->getReturnTypeSourceRange();
2363 }
2364 else
2365 return false;
2366 }
2367 if (Warn && IsOverridingMode &&
2368 !isa<ObjCImplementationDecl>(MethodImpl->getDeclContext()) &&
2369 !S.Context.hasSameNullabilityTypeQualifier(MethodImpl->getReturnType(),
2370 MethodDecl->getReturnType(),
2371 false)) {
2372 auto nullabilityMethodImpl = *MethodImpl->getReturnType()->getNullability();
2373 auto nullabilityMethodDecl = *MethodDecl->getReturnType()->getNullability();
2374 S.Diag(MethodImpl->getLocation(),
2375 diag::warn_conflicting_nullability_attr_overriding_ret_types)
2376 << DiagNullabilityKind(nullabilityMethodImpl,
2377 ((MethodImpl->getObjCDeclQualifier() &
2378 Decl::OBJC_TQ_CSNullability) != 0))
2379 << DiagNullabilityKind(nullabilityMethodDecl,
2380 ((MethodDecl->getObjCDeclQualifier() &
2381 Decl::OBJC_TQ_CSNullability) != 0));
2382 S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration);
2383 }
2384
2385 if (S.Context.hasSameUnqualifiedType(MethodImpl->getReturnType(),
2386 MethodDecl->getReturnType()))
2387 return true;
2388 if (!Warn)
2389 return false;
2390
2391 unsigned DiagID =
2392 IsOverridingMode ? diag::warn_conflicting_overriding_ret_types
2393 : diag::warn_conflicting_ret_types;
2394
2395 // Mismatches between ObjC pointers go into a different warning
2396 // category, and sometimes they're even completely explicitly allowed.
2397 if (const ObjCObjectPointerType *ImplPtrTy =
2398 MethodImpl->getReturnType()->getAs<ObjCObjectPointerType>()) {
2399 if (const ObjCObjectPointerType *IfacePtrTy =
2400 MethodDecl->getReturnType()->getAs<ObjCObjectPointerType>()) {
2401 // Allow non-matching return types as long as they don't violate
2402 // the principle of substitutability. Specifically, we permit
2403 // return types that are subclasses of the declared return type,
2404 // or that are more-qualified versions of the declared type.
2405 if (isObjCTypeSubstitutable(S.Context, IfacePtrTy, ImplPtrTy, false))
2406 return false;
2407
2408 DiagID =
2409 IsOverridingMode ? diag::warn_non_covariant_overriding_ret_types
2410 : diag::warn_non_covariant_ret_types;
2411 }
2412 }
2413
2414 S.Diag(MethodImpl->getLocation(), DiagID)
2415 << MethodImpl->getDeclName() << MethodDecl->getReturnType()
2416 << MethodImpl->getReturnType()
2417 << MethodImpl->getReturnTypeSourceRange();
2418 S.Diag(MethodDecl->getLocation(), IsOverridingMode
2419 ? diag::note_previous_declaration
2420 : diag::note_previous_definition)
2421 << MethodDecl->getReturnTypeSourceRange();
2422 return false;
2423 }
2424
CheckMethodOverrideParam(Sema & S,ObjCMethodDecl * MethodImpl,ObjCMethodDecl * MethodDecl,ParmVarDecl * ImplVar,ParmVarDecl * IfaceVar,bool IsProtocolMethodDecl,bool IsOverridingMode,bool Warn)2425 static bool CheckMethodOverrideParam(Sema &S,
2426 ObjCMethodDecl *MethodImpl,
2427 ObjCMethodDecl *MethodDecl,
2428 ParmVarDecl *ImplVar,
2429 ParmVarDecl *IfaceVar,
2430 bool IsProtocolMethodDecl,
2431 bool IsOverridingMode,
2432 bool Warn) {
2433 if (IsProtocolMethodDecl &&
2434 objcModifiersConflict(ImplVar->getObjCDeclQualifier(),
2435 IfaceVar->getObjCDeclQualifier())) {
2436 if (Warn) {
2437 if (IsOverridingMode)
2438 S.Diag(ImplVar->getLocation(),
2439 diag::warn_conflicting_overriding_param_modifiers)
2440 << getTypeRange(ImplVar->getTypeSourceInfo())
2441 << MethodImpl->getDeclName();
2442 else S.Diag(ImplVar->getLocation(),
2443 diag::warn_conflicting_param_modifiers)
2444 << getTypeRange(ImplVar->getTypeSourceInfo())
2445 << MethodImpl->getDeclName();
2446 S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration)
2447 << getTypeRange(IfaceVar->getTypeSourceInfo());
2448 }
2449 else
2450 return false;
2451 }
2452
2453 QualType ImplTy = ImplVar->getType();
2454 QualType IfaceTy = IfaceVar->getType();
2455 if (Warn && IsOverridingMode &&
2456 !isa<ObjCImplementationDecl>(MethodImpl->getDeclContext()) &&
2457 !S.Context.hasSameNullabilityTypeQualifier(ImplTy, IfaceTy, true)) {
2458 S.Diag(ImplVar->getLocation(),
2459 diag::warn_conflicting_nullability_attr_overriding_param_types)
2460 << DiagNullabilityKind(*ImplTy->getNullability(),
2461 ((ImplVar->getObjCDeclQualifier() &
2462 Decl::OBJC_TQ_CSNullability) != 0))
2463 << DiagNullabilityKind(*IfaceTy->getNullability(),
2464 ((IfaceVar->getObjCDeclQualifier() &
2465 Decl::OBJC_TQ_CSNullability) != 0));
2466 S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration);
2467 }
2468 if (S.Context.hasSameUnqualifiedType(ImplTy, IfaceTy))
2469 return true;
2470
2471 if (!Warn)
2472 return false;
2473 unsigned DiagID =
2474 IsOverridingMode ? diag::warn_conflicting_overriding_param_types
2475 : diag::warn_conflicting_param_types;
2476
2477 // Mismatches between ObjC pointers go into a different warning
2478 // category, and sometimes they're even completely explicitly allowed..
2479 if (const ObjCObjectPointerType *ImplPtrTy =
2480 ImplTy->getAs<ObjCObjectPointerType>()) {
2481 if (const ObjCObjectPointerType *IfacePtrTy =
2482 IfaceTy->getAs<ObjCObjectPointerType>()) {
2483 // Allow non-matching argument types as long as they don't
2484 // violate the principle of substitutability. Specifically, the
2485 // implementation must accept any objects that the superclass
2486 // accepts, however it may also accept others.
2487 if (isObjCTypeSubstitutable(S.Context, ImplPtrTy, IfacePtrTy, true))
2488 return false;
2489
2490 DiagID =
2491 IsOverridingMode ? diag::warn_non_contravariant_overriding_param_types
2492 : diag::warn_non_contravariant_param_types;
2493 }
2494 }
2495
2496 S.Diag(ImplVar->getLocation(), DiagID)
2497 << getTypeRange(ImplVar->getTypeSourceInfo())
2498 << MethodImpl->getDeclName() << IfaceTy << ImplTy;
2499 S.Diag(IfaceVar->getLocation(),
2500 (IsOverridingMode ? diag::note_previous_declaration
2501 : diag::note_previous_definition))
2502 << getTypeRange(IfaceVar->getTypeSourceInfo());
2503 return false;
2504 }
2505
2506 /// In ARC, check whether the conventional meanings of the two methods
2507 /// match. If they don't, it's a hard error.
checkMethodFamilyMismatch(Sema & S,ObjCMethodDecl * impl,ObjCMethodDecl * decl)2508 static bool checkMethodFamilyMismatch(Sema &S, ObjCMethodDecl *impl,
2509 ObjCMethodDecl *decl) {
2510 ObjCMethodFamily implFamily = impl->getMethodFamily();
2511 ObjCMethodFamily declFamily = decl->getMethodFamily();
2512 if (implFamily == declFamily) return false;
2513
2514 // Since conventions are sorted by selector, the only possibility is
2515 // that the types differ enough to cause one selector or the other
2516 // to fall out of the family.
2517 assert(implFamily == OMF_None || declFamily == OMF_None);
2518
2519 // No further diagnostics required on invalid declarations.
2520 if (impl->isInvalidDecl() || decl->isInvalidDecl()) return true;
2521
2522 const ObjCMethodDecl *unmatched = impl;
2523 ObjCMethodFamily family = declFamily;
2524 unsigned errorID = diag::err_arc_lost_method_convention;
2525 unsigned noteID = diag::note_arc_lost_method_convention;
2526 if (declFamily == OMF_None) {
2527 unmatched = decl;
2528 family = implFamily;
2529 errorID = diag::err_arc_gained_method_convention;
2530 noteID = diag::note_arc_gained_method_convention;
2531 }
2532
2533 // Indexes into a %select clause in the diagnostic.
2534 enum FamilySelector {
2535 F_alloc, F_copy, F_mutableCopy = F_copy, F_init, F_new
2536 };
2537 FamilySelector familySelector = FamilySelector();
2538
2539 switch (family) {
2540 case OMF_None: llvm_unreachable("logic error, no method convention");
2541 case OMF_retain:
2542 case OMF_release:
2543 case OMF_autorelease:
2544 case OMF_dealloc:
2545 case OMF_finalize:
2546 case OMF_retainCount:
2547 case OMF_self:
2548 case OMF_initialize:
2549 case OMF_performSelector:
2550 // Mismatches for these methods don't change ownership
2551 // conventions, so we don't care.
2552 return false;
2553
2554 case OMF_init: familySelector = F_init; break;
2555 case OMF_alloc: familySelector = F_alloc; break;
2556 case OMF_copy: familySelector = F_copy; break;
2557 case OMF_mutableCopy: familySelector = F_mutableCopy; break;
2558 case OMF_new: familySelector = F_new; break;
2559 }
2560
2561 enum ReasonSelector { R_NonObjectReturn, R_UnrelatedReturn };
2562 ReasonSelector reasonSelector;
2563
2564 // The only reason these methods don't fall within their families is
2565 // due to unusual result types.
2566 if (unmatched->getReturnType()->isObjCObjectPointerType()) {
2567 reasonSelector = R_UnrelatedReturn;
2568 } else {
2569 reasonSelector = R_NonObjectReturn;
2570 }
2571
2572 S.Diag(impl->getLocation(), errorID) << int(familySelector) << int(reasonSelector);
2573 S.Diag(decl->getLocation(), noteID) << int(familySelector) << int(reasonSelector);
2574
2575 return true;
2576 }
2577
WarnConflictingTypedMethods(ObjCMethodDecl * ImpMethodDecl,ObjCMethodDecl * MethodDecl,bool IsProtocolMethodDecl)2578 void Sema::WarnConflictingTypedMethods(ObjCMethodDecl *ImpMethodDecl,
2579 ObjCMethodDecl *MethodDecl,
2580 bool IsProtocolMethodDecl) {
2581 if (getLangOpts().ObjCAutoRefCount &&
2582 checkMethodFamilyMismatch(*this, ImpMethodDecl, MethodDecl))
2583 return;
2584
2585 CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl,
2586 IsProtocolMethodDecl, false,
2587 true);
2588
2589 for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
2590 IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(),
2591 EF = MethodDecl->param_end();
2592 IM != EM && IF != EF; ++IM, ++IF) {
2593 CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl, *IM, *IF,
2594 IsProtocolMethodDecl, false, true);
2595 }
2596
2597 if (ImpMethodDecl->isVariadic() != MethodDecl->isVariadic()) {
2598 Diag(ImpMethodDecl->getLocation(),
2599 diag::warn_conflicting_variadic);
2600 Diag(MethodDecl->getLocation(), diag::note_previous_declaration);
2601 }
2602 }
2603
CheckConflictingOverridingMethod(ObjCMethodDecl * Method,ObjCMethodDecl * Overridden,bool IsProtocolMethodDecl)2604 void Sema::CheckConflictingOverridingMethod(ObjCMethodDecl *Method,
2605 ObjCMethodDecl *Overridden,
2606 bool IsProtocolMethodDecl) {
2607
2608 CheckMethodOverrideReturn(*this, Method, Overridden,
2609 IsProtocolMethodDecl, true,
2610 true);
2611
2612 for (ObjCMethodDecl::param_iterator IM = Method->param_begin(),
2613 IF = Overridden->param_begin(), EM = Method->param_end(),
2614 EF = Overridden->param_end();
2615 IM != EM && IF != EF; ++IM, ++IF) {
2616 CheckMethodOverrideParam(*this, Method, Overridden, *IM, *IF,
2617 IsProtocolMethodDecl, true, true);
2618 }
2619
2620 if (Method->isVariadic() != Overridden->isVariadic()) {
2621 Diag(Method->getLocation(),
2622 diag::warn_conflicting_overriding_variadic);
2623 Diag(Overridden->getLocation(), diag::note_previous_declaration);
2624 }
2625 }
2626
2627 /// WarnExactTypedMethods - This routine issues a warning if method
2628 /// implementation declaration matches exactly that of its declaration.
WarnExactTypedMethods(ObjCMethodDecl * ImpMethodDecl,ObjCMethodDecl * MethodDecl,bool IsProtocolMethodDecl)2629 void Sema::WarnExactTypedMethods(ObjCMethodDecl *ImpMethodDecl,
2630 ObjCMethodDecl *MethodDecl,
2631 bool IsProtocolMethodDecl) {
2632 // don't issue warning when protocol method is optional because primary
2633 // class is not required to implement it and it is safe for protocol
2634 // to implement it.
2635 if (MethodDecl->getImplementationControl() == ObjCMethodDecl::Optional)
2636 return;
2637 // don't issue warning when primary class's method is
2638 // deprecated/unavailable.
2639 if (MethodDecl->hasAttr<UnavailableAttr>() ||
2640 MethodDecl->hasAttr<DeprecatedAttr>())
2641 return;
2642
2643 bool match = CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl,
2644 IsProtocolMethodDecl, false, false);
2645 if (match)
2646 for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
2647 IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(),
2648 EF = MethodDecl->param_end();
2649 IM != EM && IF != EF; ++IM, ++IF) {
2650 match = CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl,
2651 *IM, *IF,
2652 IsProtocolMethodDecl, false, false);
2653 if (!match)
2654 break;
2655 }
2656 if (match)
2657 match = (ImpMethodDecl->isVariadic() == MethodDecl->isVariadic());
2658 if (match)
2659 match = !(MethodDecl->isClassMethod() &&
2660 MethodDecl->getSelector() == GetNullarySelector("load", Context));
2661
2662 if (match) {
2663 Diag(ImpMethodDecl->getLocation(),
2664 diag::warn_category_method_impl_match);
2665 Diag(MethodDecl->getLocation(), diag::note_method_declared_at)
2666 << MethodDecl->getDeclName();
2667 }
2668 }
2669
2670 /// FIXME: Type hierarchies in Objective-C can be deep. We could most likely
2671 /// improve the efficiency of selector lookups and type checking by associating
2672 /// with each protocol / interface / category the flattened instance tables. If
2673 /// we used an immutable set to keep the table then it wouldn't add significant
2674 /// memory cost and it would be handy for lookups.
2675
2676 typedef llvm::DenseSet<IdentifierInfo*> ProtocolNameSet;
2677 typedef std::unique_ptr<ProtocolNameSet> LazyProtocolNameSet;
2678
findProtocolsWithExplicitImpls(const ObjCProtocolDecl * PDecl,ProtocolNameSet & PNS)2679 static void findProtocolsWithExplicitImpls(const ObjCProtocolDecl *PDecl,
2680 ProtocolNameSet &PNS) {
2681 if (PDecl->hasAttr<ObjCExplicitProtocolImplAttr>())
2682 PNS.insert(PDecl->getIdentifier());
2683 for (const auto *PI : PDecl->protocols())
2684 findProtocolsWithExplicitImpls(PI, PNS);
2685 }
2686
2687 /// Recursively populates a set with all conformed protocols in a class
2688 /// hierarchy that have the 'objc_protocol_requires_explicit_implementation'
2689 /// attribute.
findProtocolsWithExplicitImpls(const ObjCInterfaceDecl * Super,ProtocolNameSet & PNS)2690 static void findProtocolsWithExplicitImpls(const ObjCInterfaceDecl *Super,
2691 ProtocolNameSet &PNS) {
2692 if (!Super)
2693 return;
2694
2695 for (const auto *I : Super->all_referenced_protocols())
2696 findProtocolsWithExplicitImpls(I, PNS);
2697
2698 findProtocolsWithExplicitImpls(Super->getSuperClass(), PNS);
2699 }
2700
2701 /// CheckProtocolMethodDefs - This routine checks unimplemented methods
2702 /// Declared in protocol, and those referenced by it.
CheckProtocolMethodDefs(Sema & S,ObjCImplDecl * Impl,ObjCProtocolDecl * PDecl,bool & IncompleteImpl,const Sema::SelectorSet & InsMap,const Sema::SelectorSet & ClsMap,ObjCContainerDecl * CDecl,LazyProtocolNameSet & ProtocolsExplictImpl)2703 static void CheckProtocolMethodDefs(
2704 Sema &S, ObjCImplDecl *Impl, ObjCProtocolDecl *PDecl, bool &IncompleteImpl,
2705 const Sema::SelectorSet &InsMap, const Sema::SelectorSet &ClsMap,
2706 ObjCContainerDecl *CDecl, LazyProtocolNameSet &ProtocolsExplictImpl) {
2707 ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl);
2708 ObjCInterfaceDecl *IDecl = C ? C->getClassInterface()
2709 : dyn_cast<ObjCInterfaceDecl>(CDecl);
2710 assert (IDecl && "CheckProtocolMethodDefs - IDecl is null");
2711
2712 ObjCInterfaceDecl *Super = IDecl->getSuperClass();
2713 ObjCInterfaceDecl *NSIDecl = nullptr;
2714
2715 // If this protocol is marked 'objc_protocol_requires_explicit_implementation'
2716 // then we should check if any class in the super class hierarchy also
2717 // conforms to this protocol, either directly or via protocol inheritance.
2718 // If so, we can skip checking this protocol completely because we
2719 // know that a parent class already satisfies this protocol.
