1 //===--- SemaOverload.cpp - C++ Overloading -------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file provides Sema routines for C++ overloading.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "clang/AST/ASTContext.h"
14 #include "clang/AST/CXXInheritance.h"
15 #include "clang/AST/DeclCXX.h"
16 #include "clang/AST/DeclObjC.h"
17 #include "clang/AST/DependenceFlags.h"
18 #include "clang/AST/Expr.h"
19 #include "clang/AST/ExprCXX.h"
20 #include "clang/AST/ExprObjC.h"
21 #include "clang/AST/Type.h"
22 #include "clang/AST/TypeOrdering.h"
23 #include "clang/Basic/Diagnostic.h"
24 #include "clang/Basic/DiagnosticOptions.h"
25 #include "clang/Basic/OperatorKinds.h"
26 #include "clang/Basic/PartialDiagnostic.h"
27 #include "clang/Basic/SourceManager.h"
28 #include "clang/Basic/TargetInfo.h"
29 #include "clang/Sema/Initialization.h"
30 #include "clang/Sema/Lookup.h"
31 #include "clang/Sema/Overload.h"
32 #include "clang/Sema/SemaInternal.h"
33 #include "clang/Sema/Template.h"
34 #include "clang/Sema/TemplateDeduction.h"
35 #include "llvm/ADT/DenseSet.h"
36 #include "llvm/ADT/STLExtras.h"
37 #include "llvm/ADT/SmallPtrSet.h"
38 #include "llvm/ADT/SmallString.h"
39 #include "llvm/Support/Casting.h"
40 #include <algorithm>
41 #include <cstdlib>
42 #include <optional>
43
44 using namespace clang;
45 using namespace sema;
46
47 using AllowedExplicit = Sema::AllowedExplicit;
48
functionHasPassObjectSizeParams(const FunctionDecl * FD)49 static bool functionHasPassObjectSizeParams(const FunctionDecl *FD) {
50 return llvm::any_of(FD->parameters(), [](const ParmVarDecl *P) {
51 return P->hasAttr<PassObjectSizeAttr>();
52 });
53 }
54
55 /// A convenience routine for creating a decayed reference to a function.
CreateFunctionRefExpr(Sema & S,FunctionDecl * Fn,NamedDecl * FoundDecl,const Expr * Base,bool HadMultipleCandidates,SourceLocation Loc=SourceLocation (),const DeclarationNameLoc & LocInfo=DeclarationNameLoc ())56 static ExprResult CreateFunctionRefExpr(
57 Sema &S, FunctionDecl *Fn, NamedDecl *FoundDecl, const Expr *Base,
58 bool HadMultipleCandidates, SourceLocation Loc = SourceLocation(),
59 const DeclarationNameLoc &LocInfo = DeclarationNameLoc()) {
60 if (S.DiagnoseUseOfDecl(FoundDecl, Loc))
61 return ExprError();
62 // If FoundDecl is different from Fn (such as if one is a template
63 // and the other a specialization), make sure DiagnoseUseOfDecl is
64 // called on both.
65 // FIXME: This would be more comprehensively addressed by modifying
66 // DiagnoseUseOfDecl to accept both the FoundDecl and the decl
67 // being used.
68 if (FoundDecl != Fn && S.DiagnoseUseOfDecl(Fn, Loc))
69 return ExprError();
70 DeclRefExpr *DRE = new (S.Context)
71 DeclRefExpr(S.Context, Fn, false, Fn->getType(), VK_LValue, Loc, LocInfo);
72 if (HadMultipleCandidates)
73 DRE->setHadMultipleCandidates(true);
74
75 S.MarkDeclRefReferenced(DRE, Base);
76 if (auto *FPT = DRE->getType()->getAs<FunctionProtoType>()) {
77 if (isUnresolvedExceptionSpec(FPT->getExceptionSpecType())) {
78 S.ResolveExceptionSpec(Loc, FPT);
79 DRE->setType(Fn->getType());
80 }
81 }
82 return S.ImpCastExprToType(DRE, S.Context.getPointerType(DRE->getType()),
83 CK_FunctionToPointerDecay);
84 }
85
86 static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
87 bool InOverloadResolution,
88 StandardConversionSequence &SCS,
89 bool CStyle,
90 bool AllowObjCWritebackConversion);
91
92 static bool IsTransparentUnionStandardConversion(Sema &S, Expr* From,
93 QualType &ToType,
94 bool InOverloadResolution,
95 StandardConversionSequence &SCS,
96 bool CStyle);
97 static OverloadingResult
98 IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
99 UserDefinedConversionSequence& User,
100 OverloadCandidateSet& Conversions,
101 AllowedExplicit AllowExplicit,
102 bool AllowObjCConversionOnExplicit);
103
104 static ImplicitConversionSequence::CompareKind
105 CompareStandardConversionSequences(Sema &S, SourceLocation Loc,
106 const StandardConversionSequence& SCS1,
107 const StandardConversionSequence& SCS2);
108
109 static ImplicitConversionSequence::CompareKind
110 CompareQualificationConversions(Sema &S,
111 const StandardConversionSequence& SCS1,
112 const StandardConversionSequence& SCS2);
113
114 static ImplicitConversionSequence::CompareKind
115 CompareDerivedToBaseConversions(Sema &S, SourceLocation Loc,
116 const StandardConversionSequence& SCS1,
117 const StandardConversionSequence& SCS2);
118
119 /// GetConversionRank - Retrieve the implicit conversion rank
120 /// corresponding to the given implicit conversion kind.
GetConversionRank(ImplicitConversionKind Kind)121 ImplicitConversionRank clang::GetConversionRank(ImplicitConversionKind Kind) {
122 static const ImplicitConversionRank
123 Rank[(int)ICK_Num_Conversion_Kinds] = {
124 ICR_Exact_Match,
125 ICR_Exact_Match,
126 ICR_Exact_Match,
127 ICR_Exact_Match,
128 ICR_Exact_Match,
129 ICR_Exact_Match,
130 ICR_Promotion,
131 ICR_Promotion,
132 ICR_Promotion,
133 ICR_Conversion,
134 ICR_Conversion,
135 ICR_Conversion,
136 ICR_Conversion,
137 ICR_Conversion,
138 ICR_Conversion,
139 ICR_Conversion,
140 ICR_Conversion,
141 ICR_Conversion,
142 ICR_Conversion,
143 ICR_Conversion,
144 ICR_OCL_Scalar_Widening,
145 ICR_Complex_Real_Conversion,
146 ICR_Conversion,
147 ICR_Conversion,
148 ICR_Writeback_Conversion,
149 ICR_Exact_Match, // NOTE(gbiv): This may not be completely right --
150 // it was omitted by the patch that added
151 // ICK_Zero_Event_Conversion
152 ICR_C_Conversion,
153 ICR_C_Conversion_Extension
154 };
155 return Rank[(int)Kind];
156 }
157
158 /// GetImplicitConversionName - Return the name of this kind of
159 /// implicit conversion.
GetImplicitConversionName(ImplicitConversionKind Kind)160 static const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
161 static const char* const Name[(int)ICK_Num_Conversion_Kinds] = {
162 "No conversion",
163 "Lvalue-to-rvalue",
164 "Array-to-pointer",
165 "Function-to-pointer",
166 "Function pointer conversion",
167 "Qualification",
168 "Integral promotion",
169 "Floating point promotion",
170 "Complex promotion",
171 "Integral conversion",
172 "Floating conversion",
173 "Complex conversion",
174 "Floating-integral conversion",
175 "Pointer conversion",
176 "Pointer-to-member conversion",
177 "Boolean conversion",
178 "Compatible-types conversion",
179 "Derived-to-base conversion",
180 "Vector conversion",
181 "SVE Vector conversion",
182 "Vector splat",
183 "Complex-real conversion",
184 "Block Pointer conversion",
185 "Transparent Union Conversion",
186 "Writeback conversion",
187 "OpenCL Zero Event Conversion",
188 "C specific type conversion",
189 "Incompatible pointer conversion"
190 };
191 return Name[Kind];
192 }
193
194 /// StandardConversionSequence - Set the standard conversion
195 /// sequence to the identity conversion.
setAsIdentityConversion()196 void StandardConversionSequence::setAsIdentityConversion() {
197 First = ICK_Identity;
198 Second = ICK_Identity;
199 Third = ICK_Identity;
200 DeprecatedStringLiteralToCharPtr = false;
201 QualificationIncludesObjCLifetime = false;
202 ReferenceBinding = false;
203 DirectBinding = false;
204 IsLvalueReference = true;
205 BindsToFunctionLvalue = false;
206 BindsToRvalue = false;
207 BindsImplicitObjectArgumentWithoutRefQualifier = false;
208 ObjCLifetimeConversionBinding = false;
209 CopyConstructor = nullptr;
210 }
211
212 /// getRank - Retrieve the rank of this standard conversion sequence
213 /// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
214 /// implicit conversions.
getRank() const215 ImplicitConversionRank StandardConversionSequence::getRank() const {
216 ImplicitConversionRank Rank = ICR_Exact_Match;
217 if (GetConversionRank(First) > Rank)
218 Rank = GetConversionRank(First);
219 if (GetConversionRank(Second) > Rank)
220 Rank = GetConversionRank(Second);
221 if (GetConversionRank(Third) > Rank)
222 Rank = GetConversionRank(Third);
223 return Rank;
224 }
225
226 /// isPointerConversionToBool - Determines whether this conversion is
227 /// a conversion of a pointer or pointer-to-member to bool. This is
228 /// used as part of the ranking of standard conversion sequences
229 /// (C++ 13.3.3.2p4).
isPointerConversionToBool() const230 bool StandardConversionSequence::isPointerConversionToBool() const {
231 // Note that FromType has not necessarily been transformed by the
232 // array-to-pointer or function-to-pointer implicit conversions, so
233 // check for their presence as well as checking whether FromType is
234 // a pointer.
235 if (getToType(1)->isBooleanType() &&
236 (getFromType()->isPointerType() ||
237 getFromType()->isMemberPointerType() ||
238 getFromType()->isObjCObjectPointerType() ||
239 getFromType()->isBlockPointerType() ||
240 First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
241 return true;
242
243 return false;
244 }
245
246 /// isPointerConversionToVoidPointer - Determines whether this
247 /// conversion is a conversion of a pointer to a void pointer. This is
248 /// used as part of the ranking of standard conversion sequences (C++
249 /// 13.3.3.2p4).
250 bool
251 StandardConversionSequence::
isPointerConversionToVoidPointer(ASTContext & Context) const252 isPointerConversionToVoidPointer(ASTContext& Context) const {
253 QualType FromType = getFromType();
254 QualType ToType = getToType(1);
255
256 // Note that FromType has not necessarily been transformed by the
257 // array-to-pointer implicit conversion, so check for its presence
258 // and redo the conversion to get a pointer.
259 if (First == ICK_Array_To_Pointer)
260 FromType = Context.getArrayDecayedType(FromType);
261
262 if (Second == ICK_Pointer_Conversion && FromType->isAnyPointerType())
263 if (const PointerType* ToPtrType = ToType->getAs<PointerType>())
264 return ToPtrType->getPointeeType()->isVoidType();
265
266 return false;
267 }
268
269 /// Skip any implicit casts which could be either part of a narrowing conversion
270 /// or after one in an implicit conversion.
IgnoreNarrowingConversion(ASTContext & Ctx,const Expr * Converted)271 static const Expr *IgnoreNarrowingConversion(ASTContext &Ctx,
272 const Expr *Converted) {
273 // We can have cleanups wrapping the converted expression; these need to be
274 // preserved so that destructors run if necessary.
275 if (auto *EWC = dyn_cast<ExprWithCleanups>(Converted)) {
276 Expr *Inner =
277 const_cast<Expr *>(IgnoreNarrowingConversion(Ctx, EWC->getSubExpr()));
278 return ExprWithCleanups::Create(Ctx, Inner, EWC->cleanupsHaveSideEffects(),
279 EWC->getObjects());
280 }
281
282 while (auto *ICE = dyn_cast<ImplicitCastExpr>(Converted)) {
283 switch (ICE->getCastKind()) {
284 case CK_NoOp:
285 case CK_IntegralCast:
286 case CK_IntegralToBoolean:
287 case CK_IntegralToFloating:
288 case CK_BooleanToSignedIntegral:
289 case CK_FloatingToIntegral:
290 case CK_FloatingToBoolean:
291 case CK_FloatingCast:
292 Converted = ICE->getSubExpr();
293 continue;
294
295 default:
296 return Converted;
297 }
298 }
299
300 return Converted;
301 }
302
303 /// Check if this standard conversion sequence represents a narrowing
304 /// conversion, according to C++11 [dcl.init.list]p7.
305 ///
306 /// \param Ctx The AST context.
307 /// \param Converted The result of applying this standard conversion sequence.
308 /// \param ConstantValue If this is an NK_Constant_Narrowing conversion, the
309 /// value of the expression prior to the narrowing conversion.
310 /// \param ConstantType If this is an NK_Constant_Narrowing conversion, the
311 /// type of the expression prior to the narrowing conversion.
312 /// \param IgnoreFloatToIntegralConversion If true type-narrowing conversions
313 /// from floating point types to integral types should be ignored.
getNarrowingKind(ASTContext & Ctx,const Expr * Converted,APValue & ConstantValue,QualType & ConstantType,bool IgnoreFloatToIntegralConversion) const314 NarrowingKind StandardConversionSequence::getNarrowingKind(
315 ASTContext &Ctx, const Expr *Converted, APValue &ConstantValue,
316 QualType &ConstantType, bool IgnoreFloatToIntegralConversion) const {
317 assert(Ctx.getLangOpts().CPlusPlus && "narrowing check outside C++");
318
319 // C++11 [dcl.init.list]p7:
320 // A narrowing conversion is an implicit conversion ...
321 QualType FromType = getToType(0);
322 QualType ToType = getToType(1);
323
324 // A conversion to an enumeration type is narrowing if the conversion to
325 // the underlying type is narrowing. This only arises for expressions of
326 // the form 'Enum{init}'.
327 if (auto *ET = ToType->getAs<EnumType>())
328 ToType = ET->getDecl()->getIntegerType();
329
330 switch (Second) {
331 // 'bool' is an integral type; dispatch to the right place to handle it.
332 case ICK_Boolean_Conversion:
333 if (FromType->isRealFloatingType())
334 goto FloatingIntegralConversion;
335 if (FromType->isIntegralOrUnscopedEnumerationType())
336 goto IntegralConversion;
337 // -- from a pointer type or pointer-to-member type to bool, or
338 return NK_Type_Narrowing;
339
340 // -- from a floating-point type to an integer type, or
341 //
342 // -- from an integer type or unscoped enumeration type to a floating-point
343 // type, except where the source is a constant expression and the actual
344 // value after conversion will fit into the target type and will produce
345 // the original value when converted back to the original type, or
346 case ICK_Floating_Integral:
347 FloatingIntegralConversion:
348 if (FromType->isRealFloatingType() && ToType->isIntegralType(Ctx)) {
349 return NK_Type_Narrowing;
350 } else if (FromType->isIntegralOrUnscopedEnumerationType() &&
351 ToType->isRealFloatingType()) {
352 if (IgnoreFloatToIntegralConversion)
353 return NK_Not_Narrowing;
354 const Expr *Initializer = IgnoreNarrowingConversion(Ctx, Converted);
355 assert(Initializer && "Unknown conversion expression");
356
357 // If it's value-dependent, we can't tell whether it's narrowing.
358 if (Initializer->isValueDependent())
359 return NK_Dependent_Narrowing;
360
361 if (std::optional<llvm::APSInt> IntConstantValue =
362 Initializer->getIntegerConstantExpr(Ctx)) {
363 // Convert the integer to the floating type.
364 llvm::APFloat Result(Ctx.getFloatTypeSemantics(ToType));
365 Result.convertFromAPInt(*IntConstantValue, IntConstantValue->isSigned(),
366 llvm::APFloat::rmNearestTiesToEven);
367 // And back.
368 llvm::APSInt ConvertedValue = *IntConstantValue;
369 bool ignored;
370 Result.convertToInteger(ConvertedValue,
371 llvm::APFloat::rmTowardZero, &ignored);
372 // If the resulting value is different, this was a narrowing conversion.
373 if (*IntConstantValue != ConvertedValue) {
374 ConstantValue = APValue(*IntConstantValue);
375 ConstantType = Initializer->getType();
376 return NK_Constant_Narrowing;
377 }
378 } else {
379 // Variables are always narrowings.
380 return NK_Variable_Narrowing;
381 }
382 }
383 return NK_Not_Narrowing;
384
385 // -- from long double to double or float, or from double to float, except
386 // where the source is a constant expression and the actual value after
387 // conversion is within the range of values that can be represented (even
388 // if it cannot be represented exactly), or
389 case ICK_Floating_Conversion:
390 if (FromType->isRealFloatingType() && ToType->isRealFloatingType() &&
391 Ctx.getFloatingTypeOrder(FromType, ToType) == 1) {
392 // FromType is larger than ToType.
393 const Expr *Initializer = IgnoreNarrowingConversion(Ctx, Converted);
394
395 // If it's value-dependent, we can't tell whether it's narrowing.
396 if (Initializer->isValueDependent())
397 return NK_Dependent_Narrowing;
398
399 if (Initializer->isCXX11ConstantExpr(Ctx, &ConstantValue)) {
400 // Constant!
401 assert(ConstantValue.isFloat());
402 llvm::APFloat FloatVal = ConstantValue.getFloat();
403 // Convert the source value into the target type.
404 bool ignored;
405 llvm::APFloat::opStatus ConvertStatus = FloatVal.convert(
406 Ctx.getFloatTypeSemantics(ToType),
407 llvm::APFloat::rmNearestTiesToEven, &ignored);
408 // If there was no overflow, the source value is within the range of
409 // values that can be represented.
410 if (ConvertStatus & llvm::APFloat::opOverflow) {
411 ConstantType = Initializer->getType();
412 return NK_Constant_Narrowing;
413 }
414 } else {
415 return NK_Variable_Narrowing;
416 }
417 }
418 return NK_Not_Narrowing;
419
420 // -- from an integer type or unscoped enumeration type to an integer type
421 // that cannot represent all the values of the original type, except where
422 // the source is a constant expression and the actual value after
423 // conversion will fit into the target type and will produce the original
424 // value when converted back to the original type.
425 case ICK_Integral_Conversion:
426 IntegralConversion: {
427 assert(FromType->isIntegralOrUnscopedEnumerationType());
428 assert(ToType->isIntegralOrUnscopedEnumerationType());
429 const bool FromSigned = FromType->isSignedIntegerOrEnumerationType();
430 const unsigned FromWidth = Ctx.getIntWidth(FromType);
431 const bool ToSigned = ToType->isSignedIntegerOrEnumerationType();
432 const unsigned ToWidth = Ctx.getIntWidth(ToType);
433
434 if (FromWidth > ToWidth ||
435 (FromWidth == ToWidth && FromSigned != ToSigned) ||
436 (FromSigned && !ToSigned)) {
437 // Not all values of FromType can be represented in ToType.
438 const Expr *Initializer = IgnoreNarrowingConversion(Ctx, Converted);
439
440 // If it's value-dependent, we can't tell whether it's narrowing.
441 if (Initializer->isValueDependent())
442 return NK_Dependent_Narrowing;
443
444 std::optional<llvm::APSInt> OptInitializerValue;
445 if (!(OptInitializerValue = Initializer->getIntegerConstantExpr(Ctx))) {
446 // Such conversions on variables are always narrowing.
447 return NK_Variable_Narrowing;
448 }
449 llvm::APSInt &InitializerValue = *OptInitializerValue;
450 bool Narrowing = false;
451 if (FromWidth < ToWidth) {
452 // Negative -> unsigned is narrowing. Otherwise, more bits is never
453 // narrowing.
454 if (InitializerValue.isSigned() && InitializerValue.isNegative())
455 Narrowing = true;
456 } else {
457 // Add a bit to the InitializerValue so we don't have to worry about
458 // signed vs. unsigned comparisons.
459 InitializerValue = InitializerValue.extend(
460 InitializerValue.getBitWidth() + 1);
461 // Convert the initializer to and from the target width and signed-ness.
462 llvm::APSInt ConvertedValue = InitializerValue;
463 ConvertedValue = ConvertedValue.trunc(ToWidth);
464 ConvertedValue.setIsSigned(ToSigned);
465 ConvertedValue = ConvertedValue.extend(InitializerValue.getBitWidth());
466 ConvertedValue.setIsSigned(InitializerValue.isSigned());
467 // If the result is different, this was a narrowing conversion.
468 if (ConvertedValue != InitializerValue)
469 Narrowing = true;
470 }
471 if (Narrowing) {
472 ConstantType = Initializer->getType();
473 ConstantValue = APValue(InitializerValue);
474 return NK_Constant_Narrowing;
475 }
476 }
477 return NK_Not_Narrowing;
478 }
479
480 default:
481 // Other kinds of conversions are not narrowings.
482 return NK_Not_Narrowing;
483 }
484 }
485
486 /// dump - Print this standard conversion sequence to standard
487 /// error. Useful for debugging overloading issues.
dump() const488 LLVM_DUMP_METHOD void StandardConversionSequence::dump() const {
489 raw_ostream &OS = llvm::errs();
490 bool PrintedSomething = false;
491 if (First != ICK_Identity) {
492 OS << GetImplicitConversionName(First);
493 PrintedSomething = true;
494 }
495
496 if (Second != ICK_Identity) {
497 if (PrintedSomething) {
498 OS << " -> ";
499 }
500 OS << GetImplicitConversionName(Second);
501
502 if (CopyConstructor) {
503 OS << " (by copy constructor)";
504 } else if (DirectBinding) {
505 OS << " (direct reference binding)";
506 } else if (ReferenceBinding) {
507 OS << " (reference binding)";
508 }
509 PrintedSomething = true;
510 }
511
512 if (Third != ICK_Identity) {
513 if (PrintedSomething) {
514 OS << " -> ";
515 }
516 OS << GetImplicitConversionName(Third);
517 PrintedSomething = true;
518 }
519
520 if (!PrintedSomething) {
521 OS << "No conversions required";
522 }
523 }
524
525 /// dump - Print this user-defined conversion sequence to standard
526 /// error. Useful for debugging overloading issues.
dump() const527 void UserDefinedConversionSequence::dump() const {
528 raw_ostream &OS = llvm::errs();
529 if (Before.First || Before.Second || Before.Third) {
530 Before.dump();
531 OS << " -> ";
532 }
533 if (ConversionFunction)
534 OS << '\'' << *ConversionFunction << '\'';
535 else
536 OS << "aggregate initialization";
537 if (After.First || After.Second || After.Third) {
538 OS << " -> ";
539 After.dump();
540 }
541 }
542
543 /// dump - Print this implicit conversion sequence to standard
544 /// error. Useful for debugging overloading issues.
dump() const545 void ImplicitConversionSequence::dump() const {
546 raw_ostream &OS = llvm::errs();
547 if (hasInitializerListContainerType())
548 OS << "Worst list element conversion: ";
549 switch (ConversionKind) {
550 case StandardConversion:
551 OS << "Standard conversion: ";
552 Standard.dump();
553 break;
554 case UserDefinedConversion:
555 OS << "User-defined conversion: ";
556 UserDefined.dump();
557 break;
558 case EllipsisConversion:
559 OS << "Ellipsis conversion";
560 break;
561 case AmbiguousConversion:
562 OS << "Ambiguous conversion";
563 break;
564 case BadConversion:
565 OS << "Bad conversion";
566 break;
567 }
568
569 OS << "\n";
570 }
571
construct()572 void AmbiguousConversionSequence::construct() {
573 new (&conversions()) ConversionSet();
574 }
575
destruct()576 void AmbiguousConversionSequence::destruct() {
577 conversions().~ConversionSet();
578 }
579
580 void
copyFrom(const AmbiguousConversionSequence & O)581 AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) {
582 FromTypePtr = O.FromTypePtr;
583 ToTypePtr = O.ToTypePtr;
584 new (&conversions()) ConversionSet(O.conversions());
585 }
586
587 namespace {
588 // Structure used by DeductionFailureInfo to store
589 // template argument information.
590 struct DFIArguments {
591 TemplateArgument FirstArg;
592 TemplateArgument SecondArg;
593 };
594 // Structure used by DeductionFailureInfo to store
595 // template parameter and template argument information.
596 struct DFIParamWithArguments : DFIArguments {
597 TemplateParameter Param;
598 };
599 // Structure used by DeductionFailureInfo to store template argument
600 // information and the index of the problematic call argument.
601 struct DFIDeducedMismatchArgs : DFIArguments {
602 TemplateArgumentList *TemplateArgs;
603 unsigned CallArgIndex;
604 };
605 // Structure used by DeductionFailureInfo to store information about
606 // unsatisfied constraints.
607 struct CNSInfo {
608 TemplateArgumentList *TemplateArgs;
609 ConstraintSatisfaction Satisfaction;
610 };
611 }
612
613 /// Convert from Sema's representation of template deduction information
614 /// to the form used in overload-candidate information.
615 DeductionFailureInfo
MakeDeductionFailureInfo(ASTContext & Context,Sema::TemplateDeductionResult TDK,TemplateDeductionInfo & Info)616 clang::MakeDeductionFailureInfo(ASTContext &Context,
617 Sema::TemplateDeductionResult TDK,
618 TemplateDeductionInfo &Info) {
619 DeductionFailureInfo Result;
620 Result.Result = static_cast<unsigned>(TDK);
621 Result.HasDiagnostic = false;
622 switch (TDK) {
623 case Sema::TDK_Invalid:
624 case Sema::TDK_InstantiationDepth:
625 case Sema::TDK_TooManyArguments:
626 case Sema::TDK_TooFewArguments:
627 case Sema::TDK_MiscellaneousDeductionFailure:
628 case Sema::TDK_CUDATargetMismatch:
629 Result.Data = nullptr;
630 break;
631
632 case Sema::TDK_Incomplete:
633 case Sema::TDK_InvalidExplicitArguments:
634 Result.Data = Info.Param.getOpaqueValue();
635 break;
636
637 case Sema::TDK_DeducedMismatch:
638 case Sema::TDK_DeducedMismatchNested: {
639 // FIXME: Should allocate from normal heap so that we can free this later.
640 auto *Saved = new (Context) DFIDeducedMismatchArgs;
641 Saved->FirstArg = Info.FirstArg;
642 Saved->SecondArg = Info.SecondArg;
643 Saved->TemplateArgs = Info.takeSugared();
644 Saved->CallArgIndex = Info.CallArgIndex;
645 Result.Data = Saved;
646 break;
647 }
648
649 case Sema::TDK_NonDeducedMismatch: {
650 // FIXME: Should allocate from normal heap so that we can free this later.
651 DFIArguments *Saved = new (Context) DFIArguments;
652 Saved->FirstArg = Info.FirstArg;
653 Saved->SecondArg = Info.SecondArg;
654 Result.Data = Saved;
655 break;
656 }
657
658 case Sema::TDK_IncompletePack:
659 // FIXME: It's slightly wasteful to allocate two TemplateArguments for this.
660 case Sema::TDK_Inconsistent:
661 case Sema::TDK_Underqualified: {
662 // FIXME: Should allocate from normal heap so that we can free this later.
663 DFIParamWithArguments *Saved = new (Context) DFIParamWithArguments;
664 Saved->Param = Info.Param;
665 Saved->FirstArg = Info.FirstArg;
666 Saved->SecondArg = Info.SecondArg;
667 Result.Data = Saved;
668 break;
669 }
670
671 case Sema::TDK_SubstitutionFailure:
672 Result.Data = Info.takeSugared();
673 if (Info.hasSFINAEDiagnostic()) {
674 PartialDiagnosticAt *Diag = new (Result.Diagnostic) PartialDiagnosticAt(
675 SourceLocation(), PartialDiagnostic::NullDiagnostic());
676 Info.takeSFINAEDiagnostic(*Diag);
677 Result.HasDiagnostic = true;
678 }
679 break;
680
681 case Sema::TDK_ConstraintsNotSatisfied: {
682 CNSInfo *Saved = new (Context) CNSInfo;
683 Saved->TemplateArgs = Info.takeSugared();
684 Saved->Satisfaction = Info.AssociatedConstraintsSatisfaction;
685 Result.Data = Saved;
686 break;
687 }
688
689 case Sema::TDK_Success:
690 case Sema::TDK_NonDependentConversionFailure:
691 case Sema::TDK_AlreadyDiagnosed:
692 llvm_unreachable("not a deduction failure");
693 }
694
695 return Result;
696 }
697
Destroy()698 void DeductionFailureInfo::Destroy() {
699 switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
700 case Sema::TDK_Success:
701 case Sema::TDK_Invalid:
702 case Sema::TDK_InstantiationDepth:
703 case Sema::TDK_Incomplete:
704 case Sema::TDK_TooManyArguments:
705 case Sema::TDK_TooFewArguments:
706 case Sema::TDK_InvalidExplicitArguments:
707 case Sema::TDK_CUDATargetMismatch:
708 case Sema::TDK_NonDependentConversionFailure:
709 break;
710
711 case Sema::TDK_IncompletePack:
712 case Sema::TDK_Inconsistent:
713 case Sema::TDK_Underqualified:
714 case Sema::TDK_DeducedMismatch:
715 case Sema::TDK_DeducedMismatchNested:
716 case Sema::TDK_NonDeducedMismatch:
717 // FIXME: Destroy the data?
718 Data = nullptr;
719 break;
720
721 case Sema::TDK_SubstitutionFailure:
722 // FIXME: Destroy the template argument list?
723 Data = nullptr;
724 if (PartialDiagnosticAt *Diag = getSFINAEDiagnostic()) {
725 Diag->~PartialDiagnosticAt();
726 HasDiagnostic = false;
727 }
728 break;
729
730 case Sema::TDK_ConstraintsNotSatisfied:
731 // FIXME: Destroy the template argument list?