2720 //
2721 // Note: we could generalize this logic for all protocols, and merely
2722 // add the limit on looking at the super class chain for just
2723 // specially marked protocols. This may be a good optimization. This
2724 // change is restricted to 'objc_protocol_requires_explicit_implementation'
2725 // protocols for now for controlled evaluation.
2726 if (PDecl->hasAttr<ObjCExplicitProtocolImplAttr>()) {
2727 if (!ProtocolsExplictImpl) {
2728 ProtocolsExplictImpl.reset(new ProtocolNameSet);
2729 findProtocolsWithExplicitImpls(Super, *ProtocolsExplictImpl);
2730 }
2731 if (ProtocolsExplictImpl->contains(PDecl->getIdentifier()))
2732 return;
2733
2734 // If no super class conforms to the protocol, we should not search
2735 // for methods in the super class to implicitly satisfy the protocol.
2736 Super = nullptr;
2737 }
2738
2739 if (S.getLangOpts().ObjCRuntime.isNeXTFamily()) {
2740 // check to see if class implements forwardInvocation method and objects
2741 // of this class are derived from 'NSProxy' so that to forward requests
2742 // from one object to another.
2743 // Under such conditions, which means that every method possible is
2744 // implemented in the class, we should not issue "Method definition not
2745 // found" warnings.
2746 // FIXME: Use a general GetUnarySelector method for this.
2747 IdentifierInfo* II = &S.Context.Idents.get("forwardInvocation");
2748 Selector fISelector = S.Context.Selectors.getSelector(1, &II);
2749 if (InsMap.count(fISelector))
2750 // Is IDecl derived from 'NSProxy'? If so, no instance methods
2751 // need be implemented in the implementation.
2752 NSIDecl = IDecl->lookupInheritedClass(&S.Context.Idents.get("NSProxy"));
2753 }
2754
2755 // If this is a forward protocol declaration, get its definition.
2756 if (!PDecl->isThisDeclarationADefinition() &&
2757 PDecl->getDefinition())
2758 PDecl = PDecl->getDefinition();
2759
2760 // If a method lookup fails locally we still need to look and see if
2761 // the method was implemented by a base class or an inherited
2762 // protocol. This lookup is slow, but occurs rarely in correct code
2763 // and otherwise would terminate in a warning.
2764
2765 // check unimplemented instance methods.
2766 if (!NSIDecl)
2767 for (auto *method : PDecl->instance_methods()) {
2768 if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
2769 !method->isPropertyAccessor() &&
2770 !InsMap.count(method->getSelector()) &&
2771 (!Super || !Super->lookupMethod(method->getSelector(),
2772 true /* instance */,
2773 false /* shallowCategory */,
2774 true /* followsSuper */,
2775 nullptr /* category */))) {
2776 // If a method is not implemented in the category implementation but
2777 // has been declared in its primary class, superclass,
2778 // or in one of their protocols, no need to issue the warning.
2779 // This is because method will be implemented in the primary class
2780 // or one of its super class implementation.
2781
2782 // Ugly, but necessary. Method declared in protocol might have
2783 // have been synthesized due to a property declared in the class which
2784 // uses the protocol.
2785 if (ObjCMethodDecl *MethodInClass =
2786 IDecl->lookupMethod(method->getSelector(),
2787 true /* instance */,
2788 true /* shallowCategoryLookup */,
2789 false /* followSuper */))
2790 if (C || MethodInClass->isPropertyAccessor())
2791 continue;
2792 unsigned DIAG = diag::warn_unimplemented_protocol_method;
2793 if (!S.Diags.isIgnored(DIAG, Impl->getLocation())) {
2794 WarnUndefinedMethod(S, Impl, method, IncompleteImpl, DIAG, PDecl);
2795 }
2796 }
2797 }
2798 // check unimplemented class methods
2799 for (auto *method : PDecl->class_methods()) {
2800 if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
2801 !ClsMap.count(method->getSelector()) &&
2802 (!Super || !Super->lookupMethod(method->getSelector(),
2803 false /* class method */,
2804 false /* shallowCategoryLookup */,
2805 true /* followSuper */,
2806 nullptr /* category */))) {
2807 // See above comment for instance method lookups.
2808 if (C && IDecl->lookupMethod(method->getSelector(),
2809 false /* class */,
2810 true /* shallowCategoryLookup */,
2811 false /* followSuper */))
2812 continue;
2813
2814 unsigned DIAG = diag::warn_unimplemented_protocol_method;
2815 if (!S.Diags.isIgnored(DIAG, Impl->getLocation())) {
2816 WarnUndefinedMethod(S, Impl, method, IncompleteImpl, DIAG, PDecl);
2817 }
2818 }
2819 }
2820 // Check on this protocols's referenced protocols, recursively.
2821 for (auto *PI : PDecl->protocols())
2822 CheckProtocolMethodDefs(S, Impl, PI, IncompleteImpl, InsMap, ClsMap, CDecl,
2823 ProtocolsExplictImpl);
2824 }
2825
2826 /// MatchAllMethodDeclarations - Check methods declared in interface
2827 /// or protocol against those declared in their implementations.
2828 ///
MatchAllMethodDeclarations(const SelectorSet & InsMap,const SelectorSet & ClsMap,SelectorSet & InsMapSeen,SelectorSet & ClsMapSeen,ObjCImplDecl * IMPDecl,ObjCContainerDecl * CDecl,bool & IncompleteImpl,bool ImmediateClass,bool WarnCategoryMethodImpl)2829 void Sema::MatchAllMethodDeclarations(const SelectorSet &InsMap,
2830 const SelectorSet &ClsMap,
2831 SelectorSet &InsMapSeen,
2832 SelectorSet &ClsMapSeen,
2833 ObjCImplDecl* IMPDecl,
2834 ObjCContainerDecl* CDecl,
2835 bool &IncompleteImpl,
2836 bool ImmediateClass,
2837 bool WarnCategoryMethodImpl) {
2838 // Check and see if instance methods in class interface have been
2839 // implemented in the implementation class. If so, their types match.
2840 for (auto *I : CDecl->instance_methods()) {
2841 if (!InsMapSeen.insert(I->getSelector()).second)
2842 continue;
2843 if (!I->isPropertyAccessor() &&
2844 !InsMap.count(I->getSelector())) {
2845 if (ImmediateClass)
2846 WarnUndefinedMethod(*this, IMPDecl, I, IncompleteImpl,
2847 diag::warn_undef_method_impl);
2848 continue;
2849 } else {
2850 ObjCMethodDecl *ImpMethodDecl =
2851 IMPDecl->getInstanceMethod(I->getSelector());
2852 assert(CDecl->getInstanceMethod(I->getSelector(), true/*AllowHidden*/) &&
2853 "Expected to find the method through lookup as well");
2854 // ImpMethodDecl may be null as in a @dynamic property.
2855 if (ImpMethodDecl) {
2856 // Skip property accessor function stubs.
2857 if (ImpMethodDecl->isSynthesizedAccessorStub())
2858 continue;
2859 if (!WarnCategoryMethodImpl)
2860 WarnConflictingTypedMethods(ImpMethodDecl, I,
2861 isa<ObjCProtocolDecl>(CDecl));
2862 else if (!I->isPropertyAccessor())
2863 WarnExactTypedMethods(ImpMethodDecl, I, isa<ObjCProtocolDecl>(CDecl));
2864 }
2865 }
2866 }
2867
2868 // Check and see if class methods in class interface have been
2869 // implemented in the implementation class. If so, their types match.
2870 for (auto *I : CDecl->class_methods()) {
2871 if (!ClsMapSeen.insert(I->getSelector()).second)
2872 continue;
2873 if (!I->isPropertyAccessor() &&
2874 !ClsMap.count(I->getSelector())) {
2875 if (ImmediateClass)
2876 WarnUndefinedMethod(*this, IMPDecl, I, IncompleteImpl,
2877 diag::warn_undef_method_impl);
2878 } else {
2879 ObjCMethodDecl *ImpMethodDecl =
2880 IMPDecl->getClassMethod(I->getSelector());
2881 assert(CDecl->getClassMethod(I->getSelector(), true/*AllowHidden*/) &&
2882 "Expected to find the method through lookup as well");
2883 // ImpMethodDecl may be null as in a @dynamic property.
2884 if (ImpMethodDecl) {
2885 // Skip property accessor function stubs.
2886 if (ImpMethodDecl->isSynthesizedAccessorStub())
2887 continue;
2888 if (!WarnCategoryMethodImpl)
2889 WarnConflictingTypedMethods(ImpMethodDecl, I,
2890 isa<ObjCProtocolDecl>(CDecl));
2891 else if (!I->isPropertyAccessor())
2892 WarnExactTypedMethods(ImpMethodDecl, I, isa<ObjCProtocolDecl>(CDecl));
2893 }
2894 }
2895 }
2896
2897 if (ObjCProtocolDecl *PD = dyn_cast<ObjCProtocolDecl> (CDecl)) {
2898 // Also, check for methods declared in protocols inherited by
2899 // this protocol.
2900 for (auto *PI : PD->protocols())
2901 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2902 IMPDecl, PI, IncompleteImpl, false,
2903 WarnCategoryMethodImpl);
2904 }
2905
2906 if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
2907 // when checking that methods in implementation match their declaration,
2908 // i.e. when WarnCategoryMethodImpl is false, check declarations in class
2909 // extension; as well as those in categories.
2910 if (!WarnCategoryMethodImpl) {
2911 for (auto *Cat : I->visible_categories())
2912 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2913 IMPDecl, Cat, IncompleteImpl,
2914 ImmediateClass && Cat->IsClassExtension(),
2915 WarnCategoryMethodImpl);
2916 } else {
2917 // Also methods in class extensions need be looked at next.
2918 for (auto *Ext : I->visible_extensions())
2919 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2920 IMPDecl, Ext, IncompleteImpl, false,
2921 WarnCategoryMethodImpl);
2922 }
2923
2924 // Check for any implementation of a methods declared in protocol.
2925 for (auto *PI : I->all_referenced_protocols())
2926 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2927 IMPDecl, PI, IncompleteImpl, false,
2928 WarnCategoryMethodImpl);
2929
2930 // FIXME. For now, we are not checking for exact match of methods
2931 // in category implementation and its primary class's super class.
2932 if (!WarnCategoryMethodImpl && I->getSuperClass())
2933 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2934 IMPDecl,
2935 I->getSuperClass(), IncompleteImpl, false);
2936 }
2937 }
2938
2939 /// CheckCategoryVsClassMethodMatches - Checks that methods implemented in
2940 /// category matches with those implemented in its primary class and
2941 /// warns each time an exact match is found.
CheckCategoryVsClassMethodMatches(ObjCCategoryImplDecl * CatIMPDecl)2942 void Sema::CheckCategoryVsClassMethodMatches(
2943 ObjCCategoryImplDecl *CatIMPDecl) {
2944 // Get category's primary class.
2945 ObjCCategoryDecl *CatDecl = CatIMPDecl->getCategoryDecl();
2946 if (!CatDecl)
2947 return;
2948 ObjCInterfaceDecl *IDecl = CatDecl->getClassInterface();
2949 if (!IDecl)
2950 return;
2951 ObjCInterfaceDecl *SuperIDecl = IDecl->getSuperClass();
2952 SelectorSet InsMap, ClsMap;
2953
2954 for (const auto *I : CatIMPDecl->instance_methods()) {
2955 Selector Sel = I->getSelector();
2956 // When checking for methods implemented in the category, skip over
2957 // those declared in category class's super class. This is because
2958 // the super class must implement the method.
2959 if (SuperIDecl && SuperIDecl->lookupMethod(Sel, true))
2960 continue;
2961 InsMap.insert(Sel);
2962 }
2963
2964 for (const auto *I : CatIMPDecl->class_methods()) {
2965 Selector Sel = I->getSelector();
2966 if (SuperIDecl && SuperIDecl->lookupMethod(Sel, false))
2967 continue;
2968 ClsMap.insert(Sel);
2969 }
2970 if (InsMap.empty() && ClsMap.empty())
2971 return;
2972
2973 SelectorSet InsMapSeen, ClsMapSeen;
2974 bool IncompleteImpl = false;
2975 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2976 CatIMPDecl, IDecl,
2977 IncompleteImpl, false,
2978 true /*WarnCategoryMethodImpl*/);
2979 }
2980
ImplMethodsVsClassMethods(Scope * S,ObjCImplDecl * IMPDecl,ObjCContainerDecl * CDecl,bool IncompleteImpl)2981 void Sema::ImplMethodsVsClassMethods(Scope *S, ObjCImplDecl* IMPDecl,
2982 ObjCContainerDecl* CDecl,
2983 bool IncompleteImpl) {
2984 SelectorSet InsMap;
2985 // Check and see if instance methods in class interface have been
2986 // implemented in the implementation class.
2987 for (const auto *I : IMPDecl->instance_methods())
2988 InsMap.insert(I->getSelector());
2989
2990 // Add the selectors for getters/setters of @dynamic properties.
2991 for (const auto *PImpl : IMPDecl->property_impls()) {
2992 // We only care about @dynamic implementations.
2993 if (PImpl->getPropertyImplementation() != ObjCPropertyImplDecl::Dynamic)
2994 continue;
2995
2996 const auto *P = PImpl->getPropertyDecl();
2997 if (!P) continue;
2998
2999 InsMap.insert(P->getGetterName());
3000 if (!P->getSetterName().isNull())
3001 InsMap.insert(P->getSetterName());
3002 }
3003
3004 // Check and see if properties declared in the interface have either 1)
3005 // an implementation or 2) there is a @synthesize/@dynamic implementation
3006 // of the property in the @implementation.
3007 if (const ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
3008 bool SynthesizeProperties = LangOpts.ObjCDefaultSynthProperties &&
3009 LangOpts.ObjCRuntime.isNonFragile() &&
3010 !IDecl->isObjCRequiresPropertyDefs();
3011 DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, SynthesizeProperties);
3012 }
3013
3014 // Diagnose null-resettable synthesized setters.
3015 diagnoseNullResettableSynthesizedSetters(IMPDecl);
3016
3017 SelectorSet ClsMap;
3018 for (const auto *I : IMPDecl->class_methods())
3019 ClsMap.insert(I->getSelector());
3020
3021 // Check for type conflict of methods declared in a class/protocol and
3022 // its implementation; if any.
3023 SelectorSet InsMapSeen, ClsMapSeen;
3024 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
3025 IMPDecl, CDecl,
3026 IncompleteImpl, true);
3027
3028 // check all methods implemented in category against those declared
3029 // in its primary class.
3030 if (ObjCCategoryImplDecl *CatDecl =
3031 dyn_cast<ObjCCategoryImplDecl>(IMPDecl))
3032 CheckCategoryVsClassMethodMatches(CatDecl);
3033
3034 // Check the protocol list for unimplemented methods in the @implementation
3035 // class.
3036 // Check and see if class methods in class interface have been
3037 // implemented in the implementation class.
3038
3039 LazyProtocolNameSet ExplicitImplProtocols;
3040
3041 if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
3042 for (auto *PI : I->all_referenced_protocols())
3043 CheckProtocolMethodDefs(*this, IMPDecl, PI, IncompleteImpl, InsMap,
3044 ClsMap, I, ExplicitImplProtocols);
3045 } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl)) {
3046 // For extended class, unimplemented methods in its protocols will
3047 // be reported in the primary class.
3048 if (!C->IsClassExtension()) {
3049 for (auto *P : C->protocols())
3050 CheckProtocolMethodDefs(*this, IMPDecl, P, IncompleteImpl, InsMap,
3051 ClsMap, CDecl, ExplicitImplProtocols);
3052 DiagnoseUnimplementedProperties(S, IMPDecl, CDecl,
3053 /*SynthesizeProperties=*/false);
3054 }
3055 } else
3056 llvm_unreachable("invalid ObjCContainerDecl type.");
3057 }
3058
3059 Sema::DeclGroupPtrTy
ActOnForwardClassDeclaration(SourceLocation AtClassLoc,IdentifierInfo ** IdentList,SourceLocation * IdentLocs,ArrayRef<ObjCTypeParamList * > TypeParamLists,unsigned NumElts)3060 Sema::ActOnForwardClassDeclaration(SourceLocation AtClassLoc,
3061 IdentifierInfo **IdentList,
3062 SourceLocation *IdentLocs,
3063 ArrayRef<ObjCTypeParamList *> TypeParamLists,
3064 unsigned NumElts) {
3065 SmallVector<Decl *, 8> DeclsInGroup;
3066 for (unsigned i = 0; i != NumElts; ++i) {
3067 // Check for another declaration kind with the same name.
3068 NamedDecl *PrevDecl
3069 = LookupSingleName(TUScope, IdentList[i], IdentLocs[i],
3070 LookupOrdinaryName, forRedeclarationInCurContext());
3071 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
3072 // GCC apparently allows the following idiom:
3073 //
3074 // typedef NSObject < XCElementTogglerP > XCElementToggler;
3075 // @class XCElementToggler;
3076 //
3077 // Here we have chosen to ignore the forward class declaration
3078 // with a warning. Since this is the implied behavior.
3079 TypedefNameDecl *TDD = dyn_cast<TypedefNameDecl>(PrevDecl);
3080 if (!TDD || !TDD->getUnderlyingType()->isObjCObjectType()) {
3081 Diag(AtClassLoc, diag::err_redefinition_different_kind) << IdentList[i];
3082 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3083 } else {
3084 // a forward class declaration matching a typedef name of a class refers
3085 // to the underlying class. Just ignore the forward class with a warning
3086 // as this will force the intended behavior which is to lookup the
3087 // typedef name.
3088 if (isa<ObjCObjectType>(TDD->getUnderlyingType())) {
3089 Diag(AtClassLoc, diag::warn_forward_class_redefinition)
3090 << IdentList[i];
3091 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3092 continue;
3093 }
3094 }
3095 }
3096
3097 // Create a declaration to describe this forward declaration.
3098 ObjCInterfaceDecl *PrevIDecl
3099 = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
3100
3101 IdentifierInfo *ClassName = IdentList[i];
3102 if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) {
3103 // A previous decl with a different name is because of
3104 // @compatibility_alias, for example:
3105 // \code
3106 // @class NewImage;
3107 // @compatibility_alias OldImage NewImage;
3108 // \endcode
3109 // A lookup for 'OldImage' will return the 'NewImage' decl.
3110 //
3111 // In such a case use the real declaration name, instead of the alias one,
3112 // otherwise we will break IdentifierResolver and redecls-chain invariants.
3113 // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl
3114 // has been aliased.
3115 ClassName = PrevIDecl->getIdentifier();
3116 }
3117
3118 // If this forward declaration has type parameters, compare them with the
3119 // type parameters of the previous declaration.
3120 ObjCTypeParamList *TypeParams = TypeParamLists[i];
3121 if (PrevIDecl && TypeParams) {
3122 if (ObjCTypeParamList *PrevTypeParams = PrevIDecl->getTypeParamList()) {
3123 // Check for consistency with the previous declaration.
3124 if (checkTypeParamListConsistency(
3125 *this, PrevTypeParams, TypeParams,
3126 TypeParamListContext::ForwardDeclaration)) {
3127 TypeParams = nullptr;
3128 }
3129 } else if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) {
3130 // The @interface does not have type parameters. Complain.
3131 Diag(IdentLocs[i], diag::err_objc_parameterized_forward_class)
3132 << ClassName
3133 << TypeParams->getSourceRange();
3134 Diag(Def->getLocation(), diag::note_defined_here)
3135 << ClassName;
3136
3137 TypeParams = nullptr;
3138 }
3139 }
3140
3141 ObjCInterfaceDecl *IDecl
3142 = ObjCInterfaceDecl::Create(Context, CurContext, AtClassLoc,
3143 ClassName, TypeParams, PrevIDecl,
3144 IdentLocs[i]);
3145 IDecl->setAtEndRange(IdentLocs[i]);
3146
3147 if (PrevIDecl)
3148 mergeDeclAttributes(IDecl, PrevIDecl);
3149
3150 PushOnScopeChains(IDecl, TUScope);
3151 CheckObjCDeclScope(IDecl);
3152 DeclsInGroup.push_back(IDecl);
3153 }
3154
3155 return BuildDeclaratorGroup(DeclsInGroup);
3156 }
3157
3158 static bool tryMatchRecordTypes(ASTContext &Context,
3159 Sema::MethodMatchStrategy strategy,
3160 const Type *left, const Type *right);
3161
matchTypes(ASTContext & Context,Sema::MethodMatchStrategy strategy,QualType leftQT,QualType rightQT)3162 static bool matchTypes(ASTContext &Context, Sema::MethodMatchStrategy strategy,
3163 QualType leftQT, QualType rightQT) {
3164 const Type *left =
3165 Context.getCanonicalType(leftQT).getUnqualifiedType().getTypePtr();
3166 const Type *right =
3167 Context.getCanonicalType(rightQT).getUnqualifiedType().getTypePtr();
3168
3169 if (left == right) return true;
3170
3171 // If we're doing a strict match, the types have to match exactly.
3172 if (strategy == Sema::MMS_strict) return false;
3173
3174 if (left->isIncompleteType() || right->isIncompleteType()) return false;
3175
3176 // Otherwise, use this absurdly complicated algorithm to try to
3177 // validate the basic, low-level compatibility of the two types.
3178
3179 // As a minimum, require the sizes and alignments to match.
3180 TypeInfo LeftTI = Context.getTypeInfo(left);
3181 TypeInfo RightTI = Context.getTypeInfo(right);
3182 if (LeftTI.Width != RightTI.Width)
3183 return false;
3184
3185 if (LeftTI.Align != RightTI.Align)
3186 return false;
3187
3188 // Consider all the kinds of non-dependent canonical types:
3189 // - functions and arrays aren't possible as return and parameter types
3190
3191 // - vector types of equal size can be arbitrarily mixed
3192 if (isa<VectorType>(left)) return isa<VectorType>(right);
3193 if (isa<VectorType>(right)) return false;
3194
3195 // - references should only match references of identical type
3196 // - structs, unions, and Objective-C objects must match more-or-less
3197 // exactly
3198 // - everything else should be a scalar
3199 if (!left->isScalarType() || !right->isScalarType())
3200 return tryMatchRecordTypes(Context, strategy, left, right);
3201
3202 // Make scalars agree in kind, except count bools as chars, and group
3203 // all non-member pointers together.
3204 Type::ScalarTypeKind leftSK = left->getScalarTypeKind();
3205 Type::ScalarTypeKind rightSK = right->getScalarTypeKind();
3206 if (leftSK == Type::STK_Bool) leftSK = Type::STK_Integral;
3207 if (rightSK == Type::STK_Bool) rightSK = Type::STK_Integral;
3208 if (leftSK == Type::STK_CPointer || leftSK == Type::STK_BlockPointer)
3209 leftSK = Type::STK_ObjCObjectPointer;
3210 if (rightSK == Type::STK_CPointer || rightSK == Type::STK_BlockPointer)
3211 rightSK = Type::STK_ObjCObjectPointer;
3212
3213 // Note that data member pointers and function member pointers don't
3214 // intermix because of the size differences.
3215
3216 return (leftSK == rightSK);
3217 }
3218
tryMatchRecordTypes(ASTContext & Context,Sema::MethodMatchStrategy strategy,const Type * lt,const Type * rt)3219 static bool tryMatchRecordTypes(ASTContext &Context,
3220 Sema::MethodMatchStrategy strategy,
3221 const Type *lt, const Type *rt) {
3222 assert(lt && rt && lt != rt);
3223
3224 if (!isa<RecordType>(lt) || !isa<RecordType>(rt)) return false;
3225 RecordDecl *left = cast<RecordType>(lt)->getDecl();
3226 RecordDecl *right = cast<RecordType>(rt)->getDecl();
3227
3228 // Require union-hood to match.
3229 if (left->isUnion() != right->isUnion()) return false;
3230
3231 // Require an exact match if either is non-POD.
3232 if ((isa<CXXRecordDecl>(left) && !cast<CXXRecordDecl>(left)->isPOD()) ||
3233 (isa<CXXRecordDecl>(right) && !cast<CXXRecordDecl>(right)->isPOD()))
3234 return false;
3235
3236 // Require size and alignment to match.
3237 TypeInfo LeftTI = Context.getTypeInfo(lt);
3238 TypeInfo RightTI = Context.getTypeInfo(rt);
3239 if (LeftTI.Width != RightTI.Width)
3240 return false;
3241
3242 if (LeftTI.Align != RightTI.Align)
3243 return false;
3244
3245 // Require fields to match.
3246 RecordDecl::field_iterator li = left->field_begin(), le = left->field_end();
3247 RecordDecl::field_iterator ri = right->field_begin(), re = right->field_end();
3248 for (; li != le && ri != re; ++li, ++ri) {
3249 if (!matchTypes(Context, strategy, li->getType(), ri->getType()))
3250 return false;
3251 }
3252 return (li == le && ri == re);
3253 }
3254
3255 /// MatchTwoMethodDeclarations - Checks that two methods have matching type and
3256 /// returns true, or false, accordingly.
3257 /// TODO: Handle protocol list; such as id<p1,p2> in type comparisons
MatchTwoMethodDeclarations(const ObjCMethodDecl * left,const ObjCMethodDecl * right,MethodMatchStrategy strategy)3258 bool Sema::MatchTwoMethodDeclarations(const ObjCMethodDecl *left,
3259 const ObjCMethodDecl *right,
3260 MethodMatchStrategy strategy) {
3261 if (!matchTypes(Context, strategy, left->getReturnType(),
3262 right->getReturnType()))
3263 return false;
3264
3265 // If either is hidden, it is not considered to match.
3266 if (!left->isUnconditionallyVisible() || !right->isUnconditionallyVisible())
3267 return false;
3268
3269 if (left->isDirectMethod() != right->isDirectMethod())
3270 return false;
3271
3272 if (getLangOpts().ObjCAutoRefCount &&
3273 (left->hasAttr<NSReturnsRetainedAttr>()
3274 != right->hasAttr<NSReturnsRetainedAttr>() ||
3275 left->hasAttr<NSConsumesSelfAttr>()
3276 != right->hasAttr<NSConsumesSelfAttr>()))
3277 return false;
3278
3279 ObjCMethodDecl::param_const_iterator
3280 li = left->param_begin(), le = left->param_end(), ri = right->param_begin(),
3281 re = right->param_end();
3282
3283 for (; li != le && ri != re; ++li, ++ri) {
3284 assert(ri != right->param_end() && "Param mismatch");
3285 const ParmVarDecl *lparm = *li, *rparm = *ri;
3286
3287 if (!matchTypes(Context, strategy, lparm->getType(), rparm->getType()))
3288 return false;
3289
3290 if (getLangOpts().ObjCAutoRefCount &&
3291 lparm->hasAttr<NSConsumedAttr>() != rparm->hasAttr<NSConsumedAttr>())
3292 return false;
3293 }
3294 return true;
3295 }
3296
isMethodContextSameForKindofLookup(ObjCMethodDecl * Method,ObjCMethodDecl * MethodInList)3297 static bool isMethodContextSameForKindofLookup(ObjCMethodDecl *Method,
3298 ObjCMethodDecl *MethodInList) {
3299 auto *MethodProtocol = dyn_cast<ObjCProtocolDecl>(Method->getDeclContext());
3300 auto *MethodInListProtocol =
3301 dyn_cast<ObjCProtocolDecl>(MethodInList->getDeclContext());
3302 // If this method belongs to a protocol but the method in list does not, or
3303 // vice versa, we say the context is not the same.
3304 if ((MethodProtocol && !MethodInListProtocol) ||
3305 (!MethodProtocol && MethodInListProtocol))
3306 return false;
3307
3308 if (MethodProtocol && MethodInListProtocol)
3309 return true;
3310
3311 ObjCInterfaceDecl *MethodInterface = Method->getClassInterface();
3312 ObjCInterfaceDecl *MethodInListInterface =
3313 MethodInList->getClassInterface();
3314 return MethodInterface == MethodInListInterface;
3315 }
3316
addMethodToGlobalList(ObjCMethodList * List,ObjCMethodDecl * Method)3317 void Sema::addMethodToGlobalList(ObjCMethodList *List,
3318 ObjCMethodDecl *Method) {
3319 // Record at the head of the list whether there were 0, 1, or >= 2 methods
3320 // inside categories.
3321 if (ObjCCategoryDecl *CD =
3322 dyn_cast<ObjCCategoryDecl>(Method->getDeclContext()))
3323 if (!CD->IsClassExtension() && List->getBits() < 2)
3324 List->setBits(List->getBits() + 1);
3325
3326 // If the list is empty, make it a singleton list.
3327 if (List->getMethod() == nullptr) {
3328 List->setMethod(Method);
3329 List->setNext(nullptr);
3330 return;
3331 }
3332
3333 // We've seen a method with this name, see if we have already seen this type
3334 // signature.
3335 ObjCMethodList *Previous = List;
3336 ObjCMethodList *ListWithSameDeclaration = nullptr;
3337 for (; List; Previous = List, List = List->getNext()) {
3338 // If we are building a module, keep all of the methods.
3339 if (getLangOpts().isCompilingModule())
3340 continue;
3341
3342 bool SameDeclaration = MatchTwoMethodDeclarations(Method,
3343 List->getMethod());
3344 // Looking for method with a type bound requires the correct context exists.
3345 // We need to insert a method into the list if the context is different.
3346 // If the method's declaration matches the list
3347 // a> the method belongs to a different context: we need to insert it, in
3348 // order to emit the availability message, we need to prioritize over
3349 // availability among the methods with the same declaration.
3350 // b> the method belongs to the same context: there is no need to insert a
3351 // new entry.
3352 // If the method's declaration does not match the list, we insert it to the
3353 // end.
3354 if (!SameDeclaration ||
3355 !isMethodContextSameForKindofLookup(Method, List->getMethod())) {
3356 // Even if two method types do not match, we would like to say
3357 // there is more than one declaration so unavailability/deprecated
3358 // warning is not too noisy.
3359 if (!Method->isDefined())
3360 List->setHasMoreThanOneDecl(true);
3361
3362 // For methods with the same declaration, the one that is deprecated
3363 // should be put in the front for better diagnostics.
3364 if (Method->isDeprecated() && SameDeclaration &&
3365 !ListWithSameDeclaration && !List->getMethod()->isDeprecated())
3366 ListWithSameDeclaration = List;
3367
3368 if (Method->isUnavailable() && SameDeclaration &&
3369 !ListWithSameDeclaration &&
3370 List->getMethod()->getAvailability() < AR_Deprecated)
3371 ListWithSameDeclaration = List;
3372 continue;
3373 }
3374
3375 ObjCMethodDecl *PrevObjCMethod = List->getMethod();
3376
3377 // Propagate the 'defined' bit.
3378 if (Method->isDefined())
3379 PrevObjCMethod->setDefined(true);
3380 else {
3381 // Objective-C doesn't allow an @interface for a class after its
3382 // @implementation. So if Method is not defined and there already is
3383 // an entry for this type signature, Method has to be for a different
3384 // class than PrevObjCMethod.
3385 List->setHasMoreThanOneDecl(true);
3386 }
3387
3388 // If a method is deprecated, push it in the global pool.
3389 // This is used for better diagnostics.
3390 if (Method->isDeprecated()) {
3391 if (!PrevObjCMethod->isDeprecated())
3392 List->setMethod(Method);
3393 }
3394 // If the new method is unavailable, push it into global pool
3395 // unless previous one is deprecated.
3396 if (Method->isUnavailable()) {
3397 if (PrevObjCMethod->getAvailability() < AR_Deprecated)
3398 List->setMethod(Method);
3399 }
3400
3401 return;
3402 }
3403
3404 // We have a new signature for an existing method - add it.
3405 // This is extremely rare. Only 1% of Cocoa selectors are "overloaded".
3406 ObjCMethodList *Mem = BumpAlloc.Allocate<ObjCMethodList>();
3407
3408 // We insert it right before ListWithSameDeclaration.
3409 if (ListWithSameDeclaration) {
3410 auto *List = new (Mem) ObjCMethodList(*ListWithSameDeclaration);
3411 // FIXME: should we clear the other bits in ListWithSameDeclaration?
3412 ListWithSameDeclaration->setMethod(Method);
3413 ListWithSameDeclaration->setNext(List);
3414 return;
3415 }
3416
3417 Previous->setNext(new (Mem) ObjCMethodList(Method));
3418 }
3419
3420 /// Read the contents of the method pool for a given selector from
3421 /// external storage.
ReadMethodPool(Selector Sel)3422 void Sema::ReadMethodPool(Selector Sel) {
3423 assert(ExternalSource && "We need an external AST source");
3424 ExternalSource->ReadMethodPool(Sel);
3425 }
3426
updateOutOfDateSelector(Selector Sel)3427 void Sema::updateOutOfDateSelector(Selector Sel) {
3428 if (!ExternalSource)
3429 return;
3430 ExternalSource->updateOutOfDateSelector(Sel);
3431 }
3432
AddMethodToGlobalPool(ObjCMethodDecl * Method,bool impl,bool instance)3433 void Sema::AddMethodToGlobalPool(ObjCMethodDecl *Method, bool impl,
3434 bool instance) {
3435 // Ignore methods of invalid containers.
3436 if (cast<Decl>(Method->getDeclContext())->isInvalidDecl())
3437 return;
3438
3439 if (ExternalSource)
3440 ReadMethodPool(Method->getSelector());
3441
3442 GlobalMethodPool::iterator Pos = MethodPool.find(Method->getSelector());
3443 if (Pos == MethodPool.end())
3444 Pos = MethodPool
3445 .insert(std::make_pair(Method->getSelector(),
3446 GlobalMethodPool::Lists()))
3447 .first;
3448
3449 Method->setDefined(impl);
3450
3451 ObjCMethodList &Entry = instance ? Pos->second.first : Pos->second.second;
3452 addMethodToGlobalList(&Entry, Method);
3453 }
3454
3455 /// Determines if this is an "acceptable" loose mismatch in the global
3456 /// method pool. This exists mostly as a hack to get around certain
3457 /// global mismatches which we can't afford to make warnings / errors.
3458 /// Really, what we want is a way to take a method out of the global
3459 /// method pool.
isAcceptableMethodMismatch(ObjCMethodDecl * chosen,ObjCMethodDecl * other)3460 static bool isAcceptableMethodMismatch(ObjCMethodDecl *chosen,
3461 ObjCMethodDecl *other) {
3462 if (!chosen->isInstanceMethod())
3463 return false;
3464
3465 if (chosen->isDirectMethod() != other->isDirectMethod())
3466 return false;
3467
3468 Selector sel = chosen->getSelector();
3469 if (!sel.isUnarySelector() || sel.getNameForSlot(0) != "length")
3470 return false;
3471
3472 // Don't complain about mismatches for -length if the method we
3473 // chose has an integral result type.
3474 return (chosen->getReturnType()->isIntegerType());
3475 }
3476
3477 /// Return true if the given method is wthin the type bound.
FilterMethodsByTypeBound(ObjCMethodDecl * Method,const ObjCObjectType * TypeBound)3478 static bool FilterMethodsByTypeBound(ObjCMethodDecl *Method,
3479 const ObjCObjectType *TypeBound) {
3480 if (!TypeBound)
3481 return true;
3482
3483 if (TypeBound->isObjCId())
3484 // FIXME: should we handle the case of bounding to id<A, B> differently?
3485 return true;
3486
3487 auto *BoundInterface = TypeBound->getInterface();
3488 assert(BoundInterface && "unexpected object type!");
3489
3490 // Check if the Method belongs to a protocol. We should allow any method
3491 // defined in any protocol, because any subclass could adopt the protocol.
3492 auto *MethodProtocol = dyn_cast<ObjCProtocolDecl>(Method->getDeclContext());
3493 if (MethodProtocol) {
3494 return true;
3495 }
3496
3497 // If the Method belongs to a class, check if it belongs to the class
3498 // hierarchy of the class bound.
3499 if (ObjCInterfaceDecl *MethodInterface = Method->getClassInterface()) {
3500 // We allow methods declared within classes that are part of the hierarchy
3501 // of the class bound (superclass of, subclass of, or the same as the class
3502 // bound).