732 Data = nullptr;
733 if (PartialDiagnosticAt *Diag = getSFINAEDiagnostic()) {
734 Diag->~PartialDiagnosticAt();
735 HasDiagnostic = false;
736 }
737 break;
738
739 // Unhandled
740 case Sema::TDK_MiscellaneousDeductionFailure:
741 case Sema::TDK_AlreadyDiagnosed:
742 break;
743 }
744 }
745
getSFINAEDiagnostic()746 PartialDiagnosticAt *DeductionFailureInfo::getSFINAEDiagnostic() {
747 if (HasDiagnostic)
748 return static_cast<PartialDiagnosticAt*>(static_cast<void*>(Diagnostic));
749 return nullptr;
750 }
751
getTemplateParameter()752 TemplateParameter DeductionFailureInfo::getTemplateParameter() {
753 switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
754 case Sema::TDK_Success:
755 case Sema::TDK_Invalid:
756 case Sema::TDK_InstantiationDepth:
757 case Sema::TDK_TooManyArguments:
758 case Sema::TDK_TooFewArguments:
759 case Sema::TDK_SubstitutionFailure:
760 case Sema::TDK_DeducedMismatch:
761 case Sema::TDK_DeducedMismatchNested:
762 case Sema::TDK_NonDeducedMismatch:
763 case Sema::TDK_CUDATargetMismatch:
764 case Sema::TDK_NonDependentConversionFailure:
765 case Sema::TDK_ConstraintsNotSatisfied:
766 return TemplateParameter();
767
768 case Sema::TDK_Incomplete:
769 case Sema::TDK_InvalidExplicitArguments:
770 return TemplateParameter::getFromOpaqueValue(Data);
771
772 case Sema::TDK_IncompletePack:
773 case Sema::TDK_Inconsistent:
774 case Sema::TDK_Underqualified:
775 return static_cast<DFIParamWithArguments*>(Data)->Param;
776
777 // Unhandled
778 case Sema::TDK_MiscellaneousDeductionFailure:
779 case Sema::TDK_AlreadyDiagnosed:
780 break;
781 }
782
783 return TemplateParameter();
784 }
785
getTemplateArgumentList()786 TemplateArgumentList *DeductionFailureInfo::getTemplateArgumentList() {
787 switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
788 case Sema::TDK_Success:
789 case Sema::TDK_Invalid:
790 case Sema::TDK_InstantiationDepth:
791 case Sema::TDK_TooManyArguments:
792 case Sema::TDK_TooFewArguments:
793 case Sema::TDK_Incomplete:
794 case Sema::TDK_IncompletePack:
795 case Sema::TDK_InvalidExplicitArguments:
796 case Sema::TDK_Inconsistent:
797 case Sema::TDK_Underqualified:
798 case Sema::TDK_NonDeducedMismatch:
799 case Sema::TDK_CUDATargetMismatch:
800 case Sema::TDK_NonDependentConversionFailure:
801 return nullptr;
802
803 case Sema::TDK_DeducedMismatch:
804 case Sema::TDK_DeducedMismatchNested:
805 return static_cast<DFIDeducedMismatchArgs*>(Data)->TemplateArgs;
806
807 case Sema::TDK_SubstitutionFailure:
808 return static_cast<TemplateArgumentList*>(Data);
809
810 case Sema::TDK_ConstraintsNotSatisfied:
811 return static_cast<CNSInfo*>(Data)->TemplateArgs;
812
813 // Unhandled
814 case Sema::TDK_MiscellaneousDeductionFailure:
815 case Sema::TDK_AlreadyDiagnosed:
816 break;
817 }
818
819 return nullptr;
820 }
821
getFirstArg()822 const TemplateArgument *DeductionFailureInfo::getFirstArg() {
823 switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
824 case Sema::TDK_Success:
825 case Sema::TDK_Invalid:
826 case Sema::TDK_InstantiationDepth:
827 case Sema::TDK_Incomplete:
828 case Sema::TDK_TooManyArguments:
829 case Sema::TDK_TooFewArguments:
830 case Sema::TDK_InvalidExplicitArguments:
831 case Sema::TDK_SubstitutionFailure:
832 case Sema::TDK_CUDATargetMismatch:
833 case Sema::TDK_NonDependentConversionFailure:
834 case Sema::TDK_ConstraintsNotSatisfied:
835 return nullptr;
836
837 case Sema::TDK_IncompletePack:
838 case Sema::TDK_Inconsistent:
839 case Sema::TDK_Underqualified:
840 case Sema::TDK_DeducedMismatch:
841 case Sema::TDK_DeducedMismatchNested:
842 case Sema::TDK_NonDeducedMismatch:
843 return &static_cast<DFIArguments*>(Data)->FirstArg;
844
845 // Unhandled
846 case Sema::TDK_MiscellaneousDeductionFailure:
847 case Sema::TDK_AlreadyDiagnosed:
848 break;
849 }
850
851 return nullptr;
852 }
853
getSecondArg()854 const TemplateArgument *DeductionFailureInfo::getSecondArg() {
855 switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
856 case Sema::TDK_Success:
857 case Sema::TDK_Invalid:
858 case Sema::TDK_InstantiationDepth:
859 case Sema::TDK_Incomplete:
860 case Sema::TDK_IncompletePack:
861 case Sema::TDK_TooManyArguments:
862 case Sema::TDK_TooFewArguments:
863 case Sema::TDK_InvalidExplicitArguments:
864 case Sema::TDK_SubstitutionFailure:
865 case Sema::TDK_CUDATargetMismatch:
866 case Sema::TDK_NonDependentConversionFailure:
867 case Sema::TDK_ConstraintsNotSatisfied:
868 return nullptr;
869
870 case Sema::TDK_Inconsistent:
871 case Sema::TDK_Underqualified:
872 case Sema::TDK_DeducedMismatch:
873 case Sema::TDK_DeducedMismatchNested:
874 case Sema::TDK_NonDeducedMismatch:
875 return &static_cast<DFIArguments*>(Data)->SecondArg;
876
877 // Unhandled
878 case Sema::TDK_MiscellaneousDeductionFailure:
879 case Sema::TDK_AlreadyDiagnosed:
880 break;
881 }
882
883 return nullptr;
884 }
885
getCallArgIndex()886 std::optional<unsigned> DeductionFailureInfo::getCallArgIndex() {
887 switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
888 case Sema::TDK_DeducedMismatch:
889 case Sema::TDK_DeducedMismatchNested:
890 return static_cast<DFIDeducedMismatchArgs*>(Data)->CallArgIndex;
891
892 default:
893 return std::nullopt;
894 }
895 }
896
FunctionsCorrespond(ASTContext & Ctx,const FunctionDecl * X,const FunctionDecl * Y)897 static bool FunctionsCorrespond(ASTContext &Ctx, const FunctionDecl *X,
898 const FunctionDecl *Y) {
899 if (!X || !Y)
900 return false;
901 if (X->getNumParams() != Y->getNumParams())
902 return false;
903 for (unsigned I = 0; I < X->getNumParams(); ++I)
904 if (!Ctx.hasSameUnqualifiedType(X->getParamDecl(I)->getType(),
905 Y->getParamDecl(I)->getType()))
906 return false;
907 if (auto *FTX = X->getDescribedFunctionTemplate()) {
908 auto *FTY = Y->getDescribedFunctionTemplate();
909 if (!FTY)
910 return false;
911 if (!Ctx.isSameTemplateParameterList(FTX->getTemplateParameters(),
912 FTY->getTemplateParameters()))
913 return false;
914 }
915 return true;
916 }
917
shouldAddReversedEqEq(Sema & S,SourceLocation OpLoc,Expr * FirstOperand,FunctionDecl * EqFD)918 static bool shouldAddReversedEqEq(Sema &S, SourceLocation OpLoc,
919 Expr *FirstOperand, FunctionDecl *EqFD) {
920 assert(EqFD->getOverloadedOperator() ==
921 OverloadedOperatorKind::OO_EqualEqual);
922 // C++2a [over.match.oper]p4:
923 // A non-template function or function template F named operator== is a
924 // rewrite target with first operand o unless a search for the name operator!=
925 // in the scope S from the instantiation context of the operator expression
926 // finds a function or function template that would correspond
927 // ([basic.scope.scope]) to F if its name were operator==, where S is the
928 // scope of the class type of o if F is a class member, and the namespace
929 // scope of which F is a member otherwise. A function template specialization
930 // named operator== is a rewrite target if its function template is a rewrite
931 // target.
932 DeclarationName NotEqOp = S.Context.DeclarationNames.getCXXOperatorName(
933 OverloadedOperatorKind::OO_ExclaimEqual);
934 if (isa<CXXMethodDecl>(EqFD)) {
935 // If F is a class member, search scope is class type of first operand.
936 QualType RHS = FirstOperand->getType();
937 auto *RHSRec = RHS->getAs<RecordType>();
938 if (!RHSRec)
939 return true;
940 LookupResult Members(S, NotEqOp, OpLoc,
941 Sema::LookupNameKind::LookupMemberName);
942 S.LookupQualifiedName(Members, RHSRec->getDecl());
943 Members.suppressDiagnostics();
944 for (NamedDecl *Op : Members)
945 if (FunctionsCorrespond(S.Context, EqFD, Op->getAsFunction()))
946 return false;
947 return true;
948 }
949 // Otherwise the search scope is the namespace scope of which F is a member.
950 LookupResult NonMembers(S, NotEqOp, OpLoc,
951 Sema::LookupNameKind::LookupOperatorName);
952 S.LookupName(NonMembers,
953 S.getScopeForContext(EqFD->getEnclosingNamespaceContext()));
954 NonMembers.suppressDiagnostics();
955 for (NamedDecl *Op : NonMembers) {
956 auto *FD = Op->getAsFunction();
957 if(auto* UD = dyn_cast<UsingShadowDecl>(Op))
958 FD = UD->getUnderlyingDecl()->getAsFunction();
959 if (FunctionsCorrespond(S.Context, EqFD, FD) &&
960 declaresSameEntity(cast<Decl>(EqFD->getDeclContext()),
961 cast<Decl>(Op->getDeclContext())))
962 return false;
963 }
964 return true;
965 }
966
allowsReversed(OverloadedOperatorKind Op)967 bool OverloadCandidateSet::OperatorRewriteInfo::allowsReversed(
968 OverloadedOperatorKind Op) {
969 if (!AllowRewrittenCandidates)
970 return false;
971 return Op == OO_EqualEqual || Op == OO_Spaceship;
972 }
973
shouldAddReversed(Sema & S,ArrayRef<Expr * > OriginalArgs,FunctionDecl * FD)974 bool OverloadCandidateSet::OperatorRewriteInfo::shouldAddReversed(
975 Sema &S, ArrayRef<Expr *> OriginalArgs, FunctionDecl *FD) {
976 auto Op = FD->getOverloadedOperator();
977 if (!allowsReversed(Op))
978 return false;
979 if (Op == OverloadedOperatorKind::OO_EqualEqual) {
980 assert(OriginalArgs.size() == 2);
981 if (!shouldAddReversedEqEq(
982 S, OpLoc, /*FirstOperand in reversed args*/ OriginalArgs[1], FD))
983 return false;
984 }
985 // Don't bother adding a reversed candidate that can never be a better
986 // match than the non-reversed version.
987 return FD->getNumParams() != 2 ||
988 !S.Context.hasSameUnqualifiedType(FD->getParamDecl(0)->getType(),
989 FD->getParamDecl(1)->getType()) ||
990 FD->hasAttr<EnableIfAttr>();
991 }
992
destroyCandidates()993 void OverloadCandidateSet::destroyCandidates() {
994 for (iterator i = begin(), e = end(); i != e; ++i) {
995 for (auto &C : i->Conversions)
996 C.~ImplicitConversionSequence();
997 if (!i->Viable && i->FailureKind == ovl_fail_bad_deduction)
998 i->DeductionFailure.Destroy();
999 }
1000 }
1001
clear(CandidateSetKind CSK)1002 void OverloadCandidateSet::clear(CandidateSetKind CSK) {
1003 destroyCandidates();
1004 SlabAllocator.Reset();
1005 NumInlineBytesUsed = 0;
1006 Candidates.clear();
1007 Functions.clear();
1008 Kind = CSK;
1009 }
1010
1011 namespace {
1012 class UnbridgedCastsSet {
1013 struct Entry {
1014 Expr **Addr;
1015 Expr *Saved;
1016 };
1017 SmallVector<Entry, 2> Entries;
1018
1019 public:
save(Sema & S,Expr * & E)1020 void save(Sema &S, Expr *&E) {
1021 assert(E->hasPlaceholderType(BuiltinType::ARCUnbridgedCast));
1022 Entry entry = { &E, E };
1023 Entries.push_back(entry);
1024 E = S.stripARCUnbridgedCast(E);
1025 }
1026
restore()1027 void restore() {
1028 for (SmallVectorImpl<Entry>::iterator
1029 i = Entries.begin(), e = Entries.end(); i != e; ++i)
1030 *i->Addr = i->Saved;
1031 }
1032 };
1033 }
1034
1035 /// checkPlaceholderForOverload - Do any interesting placeholder-like
1036 /// preprocessing on the given expression.
1037 ///
1038 /// \param unbridgedCasts a collection to which to add unbridged casts;
1039 /// without this, they will be immediately diagnosed as errors
1040 ///
1041 /// Return true on unrecoverable error.
1042 static bool
checkPlaceholderForOverload(Sema & S,Expr * & E,UnbridgedCastsSet * unbridgedCasts=nullptr)1043 checkPlaceholderForOverload(Sema &S, Expr *&E,
1044 UnbridgedCastsSet *unbridgedCasts = nullptr) {
1045 if (const BuiltinType *placeholder = E->getType()->getAsPlaceholderType()) {
1046 // We can't handle overloaded expressions here because overload
1047 // resolution might reasonably tweak them.
1048 if (placeholder->getKind() == BuiltinType::Overload) return false;
1049
1050 // If the context potentially accepts unbridged ARC casts, strip
1051 // the unbridged cast and add it to the collection for later restoration.
1052 if (placeholder->getKind() == BuiltinType::ARCUnbridgedCast &&
1053 unbridgedCasts) {
1054 unbridgedCasts->save(S, E);
1055 return false;
1056 }
1057
1058 // Go ahead and check everything else.
1059 ExprResult result = S.CheckPlaceholderExpr(E);
1060 if (result.isInvalid())
1061 return true;
1062
1063 E = result.get();
1064 return false;
1065 }
1066
1067 // Nothing to do.
1068 return false;
1069 }
1070
1071 /// checkArgPlaceholdersForOverload - Check a set of call operands for
1072 /// placeholders.
checkArgPlaceholdersForOverload(Sema & S,MultiExprArg Args,UnbridgedCastsSet & unbridged)1073 static bool checkArgPlaceholdersForOverload(Sema &S, MultiExprArg Args,
1074 UnbridgedCastsSet &unbridged) {
1075 for (unsigned i = 0, e = Args.size(); i != e; ++i)
1076 if (checkPlaceholderForOverload(S, Args[i], &unbridged))
1077 return true;
1078
1079 return false;
1080 }
1081
1082 /// Determine whether the given New declaration is an overload of the
1083 /// declarations in Old. This routine returns Ovl_Match or Ovl_NonFunction if
1084 /// New and Old cannot be overloaded, e.g., if New has the same signature as
1085 /// some function in Old (C++ 1.3.10) or if the Old declarations aren't
1086 /// functions (or function templates) at all. When it does return Ovl_Match or
1087 /// Ovl_NonFunction, MatchedDecl will point to the decl that New cannot be
1088 /// overloaded with. This decl may be a UsingShadowDecl on top of the underlying
1089 /// declaration.
1090 ///
1091 /// Example: Given the following input:
1092 ///
1093 /// void f(int, float); // #1
1094 /// void f(int, int); // #2
1095 /// int f(int, int); // #3
1096 ///
1097 /// When we process #1, there is no previous declaration of "f", so IsOverload
1098 /// will not be used.
1099 ///
1100 /// When we process #2, Old contains only the FunctionDecl for #1. By comparing
1101 /// the parameter types, we see that #1 and #2 are overloaded (since they have
1102 /// different signatures), so this routine returns Ovl_Overload; MatchedDecl is
1103 /// unchanged.
1104 ///
1105 /// When we process #3, Old is an overload set containing #1 and #2. We compare
1106 /// the signatures of #3 to #1 (they're overloaded, so we do nothing) and then
1107 /// #3 to #2. Since the signatures of #3 and #2 are identical (return types of
1108 /// functions are not part of the signature), IsOverload returns Ovl_Match and
1109 /// MatchedDecl will be set to point to the FunctionDecl for #2.
1110 ///
1111 /// 'NewIsUsingShadowDecl' indicates that 'New' is being introduced into a class
1112 /// by a using declaration. The rules for whether to hide shadow declarations
1113 /// ignore some properties which otherwise figure into a function template's
1114 /// signature.
1115 Sema::OverloadKind
CheckOverload(Scope * S,FunctionDecl * New,const LookupResult & Old,NamedDecl * & Match,bool NewIsUsingDecl)1116 Sema::CheckOverload(Scope *S, FunctionDecl *New, const LookupResult &Old,
1117 NamedDecl *&Match, bool NewIsUsingDecl) {
1118 for (LookupResult::iterator I = Old.begin(), E = Old.end();
1119 I != E; ++I) {
1120 NamedDecl *OldD = *I;
1121
1122 bool OldIsUsingDecl = false;
1123 if (isa<UsingShadowDecl>(OldD)) {
1124 OldIsUsingDecl = true;
1125
1126 // We can always introduce two using declarations into the same
1127 // context, even if they have identical signatures.
1128 if (NewIsUsingDecl) continue;
1129
1130 OldD = cast<UsingShadowDecl>(OldD)->getTargetDecl();
1131 }
1132
1133 // A using-declaration does not conflict with another declaration
1134 // if one of them is hidden.
1135 if ((OldIsUsingDecl || NewIsUsingDecl) && !isVisible(*I))
1136 continue;
1137
1138 // If either declaration was introduced by a using declaration,
1139 // we'll need to use slightly different rules for matching.
1140 // Essentially, these rules are the normal rules, except that
1141 // function templates hide function templates with different
1142 // return types or template parameter lists.
1143 bool UseMemberUsingDeclRules =
1144 (OldIsUsingDecl || NewIsUsingDecl) && CurContext->isRecord() &&
1145 !New->getFriendObjectKind();
1146
1147 if (FunctionDecl *OldF = OldD->getAsFunction()) {
1148 if (!IsOverload(New, OldF, UseMemberUsingDeclRules)) {
1149 if (UseMemberUsingDeclRules && OldIsUsingDecl) {
1150 HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I));
1151 continue;
1152 }
1153
1154 if (!isa<FunctionTemplateDecl>(OldD) &&
1155 !shouldLinkPossiblyHiddenDecl(*I, New))
1156 continue;
1157
1158 // C++20 [temp.friend] p9: A non-template friend declaration with a
1159 // requires-clause shall be a definition. A friend function template
1160 // with a constraint that depends on a template parameter from an
1161 // enclosing template shall be a definition. Such a constrained friend
1162 // function or function template declaration does not declare the same
1163 // function or function template as a declaration in any other scope.
1164 if (Context.FriendsDifferByConstraints(OldF, New))
1165 continue;
1166
1167 Match = *I;
1168 return Ovl_Match;
1169 }
1170
1171 // Builtins that have custom typechecking or have a reference should
1172 // not be overloadable or redeclarable.
1173 if (!getASTContext().canBuiltinBeRedeclared(OldF)) {
1174 Match = *I;
1175 return Ovl_NonFunction;
1176 }
1177 } else if (isa<UsingDecl>(OldD) || isa<UsingPackDecl>(OldD)) {
1178 // We can overload with these, which can show up when doing
1179 // redeclaration checks for UsingDecls.
1180 assert(Old.getLookupKind() == LookupUsingDeclName);
1181 } else if (isa<TagDecl>(OldD)) {
1182 // We can always overload with tags by hiding them.
1183 } else if (auto *UUD = dyn_cast<UnresolvedUsingValueDecl>(OldD)) {
1184 // Optimistically assume that an unresolved using decl will
1185 // overload; if it doesn't, we'll have to diagnose during
1186 // template instantiation.
1187 //
1188 // Exception: if the scope is dependent and this is not a class
1189 // member, the using declaration can only introduce an enumerator.
1190 if (UUD->getQualifier()->isDependent() && !UUD->isCXXClassMember()) {
1191 Match = *I;
1192 return Ovl_NonFunction;
1193 }
1194 } else {
1195 // (C++ 13p1):
1196 // Only function declarations can be overloaded; object and type
1197 // declarations cannot be overloaded.
1198 Match = *I;
1199 return Ovl_NonFunction;
1200 }
1201 }
1202
1203 // C++ [temp.friend]p1:
1204 // For a friend function declaration that is not a template declaration:
1205 // -- if the name of the friend is a qualified or unqualified template-id,
1206 // [...], otherwise
1207 // -- if the name of the friend is a qualified-id and a matching
1208 // non-template function is found in the specified class or namespace,
1209 // the friend declaration refers to that function, otherwise,
1210 // -- if the name of the friend is a qualified-id and a matching function
1211 // template is found in the specified class or namespace, the friend
1212 // declaration refers to the deduced specialization of that function
1213 // template, otherwise
1214 // -- the name shall be an unqualified-id [...]
1215 // If we get here for a qualified friend declaration, we've just reached the
1216 // third bullet. If the type of the friend is dependent, skip this lookup
1217 // until instantiation.
1218 if (New->getFriendObjectKind() && New->getQualifier() &&
1219 !New->getDescribedFunctionTemplate() &&
1220 !New->getDependentSpecializationInfo() &&
1221 !New->getType()->isDependentType()) {
1222 LookupResult TemplateSpecResult(LookupResult::Temporary, Old);
1223 TemplateSpecResult.addAllDecls(Old);
1224 if (CheckFunctionTemplateSpecialization(New, nullptr, TemplateSpecResult,
1225 /*QualifiedFriend*/true)) {
1226 New->setInvalidDecl();
1227 return Ovl_Overload;
1228 }
1229
1230 Match = TemplateSpecResult.getAsSingle<FunctionDecl>();
1231 return Ovl_Match;
1232 }
1233
1234 return Ovl_Overload;
1235 }
1236
IsOverload(FunctionDecl * New,FunctionDecl * Old,bool UseMemberUsingDeclRules,bool ConsiderCudaAttrs,bool ConsiderRequiresClauses)1237 bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old,
1238 bool UseMemberUsingDeclRules, bool ConsiderCudaAttrs,
1239 bool ConsiderRequiresClauses) {
1240 // C++ [basic.start.main]p2: This function shall not be overloaded.
1241 if (New->isMain())
1242 return false;
1243
1244 // MSVCRT user defined entry points cannot be overloaded.
1245 if (New->isMSVCRTEntryPoint())
1246 return false;
1247
1248 FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
1249 FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
1250
1251 // C++ [temp.fct]p2:
1252 // A function template can be overloaded with other function templates
1253 // and with normal (non-template) functions.
1254 if ((OldTemplate == nullptr) != (NewTemplate == nullptr))
1255 return true;
1256
1257 // Is the function New an overload of the function Old?
1258 QualType OldQType = Context.getCanonicalType(Old->getType());
1259 QualType NewQType = Context.getCanonicalType(New->getType());
1260
1261 // Compare the signatures (C++ 1.3.10) of the two functions to
1262 // determine whether they are overloads. If we find any mismatch
1263 // in the signature, they are overloads.
1264
1265 // If either of these functions is a K&R-style function (no
1266 // prototype), then we consider them to have matching signatures.
1267 if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
1268 isa<FunctionNoProtoType>(NewQType.getTypePtr()))
1269 return false;
1270
1271 const FunctionProtoType *OldType = cast<FunctionProtoType>(OldQType);
1272 const FunctionProtoType *NewType = cast<FunctionProtoType>(NewQType);
1273
1274 // The signature of a function includes the types of its
1275 // parameters (C++ 1.3.10), which includes the presence or absence
1276 // of the ellipsis; see C++ DR 357).
1277 if (OldQType != NewQType &&
1278 (OldType->getNumParams() != NewType->getNumParams() ||
1279 OldType->isVariadic() != NewType->isVariadic() ||
1280 !FunctionParamTypesAreEqual(OldType, NewType)))
1281 return true;
1282
1283 if (NewTemplate) {
1284 // C++ [temp.over.link]p4:
1285 // The signature of a function template consists of its function
1286 // signature, its return type and its template parameter list. The names
1287 // of the template parameters are significant only for establishing the
1288 // relationship between the template parameters and the rest of the
1289 // signature.
1290 //
1291 // We check the return type and template parameter lists for function
1292 // templates first; the remaining checks follow.
1293 bool SameTemplateParameterList = TemplateParameterListsAreEqual(
1294 NewTemplate->getTemplateParameters(),
1295 OldTemplate->getTemplateParameters(), false, TPL_TemplateMatch);
1296 bool SameReturnType = Context.hasSameType(Old->getDeclaredReturnType(),
1297 New->getDeclaredReturnType());
1298 // FIXME(GH58571): Match template parameter list even for non-constrained
1299 // template heads. This currently ensures that the code prior to C++20 is
1300 // not newly broken.
1301 bool ConstraintsInTemplateHead =
1302 NewTemplate->getTemplateParameters()->hasAssociatedConstraints() ||
1303 OldTemplate->getTemplateParameters()->hasAssociatedConstraints();
1304 // C++ [namespace.udecl]p11:
1305 // The set of declarations named by a using-declarator that inhabits a
1306 // class C does not include member functions and member function
1307 // templates of a base class that "correspond" to (and thus would
1308 // conflict with) a declaration of a function or function template in
1309 // C.
1310 // Comparing return types is not required for the "correspond" check to
1311 // decide whether a member introduced by a shadow declaration is hidden.
1312 if (UseMemberUsingDeclRules && ConstraintsInTemplateHead &&
1313 !SameTemplateParameterList)
1314 return true;
1315 if (!UseMemberUsingDeclRules &&
1316 (!SameTemplateParameterList || !SameReturnType))
1317 return true;
1318 }
1319
1320 if (ConsiderRequiresClauses) {
1321 Expr *NewRC = New->getTrailingRequiresClause(),
1322 *OldRC = Old->getTrailingRequiresClause();
1323 if ((NewRC != nullptr) != (OldRC != nullptr))
1324 return true;
1325
1326 if (NewRC && !AreConstraintExpressionsEqual(Old, OldRC, New, NewRC))
1327 return true;
1328 }
1329
1330 // If the function is a class member, its signature includes the
1331 // cv-qualifiers (if any) and ref-qualifier (if any) on the function itself.
1332 //
1333 // As part of this, also check whether one of the member functions
1334 // is static, in which case they are not overloads (C++
1335 // 13.1p2). While not part of the definition of the signature,
1336 // this check is important to determine whether these functions
1337 // can be overloaded.
1338 CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old);
1339 CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New);
1340 if (OldMethod && NewMethod &&
1341 !OldMethod->isStatic() && !NewMethod->isStatic()) {
1342 if (OldMethod->getRefQualifier() != NewMethod->getRefQualifier()) {
1343 if (!UseMemberUsingDeclRules &&
1344 (OldMethod->getRefQualifier() == RQ_None ||
1345 NewMethod->getRefQualifier() == RQ_None)) {
1346 // C++20 [over.load]p2:
1347 // - Member function declarations with the same name, the same
1348 // parameter-type-list, and the same trailing requires-clause (if
1349 // any), as well as member function template declarations with the
1350 // same name, the same parameter-type-list, the same trailing
1351 // requires-clause (if any), and the same template-head, cannot be
1352 // overloaded if any of them, but not all, have a ref-qualifier.
1353 Diag(NewMethod->getLocation(), diag::err_ref_qualifier_overload)
1354 << NewMethod->getRefQualifier() << OldMethod->getRefQualifier();
1355 Diag(OldMethod->getLocation(), diag::note_previous_declaration);
1356 }
1357 return true;
1358 }
1359
1360 // We may not have applied the implicit const for a constexpr member
1361 // function yet (because we haven't yet resolved whether this is a static
1362 // or non-static member function). Add it now, on the assumption that this
1363 // is a redeclaration of OldMethod.
1364 auto OldQuals = OldMethod->getMethodQualifiers();
1365 auto NewQuals = NewMethod->getMethodQualifiers();
1366 if (!getLangOpts().CPlusPlus14 && NewMethod->isConstexpr() &&
1367 !isa<CXXConstructorDecl>(NewMethod))
1368 NewQuals.addConst();
1369 // We do not allow overloading based off of '__restrict'.
1370 OldQuals.removeRestrict();
1371 NewQuals.removeRestrict();
1372 if (OldQuals != NewQuals)
1373 return true;
1374 }
1375
1376 // Though pass_object_size is placed on parameters and takes an argument, we
1377 // consider it to be a function-level modifier for the sake of function
1378 // identity. Either the function has one or more parameters with
1379 // pass_object_size or it doesn't.
1380 if (functionHasPassObjectSizeParams(New) !=
1381 functionHasPassObjectSizeParams(Old))
1382 return true;
1383
1384 // enable_if attributes are an order-sensitive part of the signature.
1385 for (specific_attr_iterator<EnableIfAttr>
1386 NewI = New->specific_attr_begin<EnableIfAttr>(),
1387 NewE = New->specific_attr_end<EnableIfAttr>(),
1388 OldI = Old->specific_attr_begin<EnableIfAttr>(),
1389 OldE = Old->specific_attr_end<EnableIfAttr>();
1390 NewI != NewE || OldI != OldE; ++NewI, ++OldI) {
1391 if (NewI == NewE || OldI == OldE)
1392 return true;
1393 llvm::FoldingSetNodeID NewID, OldID;
1394 NewI->getCond()->Profile(NewID, Context, true);
1395 OldI->getCond()->Profile(OldID, Context, true);
1396 if (NewID != OldID)
1397 return true;
1398 }
1399
1400 if (getLangOpts().CUDA && ConsiderCudaAttrs) {
1401 // Don't allow overloading of destructors. (In theory we could, but it
1402 // would be a giant change to clang.)
1403 if (!isa<CXXDestructorDecl>(New)) {
1404 CUDAFunctionTarget NewTarget = IdentifyCUDATarget(New),
1405 OldTarget = IdentifyCUDATarget(Old);
1406 if (NewTarget != CFT_InvalidTarget) {
1407 assert((OldTarget != CFT_InvalidTarget) &&
1408 "Unexpected invalid target.");
1409
1410 // Allow overloading of functions with same signature and different CUDA
1411 // target attributes.
1412 if (NewTarget != OldTarget)
1413 return true;
1414 }
1415 }
1416 }
1417
1418 // The signatures match; this is not an overload.
1419 return false;
1420 }
1421
1422 /// Tries a user-defined conversion from From to ToType.
1423 ///
1424 /// Produces an implicit conversion sequence for when a standard conversion
1425 /// is not an option. See TryImplicitConversion for more information.
1426 static ImplicitConversionSequence
TryUserDefinedConversion(Sema & S,Expr * From,QualType ToType,bool SuppressUserConversions,AllowedExplicit AllowExplicit,bool InOverloadResolution,bool CStyle,bool AllowObjCWritebackConversion,bool AllowObjCConversionOnExplicit)1427 TryUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
1428 bool SuppressUserConversions,
1429 AllowedExplicit AllowExplicit,
1430 bool InOverloadResolution,
1431 bool CStyle,
1432 bool AllowObjCWritebackConversion,
1433 bool AllowObjCConversionOnExplicit) {
1434 ImplicitConversionSequence ICS;
1435
1436 if (SuppressUserConversions) {
1437 // We're not in the case above, so there is no conversion that
1438 // we can perform.
1439 ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1440 return ICS;
1441 }
1442
1443 // Attempt user-defined conversion.
1444 OverloadCandidateSet Conversions(From->getExprLoc(),
1445 OverloadCandidateSet::CSK_Normal);
1446 switch (IsUserDefinedConversion(S, From, ToType, ICS.UserDefined,
1447 Conversions, AllowExplicit,
1448 AllowObjCConversionOnExplicit)) {
1449 case OR_Success:
1450 case OR_Deleted:
1451 ICS.setUserDefined();
1452 // C++ [over.ics.user]p4:
1453 // A conversion of an expression of class type to the same class
1454 // type is given Exact Match rank, and a conversion of an
1455 // expression of class type to a base class of that type is
1456 // given Conversion rank, in spite of the fact that a copy
1457 // constructor (i.e., a user-defined conversion function) is
1458 // called for those cases.
1459 if (CXXConstructorDecl *Constructor
1460 = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
1461 QualType FromCanon
1462 = S.Context.getCanonicalType(From->getType().getUnqualifiedType());
1463 QualType ToCanon
1464 = S.Context.getCanonicalType(ToType).getUnqualifiedType();
1465 if (Constructor->isCopyConstructor() &&
1466 (FromCanon == ToCanon ||
1467 S.IsDerivedFrom(From->getBeginLoc(), FromCanon, ToCanon))) {
1468 // Turn this into a "standard" conversion sequence, so that it
1469 // gets ranked with standard conversion sequences.
1470 DeclAccessPair Found = ICS.UserDefined.FoundConversionFunction;
1471 ICS.setStandard();
1472 ICS.Standard.setAsIdentityConversion();
1473 ICS.Standard.setFromType(From->getType());
1474 ICS.Standard.setAllToTypes(ToType);
1475 ICS.Standard.CopyConstructor = Constructor;
1476 ICS.Standard.FoundCopyConstructor = Found;
1477 if (ToCanon != FromCanon)
1478 ICS.Standard.Second = ICK_Derived_To_Base;
1479 }
1480 }
1481 break;
1482
1483 case OR_Ambiguous:
1484 ICS.setAmbiguous();
1485 ICS.Ambiguous.setFromType(From->getType());
1486 ICS.Ambiguous.setToType(ToType);
1487 for (OverloadCandidateSet::iterator Cand = Conversions.begin();
1488 Cand != Conversions.end(); ++Cand)
1489 if (Cand->Best)
1490 ICS.Ambiguous.addConversion(Cand->FoundDecl, Cand->Function);
1491 break;
1492
1493 // Fall through.
1494 case OR_No_Viable_Function:
1495 ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1496 break;
1497 }
1498
1499 return ICS;
1500 }
1501
1502 /// TryImplicitConversion - Attempt to perform an implicit conversion
1503 /// from the given expression (Expr) to the given type (ToType). This
1504 /// function returns an implicit conversion sequence that can be used
1505 /// to perform the initialization. Given
1506 ///
1507 /// void f(float f);
1508 /// void g(int i) { f(i); }
1509 ///
1510 /// this routine would produce an implicit conversion sequence to
1511 /// describe the initialization of f from i, which will be a standard
1512 /// conversion sequence containing an lvalue-to-rvalue conversion (C++
1513 /// 4.1) followed by a floating-integral conversion (C++ 4.9).
1514 //
1515 /// Note that this routine only determines how the conversion can be
1516 /// performed; it does not actually perform the conversion. As such,
1517 /// it will not produce any diagnostics if no conversion is available,
1518 /// but will instead return an implicit conversion sequence of kind
1519 /// "BadConversion".
1520 ///
1521 /// If @p SuppressUserConversions, then user-defined conversions are
1522 /// not permitted.
1523 /// If @p AllowExplicit, then explicit user-defined conversions are
1524 /// permitted.
1525 ///
1526 /// \param AllowObjCWritebackConversion Whether we allow the Objective-C
1527 /// writeback conversion, which allows __autoreleasing id* parameters to
1528 /// be initialized with __strong id* or __weak id* arguments.