3503 return MethodInterface == BoundInterface ||
3504 MethodInterface->isSuperClassOf(BoundInterface) ||
3505 BoundInterface->isSuperClassOf(MethodInterface);
3506 }
3507 llvm_unreachable("unknown method context");
3508 }
3509
3510 /// We first select the type of the method: Instance or Factory, then collect
3511 /// all methods with that type.
CollectMultipleMethodsInGlobalPool(Selector Sel,SmallVectorImpl<ObjCMethodDecl * > & Methods,bool InstanceFirst,bool CheckTheOther,const ObjCObjectType * TypeBound)3512 bool Sema::CollectMultipleMethodsInGlobalPool(
3513 Selector Sel, SmallVectorImpl<ObjCMethodDecl *> &Methods,
3514 bool InstanceFirst, bool CheckTheOther,
3515 const ObjCObjectType *TypeBound) {
3516 if (ExternalSource)
3517 ReadMethodPool(Sel);
3518
3519 GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3520 if (Pos == MethodPool.end())
3521 return false;
3522
3523 // Gather the non-hidden methods.
3524 ObjCMethodList &MethList = InstanceFirst ? Pos->second.first :
3525 Pos->second.second;
3526 for (ObjCMethodList *M = &MethList; M; M = M->getNext())
3527 if (M->getMethod() && M->getMethod()->isUnconditionallyVisible()) {
3528 if (FilterMethodsByTypeBound(M->getMethod(), TypeBound))
3529 Methods.push_back(M->getMethod());
3530 }
3531
3532 // Return if we find any method with the desired kind.
3533 if (!Methods.empty())
3534 return Methods.size() > 1;
3535
3536 if (!CheckTheOther)
3537 return false;
3538
3539 // Gather the other kind.
3540 ObjCMethodList &MethList2 = InstanceFirst ? Pos->second.second :
3541 Pos->second.first;
3542 for (ObjCMethodList *M = &MethList2; M; M = M->getNext())
3543 if (M->getMethod() && M->getMethod()->isUnconditionallyVisible()) {
3544 if (FilterMethodsByTypeBound(M->getMethod(), TypeBound))
3545 Methods.push_back(M->getMethod());
3546 }
3547
3548 return Methods.size() > 1;
3549 }
3550
AreMultipleMethodsInGlobalPool(Selector Sel,ObjCMethodDecl * BestMethod,SourceRange R,bool receiverIdOrClass,SmallVectorImpl<ObjCMethodDecl * > & Methods)3551 bool Sema::AreMultipleMethodsInGlobalPool(
3552 Selector Sel, ObjCMethodDecl *BestMethod, SourceRange R,
3553 bool receiverIdOrClass, SmallVectorImpl<ObjCMethodDecl *> &Methods) {
3554 // Diagnose finding more than one method in global pool.
3555 SmallVector<ObjCMethodDecl *, 4> FilteredMethods;
3556 FilteredMethods.push_back(BestMethod);
3557
3558 for (auto *M : Methods)
3559 if (M != BestMethod && !M->hasAttr<UnavailableAttr>())
3560 FilteredMethods.push_back(M);
3561
3562 if (FilteredMethods.size() > 1)
3563 DiagnoseMultipleMethodInGlobalPool(FilteredMethods, Sel, R,
3564 receiverIdOrClass);
3565
3566 GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3567 // Test for no method in the pool which should not trigger any warning by
3568 // caller.
3569 if (Pos == MethodPool.end())
3570 return true;
3571 ObjCMethodList &MethList =
3572 BestMethod->isInstanceMethod() ? Pos->second.first : Pos->second.second;
3573 return MethList.hasMoreThanOneDecl();
3574 }
3575
LookupMethodInGlobalPool(Selector Sel,SourceRange R,bool receiverIdOrClass,bool instance)3576 ObjCMethodDecl *Sema::LookupMethodInGlobalPool(Selector Sel, SourceRange R,
3577 bool receiverIdOrClass,
3578 bool instance) {
3579 if (ExternalSource)
3580 ReadMethodPool(Sel);
3581
3582 GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3583 if (Pos == MethodPool.end())
3584 return nullptr;
3585
3586 // Gather the non-hidden methods.
3587 ObjCMethodList &MethList = instance ? Pos->second.first : Pos->second.second;
3588 SmallVector<ObjCMethodDecl *, 4> Methods;
3589 for (ObjCMethodList *M = &MethList; M; M = M->getNext()) {
3590 if (M->getMethod() && M->getMethod()->isUnconditionallyVisible())
3591 return M->getMethod();
3592 }
3593 return nullptr;
3594 }
3595
DiagnoseMultipleMethodInGlobalPool(SmallVectorImpl<ObjCMethodDecl * > & Methods,Selector Sel,SourceRange R,bool receiverIdOrClass)3596 void Sema::DiagnoseMultipleMethodInGlobalPool(SmallVectorImpl<ObjCMethodDecl*> &Methods,
3597 Selector Sel, SourceRange R,
3598 bool receiverIdOrClass) {
3599 // We found multiple methods, so we may have to complain.
3600 bool issueDiagnostic = false, issueError = false;
3601
3602 // We support a warning which complains about *any* difference in
3603 // method signature.
3604 bool strictSelectorMatch =
3605 receiverIdOrClass &&
3606 !Diags.isIgnored(diag::warn_strict_multiple_method_decl, R.getBegin());
3607 if (strictSelectorMatch) {
3608 for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
3609 if (!MatchTwoMethodDeclarations(Methods[0], Methods[I], MMS_strict)) {
3610 issueDiagnostic = true;
3611 break;
3612 }
3613 }
3614 }
3615
3616 // If we didn't see any strict differences, we won't see any loose
3617 // differences. In ARC, however, we also need to check for loose
3618 // mismatches, because most of them are errors.
3619 if (!strictSelectorMatch ||
3620 (issueDiagnostic && getLangOpts().ObjCAutoRefCount))
3621 for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
3622 // This checks if the methods differ in type mismatch.
3623 if (!MatchTwoMethodDeclarations(Methods[0], Methods[I], MMS_loose) &&
3624 !isAcceptableMethodMismatch(Methods[0], Methods[I])) {
3625 issueDiagnostic = true;
3626 if (getLangOpts().ObjCAutoRefCount)
3627 issueError = true;
3628 break;
3629 }
3630 }
3631
3632 if (issueDiagnostic) {
3633 if (issueError)
3634 Diag(R.getBegin(), diag::err_arc_multiple_method_decl) << Sel << R;
3635 else if (strictSelectorMatch)
3636 Diag(R.getBegin(), diag::warn_strict_multiple_method_decl) << Sel << R;
3637 else
3638 Diag(R.getBegin(), diag::warn_multiple_method_decl) << Sel << R;
3639
3640 Diag(Methods[0]->getBeginLoc(),
3641 issueError ? diag::note_possibility : diag::note_using)
3642 << Methods[0]->getSourceRange();
3643 for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
3644 Diag(Methods[I]->getBeginLoc(), diag::note_also_found)
3645 << Methods[I]->getSourceRange();
3646 }
3647 }
3648 }
3649
LookupImplementedMethodInGlobalPool(Selector Sel)3650 ObjCMethodDecl *Sema::LookupImplementedMethodInGlobalPool(Selector Sel) {
3651 GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3652 if (Pos == MethodPool.end())
3653 return nullptr;
3654
3655 GlobalMethodPool::Lists &Methods = Pos->second;
3656 for (const ObjCMethodList *Method = &Methods.first; Method;
3657 Method = Method->getNext())
3658 if (Method->getMethod() &&
3659 (Method->getMethod()->isDefined() ||
3660 Method->getMethod()->isPropertyAccessor()))
3661 return Method->getMethod();
3662
3663 for (const ObjCMethodList *Method = &Methods.second; Method;
3664 Method = Method->getNext())
3665 if (Method->getMethod() &&
3666 (Method->getMethod()->isDefined() ||
3667 Method->getMethod()->isPropertyAccessor()))
3668 return Method->getMethod();
3669 return nullptr;
3670 }
3671
3672 static void
HelperSelectorsForTypoCorrection(SmallVectorImpl<const ObjCMethodDecl * > & BestMethod,StringRef Typo,const ObjCMethodDecl * Method)3673 HelperSelectorsForTypoCorrection(
3674 SmallVectorImpl<const ObjCMethodDecl *> &BestMethod,
3675 StringRef Typo, const ObjCMethodDecl * Method) {
3676 const unsigned MaxEditDistance = 1;
3677 unsigned BestEditDistance = MaxEditDistance + 1;
3678 std::string MethodName = Method->getSelector().getAsString();
3679
3680 unsigned MinPossibleEditDistance = abs((int)MethodName.size() - (int)Typo.size());
3681 if (MinPossibleEditDistance > 0 &&
3682 Typo.size() / MinPossibleEditDistance < 1)
3683 return;
3684 unsigned EditDistance = Typo.edit_distance(MethodName, true, MaxEditDistance);
3685 if (EditDistance > MaxEditDistance)
3686 return;
3687 if (EditDistance == BestEditDistance)
3688 BestMethod.push_back(Method);
3689 else if (EditDistance < BestEditDistance) {
3690 BestMethod.clear();
3691 BestMethod.push_back(Method);
3692 }
3693 }
3694
HelperIsMethodInObjCType(Sema & S,Selector Sel,QualType ObjectType)3695 static bool HelperIsMethodInObjCType(Sema &S, Selector Sel,
3696 QualType ObjectType) {
3697 if (ObjectType.isNull())
3698 return true;
3699 if (S.LookupMethodInObjectType(Sel, ObjectType, true/*Instance method*/))
3700 return true;
3701 return S.LookupMethodInObjectType(Sel, ObjectType, false/*Class method*/) !=
3702 nullptr;
3703 }
3704
3705 const ObjCMethodDecl *
SelectorsForTypoCorrection(Selector Sel,QualType ObjectType)3706 Sema::SelectorsForTypoCorrection(Selector Sel,
3707 QualType ObjectType) {
3708 unsigned NumArgs = Sel.getNumArgs();
3709 SmallVector<const ObjCMethodDecl *, 8> Methods;
3710 bool ObjectIsId = true, ObjectIsClass = true;
3711 if (ObjectType.isNull())
3712 ObjectIsId = ObjectIsClass = false;
3713 else if (!ObjectType->isObjCObjectPointerType())
3714 return nullptr;
3715 else if (const ObjCObjectPointerType *ObjCPtr =
3716 ObjectType->getAsObjCInterfacePointerType()) {
3717 ObjectType = QualType(ObjCPtr->getInterfaceType(), 0);
3718 ObjectIsId = ObjectIsClass = false;
3719 }
3720 else if (ObjectType->isObjCIdType() || ObjectType->isObjCQualifiedIdType())
3721 ObjectIsClass = false;
3722 else if (ObjectType->isObjCClassType() || ObjectType->isObjCQualifiedClassType())
3723 ObjectIsId = false;
3724 else
3725 return nullptr;
3726
3727 for (GlobalMethodPool::iterator b = MethodPool.begin(),
3728 e = MethodPool.end(); b != e; b++) {
3729 // instance methods
3730 for (ObjCMethodList *M = &b->second.first; M; M=M->getNext())
3731 if (M->getMethod() &&
3732 (M->getMethod()->getSelector().getNumArgs() == NumArgs) &&
3733 (M->getMethod()->getSelector() != Sel)) {
3734 if (ObjectIsId)
3735 Methods.push_back(M->getMethod());
3736 else if (!ObjectIsClass &&
3737 HelperIsMethodInObjCType(*this, M->getMethod()->getSelector(),
3738 ObjectType))
3739 Methods.push_back(M->getMethod());
3740 }
3741 // class methods
3742 for (ObjCMethodList *M = &b->second.second; M; M=M->getNext())
3743 if (M->getMethod() &&
3744 (M->getMethod()->getSelector().getNumArgs() == NumArgs) &&
3745 (M->getMethod()->getSelector() != Sel)) {
3746 if (ObjectIsClass)
3747 Methods.push_back(M->getMethod());
3748 else if (!ObjectIsId &&
3749 HelperIsMethodInObjCType(*this, M->getMethod()->getSelector(),
3750 ObjectType))
3751 Methods.push_back(M->getMethod());
3752 }
3753 }
3754
3755 SmallVector<const ObjCMethodDecl *, 8> SelectedMethods;
3756 for (unsigned i = 0, e = Methods.size(); i < e; i++) {
3757 HelperSelectorsForTypoCorrection(SelectedMethods,
3758 Sel.getAsString(), Methods[i]);
3759 }
3760 return (SelectedMethods.size() == 1) ? SelectedMethods[0] : nullptr;
3761 }
3762
3763 /// DiagnoseDuplicateIvars -
3764 /// Check for duplicate ivars in the entire class at the start of
3765 /// \@implementation. This becomes necessary because class extension can
3766 /// add ivars to a class in random order which will not be known until
3767 /// class's \@implementation is seen.
DiagnoseDuplicateIvars(ObjCInterfaceDecl * ID,ObjCInterfaceDecl * SID)3768 void Sema::DiagnoseDuplicateIvars(ObjCInterfaceDecl *ID,
3769 ObjCInterfaceDecl *SID) {
3770 for (auto *Ivar : ID->ivars()) {
3771 if (Ivar->isInvalidDecl())
3772 continue;
3773 if (IdentifierInfo *II = Ivar->getIdentifier()) {
3774 ObjCIvarDecl* prevIvar = SID->lookupInstanceVariable(II);
3775 if (prevIvar) {
3776 Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
3777 Diag(prevIvar->getLocation(), diag::note_previous_declaration);
3778 Ivar->setInvalidDecl();
3779 }
3780 }
3781 }
3782 }
3783
3784 /// Diagnose attempts to define ARC-__weak ivars when __weak is disabled.
DiagnoseWeakIvars(Sema & S,ObjCImplementationDecl * ID)3785 static void DiagnoseWeakIvars(Sema &S, ObjCImplementationDecl *ID) {
3786 if (S.getLangOpts().ObjCWeak) return;
3787
3788 for (auto ivar = ID->getClassInterface()->all_declared_ivar_begin();
3789 ivar; ivar = ivar->getNextIvar()) {
3790 if (ivar->isInvalidDecl()) continue;
3791 if (ivar->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
3792 if (S.getLangOpts().ObjCWeakRuntime) {
3793 S.Diag(ivar->getLocation(), diag::err_arc_weak_disabled);
3794 } else {
3795 S.Diag(ivar->getLocation(), diag::err_arc_weak_no_runtime);
3796 }
3797 }
3798 }
3799 }
3800
3801 /// Diagnose attempts to use flexible array member with retainable object type.
DiagnoseRetainableFlexibleArrayMember(Sema & S,ObjCInterfaceDecl * ID)3802 static void DiagnoseRetainableFlexibleArrayMember(Sema &S,
3803 ObjCInterfaceDecl *ID) {
3804 if (!S.getLangOpts().ObjCAutoRefCount)
3805 return;
3806
3807 for (auto ivar = ID->all_declared_ivar_begin(); ivar;
3808 ivar = ivar->getNextIvar()) {
3809 if (ivar->isInvalidDecl())
3810 continue;
3811 QualType IvarTy = ivar->getType();
3812 if (IvarTy->isIncompleteArrayType() &&
3813 (IvarTy.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) &&
3814 IvarTy->isObjCLifetimeType()) {
3815 S.Diag(ivar->getLocation(), diag::err_flexible_array_arc_retainable);
3816 ivar->setInvalidDecl();
3817 }
3818 }
3819 }
3820
getObjCContainerKind() const3821 Sema::ObjCContainerKind Sema::getObjCContainerKind() const {
3822 switch (CurContext->getDeclKind()) {
3823 case Decl::ObjCInterface:
3824 return Sema::OCK_Interface;
3825 case Decl::ObjCProtocol:
3826 return Sema::OCK_Protocol;
3827 case Decl::ObjCCategory:
3828 if (cast<ObjCCategoryDecl>(CurContext)->IsClassExtension())
3829 return Sema::OCK_ClassExtension;
3830 return Sema::OCK_Category;
3831 case Decl::ObjCImplementation:
3832 return Sema::OCK_Implementation;
3833 case Decl::ObjCCategoryImpl:
3834 return Sema::OCK_CategoryImplementation;
3835
3836 default:
3837 return Sema::OCK_None;
3838 }
3839 }
3840
IsVariableSizedType(QualType T)3841 static bool IsVariableSizedType(QualType T) {
3842 if (T->isIncompleteArrayType())
3843 return true;
3844 const auto *RecordTy = T->getAs<RecordType>();
3845 return (RecordTy && RecordTy->getDecl()->hasFlexibleArrayMember());
3846 }
3847
DiagnoseVariableSizedIvars(Sema & S,ObjCContainerDecl * OCD)3848 static void DiagnoseVariableSizedIvars(Sema &S, ObjCContainerDecl *OCD) {
3849 ObjCInterfaceDecl *IntfDecl = nullptr;
3850 ObjCInterfaceDecl::ivar_range Ivars = llvm::make_range(
3851 ObjCInterfaceDecl::ivar_iterator(), ObjCInterfaceDecl::ivar_iterator());
3852 if ((IntfDecl = dyn_cast<ObjCInterfaceDecl>(OCD))) {
3853 Ivars = IntfDecl->ivars();
3854 } else if (auto *ImplDecl = dyn_cast<ObjCImplementationDecl>(OCD)) {
3855 IntfDecl = ImplDecl->getClassInterface();
3856 Ivars = ImplDecl->ivars();
3857 } else if (auto *CategoryDecl = dyn_cast<ObjCCategoryDecl>(OCD)) {
3858 if (CategoryDecl->IsClassExtension()) {
3859 IntfDecl = CategoryDecl->getClassInterface();
3860 Ivars = CategoryDecl->ivars();
3861 }
3862 }
3863
3864 // Check if variable sized ivar is in interface and visible to subclasses.
3865 if (!isa<ObjCInterfaceDecl>(OCD)) {
3866 for (auto *ivar : Ivars) {
3867 if (!ivar->isInvalidDecl() && IsVariableSizedType(ivar->getType())) {
3868 S.Diag(ivar->getLocation(), diag::warn_variable_sized_ivar_visibility)
3869 << ivar->getDeclName() << ivar->getType();
3870 }
3871 }
3872 }
3873
3874 // Subsequent checks require interface decl.