1529 static ImplicitConversionSequence
TryImplicitConversion(Sema & S,Expr * From,QualType ToType,bool SuppressUserConversions,AllowedExplicit AllowExplicit,bool InOverloadResolution,bool CStyle,bool AllowObjCWritebackConversion,bool AllowObjCConversionOnExplicit)1530 TryImplicitConversion(Sema &S, Expr *From, QualType ToType,
1531 bool SuppressUserConversions,
1532 AllowedExplicit AllowExplicit,
1533 bool InOverloadResolution,
1534 bool CStyle,
1535 bool AllowObjCWritebackConversion,
1536 bool AllowObjCConversionOnExplicit) {
1537 ImplicitConversionSequence ICS;
1538 if (IsStandardConversion(S, From, ToType, InOverloadResolution,
1539 ICS.Standard, CStyle, AllowObjCWritebackConversion)){
1540 ICS.setStandard();
1541 return ICS;
1542 }
1543
1544 if (!S.getLangOpts().CPlusPlus) {
1545 ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1546 return ICS;
1547 }
1548
1549 // C++ [over.ics.user]p4:
1550 // A conversion of an expression of class type to the same class
1551 // type is given Exact Match rank, and a conversion of an
1552 // expression of class type to a base class of that type is
1553 // given Conversion rank, in spite of the fact that a copy/move
1554 // constructor (i.e., a user-defined conversion function) is
1555 // called for those cases.
1556 QualType FromType = From->getType();
1557 if (ToType->getAs<RecordType>() && FromType->getAs<RecordType>() &&
1558 (S.Context.hasSameUnqualifiedType(FromType, ToType) ||
1559 S.IsDerivedFrom(From->getBeginLoc(), FromType, ToType))) {
1560 ICS.setStandard();
1561 ICS.Standard.setAsIdentityConversion();
1562 ICS.Standard.setFromType(FromType);
1563 ICS.Standard.setAllToTypes(ToType);
1564
1565 // We don't actually check at this point whether there is a valid
1566 // copy/move constructor, since overloading just assumes that it
1567 // exists. When we actually perform initialization, we'll find the
1568 // appropriate constructor to copy the returned object, if needed.
1569 ICS.Standard.CopyConstructor = nullptr;
1570
1571 // Determine whether this is considered a derived-to-base conversion.
1572 if (!S.Context.hasSameUnqualifiedType(FromType, ToType))
1573 ICS.Standard.Second = ICK_Derived_To_Base;
1574
1575 return ICS;
1576 }
1577
1578 return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions,
1579 AllowExplicit, InOverloadResolution, CStyle,
1580 AllowObjCWritebackConversion,
1581 AllowObjCConversionOnExplicit);
1582 }
1583
1584 ImplicitConversionSequence
TryImplicitConversion(Expr * From,QualType ToType,bool SuppressUserConversions,AllowedExplicit AllowExplicit,bool InOverloadResolution,bool CStyle,bool AllowObjCWritebackConversion)1585 Sema::TryImplicitConversion(Expr *From, QualType ToType,
1586 bool SuppressUserConversions,
1587 AllowedExplicit AllowExplicit,
1588 bool InOverloadResolution,
1589 bool CStyle,
1590 bool AllowObjCWritebackConversion) {
1591 return ::TryImplicitConversion(*this, From, ToType, SuppressUserConversions,
1592 AllowExplicit, InOverloadResolution, CStyle,
1593 AllowObjCWritebackConversion,
1594 /*AllowObjCConversionOnExplicit=*/false);
1595 }
1596
1597 /// PerformImplicitConversion - Perform an implicit conversion of the
1598 /// expression From to the type ToType. Returns the
1599 /// converted expression. Flavor is the kind of conversion we're
1600 /// performing, used in the error message. If @p AllowExplicit,
1601 /// explicit user-defined conversions are permitted.
PerformImplicitConversion(Expr * From,QualType ToType,AssignmentAction Action,bool AllowExplicit)1602 ExprResult Sema::PerformImplicitConversion(Expr *From, QualType ToType,
1603 AssignmentAction Action,
1604 bool AllowExplicit) {
1605 if (checkPlaceholderForOverload(*this, From))
1606 return ExprError();
1607
1608 // Objective-C ARC: Determine whether we will allow the writeback conversion.
1609 bool AllowObjCWritebackConversion
1610 = getLangOpts().ObjCAutoRefCount &&
1611 (Action == AA_Passing || Action == AA_Sending);
1612 if (getLangOpts().ObjC)
1613 CheckObjCBridgeRelatedConversions(From->getBeginLoc(), ToType,
1614 From->getType(), From);
1615 ImplicitConversionSequence ICS = ::TryImplicitConversion(
1616 *this, From, ToType,
1617 /*SuppressUserConversions=*/false,
1618 AllowExplicit ? AllowedExplicit::All : AllowedExplicit::None,
1619 /*InOverloadResolution=*/false,
1620 /*CStyle=*/false, AllowObjCWritebackConversion,
1621 /*AllowObjCConversionOnExplicit=*/false);
1622 return PerformImplicitConversion(From, ToType, ICS, Action);
1623 }
1624
1625 /// Determine whether the conversion from FromType to ToType is a valid
1626 /// conversion that strips "noexcept" or "noreturn" off the nested function
1627 /// type.
IsFunctionConversion(QualType FromType,QualType ToType,QualType & ResultTy)1628 bool Sema::IsFunctionConversion(QualType FromType, QualType ToType,
1629 QualType &ResultTy) {
1630 if (Context.hasSameUnqualifiedType(FromType, ToType))
1631 return false;
1632
1633 // Permit the conversion F(t __attribute__((noreturn))) -> F(t)
1634 // or F(t noexcept) -> F(t)
1635 // where F adds one of the following at most once:
1636 // - a pointer
1637 // - a member pointer
1638 // - a block pointer
1639 // Changes here need matching changes in FindCompositePointerType.
1640 CanQualType CanTo = Context.getCanonicalType(ToType);
1641 CanQualType CanFrom = Context.getCanonicalType(FromType);
1642 Type::TypeClass TyClass = CanTo->getTypeClass();
1643 if (TyClass != CanFrom->getTypeClass()) return false;
1644 if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto) {
1645 if (TyClass == Type::Pointer) {
1646 CanTo = CanTo.castAs<PointerType>()->getPointeeType();
1647 CanFrom = CanFrom.castAs<PointerType>()->getPointeeType();
1648 } else if (TyClass == Type::BlockPointer) {
1649 CanTo = CanTo.castAs<BlockPointerType>()->getPointeeType();
1650 CanFrom = CanFrom.castAs<BlockPointerType>()->getPointeeType();
1651 } else if (TyClass == Type::MemberPointer) {
1652 auto ToMPT = CanTo.castAs<MemberPointerType>();
1653 auto FromMPT = CanFrom.castAs<MemberPointerType>();
1654 // A function pointer conversion cannot change the class of the function.
1655 if (ToMPT->getClass() != FromMPT->getClass())
1656 return false;
1657 CanTo = ToMPT->getPointeeType();
1658 CanFrom = FromMPT->getPointeeType();
1659 } else {
1660 return false;
1661 }
1662
1663 TyClass = CanTo->getTypeClass();
1664 if (TyClass != CanFrom->getTypeClass()) return false;
1665 if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto)
1666 return false;
1667 }
1668
1669 const auto *FromFn = cast<FunctionType>(CanFrom);
1670 FunctionType::ExtInfo FromEInfo = FromFn->getExtInfo();
1671
1672 const auto *ToFn = cast<FunctionType>(CanTo);
1673 FunctionType::ExtInfo ToEInfo = ToFn->getExtInfo();
1674
1675 bool Changed = false;
1676
1677 // Drop 'noreturn' if not present in target type.
1678 if (FromEInfo.getNoReturn() && !ToEInfo.getNoReturn()) {
1679 FromFn = Context.adjustFunctionType(FromFn, FromEInfo.withNoReturn(false));
1680 Changed = true;
1681 }
1682
1683 // Drop 'noexcept' if not present in target type.
1684 if (const auto *FromFPT = dyn_cast<FunctionProtoType>(FromFn)) {
1685 const auto *ToFPT = cast<FunctionProtoType>(ToFn);
1686 if (FromFPT->isNothrow() && !ToFPT->isNothrow()) {
1687 FromFn = cast<FunctionType>(
1688 Context.getFunctionTypeWithExceptionSpec(QualType(FromFPT, 0),
1689 EST_None)
1690 .getTypePtr());
1691 Changed = true;
1692 }
1693
1694 // Convert FromFPT's ExtParameterInfo if necessary. The conversion is valid
1695 // only if the ExtParameterInfo lists of the two function prototypes can be
1696 // merged and the merged list is identical to ToFPT's ExtParameterInfo list.
1697 SmallVector<FunctionProtoType::ExtParameterInfo, 4> NewParamInfos;
1698 bool CanUseToFPT, CanUseFromFPT;
1699 if (Context.mergeExtParameterInfo(ToFPT, FromFPT, CanUseToFPT,
1700 CanUseFromFPT, NewParamInfos) &&
1701 CanUseToFPT && !CanUseFromFPT) {
1702 FunctionProtoType::ExtProtoInfo ExtInfo = FromFPT->getExtProtoInfo();
1703 ExtInfo.ExtParameterInfos =
1704 NewParamInfos.empty() ? nullptr : NewParamInfos.data();
1705 QualType QT = Context.getFunctionType(FromFPT->getReturnType(),
1706 FromFPT->getParamTypes(), ExtInfo);
1707 FromFn = QT->getAs<FunctionType>();
1708 Changed = true;
1709 }
1710 }
1711
1712 if (!Changed)
1713 return false;
1714
1715 assert(QualType(FromFn, 0).isCanonical());
1716 if (QualType(FromFn, 0) != CanTo) return false;
1717
1718 ResultTy = ToType;
1719 return true;
1720 }
1721
1722 /// Determine whether the conversion from FromType to ToType is a valid
1723 /// vector conversion.
1724 ///
1725 /// \param ICK Will be set to the vector conversion kind, if this is a vector
1726 /// conversion.
IsVectorConversion(Sema & S,QualType FromType,QualType ToType,ImplicitConversionKind & ICK,Expr * From,bool InOverloadResolution,bool CStyle)1727 static bool IsVectorConversion(Sema &S, QualType FromType, QualType ToType,
1728 ImplicitConversionKind &ICK, Expr *From,
1729 bool InOverloadResolution, bool CStyle) {
1730 // We need at least one of these types to be a vector type to have a vector
1731 // conversion.
1732 if (!ToType->isVectorType() && !FromType->isVectorType())
1733 return false;
1734
1735 // Identical types require no conversions.
1736 if (S.Context.hasSameUnqualifiedType(FromType, ToType))
1737 return false;
1738
1739 // There are no conversions between extended vector types, only identity.
1740 if (ToType->isExtVectorType()) {
1741 // There are no conversions between extended vector types other than the
1742 // identity conversion.
1743 if (FromType->isExtVectorType())
1744 return false;
1745
1746 // Vector splat from any arithmetic type to a vector.
1747 if (FromType->isArithmeticType()) {
1748 ICK = ICK_Vector_Splat;
1749 return true;
1750 }
1751 }
1752
1753 if (ToType->isSizelessBuiltinType() || FromType->isSizelessBuiltinType())
1754 if (S.Context.areCompatibleSveTypes(FromType, ToType) ||
1755 S.Context.areLaxCompatibleSveTypes(FromType, ToType)) {
1756 ICK = ICK_SVE_Vector_Conversion;
1757 return true;
1758 }
1759
1760 // We can perform the conversion between vector types in the following cases:
1761 // 1)vector types are equivalent AltiVec and GCC vector types
1762 // 2)lax vector conversions are permitted and the vector types are of the
1763 // same size
1764 // 3)the destination type does not have the ARM MVE strict-polymorphism
1765 // attribute, which inhibits lax vector conversion for overload resolution
1766 // only
1767 if (ToType->isVectorType() && FromType->isVectorType()) {
1768 if (S.Context.areCompatibleVectorTypes(FromType, ToType) ||
1769 (S.isLaxVectorConversion(FromType, ToType) &&
1770 !ToType->hasAttr(attr::ArmMveStrictPolymorphism))) {
1771 if (S.isLaxVectorConversion(FromType, ToType) &&
1772 S.anyAltivecTypes(FromType, ToType) &&
1773 !S.areSameVectorElemTypes(FromType, ToType) &&
1774 !InOverloadResolution && !CStyle) {
1775 S.Diag(From->getBeginLoc(), diag::warn_deprecated_lax_vec_conv_all)
1776 << FromType << ToType;
1777 }
1778 ICK = ICK_Vector_Conversion;
1779 return true;
1780 }
1781 }
1782
1783 return false;
1784 }
1785
1786 static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType,
1787 bool InOverloadResolution,
1788 StandardConversionSequence &SCS,
1789 bool CStyle);
1790
1791 /// IsStandardConversion - Determines whether there is a standard
1792 /// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
1793 /// expression From to the type ToType. Standard conversion sequences
1794 /// only consider non-class types; for conversions that involve class
1795 /// types, use TryImplicitConversion. If a conversion exists, SCS will
1796 /// contain the standard conversion sequence required to perform this
1797 /// conversion and this routine will return true. Otherwise, this
1798 /// routine will return false and the value of SCS is unspecified.
IsStandardConversion(Sema & S,Expr * From,QualType ToType,bool InOverloadResolution,StandardConversionSequence & SCS,bool CStyle,bool AllowObjCWritebackConversion)1799 static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
1800 bool InOverloadResolution,
1801 StandardConversionSequence &SCS,
1802 bool CStyle,
1803 bool AllowObjCWritebackConversion) {
1804 QualType FromType = From->getType();
1805
1806 // Standard conversions (C++ [conv])
1807 SCS.setAsIdentityConversion();
1808 SCS.IncompatibleObjC = false;
1809 SCS.setFromType(FromType);
1810 SCS.CopyConstructor = nullptr;
1811
1812 // There are no standard conversions for class types in C++, so
1813 // abort early. When overloading in C, however, we do permit them.
1814 if (S.getLangOpts().CPlusPlus &&
1815 (FromType->isRecordType() || ToType->isRecordType()))
1816 return false;
1817
1818 // The first conversion can be an lvalue-to-rvalue conversion,
1819 // array-to-pointer conversion, or function-to-pointer conversion
1820 // (C++ 4p1).
1821
1822 if (FromType == S.Context.OverloadTy) {
1823 DeclAccessPair AccessPair;
1824 if (FunctionDecl *Fn
1825 = S.ResolveAddressOfOverloadedFunction(From, ToType, false,
1826 AccessPair)) {
1827 // We were able to resolve the address of the overloaded function,
1828 // so we can convert to the type of that function.
1829 FromType = Fn->getType();
1830 SCS.setFromType(FromType);
1831
1832 // we can sometimes resolve &foo<int> regardless of ToType, so check
1833 // if the type matches (identity) or we are converting to bool
1834 if (!S.Context.hasSameUnqualifiedType(
1835 S.ExtractUnqualifiedFunctionType(ToType), FromType)) {
1836 QualType resultTy;
1837 // if the function type matches except for [[noreturn]], it's ok
1838 if (!S.IsFunctionConversion(FromType,
1839 S.ExtractUnqualifiedFunctionType(ToType), resultTy))
1840 // otherwise, only a boolean conversion is standard
1841 if (!ToType->isBooleanType())
1842 return false;
1843 }
1844
1845 // Check if the "from" expression is taking the address of an overloaded
1846 // function and recompute the FromType accordingly. Take advantage of the
1847 // fact that non-static member functions *must* have such an address-of
1848 // expression.
1849 CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn);
1850 if (Method && !Method->isStatic()) {
1851 assert(isa<UnaryOperator>(From->IgnoreParens()) &&
1852 "Non-unary operator on non-static member address");
1853 assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode()
1854 == UO_AddrOf &&
1855 "Non-address-of operator on non-static member address");
1856 const Type *ClassType
1857 = S.Context.getTypeDeclType(Method->getParent()).getTypePtr();
1858 FromType = S.Context.getMemberPointerType(FromType, ClassType);
1859 } else if (isa<UnaryOperator>(From->IgnoreParens())) {
1860 assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode() ==
1861 UO_AddrOf &&
1862 "Non-address-of operator for overloaded function expression");
1863 FromType = S.Context.getPointerType(FromType);
1864 }
1865 } else {
1866 return false;
1867 }
1868 }
1869 // Lvalue-to-rvalue conversion (C++11 4.1):
1870 // A glvalue (3.10) of a non-function, non-array type T can
1871 // be converted to a prvalue.
1872 bool argIsLValue = From->isGLValue();
1873 if (argIsLValue &&
1874 !FromType->isFunctionType() && !FromType->isArrayType() &&
1875 S.Context.getCanonicalType(FromType) != S.Context.OverloadTy) {
1876 SCS.First = ICK_Lvalue_To_Rvalue;
1877
1878 // C11 6.3.2.1p2:
1879 // ... if the lvalue has atomic type, the value has the non-atomic version
1880 // of the type of the lvalue ...
1881 if (const AtomicType *Atomic = FromType->getAs<AtomicType>())
1882 FromType = Atomic->getValueType();
1883
1884 // If T is a non-class type, the type of the rvalue is the
1885 // cv-unqualified version of T. Otherwise, the type of the rvalue
1886 // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
1887 // just strip the qualifiers because they don't matter.
1888 FromType = FromType.getUnqualifiedType();
1889 } else if (FromType->isArrayType()) {
1890 // Array-to-pointer conversion (C++ 4.2)
1891 SCS.First = ICK_Array_To_Pointer;
1892
1893 // An lvalue or rvalue of type "array of N T" or "array of unknown
1894 // bound of T" can be converted to an rvalue of type "pointer to
1895 // T" (C++ 4.2p1).
1896 FromType = S.Context.getArrayDecayedType(FromType);
1897
1898 if (S.IsStringLiteralToNonConstPointerConversion(From, ToType)) {
1899 // This conversion is deprecated in C++03 (D.4)
1900 SCS.DeprecatedStringLiteralToCharPtr = true;
1901
1902 // For the purpose of ranking in overload resolution
1903 // (13.3.3.1.1), this conversion is considered an
1904 // array-to-pointer conversion followed by a qualification
1905 // conversion (4.4). (C++ 4.2p2)
1906 SCS.Second = ICK_Identity;
1907 SCS.Third = ICK_Qualification;
1908 SCS.QualificationIncludesObjCLifetime = false;
1909 SCS.setAllToTypes(FromType);
1910 return true;
1911 }
1912 } else if (FromType->isFunctionType() && argIsLValue) {
1913 // Function-to-pointer conversion (C++ 4.3).
1914 SCS.First = ICK_Function_To_Pointer;
1915
1916 if (auto *DRE = dyn_cast<DeclRefExpr>(From->IgnoreParenCasts()))
1917 if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl()))
1918 if (!S.checkAddressOfFunctionIsAvailable(FD))
1919 return false;
1920
1921 // An lvalue of function type T can be converted to an rvalue of
1922 // type "pointer to T." The result is a pointer to the
1923 // function. (C++ 4.3p1).
1924 FromType = S.Context.getPointerType(FromType);
1925 } else {
1926 // We don't require any conversions for the first step.
1927 SCS.First = ICK_Identity;
1928 }
1929 SCS.setToType(0, FromType);
1930
1931 // The second conversion can be an integral promotion, floating
1932 // point promotion, integral conversion, floating point conversion,
1933 // floating-integral conversion, pointer conversion,
1934 // pointer-to-member conversion, or boolean conversion (C++ 4p1).
1935 // For overloading in C, this can also be a "compatible-type"
1936 // conversion.
1937 bool IncompatibleObjC = false;
1938 ImplicitConversionKind SecondICK = ICK_Identity;
1939 if (S.Context.hasSameUnqualifiedType(FromType, ToType)) {
1940 // The unqualified versions of the types are the same: there's no
1941 // conversion to do.
1942 SCS.Second = ICK_Identity;
1943 } else if (S.IsIntegralPromotion(From, FromType, ToType)) {
1944 // Integral promotion (C++ 4.5).
1945 SCS.Second = ICK_Integral_Promotion;
1946 FromType = ToType.getUnqualifiedType();
1947 } else if (S.IsFloatingPointPromotion(FromType, ToType)) {
1948 // Floating point promotion (C++ 4.6).
1949 SCS.Second = ICK_Floating_Promotion;
1950 FromType = ToType.getUnqualifiedType();
1951 } else if (S.IsComplexPromotion(FromType, ToType)) {
1952 // Complex promotion (Clang extension)
1953 SCS.Second = ICK_Complex_Promotion;
1954 FromType = ToType.getUnqualifiedType();
1955 } else if (ToType->isBooleanType() &&
1956 (FromType->isArithmeticType() ||
1957 FromType->isAnyPointerType() ||
1958 FromType->isBlockPointerType() ||
1959 FromType->isMemberPointerType())) {
1960 // Boolean conversions (C++ 4.12).
1961 SCS.Second = ICK_Boolean_Conversion;
1962 FromType = S.Context.BoolTy;
1963 } else if (FromType->isIntegralOrUnscopedEnumerationType() &&
1964 ToType->isIntegralType(S.Context)) {
1965 // Integral conversions (C++ 4.7).
1966 SCS.Second = ICK_Integral_Conversion;
1967 FromType = ToType.getUnqualifiedType();
1968 } else if (FromType->isAnyComplexType() && ToType->isAnyComplexType()) {
1969 // Complex conversions (C99 6.3.1.6)
1970 SCS.Second = ICK_Complex_Conversion;
1971 FromType = ToType.getUnqualifiedType();
1972 } else if ((FromType->isAnyComplexType() && ToType->isArithmeticType()) ||
1973 (ToType->isAnyComplexType() && FromType->isArithmeticType())) {
1974 // Complex-real conversions (C99 6.3.1.7)
1975 SCS.Second = ICK_Complex_Real;
1976 FromType = ToType.getUnqualifiedType();
1977 } else if (FromType->isRealFloatingType() && ToType->isRealFloatingType()) {
1978 // FIXME: disable conversions between long double, __ibm128 and __float128
1979 // if their representation is different until there is back end support
1980 // We of course allow this conversion if long double is really double.
1981
1982 // Conversions between bfloat and other floats are not permitted.
1983 if (FromType == S.Context.BFloat16Ty || ToType == S.Context.BFloat16Ty)
1984 return false;
1985
1986 // Conversions between IEEE-quad and IBM-extended semantics are not
1987 // permitted.
1988 const llvm::fltSemantics &FromSem =
1989 S.Context.getFloatTypeSemantics(FromType);
1990 const llvm::fltSemantics &ToSem = S.Context.getFloatTypeSemantics(ToType);
1991 if ((&FromSem == &llvm::APFloat::PPCDoubleDouble() &&
1992 &ToSem == &llvm::APFloat::IEEEquad()) ||
1993 (&FromSem == &llvm::APFloat::IEEEquad() &&
1994 &ToSem == &llvm::APFloat::PPCDoubleDouble()))
1995 return false;
1996
1997 // Floating point conversions (C++ 4.8).
1998 SCS.Second = ICK_Floating_Conversion;
1999 FromType = ToType.getUnqualifiedType();
2000 } else if ((FromType->isRealFloatingType() &&
2001 ToType->isIntegralType(S.Context)) ||
2002 (FromType->isIntegralOrUnscopedEnumerationType() &&
2003 ToType->isRealFloatingType())) {
2004 // Conversions between bfloat and int are not permitted.
2005 if (FromType->isBFloat16Type() || ToType->isBFloat16Type())
2006 return false;
2007
2008 // Floating-integral conversions (C++ 4.9).
2009 SCS.Second = ICK_Floating_Integral;
2010 FromType = ToType.getUnqualifiedType();
2011 } else if (S.IsBlockPointerConversion(FromType, ToType, FromType)) {
2012 SCS.Second = ICK_Block_Pointer_Conversion;
2013 } else if (AllowObjCWritebackConversion &&
2014 S.isObjCWritebackConversion(FromType, ToType, FromType)) {
2015 SCS.Second = ICK_Writeback_Conversion;
2016 } else if (S.IsPointerConversion(From, FromType, ToType, InOverloadResolution,
2017 FromType, IncompatibleObjC)) {
2018 // Pointer conversions (C++ 4.10).
2019 SCS.Second = ICK_Pointer_Conversion;
2020 SCS.IncompatibleObjC = IncompatibleObjC;
2021 FromType = FromType.getUnqualifiedType();
2022 } else if (S.IsMemberPointerConversion(From, FromType, ToType,
2023 InOverloadResolution, FromType)) {
2024 // Pointer to member conversions (4.11).
2025 SCS.Second = ICK_Pointer_Member;
2026 } else if (IsVectorConversion(S, FromType, ToType, SecondICK, From,
2027 InOverloadResolution, CStyle)) {
2028 SCS.Second = SecondICK;
2029 FromType = ToType.getUnqualifiedType();
2030 } else if (!S.getLangOpts().CPlusPlus &&
2031 S.Context.typesAreCompatible(ToType, FromType)) {
2032 // Compatible conversions (Clang extension for C function overloading)
2033 SCS.Second = ICK_Compatible_Conversion;
2034 FromType = ToType.getUnqualifiedType();
2035 } else if (IsTransparentUnionStandardConversion(S, From, ToType,
2036 InOverloadResolution,
2037 SCS, CStyle)) {
2038 SCS.Second = ICK_TransparentUnionConversion;
2039 FromType = ToType;
2040 } else if (tryAtomicConversion(S, From, ToType, InOverloadResolution, SCS,
2041 CStyle)) {
2042 // tryAtomicConversion has updated the standard conversion sequence
2043 // appropriately.
2044 return true;
2045 } else if (ToType->isEventT() &&
2046 From->isIntegerConstantExpr(S.getASTContext()) &&
2047 From->EvaluateKnownConstInt(S.getASTContext()) == 0) {
2048 SCS.Second = ICK_Zero_Event_Conversion;
2049 FromType = ToType;
2050 } else if (ToType->isQueueT() &&
2051 From->isIntegerConstantExpr(S.getASTContext()) &&
2052 (From->EvaluateKnownConstInt(S.getASTContext()) == 0)) {
2053 SCS.Second = ICK_Zero_Queue_Conversion;
2054 FromType = ToType;
2055 } else if (ToType->isSamplerT() &&
2056 From->isIntegerConstantExpr(S.getASTContext())) {
2057 SCS.Second = ICK_Compatible_Conversion;
2058 FromType = ToType;
2059 } else {
2060 // No second conversion required.
2061 SCS.Second = ICK_Identity;
2062 }
2063 SCS.setToType(1, FromType);
2064
2065 // The third conversion can be a function pointer conversion or a
2066 // qualification conversion (C++ [conv.fctptr], [conv.qual]).
2067 bool ObjCLifetimeConversion;
2068 if (S.IsFunctionConversion(FromType, ToType, FromType)) {
2069 // Function pointer conversions (removing 'noexcept') including removal of
2070 // 'noreturn' (Clang extension).
2071 SCS.Third = ICK_Function_Conversion;
2072 } else if (S.IsQualificationConversion(FromType, ToType, CStyle,
2073 ObjCLifetimeConversion)) {
2074 SCS.Third = ICK_Qualification;
2075 SCS.QualificationIncludesObjCLifetime = ObjCLifetimeConversion;
2076 FromType = ToType;
2077 } else {
2078 // No conversion required
2079 SCS.Third = ICK_Identity;
2080 }
2081
2082 // C++ [over.best.ics]p6:
2083 // [...] Any difference in top-level cv-qualification is
2084 // subsumed by the initialization itself and does not constitute
2085 // a conversion. [...]
2086 QualType CanonFrom = S.Context.getCanonicalType(FromType);
2087 QualType CanonTo = S.Context.getCanonicalType(ToType);
2088 if (CanonFrom.getLocalUnqualifiedType()
2089 == CanonTo.getLocalUnqualifiedType() &&
2090 CanonFrom.getLocalQualifiers() != CanonTo.getLocalQualifiers()) {
2091 FromType = ToType;
2092 CanonFrom = CanonTo;
2093 }
2094
2095 SCS.setToType(2, FromType);
2096
2097 if (CanonFrom == CanonTo)
2098 return true;
2099
2100 // If we have not converted the argument type to the parameter type,
2101 // this is a bad conversion sequence, unless we're resolving an overload in C.
2102 if (S.getLangOpts().CPlusPlus || !InOverloadResolution)
2103 return false;
2104
2105 ExprResult ER = ExprResult{From};
2106 Sema::AssignConvertType Conv =
2107 S.CheckSingleAssignmentConstraints(ToType, ER,
2108 /*Diagnose=*/false,
2109 /*DiagnoseCFAudited=*/false,
2110 /*ConvertRHS=*/false);
2111 ImplicitConversionKind SecondConv;
2112 switch (Conv) {
2113 case Sema::Compatible:
2114 SecondConv = ICK_C_Only_Conversion;
2115 break;
2116 // For our purposes, discarding qualifiers is just as bad as using an
2117 // incompatible pointer. Note that an IncompatiblePointer conversion can drop
2118 // qualifiers, as well.
2119 case Sema::CompatiblePointerDiscardsQualifiers:
2120 case Sema::IncompatiblePointer:
2121 case Sema::IncompatiblePointerSign:
2122 SecondConv = ICK_Incompatible_Pointer_Conversion;
2123 break;
2124 default:
2125 return false;
2126 }
2127
2128 // First can only be an lvalue conversion, so we pretend that this was the
2129 // second conversion. First should already be valid from earlier in the
2130 // function.
2131 SCS.Second = SecondConv;
2132 SCS.setToType(1, ToType);
2133
2134 // Third is Identity, because Second should rank us worse than any other
2135 // conversion. This could also be ICK_Qualification, but it's simpler to just
2136 // lump everything in with the second conversion, and we don't gain anything
2137 // from making this ICK_Qualification.
2138 SCS.Third = ICK_Identity;
2139 SCS.setToType(2, ToType);
2140 return true;
2141 }
2142
2143 static bool
IsTransparentUnionStandardConversion(Sema & S,Expr * From,QualType & ToType,bool InOverloadResolution,StandardConversionSequence & SCS,bool CStyle)2144 IsTransparentUnionStandardConversion(Sema &S, Expr* From,
2145 QualType &ToType,
2146 bool InOverloadResolution,
2147 StandardConversionSequence &SCS,
2148 bool CStyle) {
2149
2150 const RecordType *UT = ToType->getAsUnionType();
2151 if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
2152 return false;
2153 // The field to initialize within the transparent union.
2154 RecordDecl *UD = UT->getDecl();
2155 // It's compatible if the expression matches any of the fields.
2156 for (const auto *it : UD->fields()) {
2157 if (IsStandardConversion(S, From, it->getType(), InOverloadResolution, SCS,
2158 CStyle, /*AllowObjCWritebackConversion=*/false)) {
2159 ToType = it->getType();
2160 return true;
2161 }
2162 }
2163 return false;
2164 }
2165
2166 /// IsIntegralPromotion - Determines whether the conversion from the
2167 /// expression From (whose potentially-adjusted type is FromType) to
2168 /// ToType is an integral promotion (C++ 4.5). If so, returns true and
2169 /// sets PromotedType to the promoted type.
IsIntegralPromotion(Expr * From,QualType FromType,QualType ToType)2170 bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) {
2171 const BuiltinType *To = ToType->getAs<BuiltinType>();
2172 // All integers are built-in.
2173 if (!To) {
2174 return false;
2175 }
2176
2177 // An rvalue of type char, signed char, unsigned char, short int, or
2178 // unsigned short int can be converted to an rvalue of type int if
2179 // int can represent all the values of the source type; otherwise,
2180 // the source rvalue can be converted to an rvalue of type unsigned
2181 // int (C++ 4.5p1).
2182 if (Context.isPromotableIntegerType(FromType) && !FromType->isBooleanType() &&
2183 !FromType->isEnumeralType()) {
2184 if ( // We can promote any signed, promotable integer type to an int
2185 (FromType->isSignedIntegerType() ||
2186 // We can promote any unsigned integer type whose size is
2187 // less than int to an int.
2188 Context.getTypeSize(FromType) < Context.getTypeSize(ToType))) {
2189 return To->getKind() == BuiltinType::Int;
2190 }
2191
2192 return To->getKind() == BuiltinType::UInt;
2193 }
2194
2195 // C++11 [conv.prom]p3:
2196 // A prvalue of an unscoped enumeration type whose underlying type is not
2197 // fixed (7.2) can be converted to an rvalue a prvalue of the first of the
2198 // following types that can represent all the values of the enumeration
2199 // (i.e., the values in the range bmin to bmax as described in 7.2): int,
2200 // unsigned int, long int, unsigned long int, long long int, or unsigned
2201 // long long int. If none of the types in that list can represent all the
2202 // values of the enumeration, an rvalue a prvalue of an unscoped enumeration
2203 // type can be converted to an rvalue a prvalue of the extended integer type
2204 // with lowest integer conversion rank (4.13) greater than the rank of long
2205 // long in which all the values of the enumeration can be represented. If
2206 // there are two such extended types, the signed one is chosen.
2207 // C++11 [conv.prom]p4:
2208 // A prvalue of an unscoped enumeration type whose underlying type is fixed
2209 // can be converted to a prvalue of its underlying type. Moreover, if
2210 // integral promotion can be applied to its underlying type, a prvalue of an
2211 // unscoped enumeration type whose underlying type is fixed can also be
2212 // converted to a prvalue of the promoted underlying type.
2213 if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) {
2214 // C++0x 7.2p9: Note that this implicit enum to int conversion is not
2215 // provided for a scoped enumeration.
2216 if (FromEnumType->getDecl()->isScoped())
2217 return false;
2218
2219 // We can perform an integral promotion to the underlying type of the enum,
2220 // even if that's not the promoted type. Note that the check for promoting
2221 // the underlying type is based on the type alone, and does not consider
2222 // the bitfield-ness of the actual source expression.
2223 if (FromEnumType->getDecl()->isFixed()) {
2224 QualType Underlying = FromEnumType->getDecl()->getIntegerType();
2225 return Context.hasSameUnqualifiedType(Underlying, ToType) ||
2226 IsIntegralPromotion(nullptr, Underlying, ToType);
2227 }
2228
2229 // We have already pre-calculated the promotion type, so this is trivial.
2230 if (ToType->isIntegerType() &&
2231 isCompleteType(From->getBeginLoc(), FromType))
2232 return Context.hasSameUnqualifiedType(
2233 ToType, FromEnumType->getDecl()->getPromotionType());
2234
2235 // C++ [conv.prom]p5:
2236 // If the bit-field has an enumerated type, it is treated as any other
2237 // value of that type for promotion purposes.
2238 //
2239 // ... so do not fall through into the bit-field checks below in C++.
2240 if (getLangOpts().CPlusPlus)
2241 return false;
2242 }
2243
2244 // C++0x [conv.prom]p2:
2245 // A prvalue of type char16_t, char32_t, or wchar_t (3.9.1) can be converted
2246 // to an rvalue a prvalue of the first of the following types that can
2247 // represent all the values of its underlying type: int, unsigned int,
2248 // long int, unsigned long int, long long int, or unsigned long long int.
2249 // If none of the types in that list can represent all the values of its
2250 // underlying type, an rvalue a prvalue of type char16_t, char32_t,
2251 // or wchar_t can be converted to an rvalue a prvalue of its underlying
2252 // type.
2253 if (FromType->isAnyCharacterType() && !FromType->isCharType() &&
2254 ToType->isIntegerType()) {
2255 // Determine whether the type we're converting from is signed or
2256 // unsigned.
2257 bool FromIsSigned = FromType->isSignedIntegerType();
2258 uint64_t FromSize = Context.getTypeSize(FromType);
2259
2260 // The types we'll try to promote to, in the appropriate
2261 // order. Try each of these types.
2262 QualType PromoteTypes[6] = {
2263 Context.IntTy, Context.UnsignedIntTy,
2264 Context.LongTy, Context.UnsignedLongTy ,
2265 Context.LongLongTy, Context.UnsignedLongLongTy
2266 };
2267 for (int Idx = 0; Idx < 6; ++Idx) {
2268 uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
2269 if (FromSize < ToSize ||
2270 (FromSize == ToSize &&
2271 FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
2272 // We found the type that we can promote to. If this is the
2273 // type we wanted, we have a promotion. Otherwise, no
2274 // promotion.
2275 return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]);
2276 }
2277 }
2278 }
2279
2280 // An rvalue for an integral bit-field (9.6) can be converted to an
2281 // rvalue of type int if int can represent all the values of the
2282 // bit-field; otherwise, it can be converted to unsigned int if
2283 // unsigned int can represent all the values of the bit-field. If
2284 // the bit-field is larger yet, no integral promotion applies to
2285 // it. If the bit-field has an enumerated type, it is treated as any
2286 // other value of that type for promotion purposes (C++ 4.5p3).
2287 // FIXME: We should delay checking of bit-fields until we actually perform the
2288 // conversion.
2289 //
2290 // FIXME: In C, only bit-fields of types _Bool, int, or unsigned int may be
2291 // promoted, per C11 6.3.1.1/2. We promote all bit-fields (including enum
2292 // bit-fields and those whose underlying type is larger than int) for GCC
2293 // compatibility.
2294 if (From) {
2295 if (FieldDecl *MemberDecl = From->getSourceBitField()) {
2296 std::optional<llvm::APSInt> BitWidth;
2297 if (FromType->isIntegralType(Context) &&
2298 (BitWidth =
2299 MemberDecl->getBitWidth()->getIntegerConstantExpr(Context))) {
2300 llvm::APSInt ToSize(BitWidth->getBitWidth(), BitWidth->isUnsigned());
2301 ToSize = Context.getTypeSize(ToType);
2302
2303 // Are we promoting to an int from a bitfield that fits in an int?
2304 if (*BitWidth < ToSize ||
2305 (FromType->isSignedIntegerType() && *BitWidth <= ToSize)) {
2306 return To->getKind() == BuiltinType::Int;
2307 }
2308
2309 // Are we promoting to an unsigned int from an unsigned bitfield
2310 // that fits into an unsigned int?
2311 if (FromType->isUnsignedIntegerType() && *BitWidth <= ToSize) {
2312 return To->getKind() == BuiltinType::UInt;
2313 }
2314
2315 return false;
2316 }
2317 }
2318 }
2319
2320 // An rvalue of type bool can be converted to an rvalue of type int,
2321 // with false becoming zero and true becoming one (C++ 4.5p4).
2322 if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
2323 return true;
2324 }
2325
2326 return false;
2327 }
2328
2329 /// IsFloatingPointPromotion - Determines whether the conversion from
2330 /// FromType to ToType is a floating point promotion (C++ 4.6). If so,
2331 /// returns true and sets PromotedType to the promoted type.
IsFloatingPointPromotion(QualType FromType,QualType ToType)2332 bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) {
2333 if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>())
2334 if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) {
2335 /// An rvalue of type float can be converted to an rvalue of type
2336 /// double. (C++ 4.6p1).
2337 if (FromBuiltin->getKind() == BuiltinType::Float &&
2338 ToBuiltin->getKind() == BuiltinType::Double)
2339 return true;
2340
2341 // C99 6.3.1.5p1:
2342 // When a float is promoted to double or long double, or a
2343 // double is promoted to long double [...].
2344 if (!getLangOpts().CPlusPlus &&
2345 (FromBuiltin->getKind() == BuiltinType::Float ||
2346 FromBuiltin->getKind() == BuiltinType::Double) &&
2347 (ToBuiltin->getKind() == BuiltinType::LongDouble ||
2348 ToBuiltin->getKind() == BuiltinType::Float128 ||
2349 ToBuiltin->getKind() == BuiltinType::Ibm128))
2350 return true;
2351
2352 // Half can be promoted to float.
2353 if (!getLangOpts().NativeHalfType &&
2354 FromBuiltin->getKind() == BuiltinType::Half &&
2355 ToBuiltin->getKind() == BuiltinType::Float)
2356 return true;
2357 }
2358
2359 return false;
2360 }
2361
2362 /// Determine if a conversion is a complex promotion.
2363 ///
2364 /// A complex promotion is defined as a complex -> complex conversion
2365 /// where the conversion between the underlying real types is a
2366 /// floating-point or integral promotion.
IsComplexPromotion(QualType FromType,QualType ToType)2367 bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
2368 const ComplexType *FromComplex = FromType->getAs<ComplexType>();
2369 if (!FromComplex)
2370 return false;
2371
2372 const ComplexType *ToComplex = ToType->getAs<ComplexType>();
2373 if (!ToComplex)
2374 return false;
2375
2376 return IsFloatingPointPromotion(FromComplex->getElementType(),
2377 ToComplex->getElementType()) ||
2378 IsIntegralPromotion(nullptr, FromComplex->getElementType(),
2379 ToComplex->getElementType());
2380 }
2381
2382 /// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
2383 /// the pointer type FromPtr to a pointer to type ToPointee, with the
2384 /// same type qualifiers as FromPtr has on its pointee type. ToType,
2385 /// if non-empty, will be a pointer to ToType that may or may not have
2386 /// the right set of qualifiers on its pointee.
2387 ///
2388 static QualType
BuildSimilarlyQualifiedPointerType(const Type * FromPtr,QualType ToPointee,QualType ToType,ASTContext & Context,bool StripObjCLifetime=false)2389 BuildSimilarlyQualifiedPointerType(const Type *FromPtr,
2390 QualType ToPointee, QualType ToType,
2391 ASTContext &Context,
2392 bool StripObjCLifetime = false) {
2393 assert((FromPtr->getTypeClass() == Type::Pointer ||
2394 FromPtr->getTypeClass() == Type::ObjCObjectPointer) &&
2395 "Invalid similarly-qualified pointer type");
2396
2397 /// Conversions to 'id' subsume cv-qualifier conversions.
2398 if (ToType->isObjCIdType() || ToType->isObjCQualifiedIdType())
2399 return ToType.getUnqualifiedType();
2400
2401 QualType CanonFromPointee
2402 = Context.getCanonicalType(FromPtr->getPointeeType());
2403 QualType CanonToPointee = Context.getCanonicalType(ToPointee);
2404 Qualifiers Quals = CanonFromPointee.getQualifiers();
2405
2406 if (StripObjCLifetime)
2407 Quals.removeObjCLifetime();
2408
2409 // Exact qualifier match -> return the pointer type we're converting to.
2410 if (CanonToPointee.getLocalQualifiers() == Quals) {
2411 // ToType is exactly what we need. Return it.
2412 if (!ToType.isNull())
2413 return ToType.getUnqualifiedType();
2414
2415 // Build a pointer to ToPointee. It has the right qualifiers
2416 // already.
2417 if (isa<ObjCObjectPointerType>(ToType))
2418 return Context.getObjCObjectPointerType(ToPointee);
2419 return Context.getPointerType(ToPointee);
2420 }
2421
2422 // Just build a canonical type that has the right qualifiers.
2423 QualType QualifiedCanonToPointee
2424 = Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(), Quals);
2425
2426 if (isa<ObjCObjectPointerType>(ToType))
2427 return Context.getObjCObjectPointerType(QualifiedCanonToPointee);
2428 return Context.getPointerType(QualifiedCanonToPointee);
2429 }
2430
isNullPointerConstantForConversion(Expr * Expr,bool InOverloadResolution,ASTContext & Context)2431 static bool isNullPointerConstantForConversion(Expr *Expr,
2432 bool InOverloadResolution,
2433 ASTContext &Context) {
2434 // Handle value-dependent integral null pointer constants correctly.
2435 // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
2436 if (Expr->isValueDependent() && !Expr->isTypeDependent() &&
2437 Expr->getType()->isIntegerType() && !Expr->getType()->isEnumeralType())
2438 return !InOverloadResolution;
2439
2440 return Expr->isNullPointerConstant(Context,
2441 InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
2442 : Expr::NPC_ValueDependentIsNull);
2443 }
2444
2445 /// IsPointerConversion - Determines whether the conversion of the
2446 /// expression From, which has the (possibly adjusted) type FromType,
2447 /// can be converted to the type ToType via a pointer conversion (C++
2448 /// 4.10). If so, returns true and places the converted type (that
2449 /// might differ from ToType in its cv-qualifiers at some level) into
2450 /// ConvertedType.
2451 ///
2452 /// This routine also supports conversions to and from block pointers
2453 /// and conversions with Objective-C's 'id', 'id<protocols...>', and
2454 /// pointers to interfaces. FIXME: Once we've determined the
2455 /// appropriate overloading rules for Objective-C, we may want to
2456 /// split the Objective-C checks into a different routine; however,
2457 /// GCC seems to consider all of these conversions to be pointer
2458 /// conversions, so for now they live here. IncompatibleObjC will be
2459 /// set if the conversion is an allowed Objective-C conversion that
2460 /// should result in a warning.
IsPointerConversion(Expr * From,QualType FromType,QualType ToType,bool InOverloadResolution,QualType & ConvertedType,bool & IncompatibleObjC)2461 bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
2462 bool InOverloadResolution,
2463 QualType& ConvertedType,
2464 bool &IncompatibleObjC) {
2465 IncompatibleObjC = false;
2466 if (isObjCPointerConversion(FromType, ToType, ConvertedType,
2467 IncompatibleObjC))
2468 return true;
2469
2470 // Conversion from a null pointer constant to any Objective-C pointer type.
2471 if (ToType->isObjCObjectPointerType() &&
2472 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2473 ConvertedType = ToType;
2474 return true;
2475 }
2476
2477 // Blocks: Block pointers can be converted to void*.
2478 if (FromType->isBlockPointerType() && ToType->isPointerType() &&
2479 ToType->castAs<PointerType>()->getPointeeType()->isVoidType()) {
2480 ConvertedType = ToType;
2481 return true;
2482 }
2483 // Blocks: A null pointer constant can be converted to a block
2484 // pointer type.
2485 if (ToType->isBlockPointerType() &&
2486 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2487 ConvertedType = ToType;
2488 return true;
2489 }
2490
2491 // If the left-hand-side is nullptr_t, the right side can be a null
2492 // pointer constant.
2493 if (ToType->isNullPtrType() &&
2494 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2495 ConvertedType = ToType;
2496 return true;
2497 }
2498
2499 const PointerType* ToTypePtr = ToType->getAs<PointerType>();
2500 if (!ToTypePtr)
2501 return false;
2502
2503 // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
2504 if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2505 ConvertedType = ToType;
2506 return true;
2507 }
2508
2509 // Beyond this point, both types need to be pointers
2510 // , including objective-c pointers.
2511 QualType ToPointeeType = ToTypePtr->getPointeeType();
2512 if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType() &&
2513 !getLangOpts().ObjCAutoRefCount) {
2514 ConvertedType = BuildSimilarlyQualifiedPointerType(
2515 FromType->castAs<ObjCObjectPointerType>(), ToPointeeType, ToType,
2516 Context);
2517 return true;
2518 }
2519 const PointerType *FromTypePtr = FromType->getAs<PointerType>();
2520 if (!FromTypePtr)
2521 return false;
2522
2523 QualType FromPointeeType = FromTypePtr->getPointeeType();
2524
2525 // If the unqualified pointee types are the same, this can't be a
2526 // pointer conversion, so don't do all of the work below.
2527 if (Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType))
2528 return false;
2529
2530 // An rvalue of type "pointer to cv T," where T is an object type,
2531 // can be converted to an rvalue of type "pointer to cv void" (C++
2532 // 4.10p2).
2533 if (FromPointeeType->isIncompleteOrObjectType() &&
2534 ToPointeeType->isVoidType()) {
2535 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2536 ToPointeeType,
2537 ToType, Context,
2538 /*StripObjCLifetime=*/true);
2539 return true;
2540 }
2541
2542 // MSVC allows implicit function to void* type conversion.
2543 if (getLangOpts().MSVCCompat && FromPointeeType->isFunctionType() &&
2544 ToPointeeType->isVoidType()) {
2545 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2546 ToPointeeType,
2547 ToType, Context);
2548 return true;
2549 }
2550
2551 // When we're overloading in C, we allow a special kind of pointer
2552 // conversion for compatible-but-not-identical pointee types.
2553 if (!getLangOpts().CPlusPlus &&
2554 Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
2555 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2556 ToPointeeType,
2557 ToType, Context);
2558 return true;
2559 }
2560
2561 // C++ [conv.ptr]p3:
2562 //
2563 // An rvalue of type "pointer to cv D," where D is a class type,
2564 // can be converted to an rvalue of type "pointer to cv B," where
2565 // B is a base class (clause 10) of D. If B is an inaccessible
2566 // (clause 11) or ambiguous (10.2) base class of D, a program that
2567 // necessitates this conversion is ill-formed. The result of the
2568 // conversion is a pointer to the base class sub-object of the
2569 // derived class object. The null pointer value is converted to
2570 // the null pointer value of the destination type.
2571 //
2572 // Note that we do not check for ambiguity or inaccessibility
2573 // here. That is handled by CheckPointerConversion.
2574 if (getLangOpts().CPlusPlus && FromPointeeType->isRecordType() &&
2575 ToPointeeType->isRecordType() &&
2576 !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) &&
2577 IsDerivedFrom(From->getBeginLoc(), FromPointeeType, ToPointeeType)) {
2578 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2579 ToPointeeType,
2580 ToType, Context);
2581 return true;
2582 }
2583
2584 if (FromPointeeType->isVectorType() && ToPointeeType->isVectorType() &&
2585 Context.areCompatibleVectorTypes(FromPointeeType, ToPointeeType)) {
2586 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2587 ToPointeeType,
2588 ToType, Context);
2589 return true;
2590 }
2591
2592 return false;
2593 }
2594
2595 /// Adopt the given qualifiers for the given type.
AdoptQualifiers(ASTContext & Context,QualType T,Qualifiers Qs)2596 static QualType AdoptQualifiers(ASTContext &Context, QualType T, Qualifiers Qs){
2597 Qualifiers TQs = T.getQualifiers();
2598
2599 // Check whether qualifiers already match.
2600 if (TQs == Qs)
2601 return T;
2602
2603 if (Qs.compatiblyIncludes(TQs))
2604 return Context.getQualifiedType(T, Qs);
2605
2606 return Context.getQualifiedType(T.getUnqualifiedType(), Qs);
2607 }
2608
2609 /// isObjCPointerConversion - Determines whether this is an
2610 /// Objective-C pointer conversion. Subroutine of IsPointerConversion,
2611 /// with the same arguments and return values.
isObjCPointerConversion(QualType FromType,QualType ToType,QualType & ConvertedType,bool & IncompatibleObjC)2612 bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
2613 QualType& ConvertedType,
2614 bool &IncompatibleObjC) {
2615 if (!getLangOpts().ObjC)
2616 return false;
2617
2618 // The set of qualifiers on the type we're converting from.
2619 Qualifiers FromQualifiers = FromType.getQualifiers();
2620
2621 // First, we handle all conversions on ObjC object pointer types.
2622 const ObjCObjectPointerType* ToObjCPtr =
2623 ToType->getAs<ObjCObjectPointerType>();
2624 const ObjCObjectPointerType *FromObjCPtr =
2625 FromType->getAs<ObjCObjectPointerType>();
2626
2627 if (ToObjCPtr && FromObjCPtr) {
2628 // If the pointee types are the same (ignoring qualifications),
2629 // then this is not a pointer conversion.
2630 if (Context.hasSameUnqualifiedType(ToObjCPtr->getPointeeType(),
2631 FromObjCPtr->getPointeeType()))
2632 return false;
2633
2634 // Conversion between Objective-C pointers.
2635 if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
2636 const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType();
2637 const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType();
2638 if (getLangOpts().CPlusPlus && LHS && RHS &&
2639 !ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs(
2640 FromObjCPtr->getPointeeType()))
2641 return false;
2642 ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
2643 ToObjCPtr->getPointeeType(),
2644 ToType, Context);
2645 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2646 return true;
2647 }
2648
2649 if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) {
2650 // Okay: this is some kind of implicit downcast of Objective-C
2651 // interfaces, which is permitted. However, we're going to
2652 // complain about it.
2653 IncompatibleObjC = true;
2654 ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
2655 ToObjCPtr->getPointeeType(),
2656 ToType, Context);
2657 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2658 return true;
2659 }
2660 }
2661 // Beyond this point, both types need to be C pointers or block pointers.
2662 QualType ToPointeeType;
2663 if (const PointerType *ToCPtr = ToType->getAs<PointerType>())
2664 ToPointeeType = ToCPtr->getPointeeType();
2665 else if (const BlockPointerType *ToBlockPtr =
2666 ToType->getAs<BlockPointerType>()) {
2667 // Objective C++: We're able to convert from a pointer to any object
2668 // to a block pointer type.
2669 if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) {
2670 ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2671 return true;
2672 }
2673 ToPointeeType = ToBlockPtr->getPointeeType();
2674 }
2675 else if (FromType->getAs<BlockPointerType>() &&
2676 ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) {
2677 // Objective C++: We're able to convert from a block pointer type to a
2678 // pointer to any object.
2679 ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2680 return true;
2681 }
2682 else
2683 return false;
2684
2685 QualType FromPointeeType;
2686 if (const PointerType *FromCPtr = FromType->getAs<PointerType>())
2687 FromPointeeType = FromCPtr->getPointeeType();
2688 else if (const BlockPointerType *FromBlockPtr =
2689 FromType->getAs<BlockPointerType>())
2690 FromPointeeType = FromBlockPtr->getPointeeType();
2691 else
2692 return false;
2693
2694 // If we have pointers to pointers, recursively check whether this
2695 // is an Objective-C conversion.
2696 if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
2697 isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
2698 IncompatibleObjC)) {
2699 // We always complain about this conversion.
2700 IncompatibleObjC = true;
2701 ConvertedType = Context.getPointerType(ConvertedType);
2702 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2703 return true;
2704 }
2705 // Allow conversion of pointee being objective-c pointer to another one;
2706 // as in I* to id.
2707 if (FromPointeeType->getAs<ObjCObjectPointerType>() &&
2708 ToPointeeType->getAs<ObjCObjectPointerType>() &&
2709 isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
2710 IncompatibleObjC)) {
2711
2712 ConvertedType = Context.getPointerType(ConvertedType);
2713 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2714 return true;
2715 }
2716
2717 // If we have pointers to functions or blocks, check whether the only
2718 // differences in the argument and result types are in Objective-C
2719 // pointer conversions. If so, we permit the conversion (but
2720 // complain about it).
2721 const FunctionProtoType *FromFunctionType
2722 = FromPointeeType->getAs<FunctionProtoType>();
2723 const FunctionProtoType *ToFunctionType
2724 = ToPointeeType->getAs<FunctionProtoType>();
2725 if (FromFunctionType && ToFunctionType) {
2726 // If the function types are exactly the same, this isn't an
2727 // Objective-C pointer conversion.
2728 if (Context.getCanonicalType(FromPointeeType)
2729 == Context.getCanonicalType(ToPointeeType))
2730 return false;
2731
2732 // Perform the quick checks that will tell us whether these
2733 // function types are obviously different.
2734 if (FromFunctionType->getNumParams() != ToFunctionType->getNumParams() ||
2735 FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
2736 FromFunctionType->getMethodQuals() != ToFunctionType->getMethodQuals())
2737 return false;
2738
2739 bool HasObjCConversion = false;
2740 if (Context.getCanonicalType(FromFunctionType->getReturnType()) ==
2741 Context.getCanonicalType(ToFunctionType->getReturnType())) {
2742 // Okay, the types match exactly. Nothing to do.
2743 } else if (isObjCPointerConversion(FromFunctionType->getReturnType(),
2744 ToFunctionType->getReturnType(),
2745 ConvertedType, IncompatibleObjC)) {
2746 // Okay, we have an Objective-C pointer conversion.
2747 HasObjCConversion = true;
2748 } else {
2749 // Function types are too different. Abort.
2750 return false;
2751 }
2752
2753 // Check argument types.
2754 for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumParams();
2755 ArgIdx != NumArgs; ++ArgIdx) {
2756 QualType FromArgType = FromFunctionType->getParamType(ArgIdx);
2757 QualType ToArgType = ToFunctionType->getParamType(ArgIdx);
2758 if (Context.getCanonicalType(FromArgType)
2759 == Context.getCanonicalType(ToArgType)) {
2760 // Okay, the types match exactly. Nothing to do.
2761 } else if (isObjCPointerConversion(FromArgType, ToArgType,
2762 ConvertedType, IncompatibleObjC)) {
2763 // Okay, we have an Objective-C pointer conversion.
2764 HasObjCConversion = true;
2765 } else {
2766 // Argument types are too different. Abort.
2767 return false;
2768 }
2769 }
2770
2771 if (HasObjCConversion) {
2772 // We had an Objective-C conversion. Allow this pointer
2773 // conversion, but complain about it.
2774 ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2775 IncompatibleObjC = true;
2776 return true;
2777 }
2778 }
2779
2780 return false;
2781 }
2782
2783 /// Determine whether this is an Objective-C writeback conversion,
2784 /// used for parameter passing when performing automatic reference counting.
2785 ///
2786 /// \param FromType The type we're converting form.
2787 ///
2788 /// \param ToType The type we're converting to.
2789 ///
2790 /// \param ConvertedType The type that will be produced after applying
2791 /// this conversion.
isObjCWritebackConversion(QualType FromType,QualType ToType,QualType & ConvertedType)2792 bool Sema::isObjCWritebackConversion(QualType FromType, QualType ToType,
2793 QualType &ConvertedType) {
2794 if (!getLangOpts().ObjCAutoRefCount ||
2795 Context.hasSameUnqualifiedType(FromType, ToType))
2796 return false;
2797
2798 // Parameter must be a pointer to __autoreleasing (with no other qualifiers).
2799 QualType ToPointee;
2800 if (const PointerType *ToPointer = ToType->getAs<PointerType>())
2801 ToPointee = ToPointer->getPointeeType();
2802 else
2803 return false;
2804
2805 Qualifiers ToQuals = ToPointee.getQualifiers();
2806 if (!ToPointee->isObjCLifetimeType() ||
2807 ToQuals.getObjCLifetime() != Qualifiers::OCL_Autoreleasing ||
2808 !ToQuals.withoutObjCLifetime().empty())
2809 return false;
2810
2811 // Argument must be a pointer to __strong to __weak.
2812 QualType FromPointee;
2813 if (const PointerType *FromPointer = FromType->getAs<PointerType>())
2814 FromPointee = FromPointer->getPointeeType();
2815 else
2816 return false;
2817
2818 Qualifiers FromQuals = FromPointee.getQualifiers();
2819 if (!FromPointee->isObjCLifetimeType() ||
2820 (FromQuals.getObjCLifetime() != Qualifiers::OCL_Strong &&
2821 FromQuals.getObjCLifetime() != Qualifiers::OCL_Weak))
2822 return false;
2823
2824 // Make sure that we have compatible qualifiers.
2825 FromQuals.setObjCLifetime(Qualifiers::OCL_Autoreleasing);
2826 if (!ToQuals.compatiblyIncludes(FromQuals))
2827 return false;
2828
2829 // Remove qualifiers from the pointee type we're converting from; they
2830 // aren't used in the compatibility check belong, and we'll be adding back
2831 // qualifiers (with __autoreleasing) if the compatibility check succeeds.
2832 FromPointee = FromPointee.getUnqualifiedType();
2833
2834 // The unqualified form of the pointee types must be compatible.
2835 ToPointee = ToPointee.getUnqualifiedType();
2836 bool IncompatibleObjC;
2837 if (Context.typesAreCompatible(FromPointee, ToPointee))
2838 FromPointee = ToPointee;
2839 else if (!isObjCPointerConversion(FromPointee, ToPointee, FromPointee,
2840 IncompatibleObjC))
2841 return false;
2842
2843 /// Construct the type we're converting to, which is a pointer to
2844 /// __autoreleasing pointee.
2845 FromPointee = Context.getQualifiedType(FromPointee, FromQuals);
2846 ConvertedType = Context.getPointerType(FromPointee);
2847 return true;
2848 }
2849
IsBlockPointerConversion(QualType FromType,QualType ToType,QualType & ConvertedType)2850 bool Sema::IsBlockPointerConversion(QualType FromType, QualType ToType,
2851 QualType& ConvertedType) {
2852 QualType ToPointeeType;
2853 if (const BlockPointerType *ToBlockPtr =
2854 ToType->getAs<BlockPointerType>())
2855 ToPointeeType = ToBlockPtr->getPointeeType();
2856 else
2857 return false;
2858
2859 QualType FromPointeeType;
2860 if (const BlockPointerType *FromBlockPtr =
2861 FromType->getAs<BlockPointerType>())
2862 FromPointeeType = FromBlockPtr->getPointeeType();
2863 else
2864 return false;
2865 // We have pointer to blocks, check whether the only
2866 // differences in the argument and result types are in Objective-C
2867 // pointer conversions. If so, we permit the conversion.
2868
2869 const FunctionProtoType *FromFunctionType
2870 = FromPointeeType->getAs<FunctionProtoType>();
2871 const FunctionProtoType *ToFunctionType
2872 = ToPointeeType->getAs<FunctionProtoType>();
2873
2874 if (!FromFunctionType || !ToFunctionType)
2875 return false;
2876
2877 if (Context.hasSameType(FromPointeeType, ToPointeeType))
2878 return true;
2879
2880 // Perform the quick checks that will tell us whether these
2881 // function types are obviously different.
2882 if (FromFunctionType->getNumParams() != ToFunctionType->getNumParams() ||
2883 FromFunctionType->isVariadic() != ToFunctionType->isVariadic())
2884 return false;
2885
2886 FunctionType::ExtInfo FromEInfo = FromFunctionType->getExtInfo();
2887 FunctionType::ExtInfo ToEInfo = ToFunctionType->getExtInfo();
2888 if (FromEInfo != ToEInfo)
2889 return false;
2890
2891 bool IncompatibleObjC = false;
2892 if (Context.hasSameType(FromFunctionType->getReturnType(),
2893 ToFunctionType->getReturnType())) {
2894 // Okay, the types match exactly. Nothing to do.
2895 } else {
2896 QualType RHS = FromFunctionType->getReturnType();
2897 QualType LHS = ToFunctionType->getReturnType();
2898 if ((!getLangOpts().CPlusPlus || !RHS->isRecordType()) &&
2899 !RHS.hasQualifiers() && LHS.hasQualifiers())
2900 LHS = LHS.getUnqualifiedType();
2901
2902 if (Context.hasSameType(RHS,LHS)) {
2903 // OK exact match.
2904 } else if (isObjCPointerConversion(RHS, LHS,
2905 ConvertedType, IncompatibleObjC)) {
2906 if (IncompatibleObjC)
2907 return false;
2908 // Okay, we have an Objective-C pointer conversion.
2909 }
2910 else
2911 return false;
2912 }
2913
2914 // Check argument types.
2915 for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumParams();
2916 ArgIdx != NumArgs; ++ArgIdx) {
2917 IncompatibleObjC = false;
2918 QualType FromArgType = FromFunctionType->getParamType(ArgIdx);
2919 QualType ToArgType = ToFunctionType->getParamType(ArgIdx);
2920 if (Context.hasSameType(FromArgType, ToArgType)) {
2921 // Okay, the types match exactly. Nothing to do.
2922 } else if (isObjCPointerConversion(ToArgType, FromArgType,
2923 ConvertedType, IncompatibleObjC)) {
2924 if (IncompatibleObjC)
2925 return false;
2926 // Okay, we have an Objective-C pointer conversion.
2927 } else
2928 // Argument types are too different. Abort.
2929 return false;
2930 }
2931
2932 SmallVector<FunctionProtoType::ExtParameterInfo, 4> NewParamInfos;
2933 bool CanUseToFPT, CanUseFromFPT;
2934 if (!Context.mergeExtParameterInfo(ToFunctionType, FromFunctionType,
2935 CanUseToFPT, CanUseFromFPT,
2936 NewParamInfos))
2937 return false;
2938
2939 ConvertedType = ToType;
2940 return true;
2941 }
2942
2943 enum {
2944 ft_default,
2945 ft_different_class,
2946 ft_parameter_arity,
2947 ft_parameter_mismatch,
2948 ft_return_type,
2949 ft_qualifer_mismatch,
2950 ft_noexcept
2951 };
2952
2953 /// Attempts to get the FunctionProtoType from a Type. Handles
2954 /// MemberFunctionPointers properly.
tryGetFunctionProtoType(QualType FromType)2955 static const FunctionProtoType *tryGetFunctionProtoType(QualType FromType) {
2956 if (auto *FPT = FromType->getAs<FunctionProtoType>())
2957 return FPT;
2958
2959 if (auto *MPT = FromType->getAs<MemberPointerType>())
2960 return MPT->getPointeeType()->getAs<FunctionProtoType>();
2961
2962 return nullptr;
2963 }
2964
2965 /// HandleFunctionTypeMismatch - Gives diagnostic information for differeing
2966 /// function types. Catches different number of parameter, mismatch in
2967 /// parameter types, and different return types.
HandleFunctionTypeMismatch(PartialDiagnostic & PDiag,QualType FromType,QualType ToType)2968 void Sema::HandleFunctionTypeMismatch(PartialDiagnostic &PDiag,
2969 QualType FromType, QualType ToType) {
2970 // If either type is not valid, include no extra info.
2971 if (FromType.isNull() || ToType.isNull()) {
2972 PDiag << ft_default;
2973 return;
2974 }
2975
2976 // Get the function type from the pointers.