3875 if (!IntfDecl)
3876 return;
3877
3878 // Check if variable sized ivar is followed by another ivar.
3879 for (ObjCIvarDecl *ivar = IntfDecl->all_declared_ivar_begin(); ivar;
3880 ivar = ivar->getNextIvar()) {
3881 if (ivar->isInvalidDecl() || !ivar->getNextIvar())
3882 continue;
3883 QualType IvarTy = ivar->getType();
3884 bool IsInvalidIvar = false;
3885 if (IvarTy->isIncompleteArrayType()) {
3886 S.Diag(ivar->getLocation(), diag::err_flexible_array_not_at_end)
3887 << ivar->getDeclName() << IvarTy
3888 << TTK_Class; // Use "class" for Obj-C.
3889 IsInvalidIvar = true;
3890 } else if (const RecordType *RecordTy = IvarTy->getAs<RecordType>()) {
3891 if (RecordTy->getDecl()->hasFlexibleArrayMember()) {
3892 S.Diag(ivar->getLocation(),
3893 diag::err_objc_variable_sized_type_not_at_end)
3894 << ivar->getDeclName() << IvarTy;
3895 IsInvalidIvar = true;
3896 }
3897 }
3898 if (IsInvalidIvar) {
3899 S.Diag(ivar->getNextIvar()->getLocation(),
3900 diag::note_next_ivar_declaration)
3901 << ivar->getNextIvar()->getSynthesize();
3902 ivar->setInvalidDecl();
3903 }
3904 }
3905
3906 // Check if ObjC container adds ivars after variable sized ivar in superclass.
3907 // Perform the check only if OCD is the first container to declare ivars to
3908 // avoid multiple warnings for the same ivar.
3909 ObjCIvarDecl *FirstIvar =
3910 (Ivars.begin() == Ivars.end()) ? nullptr : *Ivars.begin();
3911 if (FirstIvar && (FirstIvar == IntfDecl->all_declared_ivar_begin())) {
3912 const ObjCInterfaceDecl *SuperClass = IntfDecl->getSuperClass();
3913 while (SuperClass && SuperClass->ivar_empty())
3914 SuperClass = SuperClass->getSuperClass();
3915 if (SuperClass) {
3916 auto IvarIter = SuperClass->ivar_begin();
3917 std::advance(IvarIter, SuperClass->ivar_size() - 1);
3918 const ObjCIvarDecl *LastIvar = *IvarIter;
3919 if (IsVariableSizedType(LastIvar->getType())) {
3920 S.Diag(FirstIvar->getLocation(),
3921 diag::warn_superclass_variable_sized_type_not_at_end)
3922 << FirstIvar->getDeclName() << LastIvar->getDeclName()
3923 << LastIvar->getType() << SuperClass->getDeclName();
3924 S.Diag(LastIvar->getLocation(), diag::note_entity_declared_at)
3925 << LastIvar->getDeclName();
3926 }
3927 }
3928 }
3929 }
3930
3931 static void DiagnoseCategoryDirectMembersProtocolConformance(
3932 Sema &S, ObjCProtocolDecl *PDecl, ObjCCategoryDecl *CDecl);
3933
DiagnoseCategoryDirectMembersProtocolConformance(Sema & S,ObjCCategoryDecl * CDecl,const llvm::iterator_range<ObjCProtocolList::iterator> & Protocols)3934 static void DiagnoseCategoryDirectMembersProtocolConformance(
3935 Sema &S, ObjCCategoryDecl *CDecl,
3936 const llvm::iterator_range<ObjCProtocolList::iterator> &Protocols) {
3937 for (auto *PI : Protocols)
3938 DiagnoseCategoryDirectMembersProtocolConformance(S, PI, CDecl);
3939 }
3940
DiagnoseCategoryDirectMembersProtocolConformance(Sema & S,ObjCProtocolDecl * PDecl,ObjCCategoryDecl * CDecl)3941 static void DiagnoseCategoryDirectMembersProtocolConformance(
3942 Sema &S, ObjCProtocolDecl *PDecl, ObjCCategoryDecl *CDecl) {
3943 if (!PDecl->isThisDeclarationADefinition() && PDecl->getDefinition())
3944 PDecl = PDecl->getDefinition();
3945
3946 llvm::SmallVector<const Decl *, 4> DirectMembers;
3947 const auto *IDecl = CDecl->getClassInterface();
3948 for (auto *MD : PDecl->methods()) {
3949 if (!MD->isPropertyAccessor()) {
3950 if (const auto *CMD =
3951 IDecl->getMethod(MD->getSelector(), MD->isInstanceMethod())) {
3952 if (CMD->isDirectMethod())
3953 DirectMembers.push_back(CMD);
3954 }
3955 }
3956 }
3957 for (auto *PD : PDecl->properties()) {
3958 if (const auto *CPD = IDecl->FindPropertyVisibleInPrimaryClass(
3959 PD->getIdentifier(),
3960 PD->isClassProperty()
3961 ? ObjCPropertyQueryKind::OBJC_PR_query_class
3962 : ObjCPropertyQueryKind::OBJC_PR_query_instance)) {
3963 if (CPD->isDirectProperty())
3964 DirectMembers.push_back(CPD);
3965 }
3966 }
3967 if (!DirectMembers.empty()) {
3968 S.Diag(CDecl->getLocation(), diag::err_objc_direct_protocol_conformance)
3969 << CDecl->IsClassExtension() << CDecl << PDecl << IDecl;
3970 for (const auto *MD : DirectMembers)
3971 S.Diag(MD->getLocation(), diag::note_direct_member_here);
3972 return;
3973 }
3974
3975 // Check on this protocols's referenced protocols, recursively.
3976 DiagnoseCategoryDirectMembersProtocolConformance(S, CDecl,
3977 PDecl->protocols());
3978 }
3979
3980 // Note: For class/category implementations, allMethods is always null.
ActOnAtEnd(Scope * S,SourceRange AtEnd,ArrayRef<Decl * > allMethods,ArrayRef<DeclGroupPtrTy> allTUVars)3981 Decl *Sema::ActOnAtEnd(Scope *S, SourceRange AtEnd, ArrayRef<Decl *> allMethods,
3982 ArrayRef<DeclGroupPtrTy> allTUVars) {
3983 if (getObjCContainerKind() == Sema::OCK_None)
3984 return nullptr;
3985
3986 assert(AtEnd.isValid() && "Invalid location for '@end'");
3987
3988 auto *OCD = cast<ObjCContainerDecl>(CurContext);
3989 Decl *ClassDecl = OCD;
3990
3991 bool isInterfaceDeclKind =
3992 isa<ObjCInterfaceDecl>(ClassDecl) || isa<ObjCCategoryDecl>(ClassDecl)
3993 || isa<ObjCProtocolDecl>(ClassDecl);
3994 bool checkIdenticalMethods = isa<ObjCImplementationDecl>(ClassDecl);
3995
3996 // Make synthesized accessor stub functions visible.
3997 // ActOnPropertyImplDecl() creates them as not visible in case
3998 // they are overridden by an explicit method that is encountered
3999 // later.
4000 if (auto *OID = dyn_cast<ObjCImplementationDecl>(CurContext)) {
4001 for (auto *PropImpl : OID->property_impls()) {
4002 if (auto *Getter = PropImpl->getGetterMethodDecl())
4003 if (Getter->isSynthesizedAccessorStub())
4004 OID->addDecl(Getter);
4005 if (auto *Setter = PropImpl->getSetterMethodDecl())
4006 if (Setter->isSynthesizedAccessorStub())
4007 OID->addDecl(Setter);
4008 }
4009 }
4010
4011 // FIXME: Remove these and use the ObjCContainerDecl/DeclContext.
4012 llvm::DenseMap<Selector, const ObjCMethodDecl*> InsMap;
4013 llvm::DenseMap<Selector, const ObjCMethodDecl*> ClsMap;
4014
4015 for (unsigned i = 0, e = allMethods.size(); i != e; i++ ) {
4016 ObjCMethodDecl *Method =
4017 cast_or_null<ObjCMethodDecl>(allMethods[i]);
4018
4019 if (!Method) continue; // Already issued a diagnostic.
4020 if (Method->isInstanceMethod()) {
4021 /// Check for instance method of the same name with incompatible types
4022 const ObjCMethodDecl *&PrevMethod = InsMap[Method->getSelector()];
4023 bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
4024 : false;
4025 if ((isInterfaceDeclKind && PrevMethod && !match)
4026 || (checkIdenticalMethods && match)) {
4027 Diag(Method->getLocation(), diag::err_duplicate_method_decl)
4028 << Method->getDeclName();
4029 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
4030 Method->setInvalidDecl();
4031 } else {
4032 if (PrevMethod) {
4033 Method->setAsRedeclaration(PrevMethod);
4034 if (!Context.getSourceManager().isInSystemHeader(
4035 Method->getLocation()))
4036 Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
4037 << Method->getDeclName();
4038 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
4039 }
4040 InsMap[Method->getSelector()] = Method;
4041 /// The following allows us to typecheck messages to "id".
4042 AddInstanceMethodToGlobalPool(Method);
4043 }
4044 } else {
4045 /// Check for class method of the same name with incompatible types
4046 const ObjCMethodDecl *&PrevMethod = ClsMap[Method->getSelector()];
4047 bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
4048 : false;
4049 if ((isInterfaceDeclKind && PrevMethod && !match)
4050 || (checkIdenticalMethods && match)) {
4051 Diag(Method->getLocation(), diag::err_duplicate_method_decl)
4052 << Method->getDeclName();
4053 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
4054 Method->setInvalidDecl();
4055 } else {
4056 if (PrevMethod) {
4057 Method->setAsRedeclaration(PrevMethod);
4058 if (!Context.getSourceManager().isInSystemHeader(
4059 Method->getLocation()))
4060 Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
4061 << Method->getDeclName();
4062 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
4063 }
4064 ClsMap[Method->getSelector()] = Method;
4065 AddFactoryMethodToGlobalPool(Method);
4066 }
4067 }
4068 }
4069 if (isa<ObjCInterfaceDecl>(ClassDecl)) {
4070 // Nothing to do here.
4071 } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(ClassDecl)) {
4072 // Categories are used to extend the class by declaring new methods.
4073 // By the same token, they are also used to add new properties. No
4074 // need to compare the added property to those in the class.
4075
4076 if (C->IsClassExtension()) {
4077 ObjCInterfaceDecl *CCPrimary = C->getClassInterface();
4078 DiagnoseClassExtensionDupMethods(C, CCPrimary);
4079 }
4080
4081 DiagnoseCategoryDirectMembersProtocolConformance(*this, C, C->protocols());
4082 }
4083 if (ObjCContainerDecl *CDecl = dyn_cast<ObjCContainerDecl>(ClassDecl)) {
4084 if (CDecl->getIdentifier())
4085 // ProcessPropertyDecl is responsible for diagnosing conflicts with any
4086 // user-defined setter/getter. It also synthesizes setter/getter methods
4087 // and adds them to the DeclContext and global method pools.
4088 for (auto *I : CDecl->properties())
4089 ProcessPropertyDecl(I);
4090 CDecl->setAtEndRange(AtEnd);
4091 }
4092 if (ObjCImplementationDecl *IC=dyn_cast<ObjCImplementationDecl>(ClassDecl)) {
4093 IC->setAtEndRange(AtEnd);
4094 if (ObjCInterfaceDecl* IDecl = IC->getClassInterface()) {
4095 // Any property declared in a class extension might have user
4096 // declared setter or getter in current class extension or one
4097 // of the other class extensions. Mark them as synthesized as
4098 // property will be synthesized when property with same name is
4099 // seen in the @implementation.
4100 for (const auto *Ext : IDecl->visible_extensions()) {
4101 for (const auto *Property : Ext->instance_properties()) {
4102 // Skip over properties declared @dynamic
4103 if (const ObjCPropertyImplDecl *PIDecl
4104 = IC->FindPropertyImplDecl(Property->getIdentifier(),
4105 Property->getQueryKind()))
4106 if (PIDecl->getPropertyImplementation()
4107 == ObjCPropertyImplDecl::Dynamic)
4108 continue;
4109
4110 for (const auto *Ext : IDecl->visible_extensions()) {
4111 if (ObjCMethodDecl *GetterMethod =
4112 Ext->getInstanceMethod(Property->getGetterName()))
4113 GetterMethod->setPropertyAccessor(true);
4114 if (!Property->isReadOnly())
4115 if (ObjCMethodDecl *SetterMethod
4116 = Ext->getInstanceMethod(Property->getSetterName()))
4117 SetterMethod->setPropertyAccessor(true);
4118 }
4119 }
4120 }
4121 ImplMethodsVsClassMethods(S, IC, IDecl);
4122 AtomicPropertySetterGetterRules(IC, IDecl);
4123 DiagnoseOwningPropertyGetterSynthesis(IC);
4124 DiagnoseUnusedBackingIvarInAccessor(S, IC);
4125 if (IDecl->hasDesignatedInitializers())
4126 DiagnoseMissingDesignatedInitOverrides(IC, IDecl);
4127 DiagnoseWeakIvars(*this, IC);
4128 DiagnoseRetainableFlexibleArrayMember(*this, IDecl);
4129
4130 bool HasRootClassAttr = IDecl->hasAttr<ObjCRootClassAttr>();
4131 if (IDecl->getSuperClass() == nullptr) {
4132 // This class has no superclass, so check that it has been marked with
4133 // __attribute((objc_root_class)).
4134 if (!HasRootClassAttr) {
4135 SourceLocation DeclLoc(IDecl->getLocation());
4136 SourceLocation SuperClassLoc(getLocForEndOfToken(DeclLoc));
4137 Diag(DeclLoc, diag::warn_objc_root_class_missing)
4138 << IDecl->getIdentifier();
4139 // See if NSObject is in the current scope, and if it is, suggest
4140 // adding " : NSObject " to the class declaration.
4141 NamedDecl *IF = LookupSingleName(TUScope,
4142 NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject),
4143 DeclLoc, LookupOrdinaryName);
4144 ObjCInterfaceDecl *NSObjectDecl = dyn_cast_or_null<ObjCInterfaceDecl>(IF);
4145 if (NSObjectDecl && NSObjectDecl->getDefinition()) {
4146 Diag(SuperClassLoc, diag::note_objc_needs_superclass)
4147 << FixItHint::CreateInsertion(SuperClassLoc, " : NSObject ");
4148 } else {
4149 Diag(SuperClassLoc, diag::note_objc_needs_superclass);
4150 }
4151 }
4152 } else if (HasRootClassAttr) {
4153 // Complain that only root classes may have this attribute.
4154 Diag(IDecl->getLocation(), diag::err_objc_root_class_subclass);
4155 }
4156
4157 if (const ObjCInterfaceDecl *Super = IDecl->getSuperClass()) {
4158 // An interface can subclass another interface with a
4159 // objc_subclassing_restricted attribute when it has that attribute as
4160 // well (because of interfaces imported from Swift). Therefore we have
4161 // to check if we can subclass in the implementation as well.
4162 if (IDecl->hasAttr<ObjCSubclassingRestrictedAttr>() &&
4163 Super->hasAttr<ObjCSubclassingRestrictedAttr>()) {
4164 Diag(IC->getLocation(), diag::err_restricted_superclass_mismatch);
4165 Diag(Super->getLocation(), diag::note_class_declared);
4166 }
4167 }
4168
4169 if (IDecl->hasAttr<ObjCClassStubAttr>())
4170 Diag(IC->getLocation(), diag::err_implementation_of_class_stub);
4171
4172 if (LangOpts.ObjCRuntime.isNonFragile()) {
4173 while (IDecl->getSuperClass()) {
4174 DiagnoseDuplicateIvars(IDecl, IDecl->getSuperClass());
4175 IDecl = IDecl->getSuperClass();
4176 }
4177 }
4178 }
4179 SetIvarInitializers(IC);
4180 } else if (ObjCCategoryImplDecl* CatImplClass =
4181 dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) {
4182 CatImplClass->setAtEndRange(AtEnd);
4183
4184 // Find category interface decl and then check that all methods declared
4185 // in this interface are implemented in the category @implementation.
4186 if (ObjCInterfaceDecl* IDecl = CatImplClass->getClassInterface()) {
4187 if (ObjCCategoryDecl *Cat
4188 = IDecl->FindCategoryDeclaration(CatImplClass->getIdentifier())) {
4189 ImplMethodsVsClassMethods(S, CatImplClass, Cat);
4190 }
4191 }
4192 } else if (const auto *IntfDecl = dyn_cast<ObjCInterfaceDecl>(ClassDecl)) {
4193 if (const ObjCInterfaceDecl *Super = IntfDecl->getSuperClass()) {
4194 if (!IntfDecl->hasAttr<ObjCSubclassingRestrictedAttr>() &&
4195 Super->hasAttr<ObjCSubclassingRestrictedAttr>()) {
4196 Diag(IntfDecl->getLocation(), diag::err_restricted_superclass_mismatch);
4197 Diag(Super->getLocation(), diag::note_class_declared);
4198 }
4199 }
4200
4201 if (IntfDecl->hasAttr<ObjCClassStubAttr>() &&
4202 !IntfDecl->hasAttr<ObjCSubclassingRestrictedAttr>())
4203 Diag(IntfDecl->getLocation(), diag::err_class_stub_subclassing_mismatch);
4204 }
4205 DiagnoseVariableSizedIvars(*this, OCD);
4206 if (isInterfaceDeclKind) {
4207 // Reject invalid vardecls.
4208 for (unsigned i = 0, e = allTUVars.size(); i != e; i++) {
4209 DeclGroupRef DG = allTUVars[i].get();
4210 for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
4211 if (VarDecl *VDecl = dyn_cast<VarDecl>(*I)) {
4212 if (!VDecl->hasExternalStorage())
4213 Diag(VDecl->getLocation(), diag::err_objc_var_decl_inclass);
4214 }
4215 }
4216 }
4217 ActOnObjCContainerFinishDefinition();
4218
4219 for (unsigned i = 0, e = allTUVars.size(); i != e; i++) {
4220 DeclGroupRef DG = allTUVars[i].get();
4221 for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
4222 (*I)->setTopLevelDeclInObjCContainer();
4223 Consumer.HandleTopLevelDeclInObjCContainer(DG);
4224 }
4225
4226 ActOnDocumentableDecl(ClassDecl);
4227 return ClassDecl;
4228 }
4229
4230 /// CvtQTToAstBitMask - utility routine to produce an AST bitmask for
4231 /// objective-c's type qualifier from the parser version of the same info.