2977 if (FromType->isMemberPointerType() && ToType->isMemberPointerType()) {
2978 const auto *FromMember = FromType->castAs<MemberPointerType>(),
2979 *ToMember = ToType->castAs<MemberPointerType>();
2980 if (!Context.hasSameType(FromMember->getClass(), ToMember->getClass())) {
2981 PDiag << ft_different_class << QualType(ToMember->getClass(), 0)
2982 << QualType(FromMember->getClass(), 0);
2983 return;
2984 }
2985 FromType = FromMember->getPointeeType();
2986 ToType = ToMember->getPointeeType();
2987 }
2988
2989 if (FromType->isPointerType())
2990 FromType = FromType->getPointeeType();
2991 if (ToType->isPointerType())
2992 ToType = ToType->getPointeeType();
2993
2994 // Remove references.
2995 FromType = FromType.getNonReferenceType();
2996 ToType = ToType.getNonReferenceType();
2997
2998 // Don't print extra info for non-specialized template functions.
2999 if (FromType->isInstantiationDependentType() &&
3000 !FromType->getAs<TemplateSpecializationType>()) {
3001 PDiag << ft_default;
3002 return;
3003 }
3004
3005 // No extra info for same types.
3006 if (Context.hasSameType(FromType, ToType)) {
3007 PDiag << ft_default;
3008 return;
3009 }
3010
3011 const FunctionProtoType *FromFunction = tryGetFunctionProtoType(FromType),
3012 *ToFunction = tryGetFunctionProtoType(ToType);
3013
3014 // Both types need to be function types.
3015 if (!FromFunction || !ToFunction) {
3016 PDiag << ft_default;
3017 return;
3018 }
3019
3020 if (FromFunction->getNumParams() != ToFunction->getNumParams()) {
3021 PDiag << ft_parameter_arity << ToFunction->getNumParams()
3022 << FromFunction->getNumParams();
3023 return;
3024 }
3025
3026 // Handle different parameter types.
3027 unsigned ArgPos;
3028 if (!FunctionParamTypesAreEqual(FromFunction, ToFunction, &ArgPos)) {
3029 PDiag << ft_parameter_mismatch << ArgPos + 1
3030 << ToFunction->getParamType(ArgPos)
3031 << FromFunction->getParamType(ArgPos);
3032 return;
3033 }
3034
3035 // Handle different return type.
3036 if (!Context.hasSameType(FromFunction->getReturnType(),
3037 ToFunction->getReturnType())) {
3038 PDiag << ft_return_type << ToFunction->getReturnType()
3039 << FromFunction->getReturnType();
3040 return;
3041 }
3042
3043 if (FromFunction->getMethodQuals() != ToFunction->getMethodQuals()) {
3044 PDiag << ft_qualifer_mismatch << ToFunction->getMethodQuals()
3045 << FromFunction->getMethodQuals();
3046 return;
3047 }
3048
3049 // Handle exception specification differences on canonical type (in C++17
3050 // onwards).
3051 if (cast<FunctionProtoType>(FromFunction->getCanonicalTypeUnqualified())
3052 ->isNothrow() !=
3053 cast<FunctionProtoType>(ToFunction->getCanonicalTypeUnqualified())
3054 ->isNothrow()) {
3055 PDiag << ft_noexcept;
3056 return;
3057 }
3058
3059 // Unable to find a difference, so add no extra info.
3060 PDiag << ft_default;
3061 }
3062
3063 /// FunctionParamTypesAreEqual - This routine checks two function proto types
3064 /// for equality of their parameter types. Caller has already checked that
3065 /// they have same number of parameters. If the parameters are different,
3066 /// ArgPos will have the parameter index of the first different parameter.
3067 /// If `Reversed` is true, the parameters of `NewType` will be compared in
3068 /// reverse order. That's useful if one of the functions is being used as a C++20
3069 /// synthesized operator overload with a reversed parameter order.
FunctionParamTypesAreEqual(const FunctionProtoType * OldType,const FunctionProtoType * NewType,unsigned * ArgPos,bool Reversed)3070 bool Sema::FunctionParamTypesAreEqual(const FunctionProtoType *OldType,
3071 const FunctionProtoType *NewType,
3072 unsigned *ArgPos, bool Reversed) {
3073 assert(OldType->getNumParams() == NewType->getNumParams() &&
3074 "Can't compare parameters of functions with different number of "
3075 "parameters!");
3076 for (size_t I = 0; I < OldType->getNumParams(); I++) {
3077 // Reverse iterate over the parameters of `OldType` if `Reversed` is true.
3078 size_t J = Reversed ? (OldType->getNumParams() - I - 1) : I;
3079
3080 // Ignore address spaces in pointee type. This is to disallow overloading
3081 // on __ptr32/__ptr64 address spaces.
3082 QualType Old = Context.removePtrSizeAddrSpace(OldType->getParamType(I).getUnqualifiedType());
3083 QualType New = Context.removePtrSizeAddrSpace(NewType->getParamType(J).getUnqualifiedType());
3084
3085 if (!Context.hasSameType(Old, New)) {
3086 if (ArgPos)
3087 *ArgPos = I;
3088 return false;
3089 }
3090 }
3091 return true;
3092 }
3093
3094 /// CheckPointerConversion - Check the pointer conversion from the
3095 /// expression From to the type ToType. This routine checks for
3096 /// ambiguous or inaccessible derived-to-base pointer
3097 /// conversions for which IsPointerConversion has already returned
3098 /// true. It returns true and produces a diagnostic if there was an
3099 /// error, or returns false otherwise.
CheckPointerConversion(Expr * From,QualType ToType,CastKind & Kind,CXXCastPath & BasePath,bool IgnoreBaseAccess,bool Diagnose)3100 bool Sema::CheckPointerConversion(Expr *From, QualType ToType,
3101 CastKind &Kind,
3102 CXXCastPath& BasePath,
3103 bool IgnoreBaseAccess,
3104 bool Diagnose) {
3105 QualType FromType = From->getType();
3106 bool IsCStyleOrFunctionalCast = IgnoreBaseAccess;
3107
3108 Kind = CK_BitCast;
3109
3110 if (Diagnose && !IsCStyleOrFunctionalCast && !FromType->isAnyPointerType() &&
3111 From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull) ==
3112 Expr::NPCK_ZeroExpression) {
3113 if (Context.hasSameUnqualifiedType(From->getType(), Context.BoolTy))
3114 DiagRuntimeBehavior(From->getExprLoc(), From,
3115 PDiag(diag::warn_impcast_bool_to_null_pointer)
3116 << ToType << From->getSourceRange());
3117 else if (!isUnevaluatedContext())
3118 Diag(From->getExprLoc(), diag::warn_non_literal_null_pointer)
3119 << ToType << From->getSourceRange();
3120 }
3121 if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) {
3122 if (const PointerType *FromPtrType = FromType->getAs<PointerType>()) {
3123 QualType FromPointeeType = FromPtrType->getPointeeType(),
3124 ToPointeeType = ToPtrType->getPointeeType();
3125
3126 if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
3127 !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) {
3128 // We must have a derived-to-base conversion. Check an
3129 // ambiguous or inaccessible conversion.
3130 unsigned InaccessibleID = 0;
3131 unsigned AmbiguousID = 0;
3132 if (Diagnose) {
3133 InaccessibleID = diag::err_upcast_to_inaccessible_base;
3134 AmbiguousID = diag::err_ambiguous_derived_to_base_conv;
3135 }
3136 if (CheckDerivedToBaseConversion(
3137 FromPointeeType, ToPointeeType, InaccessibleID, AmbiguousID,
3138 From->getExprLoc(), From->getSourceRange(), DeclarationName(),
3139 &BasePath, IgnoreBaseAccess))
3140 return true;
3141
3142 // The conversion was successful.
3143 Kind = CK_DerivedToBase;
3144 }
3145
3146 if (Diagnose && !IsCStyleOrFunctionalCast &&
3147 FromPointeeType->isFunctionType() && ToPointeeType->isVoidType()) {
3148 assert(getLangOpts().MSVCCompat &&
3149 "this should only be possible with MSVCCompat!");
3150 Diag(From->getExprLoc(), diag::ext_ms_impcast_fn_obj)
3151 << From->getSourceRange();
3152 }
3153 }
3154 } else if (const ObjCObjectPointerType *ToPtrType =
3155 ToType->getAs<ObjCObjectPointerType>()) {
3156 if (const ObjCObjectPointerType *FromPtrType =
3157 FromType->getAs<ObjCObjectPointerType>()) {
3158 // Objective-C++ conversions are always okay.
3159 // FIXME: We should have a different class of conversions for the
3160 // Objective-C++ implicit conversions.
3161 if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType())
3162 return false;
3163 } else if (FromType->isBlockPointerType()) {
3164 Kind = CK_BlockPointerToObjCPointerCast;
3165 } else {
3166 Kind = CK_CPointerToObjCPointerCast;
3167 }
3168 } else if (ToType->isBlockPointerType()) {
3169 if (!FromType->isBlockPointerType())
3170 Kind = CK_AnyPointerToBlockPointerCast;
3171 }
3172
3173 // We shouldn't fall into this case unless it's valid for other
3174 // reasons.
3175 if (From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
3176 Kind = CK_NullToPointer;
3177
3178 return false;
3179 }
3180
3181 /// IsMemberPointerConversion - Determines whether the conversion of the
3182 /// expression From, which has the (possibly adjusted) type FromType, can be
3183 /// converted to the type ToType via a member pointer conversion (C++ 4.11).
3184 /// If so, returns true and places the converted type (that might differ from
3185 /// ToType in its cv-qualifiers at some level) into ConvertedType.
IsMemberPointerConversion(Expr * From,QualType FromType,QualType ToType,bool InOverloadResolution,QualType & ConvertedType)3186 bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
3187 QualType ToType,
3188 bool InOverloadResolution,
3189 QualType &ConvertedType) {
3190 const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>();
3191 if (!ToTypePtr)
3192 return false;
3193
3194 // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
3195 if (From->isNullPointerConstant(Context,
3196 InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
3197 : Expr::NPC_ValueDependentIsNull)) {
3198 ConvertedType = ToType;
3199 return true;
3200 }
3201
3202 // Otherwise, both types have to be member pointers.
3203 const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>();
3204 if (!FromTypePtr)
3205 return false;
3206
3207 // A pointer to member of B can be converted to a pointer to member of D,
3208 // where D is derived from B (C++ 4.11p2).
3209 QualType FromClass(FromTypePtr->getClass(), 0);
3210 QualType ToClass(ToTypePtr->getClass(), 0);
3211
3212 if (!Context.hasSameUnqualifiedType(FromClass, ToClass) &&
3213 IsDerivedFrom(From->getBeginLoc(), ToClass, FromClass)) {
3214 ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
3215 ToClass.getTypePtr());
3216 return true;
3217 }
3218
3219 return false;
3220 }
3221
3222 /// CheckMemberPointerConversion - Check the member pointer conversion from the
3223 /// expression From to the type ToType. This routine checks for ambiguous or
3224 /// virtual or inaccessible base-to-derived member pointer conversions
3225 /// for which IsMemberPointerConversion has already returned true. It returns
3226 /// true and produces a diagnostic if there was an error, or returns false
3227 /// otherwise.
CheckMemberPointerConversion(Expr * From,QualType ToType,CastKind & Kind,CXXCastPath & BasePath,bool IgnoreBaseAccess)3228 bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType,
3229 CastKind &Kind,
3230 CXXCastPath &BasePath,
3231 bool IgnoreBaseAccess) {
3232 QualType FromType = From->getType();
3233 const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>();
3234 if (!FromPtrType) {
3235 // This must be a null pointer to member pointer conversion
3236 assert(From->isNullPointerConstant(Context,
3237 Expr::NPC_ValueDependentIsNull) &&
3238 "Expr must be null pointer constant!");
3239 Kind = CK_NullToMemberPointer;
3240 return false;
3241 }
3242
3243 const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>();
3244 assert(ToPtrType && "No member pointer cast has a target type "
3245 "that is not a member pointer.");
3246
3247 QualType FromClass = QualType(FromPtrType->getClass(), 0);
3248 QualType ToClass = QualType(ToPtrType->getClass(), 0);
3249
3250 // FIXME: What about dependent types?
3251 assert(FromClass->isRecordType() && "Pointer into non-class.");
3252 assert(ToClass->isRecordType() && "Pointer into non-class.");
3253
3254 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
3255 /*DetectVirtual=*/true);
3256 bool DerivationOkay =
3257 IsDerivedFrom(From->getBeginLoc(), ToClass, FromClass, Paths);
3258 assert(DerivationOkay &&
3259 "Should not have been called if derivation isn't OK.");
3260 (void)DerivationOkay;
3261
3262 if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
3263 getUnqualifiedType())) {
3264 std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
3265 Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
3266 << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
3267 return true;
3268 }
3269
3270 if (const RecordType *VBase = Paths.getDetectedVirtual()) {
3271 Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
3272 << FromClass << ToClass << QualType(VBase, 0)
3273 << From->getSourceRange();
3274 return true;
3275 }
3276
3277 if (!IgnoreBaseAccess)
3278 CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass,
3279 Paths.front(),
3280 diag::err_downcast_from_inaccessible_base);
3281
3282 // Must be a base to derived member conversion.
3283 BuildBasePathArray(Paths, BasePath);
3284 Kind = CK_BaseToDerivedMemberPointer;
3285 return false;
3286 }
3287
3288 /// Determine whether the lifetime conversion between the two given
3289 /// qualifiers sets is nontrivial.
isNonTrivialObjCLifetimeConversion(Qualifiers FromQuals,Qualifiers ToQuals)3290 static bool isNonTrivialObjCLifetimeConversion(Qualifiers FromQuals,
3291 Qualifiers ToQuals) {
3292 // Converting anything to const __unsafe_unretained is trivial.
3293 if (ToQuals.hasConst() &&
3294 ToQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone)
3295 return false;
3296
3297 return true;
3298 }
3299
3300 /// Perform a single iteration of the loop for checking if a qualification
3301 /// conversion is valid.
3302 ///
3303 /// Specifically, check whether any change between the qualifiers of \p
3304 /// FromType and \p ToType is permissible, given knowledge about whether every
3305 /// outer layer is const-qualified.
isQualificationConversionStep(QualType FromType,QualType ToType,bool CStyle,bool IsTopLevel,bool & PreviousToQualsIncludeConst,bool & ObjCLifetimeConversion)3306 static bool isQualificationConversionStep(QualType FromType, QualType ToType,
3307 bool CStyle, bool IsTopLevel,
3308 bool &PreviousToQualsIncludeConst,
3309 bool &ObjCLifetimeConversion) {
3310 Qualifiers FromQuals = FromType.getQualifiers();
3311 Qualifiers ToQuals = ToType.getQualifiers();
3312
3313 // Ignore __unaligned qualifier.
3314 FromQuals.removeUnaligned();
3315
3316 // Objective-C ARC:
3317 // Check Objective-C lifetime conversions.
3318 if (FromQuals.getObjCLifetime() != ToQuals.getObjCLifetime()) {
3319 if (ToQuals.compatiblyIncludesObjCLifetime(FromQuals)) {
3320 if (isNonTrivialObjCLifetimeConversion(FromQuals, ToQuals))
3321 ObjCLifetimeConversion = true;
3322 FromQuals.removeObjCLifetime();
3323 ToQuals.removeObjCLifetime();
3324 } else {
3325 // Qualification conversions cannot cast between different
3326 // Objective-C lifetime qualifiers.
3327 return false;
3328 }
3329 }
3330
3331 // Allow addition/removal of GC attributes but not changing GC attributes.
3332 if (FromQuals.getObjCGCAttr() != ToQuals.getObjCGCAttr() &&
3333 (!FromQuals.hasObjCGCAttr() || !ToQuals.hasObjCGCAttr())) {
3334 FromQuals.removeObjCGCAttr();
3335 ToQuals.removeObjCGCAttr();
3336 }
3337
3338 // -- for every j > 0, if const is in cv 1,j then const is in cv
3339 // 2,j, and similarly for volatile.
3340 if (!CStyle && !ToQuals.compatiblyIncludes(FromQuals))
3341 return false;
3342
3343 // If address spaces mismatch:
3344 // - in top level it is only valid to convert to addr space that is a
3345 // superset in all cases apart from C-style casts where we allow
3346 // conversions between overlapping address spaces.
3347 // - in non-top levels it is not a valid conversion.
3348 if (ToQuals.getAddressSpace() != FromQuals.getAddressSpace() &&
3349 (!IsTopLevel ||
3350 !(ToQuals.isAddressSpaceSupersetOf(FromQuals) ||
3351 (CStyle && FromQuals.isAddressSpaceSupersetOf(ToQuals)))))
3352 return false;
3353
3354 // -- if the cv 1,j and cv 2,j are different, then const is in
3355 // every cv for 0 < k < j.
3356 if (!CStyle && FromQuals.getCVRQualifiers() != ToQuals.getCVRQualifiers() &&
3357 !PreviousToQualsIncludeConst)
3358 return false;
3359
3360 // The following wording is from C++20, where the result of the conversion
3361 // is T3, not T2.
3362 // -- if [...] P1,i [...] is "array of unknown bound of", P3,i is
3363 // "array of unknown bound of"
3364 if (FromType->isIncompleteArrayType() && !ToType->isIncompleteArrayType())
3365 return false;
3366
3367 // -- if the resulting P3,i is different from P1,i [...], then const is
3368 // added to every cv 3_k for 0 < k < i.
3369 if (!CStyle && FromType->isConstantArrayType() &&
3370 ToType->isIncompleteArrayType() && !PreviousToQualsIncludeConst)
3371 return false;
3372
3373 // Keep track of whether all prior cv-qualifiers in the "to" type
3374 // include const.
3375 PreviousToQualsIncludeConst =
3376 PreviousToQualsIncludeConst && ToQuals.hasConst();
3377 return true;
3378 }
3379
3380 /// IsQualificationConversion - Determines whether the conversion from
3381 /// an rvalue of type FromType to ToType is a qualification conversion
3382 /// (C++ 4.4).
3383 ///
3384 /// \param ObjCLifetimeConversion Output parameter that will be set to indicate
3385 /// when the qualification conversion involves a change in the Objective-C
3386 /// object lifetime.
3387 bool
IsQualificationConversion(QualType FromType,QualType ToType,bool CStyle,bool & ObjCLifetimeConversion)3388 Sema::IsQualificationConversion(QualType FromType, QualType ToType,
3389 bool CStyle, bool &ObjCLifetimeConversion) {
3390 FromType = Context.getCanonicalType(FromType);
3391 ToType = Context.getCanonicalType(ToType);
3392 ObjCLifetimeConversion = false;
3393
3394 // If FromType and ToType are the same type, this is not a
3395 // qualification conversion.
3396 if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType())
3397 return false;
3398
3399 // (C++ 4.4p4):
3400 // A conversion can add cv-qualifiers at levels other than the first
3401 // in multi-level pointers, subject to the following rules: [...]
3402 bool PreviousToQualsIncludeConst = true;
3403 bool UnwrappedAnyPointer = false;
3404 while (Context.UnwrapSimilarTypes(FromType, ToType)) {
3405 if (!isQualificationConversionStep(
3406 FromType, ToType, CStyle, !UnwrappedAnyPointer,
3407 PreviousToQualsIncludeConst, ObjCLifetimeConversion))
3408 return false;
3409 UnwrappedAnyPointer = true;
3410 }
3411
3412 // We are left with FromType and ToType being the pointee types
3413 // after unwrapping the original FromType and ToType the same number
3414 // of times. If we unwrapped any pointers, and if FromType and
3415 // ToType have the same unqualified type (since we checked
3416 // qualifiers above), then this is a qualification conversion.
3417 return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType);
3418 }
3419
3420 /// - Determine whether this is a conversion from a scalar type to an
3421 /// atomic type.
3422 ///
3423 /// If successful, updates \c SCS's second and third steps in the conversion
3424 /// sequence to finish the conversion.
tryAtomicConversion(Sema & S,Expr * From,QualType ToType,bool InOverloadResolution,StandardConversionSequence & SCS,bool CStyle)3425 static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType,
3426 bool InOverloadResolution,
3427 StandardConversionSequence &SCS,
3428 bool CStyle) {
3429 const AtomicType *ToAtomic = ToType->getAs<AtomicType>();
3430 if (!ToAtomic)
3431 return false;
3432
3433 StandardConversionSequence InnerSCS;
3434 if (!IsStandardConversion(S, From, ToAtomic->getValueType(),
3435 InOverloadResolution, InnerSCS,
3436 CStyle, /*AllowObjCWritebackConversion=*/false))
3437 return false;
3438
3439 SCS.Second = InnerSCS.Second;
3440 SCS.setToType(1, InnerSCS.getToType(1));
3441 SCS.Third = InnerSCS.Third;
3442 SCS.QualificationIncludesObjCLifetime
3443 = InnerSCS.QualificationIncludesObjCLifetime;
3444 SCS.setToType(2, InnerSCS.getToType(2));
3445 return true;
3446 }
3447
isFirstArgumentCompatibleWithType(ASTContext & Context,CXXConstructorDecl * Constructor,QualType Type)3448 static bool isFirstArgumentCompatibleWithType(ASTContext &Context,
3449 CXXConstructorDecl *Constructor,
3450 QualType Type) {
3451 const auto *CtorType = Constructor->getType()->castAs<FunctionProtoType>();
3452 if (CtorType->getNumParams() > 0) {
3453 QualType FirstArg = CtorType->getParamType(0);
3454 if (Context.hasSameUnqualifiedType(Type, FirstArg.getNonReferenceType()))
3455 return true;
3456 }
3457 return false;
3458 }
3459
3460 static OverloadingResult
IsInitializerListConstructorConversion(Sema & S,Expr * From,QualType ToType,CXXRecordDecl * To,UserDefinedConversionSequence & User,OverloadCandidateSet & CandidateSet,bool AllowExplicit)3461 IsInitializerListConstructorConversion(Sema &S, Expr *From, QualType ToType,
3462 CXXRecordDecl *To,
3463 UserDefinedConversionSequence &User,
3464 OverloadCandidateSet &CandidateSet,
3465 bool AllowExplicit) {
3466 CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
3467 for (auto *D : S.LookupConstructors(To)) {
3468 auto Info = getConstructorInfo(D);
3469 if (!Info)
3470 continue;
3471
3472 bool Usable = !Info.Constructor->isInvalidDecl() &&
3473 S.isInitListConstructor(Info.Constructor);
3474 if (Usable) {
3475 bool SuppressUserConversions = false;
3476 if (Info.ConstructorTmpl)
3477 S.AddTemplateOverloadCandidate(Info.ConstructorTmpl, Info.FoundDecl,
3478 /*ExplicitArgs*/ nullptr, From,
3479 CandidateSet, SuppressUserConversions,
3480 /*PartialOverloading*/ false,
3481 AllowExplicit);
3482 else
3483 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, From,
3484 CandidateSet, SuppressUserConversions,
3485 /*PartialOverloading*/ false, AllowExplicit);
3486 }
3487 }
3488
3489 bool HadMultipleCandidates = (CandidateSet.size() > 1);
3490
3491 OverloadCandidateSet::iterator Best;
3492 switch (auto Result =
3493 CandidateSet.BestViableFunction(S, From->getBeginLoc(), Best)) {
3494 case OR_Deleted:
3495 case OR_Success: {
3496 // Record the standard conversion we used and the conversion function.
3497 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
3498 QualType ThisType = Constructor->getThisType();
3499 // Initializer lists don't have conversions as such.
3500 User.Before.setAsIdentityConversion();
3501 User.HadMultipleCandidates = HadMultipleCandidates;
3502 User.ConversionFunction = Constructor;
3503 User.FoundConversionFunction = Best->FoundDecl;
3504 User.After.setAsIdentityConversion();
3505 User.After.setFromType(ThisType->castAs<PointerType>()->getPointeeType());
3506 User.After.setAllToTypes(ToType);
3507 return Result;
3508 }
3509
3510 case OR_No_Viable_Function:
3511 return OR_No_Viable_Function;
3512 case OR_Ambiguous:
3513 return OR_Ambiguous;
3514 }
3515
3516 llvm_unreachable("Invalid OverloadResult!");
3517 }
3518
3519 /// Determines whether there is a user-defined conversion sequence
3520 /// (C++ [over.ics.user]) that converts expression From to the type
3521 /// ToType. If such a conversion exists, User will contain the
3522 /// user-defined conversion sequence that performs such a conversion
3523 /// and this routine will return true. Otherwise, this routine returns
3524 /// false and User is unspecified.
3525 ///
3526 /// \param AllowExplicit true if the conversion should consider C++0x
3527 /// "explicit" conversion functions as well as non-explicit conversion
3528 /// functions (C++0x [class.conv.fct]p2).
3529 ///
3530 /// \param AllowObjCConversionOnExplicit true if the conversion should
3531 /// allow an extra Objective-C pointer conversion on uses of explicit
3532 /// constructors. Requires \c AllowExplicit to also be set.
3533 static OverloadingResult
IsUserDefinedConversion(Sema & S,Expr * From,QualType ToType,UserDefinedConversionSequence & User,OverloadCandidateSet & CandidateSet,AllowedExplicit AllowExplicit,bool AllowObjCConversionOnExplicit)3534 IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
3535 UserDefinedConversionSequence &User,
3536 OverloadCandidateSet &CandidateSet,
3537 AllowedExplicit AllowExplicit,
3538 bool AllowObjCConversionOnExplicit) {
3539 assert(AllowExplicit != AllowedExplicit::None ||
3540 !AllowObjCConversionOnExplicit);
3541 CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
3542
3543 // Whether we will only visit constructors.
3544 bool ConstructorsOnly = false;
3545
3546 // If the type we are conversion to is a class type, enumerate its
3547 // constructors.
3548 if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) {
3549 // C++ [over.match.ctor]p1:
3550 // When objects of class type are direct-initialized (8.5), or
3551 // copy-initialized from an expression of the same or a
3552 // derived class type (8.5), overload resolution selects the
3553 // constructor. [...] For copy-initialization, the candidate
3554 // functions are all the converting constructors (12.3.1) of
3555 // that class. The argument list is the expression-list within
3556 // the parentheses of the initializer.
3557 if (S.Context.hasSameUnqualifiedType(ToType, From->getType()) ||
3558 (From->getType()->getAs<RecordType>() &&
3559 S.IsDerivedFrom(From->getBeginLoc(), From->getType(), ToType)))
3560 ConstructorsOnly = true;
3561
3562 if (!S.isCompleteType(From->getExprLoc(), ToType)) {
3563 // We're not going to find any constructors.
3564 } else if (CXXRecordDecl *ToRecordDecl
3565 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
3566
3567 Expr **Args = &From;
3568 unsigned NumArgs = 1;
3569 bool ListInitializing = false;
3570 if (InitListExpr *InitList = dyn_cast<InitListExpr>(From)) {
3571 // But first, see if there is an init-list-constructor that will work.
3572 OverloadingResult Result = IsInitializerListConstructorConversion(
3573 S, From, ToType, ToRecordDecl, User, CandidateSet,
3574 AllowExplicit == AllowedExplicit::All);
3575 if (Result != OR_No_Viable_Function)
3576 return Result;
3577 // Never mind.
3578 CandidateSet.clear(
3579 OverloadCandidateSet::CSK_InitByUserDefinedConversion);
3580
3581 // If we're list-initializing, we pass the individual elements as
3582 // arguments, not the entire list.
3583 Args = InitList->getInits();
3584 NumArgs = InitList->getNumInits();
3585 ListInitializing = true;
3586 }
3587
3588 for (auto *D : S.LookupConstructors(ToRecordDecl)) {
3589 auto Info = getConstructorInfo(D);
3590 if (!Info)
3591 continue;
3592
3593 bool Usable = !Info.Constructor->isInvalidDecl();
3594 if (!ListInitializing)
3595 Usable = Usable && Info.Constructor->isConvertingConstructor(
3596 /*AllowExplicit*/ true);
3597 if (Usable) {
3598 bool SuppressUserConversions = !ConstructorsOnly;
3599 // C++20 [over.best.ics.general]/4.5:
3600 // if the target is the first parameter of a constructor [of class
3601 // X] and the constructor [...] is a candidate by [...] the second
3602 // phase of [over.match.list] when the initializer list has exactly
3603 // one element that is itself an initializer list, [...] and the
3604 // conversion is to X or reference to cv X, user-defined conversion
3605 // sequences are not cnosidered.
3606 if (SuppressUserConversions && ListInitializing) {
3607 SuppressUserConversions =
3608 NumArgs == 1 && isa<InitListExpr>(Args[0]) &&
3609 isFirstArgumentCompatibleWithType(S.Context, Info.Constructor,
3610 ToType);
3611 }
3612 if (Info.ConstructorTmpl)
3613 S.AddTemplateOverloadCandidate(
3614 Info.ConstructorTmpl, Info.FoundDecl,
3615 /*ExplicitArgs*/ nullptr, llvm::ArrayRef(Args, NumArgs),
3616 CandidateSet, SuppressUserConversions,
3617 /*PartialOverloading*/ false,
3618 AllowExplicit == AllowedExplicit::All);
3619 else
3620 // Allow one user-defined conversion when user specifies a
3621 // From->ToType conversion via an static cast (c-style, etc).
3622 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl,
3623 llvm::ArrayRef(Args, NumArgs), CandidateSet,
3624 SuppressUserConversions,
3625 /*PartialOverloading*/ false,
3626 AllowExplicit == AllowedExplicit::All);
3627 }
3628 }
3629 }
3630 }
3631
3632 // Enumerate conversion functions, if we're allowed to.
3633 if (ConstructorsOnly || isa<InitListExpr>(From)) {
3634 } else if (!S.isCompleteType(From->getBeginLoc(), From->getType())) {
3635 // No conversion functions from incomplete types.
3636 } else if (const RecordType *FromRecordType =
3637 From->getType()->getAs<RecordType>()) {
3638 if (CXXRecordDecl *FromRecordDecl
3639 = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
3640 // Add all of the conversion functions as candidates.
3641 const auto &Conversions = FromRecordDecl->getVisibleConversionFunctions();
3642 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
3643 DeclAccessPair FoundDecl = I.getPair();
3644 NamedDecl *D = FoundDecl.getDecl();
3645 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
3646 if (isa<UsingShadowDecl>(D))
3647 D = cast<UsingShadowDecl>(D)->getTargetDecl();
3648
3649 CXXConversionDecl *Conv;
3650 FunctionTemplateDecl *ConvTemplate;
3651 if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D)))
3652 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3653 else
3654 Conv = cast<CXXConversionDecl>(D);
3655
3656 if (ConvTemplate)
3657 S.AddTemplateConversionCandidate(
3658 ConvTemplate, FoundDecl, ActingContext, From, ToType,
3659 CandidateSet, AllowObjCConversionOnExplicit,
3660 AllowExplicit != AllowedExplicit::None);
3661 else
3662 S.AddConversionCandidate(Conv, FoundDecl, ActingContext, From, ToType,
3663 CandidateSet, AllowObjCConversionOnExplicit,
3664 AllowExplicit != AllowedExplicit::None);
3665 }
3666 }
3667 }
3668
3669 bool HadMultipleCandidates = (CandidateSet.size() > 1);
3670
3671 OverloadCandidateSet::iterator Best;
3672 switch (auto Result =
3673 CandidateSet.BestViableFunction(S, From->getBeginLoc(), Best)) {
3674 case OR_Success:
3675 case OR_Deleted:
3676 // Record the standard conversion we used and the conversion function.
3677 if (CXXConstructorDecl *Constructor
3678 = dyn_cast<CXXConstructorDecl>(Best->Function)) {
3679 // C++ [over.ics.user]p1:
3680 // If the user-defined conversion is specified by a
3681 // constructor (12.3.1), the initial standard conversion
3682 // sequence converts the source type to the type required by
3683 // the argument of the constructor.
3684 //
3685 QualType ThisType = Constructor->getThisType();
3686 if (isa<InitListExpr>(From)) {
3687 // Initializer lists don't have conversions as such.
3688 User.Before.setAsIdentityConversion();
3689 } else {
3690 if (Best->Conversions[0].isEllipsis())
3691 User.EllipsisConversion = true;
3692 else {
3693 User.Before = Best->Conversions[0].Standard;
3694 User.EllipsisConversion = false;
3695 }
3696 }
3697 User.HadMultipleCandidates = HadMultipleCandidates;
3698 User.ConversionFunction = Constructor;
3699 User.FoundConversionFunction = Best->FoundDecl;
3700 User.After.setAsIdentityConversion();
3701 User.After.setFromType(ThisType->castAs<PointerType>()->getPointeeType());
3702 User.After.setAllToTypes(ToType);
3703 return Result;
3704 }
3705 if (CXXConversionDecl *Conversion
3706 = dyn_cast<CXXConversionDecl>(Best->Function)) {
3707 // C++ [over.ics.user]p1:
3708 //
3709 // [...] If the user-defined conversion is specified by a
3710 // conversion function (12.3.2), the initial standard
3711 // conversion sequence converts the source type to the
3712 // implicit object parameter of the conversion function.
3713 User.Before = Best->Conversions[0].Standard;
3714 User.HadMultipleCandidates = HadMultipleCandidates;
3715 User.ConversionFunction = Conversion;
3716 User.FoundConversionFunction = Best->FoundDecl;
3717 User.EllipsisConversion = false;
3718
3719 // C++ [over.ics.user]p2:
3720 // The second standard conversion sequence converts the
3721 // result of the user-defined conversion to the target type
3722 // for the sequence. Since an implicit conversion sequence
3723 // is an initialization, the special rules for
3724 // initialization by user-defined conversion apply when
3725 // selecting the best user-defined conversion for a
3726 // user-defined conversion sequence (see 13.3.3 and
3727 // 13.3.3.1).
3728 User.After = Best->FinalConversion;
3729 return Result;
3730 }
3731 llvm_unreachable("Not a constructor or conversion function?");
3732
3733 case OR_No_Viable_Function:
3734 return OR_No_Viable_Function;
3735
3736 case OR_Ambiguous:
3737 return OR_Ambiguous;
3738 }
3739
3740 llvm_unreachable("Invalid OverloadResult!");
3741 }
3742
3743 bool
DiagnoseMultipleUserDefinedConversion(Expr * From,QualType ToType)3744 Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) {
3745 ImplicitConversionSequence ICS;
3746 OverloadCandidateSet CandidateSet(From->getExprLoc(),
3747 OverloadCandidateSet::CSK_Normal);
3748 OverloadingResult OvResult =
3749 IsUserDefinedConversion(*this, From, ToType, ICS.UserDefined,
3750 CandidateSet, AllowedExplicit::None, false);
3751
3752 if (!(OvResult == OR_Ambiguous ||
3753 (OvResult == OR_No_Viable_Function && !CandidateSet.empty())))
3754 return false;
3755
3756 auto Cands = CandidateSet.CompleteCandidates(
3757 *this,
3758 OvResult == OR_Ambiguous ? OCD_AmbiguousCandidates : OCD_AllCandidates,
3759 From);
3760 if (OvResult == OR_Ambiguous)
3761 Diag(From->getBeginLoc(), diag::err_typecheck_ambiguous_condition)
3762 << From->getType() << ToType << From->getSourceRange();
3763 else { // OR_No_Viable_Function && !CandidateSet.empty()
3764 if (!RequireCompleteType(From->getBeginLoc(), ToType,
3765 diag::err_typecheck_nonviable_condition_incomplete,
3766 From->getType(), From->getSourceRange()))
3767 Diag(From->getBeginLoc(), diag::err_typecheck_nonviable_condition)
3768 << false << From->getType() << From->getSourceRange() << ToType;
3769 }
3770
3771 CandidateSet.NoteCandidates(
3772 *this, From, Cands);
3773 return true;
3774 }
3775
3776 // Helper for compareConversionFunctions that gets the FunctionType that the
3777 // conversion-operator return value 'points' to, or nullptr.
3778 static const FunctionType *
getConversionOpReturnTyAsFunction(CXXConversionDecl * Conv)3779 getConversionOpReturnTyAsFunction(CXXConversionDecl *Conv) {
3780 const FunctionType *ConvFuncTy = Conv->getType()->castAs<FunctionType>();
3781 const PointerType *RetPtrTy =
3782 ConvFuncTy->getReturnType()->getAs<PointerType>();
3783
3784 if (!RetPtrTy)
3785 return nullptr;
3786
3787 return RetPtrTy->getPointeeType()->getAs<FunctionType>();
3788 }
3789
3790 /// Compare the user-defined conversion functions or constructors
3791 /// of two user-defined conversion sequences to determine whether any ordering
3792 /// is possible.
3793 static ImplicitConversionSequence::CompareKind
compareConversionFunctions(Sema & S,FunctionDecl * Function1,FunctionDecl * Function2)3794 compareConversionFunctions(Sema &S, FunctionDecl *Function1,
3795 FunctionDecl *Function2) {
3796 CXXConversionDecl *Conv1 = dyn_cast_or_null<CXXConversionDecl>(Function1);
3797 CXXConversionDecl *Conv2 = dyn_cast_or_null<CXXConversionDecl>(Function2);
3798 if (!Conv1 || !Conv2)
3799 return ImplicitConversionSequence::Indistinguishable;
3800
3801 if (!Conv1->getParent()->isLambda() || !Conv2->getParent()->isLambda())
3802 return ImplicitConversionSequence::Indistinguishable;
3803
3804 // Objective-C++:
3805 // If both conversion functions are implicitly-declared conversions from
3806 // a lambda closure type to a function pointer and a block pointer,
3807 // respectively, always prefer the conversion to a function pointer,
3808 // because the function pointer is more lightweight and is more likely
3809 // to keep code working.
3810 if (S.getLangOpts().ObjC && S.getLangOpts().CPlusPlus11) {
3811 bool Block1 = Conv1->getConversionType()->isBlockPointerType();
3812 bool Block2 = Conv2->getConversionType()->isBlockPointerType();
3813 if (Block1 != Block2)
3814 return Block1 ? ImplicitConversionSequence::Worse
3815 : ImplicitConversionSequence::Better;
3816 }
3817
3818 // In order to support multiple calling conventions for the lambda conversion
3819 // operator (such as when the free and member function calling convention is
3820 // different), prefer the 'free' mechanism, followed by the calling-convention
3821 // of operator(). The latter is in place to support the MSVC-like solution of
3822 // defining ALL of the possible conversions in regards to calling-convention.
3823 const FunctionType *Conv1FuncRet = getConversionOpReturnTyAsFunction(Conv1);
3824 const FunctionType *Conv2FuncRet = getConversionOpReturnTyAsFunction(Conv2);
3825
3826 if (Conv1FuncRet && Conv2FuncRet &&
3827 Conv1FuncRet->getCallConv() != Conv2FuncRet->getCallConv()) {
3828 CallingConv Conv1CC = Conv1FuncRet->getCallConv();
3829 CallingConv Conv2CC = Conv2FuncRet->getCallConv();
3830
3831 CXXMethodDecl *CallOp = Conv2->getParent()->getLambdaCallOperator();
3832 const auto *CallOpProto = CallOp->getType()->castAs<FunctionProtoType>();
3833
3834 CallingConv CallOpCC =
3835 CallOp->getType()->castAs<FunctionType>()->getCallConv();
3836 CallingConv DefaultFree = S.Context.getDefaultCallingConvention(
3837 CallOpProto->isVariadic(), /*IsCXXMethod=*/false);
3838 CallingConv DefaultMember = S.Context.getDefaultCallingConvention(
3839 CallOpProto->isVariadic(), /*IsCXXMethod=*/true);
3840
3841 CallingConv PrefOrder[] = {DefaultFree, DefaultMember, CallOpCC};
3842 for (CallingConv CC : PrefOrder) {
3843 if (Conv1CC == CC)
3844 return ImplicitConversionSequence::Better;
3845 if (Conv2CC == CC)
3846 return ImplicitConversionSequence::Worse;
3847 }
3848 }
3849
3850 return ImplicitConversionSequence::Indistinguishable;
3851 }
3852
hasDeprecatedStringLiteralToCharPtrConversion(const ImplicitConversionSequence & ICS)3853 static bool hasDeprecatedStringLiteralToCharPtrConversion(
3854 const ImplicitConversionSequence &ICS) {
3855 return (ICS.isStandard() && ICS.Standard.DeprecatedStringLiteralToCharPtr) ||
3856 (ICS.isUserDefined() &&
3857 ICS.UserDefined.Before.DeprecatedStringLiteralToCharPtr);
3858 }
3859
3860 /// CompareImplicitConversionSequences - Compare two implicit
3861 /// conversion sequences to determine whether one is better than the
3862 /// other or if they are indistinguishable (C++ 13.3.3.2).
3863 static ImplicitConversionSequence::CompareKind
CompareImplicitConversionSequences(Sema & S,SourceLocation Loc,const ImplicitConversionSequence & ICS1,const ImplicitConversionSequence & ICS2)3864 CompareImplicitConversionSequences(Sema &S, SourceLocation Loc,
3865 const ImplicitConversionSequence& ICS1,
3866 const ImplicitConversionSequence& ICS2)
3867 {
3868 // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
3869 // conversion sequences (as defined in 13.3.3.1)
3870 // -- a standard conversion sequence (13.3.3.1.1) is a better
3871 // conversion sequence than a user-defined conversion sequence or
3872 // an ellipsis conversion sequence, and
3873 // -- a user-defined conversion sequence (13.3.3.1.2) is a better
3874 // conversion sequence than an ellipsis conversion sequence
3875 // (13.3.3.1.3).
3876 //
3877 // C++0x [over.best.ics]p10:
3878 // For the purpose of ranking implicit conversion sequences as
3879 // described in 13.3.3.2, the ambiguous conversion sequence is
3880 // treated as a user-defined sequence that is indistinguishable
3881 // from any other user-defined conversion sequence.
3882
3883 // String literal to 'char *' conversion has been deprecated in C++03. It has
3884 // been removed from C++11. We still accept this conversion, if it happens at
3885 // the best viable function. Otherwise, this conversion is considered worse
3886 // than ellipsis conversion. Consider this as an extension; this is not in the
3887 // standard. For example:
3888 //
3889 // int &f(...); // #1
3890 // void f(char*); // #2
3891 // void g() { int &r = f("foo"); }
3892 //
3893 // In C++03, we pick #2 as the best viable function.
3894 // In C++11, we pick #1 as the best viable function, because ellipsis
3895 // conversion is better than string-literal to char* conversion (since there
3896 // is no such conversion in C++11). If there was no #1 at all or #1 couldn't
3897 // convert arguments, #2 would be the best viable function in C++11.
3898 // If the best viable function has this conversion, a warning will be issued
3899 // in C++03, or an ExtWarn (+SFINAE failure) will be issued in C++11.
3900
3901 if (S.getLangOpts().CPlusPlus11 && !S.getLangOpts().WritableStrings &&
3902 hasDeprecatedStringLiteralToCharPtrConversion(ICS1) !=
3903 hasDeprecatedStringLiteralToCharPtrConversion(ICS2) &&
3904 // Ill-formedness must not differ
3905 ICS1.isBad() == ICS2.isBad())
3906 return hasDeprecatedStringLiteralToCharPtrConversion(ICS1)
3907 ? ImplicitConversionSequence::Worse
3908 : ImplicitConversionSequence::Better;
3909
3910 if (ICS1.getKindRank() < ICS2.getKindRank())
3911 return ImplicitConversionSequence::Better;
3912 if (ICS2.getKindRank() < ICS1.getKindRank())
3913 return ImplicitConversionSequence::Worse;
3914
3915 // The following checks require both conversion sequences to be of
3916 // the same kind.
3917 if (ICS1.getKind() != ICS2.getKind())
3918 return ImplicitConversionSequence::Indistinguishable;
3919
3920 ImplicitConversionSequence::CompareKind Result =
3921 ImplicitConversionSequence::Indistinguishable;
3922
3923 // Two implicit conversion sequences of the same form are
3924 // indistinguishable conversion sequences unless one of the
3925 // following rules apply: (C++ 13.3.3.2p3):
3926
3927 // List-initialization sequence L1 is a better conversion sequence than
3928 // list-initialization sequence L2 if:
3929 // - L1 converts to std::initializer_list<X> for some X and L2 does not, or,
3930 // if not that,
3931 // — L1 and L2 convert to arrays of the same element type, and either the
3932 // number of elements n_1 initialized by L1 is less than the number of
3933 // elements n_2 initialized by L2, or (C++20) n_1 = n_2 and L2 converts to
3934 // an array of unknown bound and L1 does not,
3935 // even if one of the other rules in this paragraph would otherwise apply.
3936 if (!ICS1.isBad()) {
3937 bool StdInit1 = false, StdInit2 = false;
3938 if (ICS1.hasInitializerListContainerType())
3939 StdInit1 = S.isStdInitializerList(ICS1.getInitializerListContainerType(),
3940 nullptr);
3941 if (ICS2.hasInitializerListContainerType())
3942 StdInit2 = S.isStdInitializerList(ICS2.getInitializerListContainerType(),
3943 nullptr);
3944 if (StdInit1 != StdInit2)
3945 return StdInit1 ? ImplicitConversionSequence::Better
3946 : ImplicitConversionSequence::Worse;
3947
3948 if (ICS1.hasInitializerListContainerType() &&
3949 ICS2.hasInitializerListContainerType())
3950 if (auto *CAT1 = S.Context.getAsConstantArrayType(
3951 ICS1.getInitializerListContainerType()))
3952 if (auto *CAT2 = S.Context.getAsConstantArrayType(
3953 ICS2.getInitializerListContainerType())) {
3954 if (S.Context.hasSameUnqualifiedType(CAT1->getElementType(),
3955 CAT2->getElementType())) {
3956 // Both to arrays of the same element type
3957 if (CAT1->getSize() != CAT2->getSize())
3958 // Different sized, the smaller wins
3959 return CAT1->getSize().ult(CAT2->getSize())
3960 ? ImplicitConversionSequence::Better
3961 : ImplicitConversionSequence::Worse;
3962 if (ICS1.isInitializerListOfIncompleteArray() !=
3963 ICS2.isInitializerListOfIncompleteArray())
3964 // One is incomplete, it loses
3965 return ICS2.isInitializerListOfIncompleteArray()
3966 ? ImplicitConversionSequence::Better
3967 : ImplicitConversionSequence::Worse;
3968 }
3969 }
3970 }
3971
3972 if (ICS1.isStandard())
3973 // Standard conversion sequence S1 is a better conversion sequence than
3974 // standard conversion sequence S2 if [...]
3975 Result = CompareStandardConversionSequences(S, Loc,
3976 ICS1.Standard, ICS2.Standard);
3977 else if (ICS1.isUserDefined()) {
3978 // User-defined conversion sequence U1 is a better conversion
3979 // sequence than another user-defined conversion sequence U2 if
3980 // they contain the same user-defined conversion function or
3981 // constructor and if the second standard conversion sequence of
3982 // U1 is better than the second standard conversion sequence of
3983 // U2 (C++ 13.3.3.2p3).
3984 if (ICS1.UserDefined.ConversionFunction ==
3985 ICS2.UserDefined.ConversionFunction)
3986 Result = CompareStandardConversionSequences(S, Loc,
3987 ICS1.UserDefined.After,
3988 ICS2.UserDefined.After);
3989 else
3990 Result = compareConversionFunctions(S,
3991 ICS1.UserDefined.ConversionFunction,
3992 ICS2.UserDefined.ConversionFunction);
3993 }
3994
3995 return Result;
3996 }
3997
3998 // Per 13.3.3.2p3, compare the given standard conversion sequences to
3999 // determine if one is a proper subset of the other.
4000 static ImplicitConversionSequence::CompareKind
compareStandardConversionSubsets(ASTContext & Context,const StandardConversionSequence & SCS1,const StandardConversionSequence & SCS2)4001 compareStandardConversionSubsets(ASTContext &Context,
4002 const StandardConversionSequence& SCS1,
4003 const StandardConversionSequence& SCS2) {
4004 ImplicitConversionSequence::CompareKind Result
4005 = ImplicitConversionSequence::Indistinguishable;
4006
4007 // the identity conversion sequence is considered to be a subsequence of
4008 // any non-identity conversion sequence
4009 if (SCS1.isIdentityConversion() && !SCS2.isIdentityConversion())
4010 return ImplicitConversionSequence::Better;
4011 else if (!SCS1.isIdentityConversion() && SCS2.isIdentityConversion())
4012 return ImplicitConversionSequence::Worse;
4013
4014 if (SCS1.Second != SCS2.Second) {
4015 if (SCS1.Second == ICK_Identity)
4016 Result = ImplicitConversionSequence::Better;
4017 else if (SCS2.Second == ICK_Identity)
4018 Result = ImplicitConversionSequence::Worse;
4019 else
4020 return ImplicitConversionSequence::Indistinguishable;
4021 } else if (!Context.hasSimilarType(SCS1.getToType(1), SCS2.getToType(1)))
4022 return ImplicitConversionSequence::Indistinguishable;
4023
4024 if (SCS1.Third == SCS2.Third) {
4025 return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result
4026 : ImplicitConversionSequence::Indistinguishable;
4027 }
4028
4029 if (SCS1.Third == ICK_Identity)
4030 return Result == ImplicitConversionSequence::Worse
4031 ? ImplicitConversionSequence::Indistinguishable
4032 : ImplicitConversionSequence::Better;
4033
4034 if (SCS2.Third == ICK_Identity)
4035 return Result == ImplicitConversionSequence::Better
4036 ? ImplicitConversionSequence::Indistinguishable
4037 : ImplicitConversionSequence::Worse;
4038
4039 return ImplicitConversionSequence::Indistinguishable;
4040 }
4041
4042 /// Determine whether one of the given reference bindings is better
4043 /// than the other based on what kind of bindings they are.
4044 static bool
isBetterReferenceBindingKind(const StandardConversionSequence & SCS1,const StandardConversionSequence & SCS2)4045 isBetterReferenceBindingKind(const StandardConversionSequence &SCS1,
4046 const StandardConversionSequence &SCS2) {
4047 // C++0x [over.ics.rank]p3b4:
4048 // -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
4049 // implicit object parameter of a non-static member function declared
4050 // without a ref-qualifier, and *either* S1 binds an rvalue reference
4051 // to an rvalue and S2 binds an lvalue reference *or S1 binds an
4052 // lvalue reference to a function lvalue and S2 binds an rvalue
4053 // reference*.
4054 //
4055 // FIXME: Rvalue references. We're going rogue with the above edits,
4056 // because the semantics in the current C++0x working paper (N3225 at the
4057 // time of this writing) break the standard definition of std::forward
4058 // and std::reference_wrapper when dealing with references to functions.
4059 // Proposed wording changes submitted to CWG for consideration.
4060 if (SCS1.BindsImplicitObjectArgumentWithoutRefQualifier ||
4061 SCS2.BindsImplicitObjectArgumentWithoutRefQualifier)
4062 return false;
4063
4064 return (!SCS1.IsLvalueReference && SCS1.BindsToRvalue &&
4065 SCS2.IsLvalueReference) ||
4066 (SCS1.IsLvalueReference && SCS1.BindsToFunctionLvalue &&
4067 !SCS2.IsLvalueReference && SCS2.BindsToFunctionLvalue);
4068 }
4069
4070 enum class FixedEnumPromotion {
4071 None,
4072 ToUnderlyingType,
4073 ToPromotedUnderlyingType
4074 };
4075
4076 /// Returns kind of fixed enum promotion the \a SCS uses.
4077 static FixedEnumPromotion
getFixedEnumPromtion(Sema & S,const StandardConversionSequence & SCS)4078 getFixedEnumPromtion(Sema &S, const StandardConversionSequence &SCS) {
4079
4080 if (SCS.Second != ICK_Integral_Promotion)
4081 return FixedEnumPromotion::None;
4082
4083 QualType FromType = SCS.getFromType();
4084 if (!FromType->isEnumeralType())
4085 return FixedEnumPromotion::None;
4086
4087 EnumDecl *Enum = FromType->castAs<EnumType>()->getDecl();
4088 if (!Enum->isFixed())
4089 return FixedEnumPromotion::None;
4090
4091 QualType UnderlyingType = Enum->getIntegerType();
4092 if (S.Context.hasSameType(SCS.getToType(1), UnderlyingType))
4093 return FixedEnumPromotion::ToUnderlyingType;
4094
4095 return FixedEnumPromotion::ToPromotedUnderlyingType;
4096 }
4097
4098 /// CompareStandardConversionSequences - Compare two standard
4099 /// conversion sequences to determine whether one is better than the
4100 /// other or if they are indistinguishable (C++ 13.3.3.2p3).
4101 static ImplicitConversionSequence::CompareKind
CompareStandardConversionSequences(Sema & S,SourceLocation Loc,const StandardConversionSequence & SCS1,const StandardConversionSequence & SCS2)4102 CompareStandardConversionSequences(Sema &S, SourceLocation Loc,
4103 const StandardConversionSequence& SCS1,
4104 const StandardConversionSequence& SCS2)
4105 {
4106 // Standard conversion sequence S1 is a better conversion sequence
4107 // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
4108
4109 // -- S1 is a proper subsequence of S2 (comparing the conversion
4110 // sequences in the canonical form defined by 13.3.3.1.1,
4111 // excluding any Lvalue Transformation; the identity conversion
4112 // sequence is considered to be a subsequence of any
4113 // non-identity conversion sequence) or, if not that,
4114 if (ImplicitConversionSequence::CompareKind CK
4115 = compareStandardConversionSubsets(S.Context, SCS1, SCS2))
4116 return CK;
4117
4118 // -- the rank of S1 is better than the rank of S2 (by the rules
4119 // defined below), or, if not that,
4120 ImplicitConversionRank Rank1 = SCS1.getRank();
4121 ImplicitConversionRank Rank2 = SCS2.getRank();
4122 if (Rank1 < Rank2)
4123 return ImplicitConversionSequence::Better;
4124 else if (Rank2 < Rank1)
4125 return ImplicitConversionSequence::Worse;
4126
4127 // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
4128 // are indistinguishable unless one of the following rules
4129 // applies:
4130
4131 // A conversion that is not a conversion of a pointer, or
4132 // pointer to member, to bool is better than another conversion
4133 // that is such a conversion.
4134 if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
4135 return SCS2.isPointerConversionToBool()
4136 ? ImplicitConversionSequence::Better
4137 : ImplicitConversionSequence::Worse;
4138
4139 // C++14 [over.ics.rank]p4b2:
4140 // This is retroactively applied to C++11 by CWG 1601.
4141 //
4142 // A conversion that promotes an enumeration whose underlying type is fixed
4143 // to its underlying type is better than one that promotes to the promoted
4144 // underlying type, if the two are different.
4145 FixedEnumPromotion FEP1 = getFixedEnumPromtion(S, SCS1);
4146 FixedEnumPromotion FEP2 = getFixedEnumPromtion(S, SCS2);
4147 if (FEP1 != FixedEnumPromotion::None && FEP2 != FixedEnumPromotion::None &&
4148 FEP1 != FEP2)
4149 return FEP1 == FixedEnumPromotion::ToUnderlyingType
4150 ? ImplicitConversionSequence::Better
4151 : ImplicitConversionSequence::Worse;
4152
4153 // C++ [over.ics.rank]p4b2:
4154 //
4155 // If class B is derived directly or indirectly from class A,
4156 // conversion of B* to A* is better than conversion of B* to
4157 // void*, and conversion of A* to void* is better than conversion
4158 // of B* to void*.
4159 bool SCS1ConvertsToVoid
4160 = SCS1.isPointerConversionToVoidPointer(S.Context);
4161 bool SCS2ConvertsToVoid
4162 = SCS2.isPointerConversionToVoidPointer(S.Context);
4163 if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
4164 // Exactly one of the conversion sequences is a conversion to
4165 // a void pointer; it's the worse conversion.
4166 return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
4167 : ImplicitConversionSequence::Worse;
4168 } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
4169 // Neither conversion sequence converts to a void pointer; compare
4170 // their derived-to-base conversions.
4171 if (ImplicitConversionSequence::CompareKind DerivedCK
4172 = CompareDerivedToBaseConversions(S, Loc, SCS1, SCS2))
4173 return DerivedCK;
4174 } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid &&
4175 !S.Context.hasSameType(SCS1.getFromType(), SCS2.getFromType())) {
4176 // Both conversion sequences are conversions to void
4177 // pointers. Compare the source types to determine if there's an
4178 // inheritance relationship in their sources.
4179 QualType FromType1 = SCS1.getFromType();
4180 QualType FromType2 = SCS2.getFromType();
4181
4182 // Adjust the types we're converting from via the array-to-pointer
4183 // conversion, if we need to.
4184 if (SCS1.First == ICK_Array_To_Pointer)
4185 FromType1 = S.Context.getArrayDecayedType(FromType1);
4186 if (SCS2.First == ICK_Array_To_Pointer)
4187 FromType2 = S.Context.getArrayDecayedType(FromType2);
4188
4189 QualType FromPointee1 = FromType1->getPointeeType().getUnqualifiedType();
4190 QualType FromPointee2 = FromType2->getPointeeType().getUnqualifiedType();
4191
4192 if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1))
4193 return ImplicitConversionSequence::Better;
4194 else if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2))
4195 return ImplicitConversionSequence::Worse;
4196
4197 // Objective-C++: If one interface is more specific than the
4198 // other, it is the better one.
4199 const ObjCObjectPointerType* FromObjCPtr1
4200 = FromType1->getAs<ObjCObjectPointerType>();
4201 const ObjCObjectPointerType* FromObjCPtr2
4202 = FromType2->getAs<ObjCObjectPointerType>();
4203 if (FromObjCPtr1 && FromObjCPtr2) {
4204 bool AssignLeft = S.Context.canAssignObjCInterfaces(FromObjCPtr1,
4205 FromObjCPtr2);
4206 bool AssignRight = S.Context.canAssignObjCInterfaces(FromObjCPtr2,
4207 FromObjCPtr1);
4208 if (AssignLeft != AssignRight) {
4209 return AssignLeft? ImplicitConversionSequence::Better
4210 : ImplicitConversionSequence::Worse;
4211 }
4212 }
4213 }
4214
4215 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
4216 // Check for a better reference binding based on the kind of bindings.
4217 if (isBetterReferenceBindingKind(SCS1, SCS2))
4218 return ImplicitConversionSequence::Better;
4219 else if (isBetterReferenceBindingKind(SCS2, SCS1))
4220 return ImplicitConversionSequence::Worse;
4221 }
4222
4223 // Compare based on qualification conversions (C++ 13.3.3.2p3,
4224 // bullet 3).
4225 if (ImplicitConversionSequence::CompareKind QualCK
4226 = CompareQualificationConversions(S, SCS1, SCS2))
4227 return QualCK;
4228
4229 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
4230 // C++ [over.ics.rank]p3b4:
4231 // -- S1 and S2 are reference bindings (8.5.3), and the types to
4232 // which the references refer are the same type except for
4233 // top-level cv-qualifiers, and the type to which the reference
4234 // initialized by S2 refers is more cv-qualified than the type
4235 // to which the reference initialized by S1 refers.
4236 QualType T1 = SCS1.getToType(2);
4237 QualType T2 = SCS2.getToType(2);
4238 T1 = S.Context.getCanonicalType(T1);
4239 T2 = S.Context.getCanonicalType(T2);
4240 Qualifiers T1Quals, T2Quals;
4241 QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
4242 QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
4243 if (UnqualT1 == UnqualT2) {
4244 // Objective-C++ ARC: If the references refer to objects with different
4245 // lifetimes, prefer bindings that don't change lifetime.
4246 if (SCS1.ObjCLifetimeConversionBinding !=
4247 SCS2.ObjCLifetimeConversionBinding) {
4248 return SCS1.ObjCLifetimeConversionBinding
4249 ? ImplicitConversionSequence::Worse
4250 : ImplicitConversionSequence::Better;
4251 }
4252
4253 // If the type is an array type, promote the element qualifiers to the
4254 // type for comparison.
4255 if (isa<ArrayType>(T1) && T1Quals)
4256 T1 = S.Context.getQualifiedType(UnqualT1, T1Quals);
4257 if (isa<ArrayType>(T2) && T2Quals)
4258 T2 = S.Context.getQualifiedType(UnqualT2, T2Quals);
4259 if (T2.isMoreQualifiedThan(T1))
4260 return ImplicitConversionSequence::Better;
4261 if (T1.isMoreQualifiedThan(T2))
4262 return ImplicitConversionSequence::Worse;
4263 }
4264 }
4265
4266 // In Microsoft mode (below 19.28), prefer an integral conversion to a
4267 // floating-to-integral conversion if the integral conversion
4268 // is between types of the same size.
4269 // For example:
4270 // void f(float);
4271 // void f(int);
4272 // int main {
4273 // long a;
4274 // f(a);
4275 // }
4276 // Here, MSVC will call f(int) instead of generating a compile error
4277 // as clang will do in standard mode.
4278 if (S.getLangOpts().MSVCCompat &&
4279 !S.getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2019_8) &&
4280 SCS1.Second == ICK_Integral_Conversion &&
4281 SCS2.Second == ICK_Floating_Integral &&
4282 S.Context.getTypeSize(SCS1.getFromType()) ==
4283 S.Context.getTypeSize(SCS1.getToType(2)))
4284 return ImplicitConversionSequence::Better;
4285
4286 // Prefer a compatible vector conversion over a lax vector conversion
4287 // For example:
4288 //
4289 // typedef float __v4sf __attribute__((__vector_size__(16)));
4290 // void f(vector float);
4291 // void f(vector signed int);
4292 // int main() {
4293 // __v4sf a;
4294 // f(a);
4295 // }
4296 // Here, we'd like to choose f(vector float) and not
4297 // report an ambiguous call error
4298 if (SCS1.Second == ICK_Vector_Conversion &&
4299 SCS2.Second == ICK_Vector_Conversion) {
4300 bool SCS1IsCompatibleVectorConversion = S.Context.areCompatibleVectorTypes(
4301 SCS1.getFromType(), SCS1.getToType(2));
4302 bool SCS2IsCompatibleVectorConversion = S.Context.areCompatibleVectorTypes(
4303 SCS2.getFromType(), SCS2.getToType(2));
4304
4305 if (SCS1IsCompatibleVectorConversion != SCS2IsCompatibleVectorConversion)
4306 return SCS1IsCompatibleVectorConversion
4307 ? ImplicitConversionSequence::Better
4308 : ImplicitConversionSequence::Worse;
4309 }
4310
4311 if (SCS1.Second == ICK_SVE_Vector_Conversion &&
4312 SCS2.Second == ICK_SVE_Vector_Conversion) {
4313 bool SCS1IsCompatibleSVEVectorConversion =
4314 S.Context.areCompatibleSveTypes(SCS1.getFromType(), SCS1.getToType(2));
4315 bool SCS2IsCompatibleSVEVectorConversion =
4316 S.Context.areCompatibleSveTypes(SCS2.getFromType(), SCS2.getToType(2));
4317
4318 if (SCS1IsCompatibleSVEVectorConversion !=
4319 SCS2IsCompatibleSVEVectorConversion)
4320 return SCS1IsCompatibleSVEVectorConversion
4321 ? ImplicitConversionSequence::Better
4322 : ImplicitConversionSequence::Worse;
4323 }
4324
4325 return ImplicitConversionSequence::Indistinguishable;
4326 }
4327
4328 /// CompareQualificationConversions - Compares two standard conversion
4329 /// sequences to determine whether they can be ranked based on their
4330 /// qualification conversions (C++ 13.3.3.2p3 bullet 3).
4331 static ImplicitConversionSequence::CompareKind
CompareQualificationConversions(Sema & S,const StandardConversionSequence & SCS1,const StandardConversionSequence & SCS2)4332 CompareQualificationConversions(Sema &S,
4333 const StandardConversionSequence& SCS1,
4334 const StandardConversionSequence& SCS2) {
4335 // C++ [over.ics.rank]p3:
4336 // -- S1 and S2 differ only in their qualification conversion and
4337 // yield similar types T1 and T2 (C++ 4.4), respectively, [...]
4338 // [C++98]
4339 // [...] and the cv-qualification signature of type T1 is a proper subset
4340 // of the cv-qualification signature of type T2, and S1 is not the
4341 // deprecated string literal array-to-pointer conversion (4.2).
4342 // [C++2a]
4343 // [...] where T1 can be converted to T2 by a qualification conversion.
4344 if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
4345 SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
4346 return ImplicitConversionSequence::Indistinguishable;
4347
4348 // FIXME: the example in the standard doesn't use a qualification
4349 // conversion (!)
4350 QualType T1 = SCS1.getToType(2);
4351 QualType T2 = SCS2.getToType(2);
4352 T1 = S.Context.getCanonicalType(T1);
4353 T2 = S.Context.getCanonicalType(T2);
4354 assert(!T1->isReferenceType() && !T2->isReferenceType());
4355 Qualifiers T1Quals, T2Quals;
4356 QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
4357 QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
4358
4359 // If the types are the same, we won't learn anything by unwrapping
4360 // them.
4361 if (UnqualT1 == UnqualT2)
4362 return ImplicitConversionSequence::Indistinguishable;
4363
4364 // Don't ever prefer a standard conversion sequence that uses the deprecated
4365 // string literal array to pointer conversion.
4366 bool CanPick1 = !SCS1.DeprecatedStringLiteralToCharPtr;
4367 bool CanPick2 = !SCS2.DeprecatedStringLiteralToCharPtr;
4368
4369 // Objective-C++ ARC:
4370 // Prefer qualification conversions not involving a change in lifetime
4371 // to qualification conversions that do change lifetime.