4232 static Decl::ObjCDeclQualifier
CvtQTToAstBitMask(ObjCDeclSpec::ObjCDeclQualifier PQTVal)4233 CvtQTToAstBitMask(ObjCDeclSpec::ObjCDeclQualifier PQTVal) {
4234 return (Decl::ObjCDeclQualifier) (unsigned) PQTVal;
4235 }
4236
4237 /// Check whether the declared result type of the given Objective-C
4238 /// method declaration is compatible with the method's class.
4239 ///
4240 static Sema::ResultTypeCompatibilityKind
CheckRelatedResultTypeCompatibility(Sema & S,ObjCMethodDecl * Method,ObjCInterfaceDecl * CurrentClass)4241 CheckRelatedResultTypeCompatibility(Sema &S, ObjCMethodDecl *Method,
4242 ObjCInterfaceDecl *CurrentClass) {
4243 QualType ResultType = Method->getReturnType();
4244
4245 // If an Objective-C method inherits its related result type, then its
4246 // declared result type must be compatible with its own class type. The
4247 // declared result type is compatible if:
4248 if (const ObjCObjectPointerType *ResultObjectType
4249 = ResultType->getAs<ObjCObjectPointerType>()) {
4250 // - it is id or qualified id, or
4251 if (ResultObjectType->isObjCIdType() ||
4252 ResultObjectType->isObjCQualifiedIdType())
4253 return Sema::RTC_Compatible;
4254
4255 if (CurrentClass) {
4256 if (ObjCInterfaceDecl *ResultClass
4257 = ResultObjectType->getInterfaceDecl()) {
4258 // - it is the same as the method's class type, or
4259 if (declaresSameEntity(CurrentClass, ResultClass))
4260 return Sema::RTC_Compatible;
4261
4262 // - it is a superclass of the method's class type
4263 if (ResultClass->isSuperClassOf(CurrentClass))
4264 return Sema::RTC_Compatible;
4265 }
4266 } else {
4267 // Any Objective-C pointer type might be acceptable for a protocol
4268 // method; we just don't know.
4269 return Sema::RTC_Unknown;
4270 }
4271 }
4272
4273 return Sema::RTC_Incompatible;
4274 }
4275
4276 namespace {
4277 /// A helper class for searching for methods which a particular method
4278 /// overrides.
4279 class OverrideSearch {
4280 public:
4281 const ObjCMethodDecl *Method;
4282 llvm::SmallSetVector<ObjCMethodDecl*, 4> Overridden;
4283 bool Recursive;
4284
4285 public:
OverrideSearch(Sema & S,const ObjCMethodDecl * method)4286 OverrideSearch(Sema &S, const ObjCMethodDecl *method) : Method(method) {
4287 Selector selector = method->getSelector();
4288
4289 // Bypass this search if we've never seen an instance/class method
4290 // with this selector before.
4291 Sema::GlobalMethodPool::iterator it = S.MethodPool.find(selector);
4292 if (it == S.MethodPool.end()) {
4293 if (!S.getExternalSource()) return;
4294 S.ReadMethodPool(selector);
4295
4296 it = S.MethodPool.find(selector);
4297 if (it == S.MethodPool.end())
4298 return;
4299 }
4300 const ObjCMethodList &list =
4301 method->isInstanceMethod() ? it->second.first : it->second.second;
4302 if (!list.getMethod()) return;
4303
4304 const ObjCContainerDecl *container
4305 = cast<ObjCContainerDecl>(method->getDeclContext());
4306
4307 // Prevent the search from reaching this container again. This is
4308 // important with categories, which override methods from the
4309 // interface and each other.
4310 if (const ObjCCategoryDecl *Category =
4311 dyn_cast<ObjCCategoryDecl>(container)) {
4312 searchFromContainer(container);
4313 if (const ObjCInterfaceDecl *Interface = Category->getClassInterface())
4314 searchFromContainer(Interface);
4315 } else {
4316 searchFromContainer(container);
4317 }
4318 }
4319
4320 typedef decltype(Overridden)::iterator iterator;
begin() const4321 iterator begin() const { return Overridden.begin(); }
end() const4322 iterator end() const { return Overridden.end(); }
4323
4324 private:
searchFromContainer(const ObjCContainerDecl * container)4325 void searchFromContainer(const ObjCContainerDecl *container) {
4326 if (container->isInvalidDecl()) return;
4327
4328 switch (container->getDeclKind()) {
4329 #define OBJCCONTAINER(type, base) \
4330 case Decl::type: \
4331 searchFrom(cast<type##Decl>(container)); \
4332 break;
4333 #define ABSTRACT_DECL(expansion)
4334 #define DECL(type, base) \
4335 case Decl::type:
4336 #include "clang/AST/DeclNodes.inc"
4337 llvm_unreachable("not an ObjC container!");
4338 }
4339 }
4340
searchFrom(const ObjCProtocolDecl * protocol)4341 void searchFrom(const ObjCProtocolDecl *protocol) {
4342 if (!protocol->hasDefinition())
4343 return;
4344
4345 // A method in a protocol declaration overrides declarations from
4346 // referenced ("parent") protocols.
4347 search(protocol->getReferencedProtocols());
4348 }
4349
searchFrom(const ObjCCategoryDecl * category)4350 void searchFrom(const ObjCCategoryDecl *category) {
4351 // A method in a category declaration overrides declarations from
4352 // the main class and from protocols the category references.
4353 // The main class is handled in the constructor.
4354 search(category->getReferencedProtocols());
4355 }
4356
searchFrom(const ObjCCategoryImplDecl * impl)4357 void searchFrom(const ObjCCategoryImplDecl *impl) {
4358 // A method in a category definition that has a category
4359 // declaration overrides declarations from the category
4360 // declaration.
4361 if (ObjCCategoryDecl *category = impl->getCategoryDecl()) {
4362 search(category);
4363 if (ObjCInterfaceDecl *Interface = category->getClassInterface())
4364 search(Interface);
4365
4366 // Otherwise it overrides declarations from the class.
4367 } else if (const auto *Interface = impl->getClassInterface()) {
4368 search(Interface);
4369 }
4370 }
4371
searchFrom(const ObjCInterfaceDecl * iface)4372 void searchFrom(const ObjCInterfaceDecl *iface) {
4373 // A method in a class declaration overrides declarations from
4374 if (!iface->hasDefinition())
4375 return;
4376
4377 // - categories,
4378 for (auto *Cat : iface->known_categories())
4379 search(Cat);
4380
4381 // - the super class, and
4382 if (ObjCInterfaceDecl *super = iface->getSuperClass())
4383 search(super);
4384
4385 // - any referenced protocols.
4386 search(iface->getReferencedProtocols());
4387 }
4388
searchFrom(const ObjCImplementationDecl * impl)4389 void searchFrom(const ObjCImplementationDecl *impl) {
4390 // A method in a class implementation overrides declarations from
4391 // the class interface.
4392 if (const auto *Interface = impl->getClassInterface())
4393 search(Interface);
4394 }
4395
search(const ObjCProtocolList & protocols)4396 void search(const ObjCProtocolList &protocols) {
4397 for (const auto *Proto : protocols)
4398 search(Proto);
4399 }
4400
search(const ObjCContainerDecl * container)4401 void search(const ObjCContainerDecl *container) {
4402 // Check for a method in this container which matches this selector.
4403 ObjCMethodDecl *meth = container->getMethod(Method->getSelector(),
4404 Method->isInstanceMethod(),
4405 /*AllowHidden=*/true);
4406
4407 // If we find one, record it and bail out.
4408 if (meth) {
4409 Overridden.insert(meth);
4410 return;
4411 }
4412
4413 // Otherwise, search for methods that a hypothetical method here
4414 // would have overridden.
4415
4416 // Note that we're now in a recursive case.
4417 Recursive = true;
4418
4419 searchFromContainer(container);
4420 }
4421 };
4422 } // end anonymous namespace
4423
CheckObjCMethodDirectOverrides(ObjCMethodDecl * method,ObjCMethodDecl * overridden)4424 void Sema::CheckObjCMethodDirectOverrides(ObjCMethodDecl *method,
4425 ObjCMethodDecl *overridden) {
4426 if (overridden->isDirectMethod()) {
4427 const auto *attr = overridden->getAttr<ObjCDirectAttr>();
4428 Diag(method->getLocation(), diag::err_objc_override_direct_method);
4429 Diag(attr->getLocation(), diag::note_previous_declaration);
4430 } else if (method->isDirectMethod()) {
4431 const auto *attr = method->getAttr<ObjCDirectAttr>();
4432 Diag(attr->getLocation(), diag::err_objc_direct_on_override)
4433 << isa<ObjCProtocolDecl>(overridden->getDeclContext());
4434 Diag(overridden->getLocation(), diag::note_previous_declaration);
4435 }
4436 }
4437
CheckObjCMethodOverrides(ObjCMethodDecl * ObjCMethod,ObjCInterfaceDecl * CurrentClass,ResultTypeCompatibilityKind RTC)4438 void Sema::CheckObjCMethodOverrides(ObjCMethodDecl *ObjCMethod,
4439 ObjCInterfaceDecl *CurrentClass,
4440 ResultTypeCompatibilityKind RTC) {
4441 if (!ObjCMethod)
4442 return;
4443 auto IsMethodInCurrentClass = [CurrentClass](const ObjCMethodDecl *M) {
4444 // Checking canonical decl works across modules.
4445 return M->getClassInterface()->getCanonicalDecl() ==
4446 CurrentClass->getCanonicalDecl();
4447 };
4448 // Search for overridden methods and merge information down from them.
4449 OverrideSearch overrides(*this, ObjCMethod);
4450 // Keep track if the method overrides any method in the class's base classes,
4451 // its protocols, or its categories' protocols; we will keep that info
4452 // in the ObjCMethodDecl.
4453 // For this info, a method in an implementation is not considered as
4454 // overriding the same method in the interface or its categories.
4455 bool hasOverriddenMethodsInBaseOrProtocol = false;
4456 for (ObjCMethodDecl *overridden : overrides) {
4457 if (!hasOverriddenMethodsInBaseOrProtocol) {
4458 if (isa<ObjCProtocolDecl>(overridden->getDeclContext()) ||
4459 !IsMethodInCurrentClass(overridden) || overridden->isOverriding()) {
4460 CheckObjCMethodDirectOverrides(ObjCMethod, overridden);
4461 hasOverriddenMethodsInBaseOrProtocol = true;
4462 } else if (isa<ObjCImplDecl>(ObjCMethod->getDeclContext())) {
4463 // OverrideSearch will return as "overridden" the same method in the
4464 // interface. For hasOverriddenMethodsInBaseOrProtocol, we need to
4465 // check whether a category of a base class introduced a method with the
4466 // same selector, after the interface method declaration.
4467 // To avoid unnecessary lookups in the majority of cases, we use the
4468 // extra info bits in GlobalMethodPool to check whether there were any
4469 // category methods with this selector.
4470 GlobalMethodPool::iterator It =
4471 MethodPool.find(ObjCMethod->getSelector());
4472 if (It != MethodPool.end()) {
4473 ObjCMethodList &List =
4474 ObjCMethod->isInstanceMethod()? It->second.first: It->second.second;
4475 unsigned CategCount = List.getBits();
4476 if (CategCount > 0) {
4477 // If the method is in a category we'll do lookup if there were at
4478 // least 2 category methods recorded, otherwise only one will do.
4479 if (CategCount > 1 ||
4480 !isa<ObjCCategoryImplDecl>(overridden->getDeclContext())) {
4481 OverrideSearch overrides(*this, overridden);
4482 for (ObjCMethodDecl *SuperOverridden : overrides) {
4483 if (isa<ObjCProtocolDecl>(SuperOverridden->getDeclContext()) ||
4484 !IsMethodInCurrentClass(SuperOverridden)) {
4485 CheckObjCMethodDirectOverrides(ObjCMethod, SuperOverridden);
4486 hasOverriddenMethodsInBaseOrProtocol = true;
4487 overridden->setOverriding(true);
4488 break;
4489 }
4490 }
4491 }
4492 }
4493 }
4494 }
4495 }
4496
4497 // Propagate down the 'related result type' bit from overridden methods.
4498 if (RTC != Sema::RTC_Incompatible && overridden->hasRelatedResultType())
4499 ObjCMethod->setRelatedResultType();
4500
4501 // Then merge the declarations.
4502 mergeObjCMethodDecls(ObjCMethod, overridden);
4503
4504 if (ObjCMethod->isImplicit() && overridden->isImplicit())
4505 continue; // Conflicting properties are detected elsewhere.
4506
4507 // Check for overriding methods
4508 if (isa<ObjCInterfaceDecl>(ObjCMethod->getDeclContext()) ||
4509 isa<ObjCImplementationDecl>(ObjCMethod->getDeclContext()))
4510 CheckConflictingOverridingMethod(ObjCMethod, overridden,
4511 isa<ObjCProtocolDecl>(overridden->getDeclContext()));
4512
4513 if (CurrentClass && overridden->getDeclContext() != CurrentClass &&
4514 isa<ObjCInterfaceDecl>(overridden->getDeclContext()) &&
4515 !overridden->isImplicit() /* not meant for properties */) {
4516 ObjCMethodDecl::param_iterator ParamI = ObjCMethod->param_begin(),
4517 E = ObjCMethod->param_end();
4518 ObjCMethodDecl::param_iterator PrevI = overridden->param_begin(),
4519 PrevE = overridden->param_end();
4520 for (; ParamI != E && PrevI != PrevE; ++ParamI, ++PrevI) {
4521 assert(PrevI != overridden->param_end() && "Param mismatch");
4522 QualType T1 = Context.getCanonicalType((*ParamI)->getType());
4523 QualType T2 = Context.getCanonicalType((*PrevI)->getType());
4524 // If type of argument of method in this class does not match its
4525 // respective argument type in the super class method, issue warning;
4526 if (!Context.typesAreCompatible(T1, T2)) {
4527 Diag((*ParamI)->getLocation(), diag::ext_typecheck_base_super)
4528 << T1 << T2;
4529 Diag(overridden->getLocation(), diag::note_previous_declaration);
4530 break;
4531 }
4532 }
4533 }
4534 }
4535
4536 ObjCMethod->setOverriding(hasOverriddenMethodsInBaseOrProtocol);
4537 }
4538
4539 /// Merge type nullability from for a redeclaration of the same entity,
4540 /// producing the updated type of the redeclared entity.
mergeTypeNullabilityForRedecl(Sema & S,SourceLocation loc,QualType type,bool usesCSKeyword,SourceLocation prevLoc,QualType prevType,bool prevUsesCSKeyword)4541 static QualType mergeTypeNullabilityForRedecl(Sema &S, SourceLocation loc,
4542 QualType type,
4543 bool usesCSKeyword,
4544 SourceLocation prevLoc,
4545 QualType prevType,
4546 bool prevUsesCSKeyword) {
4547 // Determine the nullability of both types.
4548 auto nullability = type->getNullability();
4549 auto prevNullability = prevType->getNullability();
4550
4551 // Easy case: both have nullability.
4552 if (nullability.has_value() == prevNullability.has_value()) {
4553 // Neither has nullability; continue.
4554 if (!nullability)
4555 return type;
4556
4557 // The nullabilities are equivalent; do nothing.
4558 if (*nullability == *prevNullability)
4559 return type;
4560
4561 // Complain about mismatched nullability.
4562 S.Diag(loc, diag::err_nullability_conflicting)
4563 << DiagNullabilityKind(*nullability, usesCSKeyword)
4564 << DiagNullabilityKind(*prevNullability, prevUsesCSKeyword);
4565 return type;
4566 }
4567
4568 // If it's the redeclaration that has nullability, don't change anything.
4569 if (nullability)
4570 return type;
4571
4572 // Otherwise, provide the result with the same nullability.
4573 return S.Context.getAttributedType(
4574 AttributedType::getNullabilityAttrKind(*prevNullability),
4575 type, type);
4576 }
4577
4578 /// Merge information from the declaration of a method in the \@interface
4579 /// (or a category/extension) into the corresponding method in the
4580 /// @implementation (for a class or category).
mergeInterfaceMethodToImpl(Sema & S,ObjCMethodDecl * method,ObjCMethodDecl * prevMethod)4581 static void mergeInterfaceMethodToImpl(Sema &S,
4582 ObjCMethodDecl *method,
4583 ObjCMethodDecl *prevMethod) {
4584 // Merge the objc_requires_super attribute.
4585 if (prevMethod->hasAttr<ObjCRequiresSuperAttr>() &&
4586 !method->hasAttr<ObjCRequiresSuperAttr>()) {
4587 // merge the attribute into implementation.
4588 method->addAttr(
4589 ObjCRequiresSuperAttr::CreateImplicit(S.Context,
4590 method->getLocation()));
4591 }
4592
4593 // Merge nullability of the result type.
4594 QualType newReturnType
4595 = mergeTypeNullabilityForRedecl(
4596 S, method->getReturnTypeSourceRange().getBegin(),
4597 method->getReturnType(),
4598 method->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability,
4599 prevMethod->getReturnTypeSourceRange().getBegin(),
4600 prevMethod->getReturnType(),
4601 prevMethod->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability);
4602 method->setReturnType(newReturnType);
4603
4604 // Handle each of the parameters.
4605 unsigned numParams = method->param_size();
4606 unsigned numPrevParams = prevMethod->param_size();
4607 for (unsigned i = 0, n = std::min(numParams, numPrevParams); i != n; ++i) {
4608 ParmVarDecl *param = method->param_begin()[i];
4609 ParmVarDecl *prevParam = prevMethod->param_begin()[i];
4610
4611 // Merge nullability.