4372 if (SCS1.QualificationIncludesObjCLifetime &&
4373 !SCS2.QualificationIncludesObjCLifetime)
4374 CanPick1 = false;
4375 if (SCS2.QualificationIncludesObjCLifetime &&
4376 !SCS1.QualificationIncludesObjCLifetime)
4377 CanPick2 = false;
4378
4379 bool ObjCLifetimeConversion;
4380 if (CanPick1 &&
4381 !S.IsQualificationConversion(T1, T2, false, ObjCLifetimeConversion))
4382 CanPick1 = false;
4383 // FIXME: In Objective-C ARC, we can have qualification conversions in both
4384 // directions, so we can't short-cut this second check in general.
4385 if (CanPick2 &&
4386 !S.IsQualificationConversion(T2, T1, false, ObjCLifetimeConversion))
4387 CanPick2 = false;
4388
4389 if (CanPick1 != CanPick2)
4390 return CanPick1 ? ImplicitConversionSequence::Better
4391 : ImplicitConversionSequence::Worse;
4392 return ImplicitConversionSequence::Indistinguishable;
4393 }
4394
4395 /// CompareDerivedToBaseConversions - Compares two standard conversion
4396 /// sequences to determine whether they can be ranked based on their
4397 /// various kinds of derived-to-base conversions (C++
4398 /// [over.ics.rank]p4b3). As part of these checks, we also look at
4399 /// conversions between Objective-C interface types.
4400 static ImplicitConversionSequence::CompareKind
CompareDerivedToBaseConversions(Sema & S,SourceLocation Loc,const StandardConversionSequence & SCS1,const StandardConversionSequence & SCS2)4401 CompareDerivedToBaseConversions(Sema &S, SourceLocation Loc,
4402 const StandardConversionSequence& SCS1,
4403 const StandardConversionSequence& SCS2) {
4404 QualType FromType1 = SCS1.getFromType();
4405 QualType ToType1 = SCS1.getToType(1);
4406 QualType FromType2 = SCS2.getFromType();
4407 QualType ToType2 = SCS2.getToType(1);
4408
4409 // Adjust the types we're converting from via the array-to-pointer
4410 // conversion, if we need to.
4411 if (SCS1.First == ICK_Array_To_Pointer)
4412 FromType1 = S.Context.getArrayDecayedType(FromType1);
4413 if (SCS2.First == ICK_Array_To_Pointer)
4414 FromType2 = S.Context.getArrayDecayedType(FromType2);
4415
4416 // Canonicalize all of the types.
4417 FromType1 = S.Context.getCanonicalType(FromType1);
4418 ToType1 = S.Context.getCanonicalType(ToType1);
4419 FromType2 = S.Context.getCanonicalType(FromType2);
4420 ToType2 = S.Context.getCanonicalType(ToType2);
4421
4422 // C++ [over.ics.rank]p4b3:
4423 //
4424 // If class B is derived directly or indirectly from class A and
4425 // class C is derived directly or indirectly from B,
4426 //
4427 // Compare based on pointer conversions.
4428 if (SCS1.Second == ICK_Pointer_Conversion &&
4429 SCS2.Second == ICK_Pointer_Conversion &&
4430 /*FIXME: Remove if Objective-C id conversions get their own rank*/
4431 FromType1->isPointerType() && FromType2->isPointerType() &&
4432 ToType1->isPointerType() && ToType2->isPointerType()) {
4433 QualType FromPointee1 =
4434 FromType1->castAs<PointerType>()->getPointeeType().getUnqualifiedType();
4435 QualType ToPointee1 =
4436 ToType1->castAs<PointerType>()->getPointeeType().getUnqualifiedType();
4437 QualType FromPointee2 =
4438 FromType2->castAs<PointerType>()->getPointeeType().getUnqualifiedType();
4439 QualType ToPointee2 =
4440 ToType2->castAs<PointerType>()->getPointeeType().getUnqualifiedType();
4441
4442 // -- conversion of C* to B* is better than conversion of C* to A*,
4443 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
4444 if (S.IsDerivedFrom(Loc, ToPointee1, ToPointee2))
4445 return ImplicitConversionSequence::Better;
4446 else if (S.IsDerivedFrom(Loc, ToPointee2, ToPointee1))
4447 return ImplicitConversionSequence::Worse;
4448 }
4449
4450 // -- conversion of B* to A* is better than conversion of C* to A*,
4451 if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
4452 if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1))
4453 return ImplicitConversionSequence::Better;
4454 else if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2))
4455 return ImplicitConversionSequence::Worse;
4456 }
4457 } else if (SCS1.Second == ICK_Pointer_Conversion &&
4458 SCS2.Second == ICK_Pointer_Conversion) {
4459 const ObjCObjectPointerType *FromPtr1
4460 = FromType1->getAs<ObjCObjectPointerType>();
4461 const ObjCObjectPointerType *FromPtr2
4462 = FromType2->getAs<ObjCObjectPointerType>();
4463 const ObjCObjectPointerType *ToPtr1
4464 = ToType1->getAs<ObjCObjectPointerType>();
4465 const ObjCObjectPointerType *ToPtr2
4466 = ToType2->getAs<ObjCObjectPointerType>();
4467
4468 if (FromPtr1 && FromPtr2 && ToPtr1 && ToPtr2) {
4469 // Apply the same conversion ranking rules for Objective-C pointer types
4470 // that we do for C++ pointers to class types. However, we employ the
4471 // Objective-C pseudo-subtyping relationship used for assignment of
4472 // Objective-C pointer types.
4473 bool FromAssignLeft
4474 = S.Context.canAssignObjCInterfaces(FromPtr1, FromPtr2);
4475 bool FromAssignRight
4476 = S.Context.canAssignObjCInterfaces(FromPtr2, FromPtr1);
4477 bool ToAssignLeft
4478 = S.Context.canAssignObjCInterfaces(ToPtr1, ToPtr2);
4479 bool ToAssignRight
4480 = S.Context.canAssignObjCInterfaces(ToPtr2, ToPtr1);
4481
4482 // A conversion to an a non-id object pointer type or qualified 'id'
4483 // type is better than a conversion to 'id'.
4484 if (ToPtr1->isObjCIdType() &&
4485 (ToPtr2->isObjCQualifiedIdType() || ToPtr2->getInterfaceDecl()))
4486 return ImplicitConversionSequence::Worse;
4487 if (ToPtr2->isObjCIdType() &&
4488 (ToPtr1->isObjCQualifiedIdType() || ToPtr1->getInterfaceDecl()))
4489 return ImplicitConversionSequence::Better;
4490
4491 // A conversion to a non-id object pointer type is better than a
4492 // conversion to a qualified 'id' type
4493 if (ToPtr1->isObjCQualifiedIdType() && ToPtr2->getInterfaceDecl())
4494 return ImplicitConversionSequence::Worse;
4495 if (ToPtr2->isObjCQualifiedIdType() && ToPtr1->getInterfaceDecl())
4496 return ImplicitConversionSequence::Better;
4497
4498 // A conversion to an a non-Class object pointer type or qualified 'Class'
4499 // type is better than a conversion to 'Class'.
4500 if (ToPtr1->isObjCClassType() &&
4501 (ToPtr2->isObjCQualifiedClassType() || ToPtr2->getInterfaceDecl()))
4502 return ImplicitConversionSequence::Worse;
4503 if (ToPtr2->isObjCClassType() &&
4504 (ToPtr1->isObjCQualifiedClassType() || ToPtr1->getInterfaceDecl()))
4505 return ImplicitConversionSequence::Better;
4506
4507 // A conversion to a non-Class object pointer type is better than a
4508 // conversion to a qualified 'Class' type.
4509 if (ToPtr1->isObjCQualifiedClassType() && ToPtr2->getInterfaceDecl())
4510 return ImplicitConversionSequence::Worse;
4511 if (ToPtr2->isObjCQualifiedClassType() && ToPtr1->getInterfaceDecl())
4512 return ImplicitConversionSequence::Better;
4513
4514 // -- "conversion of C* to B* is better than conversion of C* to A*,"
4515 if (S.Context.hasSameType(FromType1, FromType2) &&
4516 !FromPtr1->isObjCIdType() && !FromPtr1->isObjCClassType() &&
4517 (ToAssignLeft != ToAssignRight)) {
4518 if (FromPtr1->isSpecialized()) {
4519 // "conversion of B<A> * to B * is better than conversion of B * to
4520 // C *.
4521 bool IsFirstSame =
4522 FromPtr1->getInterfaceDecl() == ToPtr1->getInterfaceDecl();
4523 bool IsSecondSame =
4524 FromPtr1->getInterfaceDecl() == ToPtr2->getInterfaceDecl();
4525 if (IsFirstSame) {
4526 if (!IsSecondSame)
4527 return ImplicitConversionSequence::Better;
4528 } else if (IsSecondSame)
4529 return ImplicitConversionSequence::Worse;
4530 }
4531 return ToAssignLeft? ImplicitConversionSequence::Worse
4532 : ImplicitConversionSequence::Better;
4533 }
4534
4535 // -- "conversion of B* to A* is better than conversion of C* to A*,"
4536 if (S.Context.hasSameUnqualifiedType(ToType1, ToType2) &&
4537 (FromAssignLeft != FromAssignRight))
4538 return FromAssignLeft? ImplicitConversionSequence::Better
4539 : ImplicitConversionSequence::Worse;
4540 }
4541 }
4542
4543 // Ranking of member-pointer types.
4544 if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member &&
4545 FromType1->isMemberPointerType() && FromType2->isMemberPointerType() &&
4546 ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) {
4547 const auto *FromMemPointer1 = FromType1->castAs<MemberPointerType>();
4548 const auto *ToMemPointer1 = ToType1->castAs<MemberPointerType>();
4549 const auto *FromMemPointer2 = FromType2->castAs<MemberPointerType>();
4550 const auto *ToMemPointer2 = ToType2->castAs<MemberPointerType>();
4551 const Type *FromPointeeType1 = FromMemPointer1->getClass();
4552 const Type *ToPointeeType1 = ToMemPointer1->getClass();
4553 const Type *FromPointeeType2 = FromMemPointer2->getClass();
4554 const Type *ToPointeeType2 = ToMemPointer2->getClass();
4555 QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType();
4556 QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType();
4557 QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType();
4558 QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType();
4559 // conversion of A::* to B::* is better than conversion of A::* to C::*,
4560 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
4561 if (S.IsDerivedFrom(Loc, ToPointee1, ToPointee2))
4562 return ImplicitConversionSequence::Worse;
4563 else if (S.IsDerivedFrom(Loc, ToPointee2, ToPointee1))
4564 return ImplicitConversionSequence::Better;
4565 }
4566 // conversion of B::* to C::* is better than conversion of A::* to C::*
4567 if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) {
4568 if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2))
4569 return ImplicitConversionSequence::Better;
4570 else if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1))
4571 return ImplicitConversionSequence::Worse;
4572 }
4573 }
4574
4575 if (SCS1.Second == ICK_Derived_To_Base) {
4576 // -- conversion of C to B is better than conversion of C to A,
4577 // -- binding of an expression of type C to a reference of type
4578 // B& is better than binding an expression of type C to a
4579 // reference of type A&,
4580 if (S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
4581 !S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
4582 if (S.IsDerivedFrom(Loc, ToType1, ToType2))
4583 return ImplicitConversionSequence::Better;
4584 else if (S.IsDerivedFrom(Loc, ToType2, ToType1))
4585 return ImplicitConversionSequence::Worse;
4586 }
4587
4588 // -- conversion of B to A is better than conversion of C to A.
4589 // -- binding of an expression of type B to a reference of type
4590 // A& is better than binding an expression of type C to a
4591 // reference of type A&,
4592 if (!S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
4593 S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
4594 if (S.IsDerivedFrom(Loc, FromType2, FromType1))
4595 return ImplicitConversionSequence::Better;
4596 else if (S.IsDerivedFrom(Loc, FromType1, FromType2))
4597 return ImplicitConversionSequence::Worse;
4598 }
4599 }
4600
4601 return ImplicitConversionSequence::Indistinguishable;
4602 }
4603
withoutUnaligned(ASTContext & Ctx,QualType T)4604 static QualType withoutUnaligned(ASTContext &Ctx, QualType T) {
4605 if (!T.getQualifiers().hasUnaligned())
4606 return T;
4607
4608 Qualifiers Q;
4609 T = Ctx.getUnqualifiedArrayType(T, Q);
4610 Q.removeUnaligned();
4611 return Ctx.getQualifiedType(T, Q);
4612 }
4613
4614 /// CompareReferenceRelationship - Compare the two types T1 and T2 to
4615 /// determine whether they are reference-compatible,
4616 /// reference-related, or incompatible, for use in C++ initialization by
4617 /// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
4618 /// type, and the first type (T1) is the pointee type of the reference
4619 /// type being initialized.
4620 Sema::ReferenceCompareResult
CompareReferenceRelationship(SourceLocation Loc,QualType OrigT1,QualType OrigT2,ReferenceConversions * ConvOut)4621 Sema::CompareReferenceRelationship(SourceLocation Loc,
4622 QualType OrigT1, QualType OrigT2,
4623 ReferenceConversions *ConvOut) {
4624 assert(!OrigT1->isReferenceType() &&
4625 "T1 must be the pointee type of the reference type");
4626 assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type");
4627
4628 QualType T1 = Context.getCanonicalType(OrigT1);
4629 QualType T2 = Context.getCanonicalType(OrigT2);
4630 Qualifiers T1Quals, T2Quals;
4631 QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
4632 QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
4633
4634 ReferenceConversions ConvTmp;
4635 ReferenceConversions &Conv = ConvOut ? *ConvOut : ConvTmp;
4636 Conv = ReferenceConversions();
4637
4638 // C++2a [dcl.init.ref]p4:
4639 // Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
4640 // reference-related to "cv2 T2" if T1 is similar to T2, or
4641 // T1 is a base class of T2.
4642 // "cv1 T1" is reference-compatible with "cv2 T2" if
4643 // a prvalue of type "pointer to cv2 T2" can be converted to the type
4644 // "pointer to cv1 T1" via a standard conversion sequence.
4645
4646 // Check for standard conversions we can apply to pointers: derived-to-base
4647 // conversions, ObjC pointer conversions, and function pointer conversions.
4648 // (Qualification conversions are checked last.)
4649 QualType ConvertedT2;
4650 if (UnqualT1 == UnqualT2) {
4651 // Nothing to do.
4652 } else if (isCompleteType(Loc, OrigT2) &&
4653 IsDerivedFrom(Loc, UnqualT2, UnqualT1))
4654 Conv |= ReferenceConversions::DerivedToBase;
4655 else if (UnqualT1->isObjCObjectOrInterfaceType() &&
4656 UnqualT2->isObjCObjectOrInterfaceType() &&
4657 Context.canBindObjCObjectType(UnqualT1, UnqualT2))
4658 Conv |= ReferenceConversions::ObjC;
4659 else if (UnqualT2->isFunctionType() &&
4660 IsFunctionConversion(UnqualT2, UnqualT1, ConvertedT2)) {
4661 Conv |= ReferenceConversions::Function;
4662 // No need to check qualifiers; function types don't have them.
4663 return Ref_Compatible;
4664 }
4665 bool ConvertedReferent = Conv != 0;
4666
4667 // We can have a qualification conversion. Compute whether the types are
4668 // similar at the same time.
4669 bool PreviousToQualsIncludeConst = true;
4670 bool TopLevel = true;
4671 do {
4672 if (T1 == T2)
4673 break;
4674
4675 // We will need a qualification conversion.
4676 Conv |= ReferenceConversions::Qualification;
4677
4678 // Track whether we performed a qualification conversion anywhere other
4679 // than the top level. This matters for ranking reference bindings in
4680 // overload resolution.
4681 if (!TopLevel)
4682 Conv |= ReferenceConversions::NestedQualification;
4683
4684 // MS compiler ignores __unaligned qualifier for references; do the same.
4685 T1 = withoutUnaligned(Context, T1);
4686 T2 = withoutUnaligned(Context, T2);
4687
4688 // If we find a qualifier mismatch, the types are not reference-compatible,
4689 // but are still be reference-related if they're similar.
4690 bool ObjCLifetimeConversion = false;
4691 if (!isQualificationConversionStep(T2, T1, /*CStyle=*/false, TopLevel,
4692 PreviousToQualsIncludeConst,
4693 ObjCLifetimeConversion))
4694 return (ConvertedReferent || Context.hasSimilarType(T1, T2))
4695 ? Ref_Related
4696 : Ref_Incompatible;
4697
4698 // FIXME: Should we track this for any level other than the first?
4699 if (ObjCLifetimeConversion)
4700 Conv |= ReferenceConversions::ObjCLifetime;
4701
4702 TopLevel = false;
4703 } while (Context.UnwrapSimilarTypes(T1, T2));
4704
4705 // At this point, if the types are reference-related, we must either have the
4706 // same inner type (ignoring qualifiers), or must have already worked out how
4707 // to convert the referent.
4708 return (ConvertedReferent || Context.hasSameUnqualifiedType(T1, T2))
4709 ? Ref_Compatible
4710 : Ref_Incompatible;
4711 }
4712
4713 /// Look for a user-defined conversion to a value reference-compatible
4714 /// with DeclType. Return true if something definite is found.
4715 static bool
FindConversionForRefInit(Sema & S,ImplicitConversionSequence & ICS,QualType DeclType,SourceLocation DeclLoc,Expr * Init,QualType T2,bool AllowRvalues,bool AllowExplicit)4716 FindConversionForRefInit(Sema &S, ImplicitConversionSequence &ICS,
4717 QualType DeclType, SourceLocation DeclLoc,
4718 Expr *Init, QualType T2, bool AllowRvalues,
4719 bool AllowExplicit) {
4720 assert(T2->isRecordType() && "Can only find conversions of record types.");
4721 auto *T2RecordDecl = cast<CXXRecordDecl>(T2->castAs<RecordType>()->getDecl());
4722
4723 OverloadCandidateSet CandidateSet(
4724 DeclLoc, OverloadCandidateSet::CSK_InitByUserDefinedConversion);
4725 const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions();
4726 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
4727 NamedDecl *D = *I;
4728 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4729 if (isa<UsingShadowDecl>(D))
4730 D = cast<UsingShadowDecl>(D)->getTargetDecl();
4731
4732 FunctionTemplateDecl *ConvTemplate
4733 = dyn_cast<FunctionTemplateDecl>(D);
4734 CXXConversionDecl *Conv;
4735 if (ConvTemplate)
4736 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4737 else
4738 Conv = cast<CXXConversionDecl>(D);
4739
4740 if (AllowRvalues) {
4741 // If we are initializing an rvalue reference, don't permit conversion
4742 // functions that return lvalues.
4743 if (!ConvTemplate && DeclType->isRValueReferenceType()) {
4744 const ReferenceType *RefType
4745 = Conv->getConversionType()->getAs<LValueReferenceType>();
4746 if (RefType && !RefType->getPointeeType()->isFunctionType())
4747 continue;
4748 }
4749
4750 if (!ConvTemplate &&
4751 S.CompareReferenceRelationship(
4752 DeclLoc,
4753 Conv->getConversionType()
4754 .getNonReferenceType()
4755 .getUnqualifiedType(),
4756 DeclType.getNonReferenceType().getUnqualifiedType()) ==
4757 Sema::Ref_Incompatible)
4758 continue;
4759 } else {
4760 // If the conversion function doesn't return a reference type,
4761 // it can't be considered for this conversion. An rvalue reference
4762 // is only acceptable if its referencee is a function type.
4763
4764 const ReferenceType *RefType =
4765 Conv->getConversionType()->getAs<ReferenceType>();
4766 if (!RefType ||
4767 (!RefType->isLValueReferenceType() &&
4768 !RefType->getPointeeType()->isFunctionType()))
4769 continue;
4770 }
4771
4772 if (ConvTemplate)
4773 S.AddTemplateConversionCandidate(
4774 ConvTemplate, I.getPair(), ActingDC, Init, DeclType, CandidateSet,
4775 /*AllowObjCConversionOnExplicit=*/false, AllowExplicit);
4776 else
4777 S.AddConversionCandidate(
4778 Conv, I.getPair(), ActingDC, Init, DeclType, CandidateSet,
4779 /*AllowObjCConversionOnExplicit=*/false, AllowExplicit);
4780 }
4781
4782 bool HadMultipleCandidates = (CandidateSet.size() > 1);
4783
4784 OverloadCandidateSet::iterator Best;
4785 switch (CandidateSet.BestViableFunction(S, DeclLoc, Best)) {
4786 case OR_Success:
4787 // C++ [over.ics.ref]p1:
4788 //
4789 // [...] If the parameter binds directly to the result of
4790 // applying a conversion function to the argument
4791 // expression, the implicit conversion sequence is a
4792 // user-defined conversion sequence (13.3.3.1.2), with the
4793 // second standard conversion sequence either an identity
4794 // conversion or, if the conversion function returns an
4795 // entity of a type that is a derived class of the parameter
4796 // type, a derived-to-base Conversion.
4797 if (!Best->FinalConversion.DirectBinding)
4798 return false;
4799
4800 ICS.setUserDefined();
4801 ICS.UserDefined.Before = Best->Conversions[0].Standard;
4802 ICS.UserDefined.After = Best->FinalConversion;
4803 ICS.UserDefined.HadMultipleCandidates = HadMultipleCandidates;
4804 ICS.UserDefined.ConversionFunction = Best->Function;
4805 ICS.UserDefined.FoundConversionFunction = Best->FoundDecl;
4806 ICS.UserDefined.EllipsisConversion = false;
4807 assert(ICS.UserDefined.After.ReferenceBinding &&
4808 ICS.UserDefined.After.DirectBinding &&
4809 "Expected a direct reference binding!");
4810 return true;
4811
4812 case OR_Ambiguous:
4813 ICS.setAmbiguous();
4814 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4815 Cand != CandidateSet.end(); ++Cand)
4816 if (Cand->Best)
4817 ICS.Ambiguous.addConversion(Cand->FoundDecl, Cand->Function);
4818 return true;
4819
4820 case OR_No_Viable_Function:
4821 case OR_Deleted:
4822 // There was no suitable conversion, or we found a deleted
4823 // conversion; continue with other checks.
4824 return false;
4825 }
4826
4827 llvm_unreachable("Invalid OverloadResult!");
4828 }
4829
4830 /// Compute an implicit conversion sequence for reference
4831 /// initialization.
4832 static ImplicitConversionSequence
TryReferenceInit(Sema & S,Expr * Init,QualType DeclType,SourceLocation DeclLoc,bool SuppressUserConversions,bool AllowExplicit)4833 TryReferenceInit(Sema &S, Expr *Init, QualType DeclType,
4834 SourceLocation DeclLoc,
4835 bool SuppressUserConversions,
4836 bool AllowExplicit) {
4837 assert(DeclType->isReferenceType() && "Reference init needs a reference");
4838
4839 // Most paths end in a failed conversion.
4840 ImplicitConversionSequence ICS;
4841 ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
4842
4843 QualType T1 = DeclType->castAs<ReferenceType>()->getPointeeType();
4844 QualType T2 = Init->getType();
4845
4846 // If the initializer is the address of an overloaded function, try
4847 // to resolve the overloaded function. If all goes well, T2 is the
4848 // type of the resulting function.
4849 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
4850 DeclAccessPair Found;
4851 if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Init, DeclType,
4852 false, Found))
4853 T2 = Fn->getType();
4854 }
4855
4856 // Compute some basic properties of the types and the initializer.
4857 bool isRValRef = DeclType->isRValueReferenceType();
4858 Expr::Classification InitCategory = Init->Classify(S.Context);
4859
4860 Sema::ReferenceConversions RefConv;
4861 Sema::ReferenceCompareResult RefRelationship =
4862 S.CompareReferenceRelationship(DeclLoc, T1, T2, &RefConv);
4863
4864 auto SetAsReferenceBinding = [&](bool BindsDirectly) {
4865 ICS.setStandard();
4866 ICS.Standard.First = ICK_Identity;
4867 // FIXME: A reference binding can be a function conversion too. We should
4868 // consider that when ordering reference-to-function bindings.
4869 ICS.Standard.Second = (RefConv & Sema::ReferenceConversions::DerivedToBase)
4870 ? ICK_Derived_To_Base
4871 : (RefConv & Sema::ReferenceConversions::ObjC)
4872 ? ICK_Compatible_Conversion
4873 : ICK_Identity;
4874 // FIXME: As a speculative fix to a defect introduced by CWG2352, we rank
4875 // a reference binding that performs a non-top-level qualification
4876 // conversion as a qualification conversion, not as an identity conversion.
4877 ICS.Standard.Third = (RefConv &
4878 Sema::ReferenceConversions::NestedQualification)
4879 ? ICK_Qualification
4880 : ICK_Identity;
4881 ICS.Standard.setFromType(T2);
4882 ICS.Standard.setToType(0, T2);
4883 ICS.Standard.setToType(1, T1);
4884 ICS.Standard.setToType(2, T1);
4885 ICS.Standard.ReferenceBinding = true;
4886 ICS.Standard.DirectBinding = BindsDirectly;
4887 ICS.Standard.IsLvalueReference = !isRValRef;
4888 ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
4889 ICS.Standard.BindsToRvalue = InitCategory.isRValue();
4890 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4891 ICS.Standard.ObjCLifetimeConversionBinding =
4892 (RefConv & Sema::ReferenceConversions::ObjCLifetime) != 0;
4893 ICS.Standard.CopyConstructor = nullptr;
4894 ICS.Standard.DeprecatedStringLiteralToCharPtr = false;
4895 };
4896
4897 // C++0x [dcl.init.ref]p5:
4898 // A reference to type "cv1 T1" is initialized by an expression
4899 // of type "cv2 T2" as follows:
4900
4901 // -- If reference is an lvalue reference and the initializer expression
4902 if (!isRValRef) {
4903 // -- is an lvalue (but is not a bit-field), and "cv1 T1" is
4904 // reference-compatible with "cv2 T2," or
4905 //
4906 // Per C++ [over.ics.ref]p4, we don't check the bit-field property here.
4907 if (InitCategory.isLValue() && RefRelationship == Sema::Ref_Compatible) {
4908 // C++ [over.ics.ref]p1:
4909 // When a parameter of reference type binds directly (8.5.3)
4910 // to an argument expression, the implicit conversion sequence
4911 // is the identity conversion, unless the argument expression
4912 // has a type that is a derived class of the parameter type,
4913 // in which case the implicit conversion sequence is a
4914 // derived-to-base Conversion (13.3.3.1).
4915 SetAsReferenceBinding(/*BindsDirectly=*/true);
4916
4917 // Nothing more to do: the inaccessibility/ambiguity check for
4918 // derived-to-base conversions is suppressed when we're
4919 // computing the implicit conversion sequence (C++
4920 // [over.best.ics]p2).
4921 return ICS;
4922 }
4923
4924 // -- has a class type (i.e., T2 is a class type), where T1 is
4925 // not reference-related to T2, and can be implicitly
4926 // converted to an lvalue of type "cv3 T3," where "cv1 T1"
4927 // is reference-compatible with "cv3 T3" 92) (this
4928 // conversion is selected by enumerating the applicable
4929 // conversion functions (13.3.1.6) and choosing the best
4930 // one through overload resolution (13.3)),
4931 if (!SuppressUserConversions && T2->isRecordType() &&
4932 S.isCompleteType(DeclLoc, T2) &&
4933 RefRelationship == Sema::Ref_Incompatible) {
4934 if (FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
4935 Init, T2, /*AllowRvalues=*/false,
4936 AllowExplicit))
4937 return ICS;
4938 }
4939 }
4940
4941 // -- Otherwise, the reference shall be an lvalue reference to a
4942 // non-volatile const type (i.e., cv1 shall be const), or the reference
4943 // shall be an rvalue reference.
4944 if (!isRValRef && (!T1.isConstQualified() || T1.isVolatileQualified())) {
4945 if (InitCategory.isRValue() && RefRelationship != Sema::Ref_Incompatible)
4946 ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, Init, DeclType);
4947 return ICS;
4948 }
4949
4950 // -- If the initializer expression
4951 //
4952 // -- is an xvalue, class prvalue, array prvalue or function
4953 // lvalue and "cv1 T1" is reference-compatible with "cv2 T2", or
4954 if (RefRelationship == Sema::Ref_Compatible &&
4955 (InitCategory.isXValue() ||
4956 (InitCategory.isPRValue() &&
4957 (T2->isRecordType() || T2->isArrayType())) ||
4958 (InitCategory.isLValue() && T2->isFunctionType()))) {
4959 // In C++11, this is always a direct binding. In C++98/03, it's a direct
4960 // binding unless we're binding to a class prvalue.
4961 // Note: Although xvalues wouldn't normally show up in C++98/03 code, we
4962 // allow the use of rvalue references in C++98/03 for the benefit of
4963 // standard library implementors; therefore, we need the xvalue check here.
4964 SetAsReferenceBinding(/*BindsDirectly=*/S.getLangOpts().CPlusPlus11 ||
4965 !(InitCategory.isPRValue() || T2->isRecordType()));
4966 return ICS;
4967 }
4968
4969 // -- has a class type (i.e., T2 is a class type), where T1 is not
4970 // reference-related to T2, and can be implicitly converted to
4971 // an xvalue, class prvalue, or function lvalue of type
4972 // "cv3 T3", where "cv1 T1" is reference-compatible with
4973 // "cv3 T3",
4974 //
4975 // then the reference is bound to the value of the initializer
4976 // expression in the first case and to the result of the conversion
4977 // in the second case (or, in either case, to an appropriate base
4978 // class subobject).
4979 if (!SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
4980 T2->isRecordType() && S.isCompleteType(DeclLoc, T2) &&
4981 FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
4982 Init, T2, /*AllowRvalues=*/true,
4983 AllowExplicit)) {
4984 // In the second case, if the reference is an rvalue reference
4985 // and the second standard conversion sequence of the
4986 // user-defined conversion sequence includes an lvalue-to-rvalue
4987 // conversion, the program is ill-formed.
4988 if (ICS.isUserDefined() && isRValRef &&
4989 ICS.UserDefined.After.First == ICK_Lvalue_To_Rvalue)
4990 ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
4991
4992 return ICS;
4993 }
4994
4995 // A temporary of function type cannot be created; don't even try.
4996 if (T1->isFunctionType())
4997 return ICS;
4998
4999 // -- Otherwise, a temporary of type "cv1 T1" is created and
5000 // initialized from the initializer expression using the
5001 // rules for a non-reference copy initialization (8.5). The
5002 // reference is then bound to the temporary. If T1 is
5003 // reference-related to T2, cv1 must be the same
5004 // cv-qualification as, or greater cv-qualification than,
5005 // cv2; otherwise, the program is ill-formed.
5006 if (RefRelationship == Sema::Ref_Related) {
5007 // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
5008 // we would be reference-compatible or reference-compatible with
5009 // added qualification. But that wasn't the case, so the reference
5010 // initialization fails.
5011 //
5012 // Note that we only want to check address spaces and cvr-qualifiers here.
5013 // ObjC GC, lifetime and unaligned qualifiers aren't important.
5014 Qualifiers T1Quals = T1.getQualifiers();
5015 Qualifiers T2Quals = T2.getQualifiers();
5016 T1Quals.removeObjCGCAttr();
5017 T1Quals.removeObjCLifetime();
5018 T2Quals.removeObjCGCAttr();
5019 T2Quals.removeObjCLifetime();
5020 // MS compiler ignores __unaligned qualifier for references; do the same.
5021 T1Quals.removeUnaligned();
5022 T2Quals.removeUnaligned();
5023 if (!T1Quals.compatiblyIncludes(T2Quals))
5024 return ICS;
5025 }
5026
5027 // If at least one of the types is a class type, the types are not
5028 // related, and we aren't allowed any user conversions, the
5029 // reference binding fails. This case is important for breaking
5030 // recursion, since TryImplicitConversion below will attempt to
5031 // create a temporary through the use of a copy constructor.
5032 if (SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
5033 (T1->isRecordType() || T2->isRecordType()))
5034 return ICS;
5035
5036 // If T1 is reference-related to T2 and the reference is an rvalue
5037 // reference, the initializer expression shall not be an lvalue.
5038 if (RefRelationship >= Sema::Ref_Related && isRValRef &&
5039 Init->Classify(S.Context).isLValue()) {
5040 ICS.setBad(BadConversionSequence::rvalue_ref_to_lvalue, Init, DeclType);
5041 return ICS;
5042 }
5043
5044 // C++ [over.ics.ref]p2:
5045 // When a parameter of reference type is not bound directly to
5046 // an argument expression, the conversion sequence is the one
5047 // required to convert the argument expression to the
5048 // underlying type of the reference according to
5049 // 13.3.3.1. Conceptually, this conversion sequence corresponds
5050 // to copy-initializing a temporary of the underlying type with
5051 // the argument expression. Any difference in top-level
5052 // cv-qualification is subsumed by the initialization itself
5053 // and does not constitute a conversion.