4612 QualType newParamType
4613 = mergeTypeNullabilityForRedecl(
4614 S, param->getLocation(), param->getType(),
4615 param->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability,
4616 prevParam->getLocation(), prevParam->getType(),
4617 prevParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability);
4618 param->setType(newParamType);
4619 }
4620 }
4621
4622 /// Verify that the method parameters/return value have types that are supported
4623 /// by the x86 target.
checkObjCMethodX86VectorTypes(Sema & SemaRef,const ObjCMethodDecl * Method)4624 static void checkObjCMethodX86VectorTypes(Sema &SemaRef,
4625 const ObjCMethodDecl *Method) {
4626 assert(SemaRef.getASTContext().getTargetInfo().getTriple().getArch() ==
4627 llvm::Triple::x86 &&
4628 "x86-specific check invoked for a different target");
4629 SourceLocation Loc;
4630 QualType T;
4631 for (const ParmVarDecl *P : Method->parameters()) {
4632 if (P->getType()->isVectorType()) {
4633 Loc = P->getBeginLoc();
4634 T = P->getType();
4635 break;
4636 }
4637 }
4638 if (Loc.isInvalid()) {
4639 if (Method->getReturnType()->isVectorType()) {
4640 Loc = Method->getReturnTypeSourceRange().getBegin();
4641 T = Method->getReturnType();
4642 } else
4643 return;
4644 }
4645
4646 // Vector parameters/return values are not supported by objc_msgSend on x86 in
4647 // iOS < 9 and macOS < 10.11.
4648 const auto &Triple = SemaRef.getASTContext().getTargetInfo().getTriple();
4649 VersionTuple AcceptedInVersion;
4650 if (Triple.getOS() == llvm::Triple::IOS)
4651 AcceptedInVersion = VersionTuple(/*Major=*/9);
4652 else if (Triple.isMacOSX())
4653 AcceptedInVersion = VersionTuple(/*Major=*/10, /*Minor=*/11);
4654 else
4655 return;
4656 if (SemaRef.getASTContext().getTargetInfo().getPlatformMinVersion() >=
4657 AcceptedInVersion)
4658 return;
4659 SemaRef.Diag(Loc, diag::err_objc_method_unsupported_param_ret_type)
4660 << T << (Method->getReturnType()->isVectorType() ? /*return value*/ 1
4661 : /*parameter*/ 0)
4662 << (Triple.isMacOSX() ? "macOS 10.11" : "iOS 9");
4663 }
4664
mergeObjCDirectMembers(Sema & S,Decl * CD,ObjCMethodDecl * Method)4665 static void mergeObjCDirectMembers(Sema &S, Decl *CD, ObjCMethodDecl *Method) {
4666 if (!Method->isDirectMethod() && !Method->hasAttr<UnavailableAttr>() &&
4667 CD->hasAttr<ObjCDirectMembersAttr>()) {
4668 Method->addAttr(
4669 ObjCDirectAttr::CreateImplicit(S.Context, Method->getLocation()));
4670 }
4671 }
4672
checkObjCDirectMethodClashes(Sema & S,ObjCInterfaceDecl * IDecl,ObjCMethodDecl * Method,ObjCImplDecl * ImpDecl=nullptr)4673 static void checkObjCDirectMethodClashes(Sema &S, ObjCInterfaceDecl *IDecl,
4674 ObjCMethodDecl *Method,
4675 ObjCImplDecl *ImpDecl = nullptr) {
4676 auto Sel = Method->getSelector();
4677 bool isInstance = Method->isInstanceMethod();
4678 bool diagnosed = false;
4679
4680 auto diagClash = [&](const ObjCMethodDecl *IMD) {
4681 if (diagnosed || IMD->isImplicit())
4682 return;
4683 if (Method->isDirectMethod() || IMD->isDirectMethod()) {
4684 S.Diag(Method->getLocation(), diag::err_objc_direct_duplicate_decl)
4685 << Method->isDirectMethod() << /* method */ 0 << IMD->isDirectMethod()
4686 << Method->getDeclName();
4687 S.Diag(IMD->getLocation(), diag::note_previous_declaration);
4688 diagnosed = true;
4689 }
4690 };
4691
4692 // Look for any other declaration of this method anywhere we can see in this
4693 // compilation unit.
4694 //
4695 // We do not use IDecl->lookupMethod() because we have specific needs:
4696 //
4697 // - we absolutely do not need to walk protocols, because
4698 // diag::err_objc_direct_on_protocol has already been emitted
4699 // during parsing if there's a conflict,
4700 //
4701 // - when we do not find a match in a given @interface container,
4702 // we need to attempt looking it up in the @implementation block if the
4703 // translation unit sees it to find more clashes.
4704
4705 if (auto *IMD = IDecl->getMethod(Sel, isInstance))
4706 diagClash(IMD);
4707 else if (auto *Impl = IDecl->getImplementation())
4708 if (Impl != ImpDecl)
4709 if (auto *IMD = IDecl->getImplementation()->getMethod(Sel, isInstance))
4710 diagClash(IMD);
4711
4712 for (const auto *Cat : IDecl->visible_categories())
4713 if (auto *IMD = Cat->getMethod(Sel, isInstance))
4714 diagClash(IMD);
4715 else if (auto CatImpl = Cat->getImplementation())
4716 if (CatImpl != ImpDecl)
4717 if (auto *IMD = Cat->getMethod(Sel, isInstance))
4718 diagClash(IMD);
4719 }
4720
ActOnMethodDeclaration(Scope * S,SourceLocation MethodLoc,SourceLocation EndLoc,tok::TokenKind MethodType,ObjCDeclSpec & ReturnQT,ParsedType ReturnType,ArrayRef<SourceLocation> SelectorLocs,Selector Sel,ObjCArgInfo * ArgInfo,DeclaratorChunk::ParamInfo * CParamInfo,unsigned CNumArgs,const ParsedAttributesView & AttrList,tok::ObjCKeywordKind MethodDeclKind,bool isVariadic,bool MethodDefinition)4721 Decl *Sema::ActOnMethodDeclaration(
4722 Scope *S, SourceLocation MethodLoc, SourceLocation EndLoc,
4723 tok::TokenKind MethodType, ObjCDeclSpec &ReturnQT, ParsedType ReturnType,
4724 ArrayRef<SourceLocation> SelectorLocs, Selector Sel,
4725 // optional arguments. The number of types/arguments is obtained
4726 // from the Sel.getNumArgs().
4727 ObjCArgInfo *ArgInfo, DeclaratorChunk::ParamInfo *CParamInfo,
4728 unsigned CNumArgs, // c-style args
4729 const ParsedAttributesView &AttrList, tok::ObjCKeywordKind MethodDeclKind,
4730 bool isVariadic, bool MethodDefinition) {
4731 // Make sure we can establish a context for the method.
4732 if (!CurContext->isObjCContainer()) {
4733 Diag(MethodLoc, diag::err_missing_method_context);
4734 return nullptr;
4735 }
4736
4737 Decl *ClassDecl = cast<ObjCContainerDecl>(CurContext);
4738 QualType resultDeclType;
4739
4740 bool HasRelatedResultType = false;
4741 TypeSourceInfo *ReturnTInfo = nullptr;
4742 if (ReturnType) {
4743 resultDeclType = GetTypeFromParser(ReturnType, &ReturnTInfo);
4744
4745 if (CheckFunctionReturnType(resultDeclType, MethodLoc))
4746 return nullptr;
4747
4748 QualType bareResultType = resultDeclType;
4749 (void)AttributedType::stripOuterNullability(bareResultType);
4750 HasRelatedResultType = (bareResultType == Context.getObjCInstanceType());
4751 } else { // get the type for "id".
4752 resultDeclType = Context.getObjCIdType();
4753 Diag(MethodLoc, diag::warn_missing_method_return_type)
4754 << FixItHint::CreateInsertion(SelectorLocs.front(), "(id)");
4755 }
4756
4757 ObjCMethodDecl *ObjCMethod = ObjCMethodDecl::Create(
4758 Context, MethodLoc, EndLoc, Sel, resultDeclType, ReturnTInfo, CurContext,
4759 MethodType == tok::minus, isVariadic,
4760 /*isPropertyAccessor=*/false, /*isSynthesizedAccessorStub=*/false,
4761 /*isImplicitlyDeclared=*/false, /*isDefined=*/false,
4762 MethodDeclKind == tok::objc_optional ? ObjCMethodDecl::Optional
4763 : ObjCMethodDecl::Required,
4764 HasRelatedResultType);
4765
4766 SmallVector<ParmVarDecl*, 16> Params;
4767
4768 for (unsigned i = 0, e = Sel.getNumArgs(); i != e; ++i) {
4769 QualType ArgType;
4770 TypeSourceInfo *DI;
4771
4772 if (!ArgInfo[i].Type) {
4773 ArgType = Context.getObjCIdType();
4774 DI = nullptr;
4775 } else {
4776 ArgType = GetTypeFromParser(ArgInfo[i].Type, &DI);
4777 }
4778
4779 LookupResult R(*this, ArgInfo[i].Name, ArgInfo[i].NameLoc,
4780 LookupOrdinaryName, forRedeclarationInCurContext());
4781 LookupName(R, S);
4782 if (R.isSingleResult()) {
4783 NamedDecl *PrevDecl = R.getFoundDecl();
4784 if (S->isDeclScope(PrevDecl)) {
4785 Diag(ArgInfo[i].NameLoc,
4786 (MethodDefinition ? diag::warn_method_param_redefinition
4787 : diag::warn_method_param_declaration))
4788 << ArgInfo[i].Name;
4789 Diag(PrevDecl->getLocation(),
4790 diag::note_previous_declaration);
4791 }
4792 }
4793
4794 SourceLocation StartLoc = DI
4795 ? DI->getTypeLoc().getBeginLoc()
4796 : ArgInfo[i].NameLoc;
4797
4798 ParmVarDecl* Param = CheckParameter(ObjCMethod, StartLoc,
4799 ArgInfo[i].NameLoc, ArgInfo[i].Name,
4800 ArgType, DI, SC_None);
4801
4802 Param->setObjCMethodScopeInfo(i);
4803
4804 Param->setObjCDeclQualifier(
4805 CvtQTToAstBitMask(ArgInfo[i].DeclSpec.getObjCDeclQualifier()));
4806
4807 // Apply the attributes to the parameter.
4808 ProcessDeclAttributeList(TUScope, Param, ArgInfo[i].ArgAttrs);
4809 AddPragmaAttributes(TUScope, Param);
4810
4811 if (Param->hasAttr<BlocksAttr>()) {
4812 Diag(Param->getLocation(), diag::err_block_on_nonlocal);
4813 Param->setInvalidDecl();
4814 }
4815 S->AddDecl(Param);
4816 IdResolver.AddDecl(Param);
4817
4818 Params.push_back(Param);
4819 }
4820
4821 for (unsigned i = 0, e = CNumArgs; i != e; ++i) {
4822 ParmVarDecl *Param = cast<ParmVarDecl>(CParamInfo[i].Param);
4823 QualType ArgType = Param->getType();
4824 if (ArgType.isNull())
4825 ArgType = Context.getObjCIdType();
4826 else
4827 // Perform the default array/function conversions (C99 6.7.5.3p[7,8]).
4828 ArgType = Context.getAdjustedParameterType(ArgType);
4829
4830 Param->setDeclContext(ObjCMethod);
4831 Params.push_back(Param);
4832 }
4833
4834 ObjCMethod->setMethodParams(Context, Params, SelectorLocs);
4835 ObjCMethod->setObjCDeclQualifier(
4836 CvtQTToAstBitMask(ReturnQT.getObjCDeclQualifier()));
4837
4838 ProcessDeclAttributeList(TUScope, ObjCMethod, AttrList);
4839 AddPragmaAttributes(TUScope, ObjCMethod);
4840
4841 // Add the method now.
4842 const ObjCMethodDecl *PrevMethod = nullptr;
4843 if (ObjCImplDecl *ImpDecl = dyn_cast<ObjCImplDecl>(ClassDecl)) {
4844 if (MethodType == tok::minus) {
4845 PrevMethod = ImpDecl->getInstanceMethod(Sel);
4846 ImpDecl->addInstanceMethod(ObjCMethod);
4847 } else {
4848 PrevMethod = ImpDecl->getClassMethod(Sel);
4849 ImpDecl->addClassMethod(ObjCMethod);
4850 }
4851
4852 // If this method overrides a previous @synthesize declaration,
4853 // register it with the property. Linear search through all
4854 // properties here, because the autosynthesized stub hasn't been
4855 // made visible yet, so it can be overridden by a later
4856 // user-specified implementation.
4857 for (ObjCPropertyImplDecl *PropertyImpl : ImpDecl->property_impls()) {
4858 if (auto *Setter = PropertyImpl->getSetterMethodDecl())
4859 if (Setter->getSelector() == Sel &&
4860 Setter->isInstanceMethod() == ObjCMethod->isInstanceMethod()) {
4861 assert(Setter->isSynthesizedAccessorStub() && "autosynth stub expected");
4862 PropertyImpl->setSetterMethodDecl(ObjCMethod);
4863 }
4864 if (auto *Getter = PropertyImpl->getGetterMethodDecl())
4865 if (Getter->getSelector() == Sel &&
4866 Getter->isInstanceMethod() == ObjCMethod->isInstanceMethod()) {
4867 assert(Getter->isSynthesizedAccessorStub() && "autosynth stub expected");
4868 PropertyImpl->setGetterMethodDecl(ObjCMethod);
4869 break;
4870 }
4871 }
4872
4873 // A method is either tagged direct explicitly, or inherits it from its
4874 // canonical declaration.
4875 //
4876 // We have to do the merge upfront and not in mergeInterfaceMethodToImpl()
4877 // because IDecl->lookupMethod() returns more possible matches than just
4878 // the canonical declaration.
4879 if (!ObjCMethod->isDirectMethod()) {
4880 const ObjCMethodDecl *CanonicalMD = ObjCMethod->getCanonicalDecl();
4881 if (CanonicalMD->isDirectMethod()) {
4882 const auto *attr = CanonicalMD->getAttr<ObjCDirectAttr>();
4883 ObjCMethod->addAttr(
4884 ObjCDirectAttr::CreateImplicit(Context, attr->getLocation()));
4885 }
4886 }
4887
4888 // Merge information from the @interface declaration into the
4889 // @implementation.
4890 if (ObjCInterfaceDecl *IDecl = ImpDecl->getClassInterface()) {
4891 if (auto *IMD = IDecl->lookupMethod(ObjCMethod->getSelector(),
4892 ObjCMethod->isInstanceMethod())) {
4893 mergeInterfaceMethodToImpl(*this, ObjCMethod, IMD);
4894
4895 // The Idecl->lookupMethod() above will find declarations for ObjCMethod
4896 // in one of these places:
4897 //
4898 // (1) the canonical declaration in an @interface container paired
4899 // with the ImplDecl,
4900 // (2) non canonical declarations in @interface not paired with the
4901 // ImplDecl for the same Class,
4902 // (3) any superclass container.
4903 //
4904 // Direct methods only allow for canonical declarations in the matching
4905 // container (case 1).
4906 //
4907 // Direct methods overriding a superclass declaration (case 3) is
4908 // handled during overrides checks in CheckObjCMethodOverrides().
4909 //
4910 // We deal with same-class container mismatches (Case 2) here.
4911 if (IDecl == IMD->getClassInterface()) {
4912 auto diagContainerMismatch = [&] {
4913 int decl = 0, impl = 0;
4914
4915 if (auto *Cat = dyn_cast<ObjCCategoryDecl>(IMD->getDeclContext()))
4916 decl = Cat->IsClassExtension() ? 1 : 2;
4917
4918 if (isa<ObjCCategoryImplDecl>(ImpDecl))
4919 impl = 1 + (decl != 0);
4920
4921 Diag(ObjCMethod->getLocation(),
4922 diag::err_objc_direct_impl_decl_mismatch)
4923 << decl << impl;
4924 Diag(IMD->getLocation(), diag::note_previous_declaration);
4925 };
4926
4927 if (ObjCMethod->isDirectMethod()) {
4928 const auto *attr = ObjCMethod->getAttr<ObjCDirectAttr>();
4929 if (ObjCMethod->getCanonicalDecl() != IMD) {
4930 diagContainerMismatch();
4931 } else if (!IMD->isDirectMethod()) {
4932 Diag(attr->getLocation(), diag::err_objc_direct_missing_on_decl);
4933 Diag(IMD->getLocation(), diag::note_previous_declaration);
4934 }
4935 } else if (IMD->isDirectMethod()) {
4936 const auto *attr = IMD->getAttr<ObjCDirectAttr>();
4937 if (ObjCMethod->getCanonicalDecl() != IMD) {
4938 diagContainerMismatch();
4939 } else {
4940 ObjCMethod->addAttr(
4941 ObjCDirectAttr::CreateImplicit(Context, attr->getLocation()));
4942 }
4943 }
4944 }
4945
4946 // Warn about defining -dealloc in a category.
4947 if (isa<ObjCCategoryImplDecl>(ImpDecl) && IMD->isOverriding() &&
4948 ObjCMethod->getSelector().getMethodFamily() == OMF_dealloc) {
4949 Diag(ObjCMethod->getLocation(), diag::warn_dealloc_in_category)
4950 << ObjCMethod->getDeclName();
4951 }
4952 } else {
4953 mergeObjCDirectMembers(*this, ClassDecl, ObjCMethod);
4954 checkObjCDirectMethodClashes(*this, IDecl, ObjCMethod, ImpDecl);
4955 }
4956
4957 // Warn if a method declared in a protocol to which a category or
4958 // extension conforms is non-escaping and the implementation's method is
4959 // escaping.
4960 for (auto *C : IDecl->visible_categories())
4961 for (auto &P : C->protocols())
4962 if (auto *IMD = P->lookupMethod(ObjCMethod->getSelector(),
4963 ObjCMethod->isInstanceMethod())) {
4964 assert(ObjCMethod->parameters().size() ==
4965 IMD->parameters().size() &&
4966 "Methods have different number of parameters");
4967 auto OI = IMD->param_begin(), OE = IMD->param_end();
4968 auto NI = ObjCMethod->param_begin();
4969 for (; OI != OE; ++OI, ++NI)
4970 diagnoseNoescape(*NI, *OI, C, P, *this);
4971 }
4972 }
4973 } else {
4974 if (!isa<ObjCProtocolDecl>(ClassDecl)) {
4975 mergeObjCDirectMembers(*this, ClassDecl, ObjCMethod);
4976
4977 ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(ClassDecl);
4978 if (!IDecl)
4979 IDecl = cast<ObjCCategoryDecl>(ClassDecl)->getClassInterface();
4980 // For valid code, we should always know the primary interface
4981 // declaration by now, however for invalid code we'll keep parsing
4982 // but we won't find the primary interface and IDecl will be nil.
4983 if (IDecl)
4984 checkObjCDirectMethodClashes(*this, IDecl, ObjCMethod);
4985 }
4986
4987 cast<DeclContext>(ClassDecl)->addDecl(ObjCMethod);
4988 }
4989
4990 if (PrevMethod) {
4991 // You can never have two method definitions with the same name.
4992 Diag(ObjCMethod->getLocation(), diag::err_duplicate_method_decl)
4993 << ObjCMethod->getDeclName();
4994 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
4995 ObjCMethod->setInvalidDecl();
4996 return ObjCMethod;
4997 }
4998
4999 // If this Objective-C method does not have a related result type, but we
5000 // are allowed to infer related result types, try to do so based on the
5001 // method family.
5002 ObjCInterfaceDecl *CurrentClass = dyn_cast<ObjCInterfaceDecl>(ClassDecl);
5003 if (!CurrentClass) {
5004 if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(ClassDecl))
5005 CurrentClass = Cat->getClassInterface();
5006 else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(ClassDecl))
5007 CurrentClass = Impl->getClassInterface();
5008 else if (ObjCCategoryImplDecl *CatImpl
5009 = dyn_cast<ObjCCategoryImplDecl>(ClassDecl))
5010 CurrentClass = CatImpl->getClassInterface();
5011 }
5012
5013 ResultTypeCompatibilityKind RTC
5014 = CheckRelatedResultTypeCompatibility(*this, ObjCMethod, CurrentClass);
5015
5016 CheckObjCMethodOverrides(ObjCMethod, CurrentClass, RTC);
5017
5018 bool ARCError = false;
5019 if (getLangOpts().ObjCAutoRefCount)
5020 ARCError = CheckARCMethodDecl(ObjCMethod);
5021
5022 // Infer the related result type when possible.
5023 if (!ARCError && RTC == Sema::RTC_Compatible &&
5024 !ObjCMethod->hasRelatedResultType() &&
5025 LangOpts.ObjCInferRelatedResultType) {
5026 bool InferRelatedResultType = false;
5027 switch (ObjCMethod->getMethodFamily()) {
5028 case OMF_None:
5029 case OMF_copy:
5030 case OMF_dealloc:
5031 case OMF_finalize:
5032 case OMF_mutableCopy:
5033 case OMF_release:
5034 case OMF_retainCount:
5035 case OMF_initialize:
5036 case OMF_performSelector:
5037 break;
5038
5039 case OMF_alloc:
5040 case OMF_new:
5041 InferRelatedResultType = ObjCMethod->isClassMethod();
5042 break;
5043
5044 case OMF_init:
5045 case OMF_autorelease:
5046 case OMF_retain:
5047 case OMF_self:
5048 InferRelatedResultType = ObjCMethod->isInstanceMethod();
5049 break;
5050 }
5051
5052 if (InferRelatedResultType &&
5053 !ObjCMethod->getReturnType()->isObjCIndependentClassType())
5054 ObjCMethod->setRelatedResultType();
5055 }
5056
5057 if (MethodDefinition &&
5058 Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
5059 checkObjCMethodX86VectorTypes(*this, ObjCMethod);
5060
5061 // + load method cannot have availability attributes. It get called on
5062 // startup, so it has to have the availability of the deployment target.
5063 if (const auto *attr = ObjCMethod->getAttr<AvailabilityAttr>()) {
5064 if (ObjCMethod->isClassMethod() &&
5065 ObjCMethod->getSelector().getAsString() == "load") {
5066 Diag(attr->getLocation(), diag::warn_availability_on_static_initializer)
5067 << 0;
5068 ObjCMethod->dropAttr<AvailabilityAttr>();
5069 }
5070 }
5071
5072 // Insert the invisible arguments, self and _cmd!
5073 ObjCMethod->createImplicitParams(Context, ObjCMethod->getClassInterface());
5074
5075 ActOnDocumentableDecl(ObjCMethod);
5076
5077 return ObjCMethod;
5078 }
5079
CheckObjCDeclScope(Decl * D)5080 bool Sema::CheckObjCDeclScope(Decl *D) {
5081 // Following is also an error. But it is caused by a missing @end
5082 // and diagnostic is issued elsewhere.
5083 if (isa<ObjCContainerDecl>(CurContext->getRedeclContext()))
5084 return false;
5085
5086 // If we switched context to translation unit while we are still lexically in
5087 // an objc container, it means the parser missed emitting an error.
5088 if (isa<TranslationUnitDecl>(getCurLexicalContext()->getRedeclContext()))
5089 return false;
5090
5091 Diag(D->getLocation(), diag::err_objc_decls_may_only_appear_in_global_scope);
5092 D->setInvalidDecl();
5093
5094 return true;
5095 }
5096
5097 /// Called whenever \@defs(ClassName) is encountered in the source. Inserts the
5098 /// instance variables of ClassName into Decls.
ActOnDefs(Scope * S,Decl * TagD,SourceLocation DeclStart,IdentifierInfo * ClassName,SmallVectorImpl<Decl * > & Decls)5099 void Sema::ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart,
5100 IdentifierInfo *ClassName,
5101 SmallVectorImpl<Decl*> &Decls) {
5102 // Check that ClassName is a valid class
5103 ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName, DeclStart);
5104 if (!Class) {
5105 Diag(DeclStart, diag::err_undef_interface) << ClassName;
5106 return;
5107 }
5108 if (LangOpts.ObjCRuntime.isNonFragile()) {
5109 Diag(DeclStart, diag::err_atdef_nonfragile_interface);
5110 return;
5111 }
5112
5113 // Collect the instance variables
5114 SmallVector<const ObjCIvarDecl*, 32> Ivars;
5115 Context.DeepCollectObjCIvars(Class, true, Ivars);
5116 // For each ivar, create a fresh ObjCAtDefsFieldDecl.
5117 for (unsigned i = 0; i < Ivars.size(); i++) {
5118 const FieldDecl* ID = Ivars[i];
5119 RecordDecl *Record = dyn_cast<RecordDecl>(TagD);
5120 Decl *FD = ObjCAtDefsFieldDecl::Create(Context, Record,
5121 /*FIXME: StartL=*/ID->getLocation(),
5122 ID->getLocation(),
5123 ID->getIdentifier(), ID->getType(),
5124 ID->getBitWidth());
5125 Decls.push_back(FD);
5126 }
5127
5128 // Introduce all of these fields into the appropriate scope.
5129 for (SmallVectorImpl<Decl*>::iterator D = Decls.begin();
5130 D != Decls.end(); ++D) {
5131 FieldDecl *FD = cast<FieldDecl>(*D);
5132 if (getLangOpts().CPlusPlus)
5133 PushOnScopeChains(FD, S);
5134 else if (RecordDecl *Record = dyn_cast<RecordDecl>(TagD))
5135 Record->addDecl(FD);
5136 }
5137 }
5138
5139 /// Build a type-check a new Objective-C exception variable declaration.
BuildObjCExceptionDecl(TypeSourceInfo * TInfo,QualType T,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,bool Invalid)5140 VarDecl *Sema::BuildObjCExceptionDecl(TypeSourceInfo *TInfo, QualType T,
5141 SourceLocation StartLoc,
5142 SourceLocation IdLoc,
5143 IdentifierInfo *Id,
5144 bool Invalid) {
5145 // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
5146 // duration shall not be qualified by an address-space qualifier."
5147 // Since all parameters have automatic store duration, they can not have
5148 // an address space.
5149 if (T.getAddressSpace() != LangAS::Default) {
5150 Diag(IdLoc, diag::err_arg_with_address_space);
5151 Invalid = true;
5152 }
5153
5154 // An @catch parameter must be an unqualified object pointer type;
5155 // FIXME: Recover from "NSObject foo" by inserting the * in "NSObject *foo"?
5156 if (Invalid) {
5157 // Don't do any further checking.
5158 } else if (T->isDependentType()) {
5159 // Okay: we don't know what this type will instantiate to.
5160 } else if (T->isObjCQualifiedIdType()) {
5161 Invalid = true;
5162 Diag(IdLoc, diag::err_illegal_qualifiers_on_catch_parm);
5163 } else if (T->isObjCIdType()) {
5164 // Okay: we don't know what this type will instantiate to.
5165 } else if (!T->isObjCObjectPointerType()) {
5166 Invalid = true;
5167 Diag(IdLoc, diag::err_catch_param_not_objc_type);
5168 } else if (!T->castAs<ObjCObjectPointerType>()->getInterfaceType()) {
5169 Invalid = true;
5170 Diag(IdLoc, diag::err_catch_param_not_objc_type);
5171 }
5172
5173 VarDecl *New = VarDecl::Create(Context, CurContext, StartLoc, IdLoc, Id,
5174 T, TInfo, SC_None);
5175 New->setExceptionVariable(true);
5176
5177 // In ARC, infer 'retaining' for variables of retainable type.
5178 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(New))
5179 Invalid = true;
5180
5181 if (Invalid)
5182 New->setInvalidDecl();
5183 return New;
5184 }
5185
ActOnObjCExceptionDecl(Scope * S,Declarator & D)5186 Decl *Sema::ActOnObjCExceptionDecl(Scope *S, Declarator &D) {
5187 const DeclSpec &DS = D.getDeclSpec();
5188
5189 // We allow the "register" storage class on exception variables because
5190 // GCC did, but we drop it completely. Any other storage class is an error.
5191 if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
5192 Diag(DS.getStorageClassSpecLoc(), diag::warn_register_objc_catch_parm)
5193 << FixItHint::CreateRemoval(SourceRange(DS.getStorageClassSpecLoc()));
5194 } else if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) {
5195 Diag(DS.getStorageClassSpecLoc(), diag::err_storage_spec_on_catch_parm)
5196 << DeclSpec::getSpecifierName(SCS);
5197 }
5198 if (DS.isInlineSpecified())
5199 Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function)
5200 << getLangOpts().CPlusPlus17;
5201 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
5202 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
5203 diag::err_invalid_thread)
5204 << DeclSpec::getSpecifierName(TSCS);
5205 D.getMutableDeclSpec().ClearStorageClassSpecs();
5206
5207 DiagnoseFunctionSpecifiers(D.getDeclSpec());
5208
5209 // Check that there are no default arguments inside the type of this
5210 // exception object (C++ only).
5211 if (getLangOpts().CPlusPlus)
5212 CheckExtraCXXDefaultArguments(D);
5213
5214 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
5215 QualType ExceptionType = TInfo->getType();
5216
5217 VarDecl *New = BuildObjCExceptionDecl(TInfo, ExceptionType,
5218 D.getSourceRange().getBegin(),
5219 D.getIdentifierLoc(),
5220 D.getIdentifier(),
5221 D.isInvalidType());
5222
5223 // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
5224 if (D.getCXXScopeSpec().isSet()) {
5225 Diag(D.getIdentifierLoc(), diag::err_qualified_objc_catch_parm)
5226 << D.getCXXScopeSpec().getRange();
5227 New->setInvalidDecl();
5228 }
5229
5230 // Add the parameter declaration into this scope.
5231 S->AddDecl(New);
5232 if (D.getIdentifier())
5233 IdResolver.AddDecl(New);
5234
5235 ProcessDeclAttributes(S, New, D);
5236
5237 if (New->hasAttr<BlocksAttr>())
5238 Diag(New->getLocation(), diag::err_block_on_nonlocal);
5239 return New;
5240 }
5241
5242 /// CollectIvarsToConstructOrDestruct - Collect those ivars which require
5243 /// initialization.
CollectIvarsToConstructOrDestruct(ObjCInterfaceDecl * OI,SmallVectorImpl<ObjCIvarDecl * > & Ivars)5244 void Sema::CollectIvarsToConstructOrDestruct(ObjCInterfaceDecl *OI,
5245 SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
5246 for (ObjCIvarDecl *Iv = OI->all_declared_ivar_begin(); Iv;
5247 Iv= Iv->getNextIvar()) {
5248 QualType QT = Context.getBaseElementType(Iv->getType());
5249 if (QT->isRecordType())
5250 Ivars.push_back(Iv);
5251 }
5252 }
5253
DiagnoseUseOfUnimplementedSelectors()5254 void Sema::DiagnoseUseOfUnimplementedSelectors() {
5255 // Load referenced selectors from the external source.
5256 if (ExternalSource) {
5257 SmallVector<std::pair<Selector, SourceLocation>, 4> Sels;
5258 ExternalSource->ReadReferencedSelectors(Sels);
5259 for (unsigned I = 0, N = Sels.size(); I != N; ++I)
5260 ReferencedSelectors[Sels[I].first] = Sels[I].second;
5261 }
5262
5263 // Warning will be issued only when selector table is
5264 // generated (which means there is at lease one implementation
5265 // in the TU). This is to match gcc's behavior.
5266 if (ReferencedSelectors.empty() ||
5267 !Context.AnyObjCImplementation())
5268 return;
5269 for (auto &SelectorAndLocation : ReferencedSelectors) {
5270 Selector Sel = SelectorAndLocation.first;
5271 SourceLocation Loc = SelectorAndLocation.second;
5272 if (!LookupImplementedMethodInGlobalPool(Sel))
5273 Diag(Loc, diag::warn_unimplemented_selector) << Sel;
5274 }
5275 }
5276
5277 ObjCIvarDecl *
GetIvarBackingPropertyAccessor(const ObjCMethodDecl * Method,const ObjCPropertyDecl * & PDecl) const5278 Sema::GetIvarBackingPropertyAccessor(const ObjCMethodDecl *Method,
5279 const ObjCPropertyDecl *&PDecl) const {
5280 if (Method->isClassMethod())
5281 return nullptr;
5282 const ObjCInterfaceDecl *IDecl = Method->getClassInterface();
5283 if (!IDecl)
5284 return nullptr;
5285 Method = IDecl->lookupMethod(Method->getSelector(), /*isInstance=*/true,
5286 /*shallowCategoryLookup=*/false,
5287 /*followSuper=*/false);
5288 if (!Method || !Method->isPropertyAccessor())
5289 return nullptr;
5290 if ((PDecl = Method->findPropertyDecl()))
5291 if (ObjCIvarDecl *IV = PDecl->getPropertyIvarDecl()) {
5292 // property backing ivar must belong to property's class
5293 // or be a private ivar in class's implementation.
5294 // FIXME. fix the const-ness issue.
5295 IV = const_cast<ObjCInterfaceDecl *>(IDecl)->lookupInstanceVariable(
5296 IV->getIdentifier());
5297 return IV;
5298 }
5299 return nullptr;
5300 }
5301
5302 namespace {
5303 /// Used by Sema::DiagnoseUnusedBackingIvarInAccessor to check if a property
5304 /// accessor references the backing ivar.
5305 class UnusedBackingIvarChecker :
5306 public RecursiveASTVisitor<UnusedBackingIvarChecker> {
5307 public:
5308 Sema &S;
5309 const ObjCMethodDecl *Method;
5310 const ObjCIvarDecl *IvarD;
5311 bool AccessedIvar;
5312 bool InvokedSelfMethod;
5313
UnusedBackingIvarChecker(Sema & S,const ObjCMethodDecl * Method,const ObjCIvarDecl * IvarD)5314 UnusedBackingIvarChecker(Sema &S, const ObjCMethodDecl *Method,
5315 const ObjCIvarDecl *IvarD)
5316 : S(S), Method(Method), IvarD(IvarD),
5317 AccessedIvar(false), InvokedSelfMethod(false) {
5318 assert(IvarD);
5319 }
5320
VisitObjCIvarRefExpr(ObjCIvarRefExpr * E)5321 bool VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
5322 if (E->getDecl() == IvarD) {
5323 AccessedIvar = true;
5324 return false;
5325 }
5326 return true;
5327 }
5328
VisitObjCMessageExpr(ObjCMessageExpr * E)5329 bool VisitObjCMessageExpr(ObjCMessageExpr *E) {
5330 if (E->getReceiverKind() == ObjCMessageExpr::Instance &&
5331 S.isSelfExpr(E->getInstanceReceiver(), Method)) {
5332 InvokedSelfMethod = true;
5333 }
5334 return true;
5335 }
5336 };
5337 } // end anonymous namespace
5338
DiagnoseUnusedBackingIvarInAccessor(Scope * S,const ObjCImplementationDecl * ImplD)5339 void Sema::DiagnoseUnusedBackingIvarInAccessor(Scope *S,
5340 const ObjCImplementationDecl *ImplD) {
5341 if (S->hasUnrecoverableErrorOccurred())
5342 return;
5343
5344 for (const auto *CurMethod : ImplD->instance_methods()) {
5345 unsigned DIAG = diag::warn_unused_property_backing_ivar;
5346 SourceLocation Loc = CurMethod->getLocation();
5347 if (Diags.isIgnored(DIAG, Loc))
5348 continue;
5349
5350 const ObjCPropertyDecl *PDecl;
5351 const ObjCIvarDecl *IV = GetIvarBackingPropertyAccessor(CurMethod, PDecl);
5352 if (!IV)
5353 continue;
5354
5355 if (CurMethod->isSynthesizedAccessorStub())
5356 continue;
5357
5358 UnusedBackingIvarChecker Checker(*this, CurMethod, IV);
5359 Checker.TraverseStmt(CurMethod->getBody());
5360 if (Checker.AccessedIvar)
5361 continue;
5362
5363 // Do not issue this warning if backing ivar is used somewhere and accessor
5364 // implementation makes a self call. This is to prevent false positive in
5365 // cases where the ivar is accessed by another method that the accessor
5366 // delegates to.
5367 if (!IV->isReferenced() || !Checker.InvokedSelfMethod) {
5368 Diag(Loc, DIAG) << IV;
5369 Diag(PDecl->getLocation(), diag::note_property_declare);
5370 }
5371 }
5372 }
5373