5054 ICS = TryImplicitConversion(S, Init, T1, SuppressUserConversions,
5055 AllowedExplicit::None,
5056 /*InOverloadResolution=*/false,
5057 /*CStyle=*/false,
5058 /*AllowObjCWritebackConversion=*/false,
5059 /*AllowObjCConversionOnExplicit=*/false);
5060
5061 // Of course, that's still a reference binding.
5062 if (ICS.isStandard()) {
5063 ICS.Standard.ReferenceBinding = true;
5064 ICS.Standard.IsLvalueReference = !isRValRef;
5065 ICS.Standard.BindsToFunctionLvalue = false;
5066 ICS.Standard.BindsToRvalue = true;
5067 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
5068 ICS.Standard.ObjCLifetimeConversionBinding = false;
5069 } else if (ICS.isUserDefined()) {
5070 const ReferenceType *LValRefType =
5071 ICS.UserDefined.ConversionFunction->getReturnType()
5072 ->getAs<LValueReferenceType>();
5073
5074 // C++ [over.ics.ref]p3:
5075 // Except for an implicit object parameter, for which see 13.3.1, a
5076 // standard conversion sequence cannot be formed if it requires [...]
5077 // binding an rvalue reference to an lvalue other than a function
5078 // lvalue.
5079 // Note that the function case is not possible here.
5080 if (isRValRef && LValRefType) {
5081 ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
5082 return ICS;
5083 }
5084
5085 ICS.UserDefined.After.ReferenceBinding = true;
5086 ICS.UserDefined.After.IsLvalueReference = !isRValRef;
5087 ICS.UserDefined.After.BindsToFunctionLvalue = false;
5088 ICS.UserDefined.After.BindsToRvalue = !LValRefType;
5089 ICS.UserDefined.After.BindsImplicitObjectArgumentWithoutRefQualifier = false;
5090 ICS.UserDefined.After.ObjCLifetimeConversionBinding = false;
5091 }
5092
5093 return ICS;
5094 }
5095
5096 static ImplicitConversionSequence
5097 TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
5098 bool SuppressUserConversions,
5099 bool InOverloadResolution,
5100 bool AllowObjCWritebackConversion,
5101 bool AllowExplicit = false);
5102
5103 /// TryListConversion - Try to copy-initialize a value of type ToType from the
5104 /// initializer list From.
5105 static ImplicitConversionSequence
TryListConversion(Sema & S,InitListExpr * From,QualType ToType,bool SuppressUserConversions,bool InOverloadResolution,bool AllowObjCWritebackConversion)5106 TryListConversion(Sema &S, InitListExpr *From, QualType ToType,
5107 bool SuppressUserConversions,
5108 bool InOverloadResolution,
5109 bool AllowObjCWritebackConversion) {
5110 // C++11 [over.ics.list]p1:
5111 // When an argument is an initializer list, it is not an expression and
5112 // special rules apply for converting it to a parameter type.
5113
5114 ImplicitConversionSequence Result;
5115 Result.setBad(BadConversionSequence::no_conversion, From, ToType);
5116
5117 // We need a complete type for what follows. With one C++20 exception,
5118 // incomplete types can never be initialized from init lists.
5119 QualType InitTy = ToType;
5120 const ArrayType *AT = S.Context.getAsArrayType(ToType);
5121 if (AT && S.getLangOpts().CPlusPlus20)
5122 if (const auto *IAT = dyn_cast<IncompleteArrayType>(AT))
5123 // C++20 allows list initialization of an incomplete array type.
5124 InitTy = IAT->getElementType();
5125 if (!S.isCompleteType(From->getBeginLoc(), InitTy))
5126 return Result;
5127
5128 // Per DR1467:
5129 // If the parameter type is a class X and the initializer list has a single
5130 // element of type cv U, where U is X or a class derived from X, the
5131 // implicit conversion sequence is the one required to convert the element
5132 // to the parameter type.
5133 //
5134 // Otherwise, if the parameter type is a character array [... ]
5135 // and the initializer list has a single element that is an
5136 // appropriately-typed string literal (8.5.2 [dcl.init.string]), the
5137 // implicit conversion sequence is the identity conversion.
5138 if (From->getNumInits() == 1) {
5139 if (ToType->isRecordType()) {
5140 QualType InitType = From->getInit(0)->getType();
5141 if (S.Context.hasSameUnqualifiedType(InitType, ToType) ||
5142 S.IsDerivedFrom(From->getBeginLoc(), InitType, ToType))
5143 return TryCopyInitialization(S, From->getInit(0), ToType,
5144 SuppressUserConversions,
5145 InOverloadResolution,
5146 AllowObjCWritebackConversion);
5147 }
5148
5149 if (AT && S.IsStringInit(From->getInit(0), AT)) {
5150 InitializedEntity Entity =
5151 InitializedEntity::InitializeParameter(S.Context, ToType,
5152 /*Consumed=*/false);
5153 if (S.CanPerformCopyInitialization(Entity, From)) {
5154 Result.setStandard();
5155 Result.Standard.setAsIdentityConversion();
5156 Result.Standard.setFromType(ToType);
5157 Result.Standard.setAllToTypes(ToType);
5158 return Result;
5159 }
5160 }
5161 }
5162
5163 // C++14 [over.ics.list]p2: Otherwise, if the parameter type [...] (below).
5164 // C++11 [over.ics.list]p2:
5165 // If the parameter type is std::initializer_list<X> or "array of X" and
5166 // all the elements can be implicitly converted to X, the implicit
5167 // conversion sequence is the worst conversion necessary to convert an
5168 // element of the list to X.
5169 //
5170 // C++14 [over.ics.list]p3:
5171 // Otherwise, if the parameter type is "array of N X", if the initializer
5172 // list has exactly N elements or if it has fewer than N elements and X is
5173 // default-constructible, and if all the elements of the initializer list
5174 // can be implicitly converted to X, the implicit conversion sequence is
5175 // the worst conversion necessary to convert an element of the list to X.
5176 if (AT || S.isStdInitializerList(ToType, &InitTy)) {
5177 unsigned e = From->getNumInits();
5178 ImplicitConversionSequence DfltElt;
5179 DfltElt.setBad(BadConversionSequence::no_conversion, QualType(),
5180 QualType());
5181 QualType ContTy = ToType;
5182 bool IsUnbounded = false;
5183 if (AT) {
5184 InitTy = AT->getElementType();
5185 if (ConstantArrayType const *CT = dyn_cast<ConstantArrayType>(AT)) {
5186 if (CT->getSize().ult(e)) {
5187 // Too many inits, fatally bad
5188 Result.setBad(BadConversionSequence::too_many_initializers, From,
5189 ToType);
5190 Result.setInitializerListContainerType(ContTy, IsUnbounded);
5191 return Result;
5192 }
5193 if (CT->getSize().ugt(e)) {
5194 // Need an init from empty {}, is there one?
5195 InitListExpr EmptyList(S.Context, From->getEndLoc(), std::nullopt,
5196 From->getEndLoc());
5197 EmptyList.setType(S.Context.VoidTy);
5198 DfltElt = TryListConversion(
5199 S, &EmptyList, InitTy, SuppressUserConversions,
5200 InOverloadResolution, AllowObjCWritebackConversion);
5201 if (DfltElt.isBad()) {
5202 // No {} init, fatally bad
5203 Result.setBad(BadConversionSequence::too_few_initializers, From,
5204 ToType);
5205 Result.setInitializerListContainerType(ContTy, IsUnbounded);
5206 return Result;
5207 }
5208 }
5209 } else {
5210 assert(isa<IncompleteArrayType>(AT) && "Expected incomplete array");
5211 IsUnbounded = true;
5212 if (!e) {
5213 // Cannot convert to zero-sized.
5214 Result.setBad(BadConversionSequence::too_few_initializers, From,
5215 ToType);
5216 Result.setInitializerListContainerType(ContTy, IsUnbounded);
5217 return Result;
5218 }
5219 llvm::APInt Size(S.Context.getTypeSize(S.Context.getSizeType()), e);
5220 ContTy = S.Context.getConstantArrayType(InitTy, Size, nullptr,
5221 ArrayType::Normal, 0);
5222 }
5223 }
5224
5225 Result.setStandard();
5226 Result.Standard.setAsIdentityConversion();
5227 Result.Standard.setFromType(InitTy);
5228 Result.Standard.setAllToTypes(InitTy);
5229 for (unsigned i = 0; i < e; ++i) {
5230 Expr *Init = From->getInit(i);
5231 ImplicitConversionSequence ICS = TryCopyInitialization(
5232 S, Init, InitTy, SuppressUserConversions, InOverloadResolution,
5233 AllowObjCWritebackConversion);
5234
5235 // Keep the worse conversion seen so far.
5236 // FIXME: Sequences are not totally ordered, so 'worse' can be
5237 // ambiguous. CWG has been informed.
5238 if (CompareImplicitConversionSequences(S, From->getBeginLoc(), ICS,
5239 Result) ==
5240 ImplicitConversionSequence::Worse) {
5241 Result = ICS;
5242 // Bail as soon as we find something unconvertible.
5243 if (Result.isBad()) {
5244 Result.setInitializerListContainerType(ContTy, IsUnbounded);
5245 return Result;
5246 }
5247 }
5248 }
5249
5250 // If we needed any implicit {} initialization, compare that now.
5251 // over.ics.list/6 indicates we should compare that conversion. Again CWG
5252 // has been informed that this might not be the best thing.
5253 if (!DfltElt.isBad() && CompareImplicitConversionSequences(
5254 S, From->getEndLoc(), DfltElt, Result) ==
5255 ImplicitConversionSequence::Worse)
5256 Result = DfltElt;
5257 // Record the type being initialized so that we may compare sequences
5258 Result.setInitializerListContainerType(ContTy, IsUnbounded);
5259 return Result;
5260 }
5261
5262 // C++14 [over.ics.list]p4:
5263 // C++11 [over.ics.list]p3:
5264 // Otherwise, if the parameter is a non-aggregate class X and overload
5265 // resolution chooses a single best constructor [...] the implicit
5266 // conversion sequence is a user-defined conversion sequence. If multiple
5267 // constructors are viable but none is better than the others, the
5268 // implicit conversion sequence is a user-defined conversion sequence.
5269 if (ToType->isRecordType() && !ToType->isAggregateType()) {
5270 // This function can deal with initializer lists.
5271 return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions,
5272 AllowedExplicit::None,
5273 InOverloadResolution, /*CStyle=*/false,
5274 AllowObjCWritebackConversion,
5275 /*AllowObjCConversionOnExplicit=*/false);
5276 }
5277
5278 // C++14 [over.ics.list]p5:
5279 // C++11 [over.ics.list]p4:
5280 // Otherwise, if the parameter has an aggregate type which can be
5281 // initialized from the initializer list [...] the implicit conversion
5282 // sequence is a user-defined conversion sequence.
5283 if (ToType->isAggregateType()) {
5284 // Type is an aggregate, argument is an init list. At this point it comes
5285 // down to checking whether the initialization works.
5286 // FIXME: Find out whether this parameter is consumed or not.
5287 InitializedEntity Entity =
5288 InitializedEntity::InitializeParameter(S.Context, ToType,
5289 /*Consumed=*/false);
5290 if (S.CanPerformAggregateInitializationForOverloadResolution(Entity,
5291 From)) {
5292 Result.setUserDefined();
5293 Result.UserDefined.Before.setAsIdentityConversion();
5294 // Initializer lists don't have a type.
5295 Result.UserDefined.Before.setFromType(QualType());
5296 Result.UserDefined.Before.setAllToTypes(QualType());
5297
5298 Result.UserDefined.After.setAsIdentityConversion();
5299 Result.UserDefined.After.setFromType(ToType);
5300 Result.UserDefined.After.setAllToTypes(ToType);
5301 Result.UserDefined.ConversionFunction = nullptr;
5302 }
5303 return Result;
5304 }
5305
5306 // C++14 [over.ics.list]p6:
5307 // C++11 [over.ics.list]p5:
5308 // Otherwise, if the parameter is a reference, see 13.3.3.1.4.
5309 if (ToType->isReferenceType()) {
5310 // The standard is notoriously unclear here, since 13.3.3.1.4 doesn't
5311 // mention initializer lists in any way. So we go by what list-
5312 // initialization would do and try to extrapolate from that.
5313
5314 QualType T1 = ToType->castAs<ReferenceType>()->getPointeeType();
5315
5316 // If the initializer list has a single element that is reference-related
5317 // to the parameter type, we initialize the reference from that.
5318 if (From->getNumInits() == 1) {
5319 Expr *Init = From->getInit(0);
5320
5321 QualType T2 = Init->getType();
5322
5323 // If the initializer is the address of an overloaded function, try
5324 // to resolve the overloaded function. If all goes well, T2 is the
5325 // type of the resulting function.
5326 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
5327 DeclAccessPair Found;
5328 if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(
5329 Init, ToType, false, Found))
5330 T2 = Fn->getType();
5331 }
5332
5333 // Compute some basic properties of the types and the initializer.
5334 Sema::ReferenceCompareResult RefRelationship =
5335 S.CompareReferenceRelationship(From->getBeginLoc(), T1, T2);
5336
5337 if (RefRelationship >= Sema::Ref_Related) {
5338 return TryReferenceInit(S, Init, ToType, /*FIXME*/ From->getBeginLoc(),
5339 SuppressUserConversions,
5340 /*AllowExplicit=*/false);
5341 }
5342 }
5343
5344 // Otherwise, we bind the reference to a temporary created from the
5345 // initializer list.
5346 Result = TryListConversion(S, From, T1, SuppressUserConversions,
5347 InOverloadResolution,
5348 AllowObjCWritebackConversion);
5349 if (Result.isFailure())
5350 return Result;
5351 assert(!Result.isEllipsis() &&
5352 "Sub-initialization cannot result in ellipsis conversion.");
5353
5354 // Can we even bind to a temporary?
5355 if (ToType->isRValueReferenceType() ||
5356 (T1.isConstQualified() && !T1.isVolatileQualified())) {
5357 StandardConversionSequence &SCS = Result.isStandard() ? Result.Standard :
5358 Result.UserDefined.After;
5359 SCS.ReferenceBinding = true;
5360 SCS.IsLvalueReference = ToType->isLValueReferenceType();
5361 SCS.BindsToRvalue = true;
5362 SCS.BindsToFunctionLvalue = false;
5363 SCS.BindsImplicitObjectArgumentWithoutRefQualifier = false;
5364 SCS.ObjCLifetimeConversionBinding = false;
5365 } else
5366 Result.setBad(BadConversionSequence::lvalue_ref_to_rvalue,
5367 From, ToType);
5368 return Result;
5369 }
5370
5371 // C++14 [over.ics.list]p7:
5372 // C++11 [over.ics.list]p6:
5373 // Otherwise, if the parameter type is not a class:
5374 if (!ToType->isRecordType()) {
5375 // - if the initializer list has one element that is not itself an
5376 // initializer list, the implicit conversion sequence is the one
5377 // required to convert the element to the parameter type.
5378 unsigned NumInits = From->getNumInits();
5379 if (NumInits == 1 && !isa<InitListExpr>(From->getInit(0)))
5380 Result = TryCopyInitialization(S, From->getInit(0), ToType,
5381 SuppressUserConversions,
5382 InOverloadResolution,
5383 AllowObjCWritebackConversion);
5384 // - if the initializer list has no elements, the implicit conversion
5385 // sequence is the identity conversion.
5386 else if (NumInits == 0) {
5387 Result.setStandard();
5388 Result.Standard.setAsIdentityConversion();
5389 Result.Standard.setFromType(ToType);
5390 Result.Standard.setAllToTypes(ToType);
5391 }
5392 return Result;
5393 }
5394
5395 // C++14 [over.ics.list]p8:
5396 // C++11 [over.ics.list]p7:
5397 // In all cases other than those enumerated above, no conversion is possible
5398 return Result;
5399 }
5400
5401 /// TryCopyInitialization - Try to copy-initialize a value of type
5402 /// ToType from the expression From. Return the implicit conversion
5403 /// sequence required to pass this argument, which may be a bad
5404 /// conversion sequence (meaning that the argument cannot be passed to
5405 /// a parameter of this type). If @p SuppressUserConversions, then we
5406 /// do not permit any user-defined conversion sequences.
5407 static ImplicitConversionSequence
TryCopyInitialization(Sema & S,Expr * From,QualType ToType,bool SuppressUserConversions,bool InOverloadResolution,bool AllowObjCWritebackConversion,bool AllowExplicit)5408 TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
5409 bool SuppressUserConversions,
5410 bool InOverloadResolution,
5411 bool AllowObjCWritebackConversion,
5412 bool AllowExplicit) {
5413 if (InitListExpr *FromInitList = dyn_cast<InitListExpr>(From))
5414 return TryListConversion(S, FromInitList, ToType, SuppressUserConversions,
5415 InOverloadResolution,AllowObjCWritebackConversion);
5416
5417 if (ToType->isReferenceType())
5418 return TryReferenceInit(S, From, ToType,
5419 /*FIXME:*/ From->getBeginLoc(),
5420 SuppressUserConversions, AllowExplicit);
5421
5422 return TryImplicitConversion(S, From, ToType,
5423 SuppressUserConversions,
5424 AllowedExplicit::None,
5425 InOverloadResolution,
5426 /*CStyle=*/false,
5427 AllowObjCWritebackConversion,
5428 /*AllowObjCConversionOnExplicit=*/false);
5429 }
5430
TryCopyInitialization(const CanQualType FromQTy,const CanQualType ToQTy,Sema & S,SourceLocation Loc,ExprValueKind FromVK)5431 static bool TryCopyInitialization(const CanQualType FromQTy,
5432 const CanQualType ToQTy,
5433 Sema &S,
5434 SourceLocation Loc,
5435 ExprValueKind FromVK) {
5436 OpaqueValueExpr TmpExpr(Loc, FromQTy, FromVK);
5437 ImplicitConversionSequence ICS =
5438 TryCopyInitialization(S, &TmpExpr, ToQTy, true, true, false);
5439
5440 return !ICS.isBad();
5441 }
5442
5443 /// TryObjectArgumentInitialization - Try to initialize the object
5444 /// parameter of the given member function (@c Method) from the
5445 /// expression @p From.
5446 static ImplicitConversionSequence
TryObjectArgumentInitialization(Sema & S,SourceLocation Loc,QualType FromType,Expr::Classification FromClassification,CXXMethodDecl * Method,CXXRecordDecl * ActingContext)5447 TryObjectArgumentInitialization(Sema &S, SourceLocation Loc, QualType FromType,
5448 Expr::Classification FromClassification,
5449 CXXMethodDecl *Method,
5450 CXXRecordDecl *ActingContext) {
5451 QualType ClassType = S.Context.getTypeDeclType(ActingContext);
5452 // [class.dtor]p2: A destructor can be invoked for a const, volatile or
5453 // const volatile object.
5454 Qualifiers Quals = Method->getMethodQualifiers();
5455 if (isa<CXXDestructorDecl>(Method)) {
5456 Quals.addConst();
5457 Quals.addVolatile();
5458 }
5459
5460 QualType ImplicitParamType = S.Context.getQualifiedType(ClassType, Quals);
5461
5462 // Set up the conversion sequence as a "bad" conversion, to allow us
5463 // to exit early.
5464 ImplicitConversionSequence ICS;
5465
5466 // We need to have an object of class type.
5467 if (const PointerType *PT = FromType->getAs<PointerType>()) {
5468 FromType = PT->getPointeeType();
5469
5470 // When we had a pointer, it's implicitly dereferenced, so we
5471 // better have an lvalue.
5472 assert(FromClassification.isLValue());
5473 }
5474
5475 assert(FromType->isRecordType());
5476
5477 // C++0x [over.match.funcs]p4:
5478 // For non-static member functions, the type of the implicit object
5479 // parameter is
5480 //
5481 // - "lvalue reference to cv X" for functions declared without a
5482 // ref-qualifier or with the & ref-qualifier
5483 // - "rvalue reference to cv X" for functions declared with the &&
5484 // ref-qualifier
5485 //
5486 // where X is the class of which the function is a member and cv is the
5487 // cv-qualification on the member function declaration.
5488 //
5489 // However, when finding an implicit conversion sequence for the argument, we
5490 // are not allowed to perform user-defined conversions
5491 // (C++ [over.match.funcs]p5). We perform a simplified version of
5492 // reference binding here, that allows class rvalues to bind to
5493 // non-constant references.
5494
5495 // First check the qualifiers.
5496 QualType FromTypeCanon = S.Context.getCanonicalType(FromType);
5497 if (ImplicitParamType.getCVRQualifiers()
5498 != FromTypeCanon.getLocalCVRQualifiers() &&
5499 !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) {
5500 ICS.setBad(BadConversionSequence::bad_qualifiers,
5501 FromType, ImplicitParamType);
5502 return ICS;
5503 }
5504
5505 if (FromTypeCanon.hasAddressSpace()) {
5506 Qualifiers QualsImplicitParamType = ImplicitParamType.getQualifiers();
5507 Qualifiers QualsFromType = FromTypeCanon.getQualifiers();
5508 if (!QualsImplicitParamType.isAddressSpaceSupersetOf(QualsFromType)) {
5509 ICS.setBad(BadConversionSequence::bad_qualifiers,
5510 FromType, ImplicitParamType);
5511 return ICS;
5512 }
5513 }
5514
5515 // Check that we have either the same type or a derived type. It
5516 // affects the conversion rank.
5517 QualType ClassTypeCanon = S.Context.getCanonicalType(ClassType);
5518 ImplicitConversionKind SecondKind;
5519 if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) {
5520 SecondKind = ICK_Identity;
5521 } else if (S.IsDerivedFrom(Loc, FromType, ClassType))
5522 SecondKind = ICK_Derived_To_Base;
5523 else {
5524 ICS.setBad(BadConversionSequence::unrelated_class,
5525 FromType, ImplicitParamType);
5526 return ICS;
5527 }
5528
5529 // Check the ref-qualifier.
5530 switch (Method->getRefQualifier()) {
5531 case RQ_None:
5532 // Do nothing; we don't care about lvalueness or rvalueness.
5533 break;
5534
5535 case RQ_LValue:
5536 if (!FromClassification.isLValue() && !Quals.hasOnlyConst()) {
5537 // non-const lvalue reference cannot bind to an rvalue
5538 ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, FromType,
5539 ImplicitParamType);
5540 return ICS;
5541 }
5542 break;
5543
5544 case RQ_RValue:
5545 if (!FromClassification.isRValue()) {
5546 // rvalue reference cannot bind to an lvalue
5547 ICS.setBad(BadConversionSequence::rvalue_ref_to_lvalue, FromType,
5548 ImplicitParamType);
5549 return ICS;
5550 }
5551 break;
5552 }
5553
5554 // Success. Mark this as a reference binding.
5555 ICS.setStandard();
5556 ICS.Standard.setAsIdentityConversion();
5557 ICS.Standard.Second = SecondKind;
5558 ICS.Standard.setFromType(FromType);
5559 ICS.Standard.setAllToTypes(ImplicitParamType);
5560 ICS.Standard.ReferenceBinding = true;
5561 ICS.Standard.DirectBinding = true;
5562 ICS.Standard.IsLvalueReference = Method->getRefQualifier() != RQ_RValue;
5563 ICS.Standard.BindsToFunctionLvalue = false;
5564 ICS.Standard.BindsToRvalue = FromClassification.isRValue();
5565 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier
5566 = (Method->getRefQualifier() == RQ_None);
5567 return ICS;
5568 }
5569
5570 /// PerformObjectArgumentInitialization - Perform initialization of
5571 /// the implicit object parameter for the given Method with the given
5572 /// expression.
5573 ExprResult
PerformObjectArgumentInitialization(Expr * From,NestedNameSpecifier * Qualifier,NamedDecl * FoundDecl,CXXMethodDecl * Method)5574 Sema::PerformObjectArgumentInitialization(Expr *From,
5575 NestedNameSpecifier *Qualifier,
5576 NamedDecl *FoundDecl,
5577 CXXMethodDecl *Method) {
5578 QualType FromRecordType, DestType;
5579 QualType ImplicitParamRecordType =
5580 Method->getThisType()->castAs<PointerType>()->getPointeeType();
5581
5582 Expr::Classification FromClassification;
5583 if (const PointerType *PT = From->getType()->getAs<PointerType>()) {
5584 FromRecordType = PT->getPointeeType();
5585 DestType = Method->getThisType();
5586 FromClassification = Expr::Classification::makeSimpleLValue();
5587 } else {
5588 FromRecordType = From->getType();
5589 DestType = ImplicitParamRecordType;
5590 FromClassification = From->Classify(Context);
5591
5592 // When performing member access on a prvalue, materialize a temporary.
5593 if (From->isPRValue()) {
5594 From = CreateMaterializeTemporaryExpr(FromRecordType, From,
5595 Method->getRefQualifier() !=
5596 RefQualifierKind::RQ_RValue);
5597 }
5598 }
5599
5600 // Note that we always use the true parent context when performing
5601 // the actual argument initialization.
5602 ImplicitConversionSequence ICS = TryObjectArgumentInitialization(
5603 *this, From->getBeginLoc(), From->getType(), FromClassification, Method,
5604 Method->getParent());
5605 if (ICS.isBad()) {
5606 switch (ICS.Bad.Kind) {
5607 case BadConversionSequence::bad_qualifiers: {
5608 Qualifiers FromQs = FromRecordType.getQualifiers();
5609 Qualifiers ToQs = DestType.getQualifiers();
5610 unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
5611 if (CVR) {
5612 Diag(From->getBeginLoc(), diag::err_member_function_call_bad_cvr)
5613 << Method->getDeclName() << FromRecordType << (CVR - 1)
5614 << From->getSourceRange();
5615 Diag(Method->getLocation(), diag::note_previous_decl)
5616 << Method->getDeclName();
5617 return ExprError();
5618 }
5619 break;
5620 }
5621
5622 case BadConversionSequence::lvalue_ref_to_rvalue:
5623 case BadConversionSequence::rvalue_ref_to_lvalue: {
5624 bool IsRValueQualified =
5625 Method->getRefQualifier() == RefQualifierKind::RQ_RValue;
5626 Diag(From->getBeginLoc(), diag::err_member_function_call_bad_ref)
5627 << Method->getDeclName() << FromClassification.isRValue()
5628 << IsRValueQualified;
5629 Diag(Method->getLocation(), diag::note_previous_decl)
5630 << Method->getDeclName();
5631 return ExprError();
5632 }
5633
5634 case BadConversionSequence::no_conversion:
5635 case BadConversionSequence::unrelated_class:
5636 break;
5637
5638 case BadConversionSequence::too_few_initializers:
5639 case BadConversionSequence::too_many_initializers:
5640 llvm_unreachable("Lists are not objects");
5641 }
5642
5643 return Diag(From->getBeginLoc(), diag::err_member_function_call_bad_type)
5644 << ImplicitParamRecordType << FromRecordType
5645 << From->getSourceRange();
5646 }
5647
5648 if (ICS.Standard.Second == ICK_Derived_To_Base) {
5649 ExprResult FromRes =
5650 PerformObjectMemberConversion(From, Qualifier, FoundDecl, Method);
5651 if (FromRes.isInvalid())
5652 return ExprError();
5653 From = FromRes.get();
5654 }
5655
5656 if (!Context.hasSameType(From->getType(), DestType)) {
5657 CastKind CK;
5658 QualType PteeTy = DestType->getPointeeType();
5659 LangAS DestAS =
5660 PteeTy.isNull() ? DestType.getAddressSpace() : PteeTy.getAddressSpace();
5661 if (FromRecordType.getAddressSpace() != DestAS)
5662 CK = CK_AddressSpaceConversion;
5663 else
5664 CK = CK_NoOp;
5665 From = ImpCastExprToType(From, DestType, CK, From->getValueKind()).get();
5666 }
5667 return From;
5668 }
5669
5670 /// TryContextuallyConvertToBool - Attempt to contextually convert the
5671 /// expression From to bool (C++0x [conv]p3).
5672 static ImplicitConversionSequence
TryContextuallyConvertToBool(Sema & S,Expr * From)5673 TryContextuallyConvertToBool(Sema &S, Expr *From) {
5674 // C++ [dcl.init]/17.8:
5675 // - Otherwise, if the initialization is direct-initialization, the source
5676 // type is std::nullptr_t, and the destination type is bool, the initial
5677 // value of the object being initialized is false.
5678 if (From->getType()->isNullPtrType())
5679 return ImplicitConversionSequence::getNullptrToBool(From->getType(),
5680 S.Context.BoolTy,
5681 From->isGLValue());
5682
5683 // All other direct-initialization of bool is equivalent to an implicit
5684 // conversion to bool in which explicit conversions are permitted.
5685 return TryImplicitConversion(S, From, S.Context.BoolTy,
5686 /*SuppressUserConversions=*/false,
5687 AllowedExplicit::Conversions,
5688 /*InOverloadResolution=*/false,
5689 /*CStyle=*/false,
5690 /*AllowObjCWritebackConversion=*/false,
5691 /*AllowObjCConversionOnExplicit=*/false);
5692 }
5693
5694 /// PerformContextuallyConvertToBool - Perform a contextual conversion
5695 /// of the expression From to bool (C++0x [conv]p3).
PerformContextuallyConvertToBool(Expr * From)5696 ExprResult Sema::PerformContextuallyConvertToBool(Expr *From) {
5697 if (checkPlaceholderForOverload(*this, From))
5698 return ExprError();
5699
5700 ImplicitConversionSequence ICS = TryContextuallyConvertToBool(*this, From);
5701 if (!ICS.isBad())
5702 return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting);
5703
5704 if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy))
5705 return Diag(From->getBeginLoc(), diag::err_typecheck_bool_condition)
5706 << From->getType() << From->getSourceRange();
5707 return ExprError();
5708 }
5709
5710 /// Check that the specified conversion is permitted in a converted constant
5711 /// expression, according to C++11 [expr.const]p3. Return true if the conversion
5712 /// is acceptable.
CheckConvertedConstantConversions(Sema & S,StandardConversionSequence & SCS)5713 static bool CheckConvertedConstantConversions(Sema &S,
5714 StandardConversionSequence &SCS) {
5715 // Since we know that the target type is an integral or unscoped enumeration
5716 // type, most conversion kinds are impossible. All possible First and Third
5717 // conversions are fine.
5718 switch (SCS.Second) {
5719 case ICK_Identity:
5720 case ICK_Integral_Promotion:
5721 case ICK_Integral_Conversion: // Narrowing conversions are checked elsewhere.
5722 case ICK_Zero_Queue_Conversion:
5723 return true;
5724
5725 case ICK_Boolean_Conversion:
5726 // Conversion from an integral or unscoped enumeration type to bool is
5727 // classified as ICK_Boolean_Conversion, but it's also arguably an integral
5728 // conversion, so we allow it in a converted constant expression.
5729 //
5730 // FIXME: Per core issue 1407, we should not allow this, but that breaks
5731 // a lot of popular code. We should at least add a warning for this
5732 // (non-conforming) extension.
5733 return SCS.getFromType()->isIntegralOrUnscopedEnumerationType() &&
5734 SCS.getToType(2)->isBooleanType();
5735
5736 case ICK_Pointer_Conversion:
5737 case ICK_Pointer_Member:
5738 // C++1z: null pointer conversions and null member pointer conversions are
5739 // only permitted if the source type is std::nullptr_t.
5740 return SCS.getFromType()->isNullPtrType();
5741
5742 case ICK_Floating_Promotion:
5743 case ICK_Complex_Promotion:
5744 case ICK_Floating_Conversion:
5745 case ICK_Complex_Conversion:
5746 case ICK_Floating_Integral:
5747 case ICK_Compatible_Conversion:
5748 case ICK_Derived_To_Base:
5749 case ICK_Vector_Conversion:
5750 case ICK_SVE_Vector_Conversion:
5751 case ICK_Vector_Splat:
5752 case ICK_Complex_Real:
5753 case ICK_Block_Pointer_Conversion:
5754 case ICK_TransparentUnionConversion:
5755 case ICK_Writeback_Conversion:
5756 case ICK_Zero_Event_Conversion:
5757 case ICK_C_Only_Conversion:
5758 case ICK_Incompatible_Pointer_Conversion:
5759 return false;
5760
5761 case ICK_Lvalue_To_Rvalue:
5762 case ICK_Array_To_Pointer:
5763 case ICK_Function_To_Pointer:
5764 llvm_unreachable("found a first conversion kind in Second");
5765
5766 case ICK_Function_Conversion:
5767 case ICK_Qualification:
5768 llvm_unreachable("found a third conversion kind in Second");
5769
5770 case ICK_Num_Conversion_Kinds:
5771 break;
5772 }
5773
5774 llvm_unreachable("unknown conversion kind");
5775 }
5776
5777 /// CheckConvertedConstantExpression - Check that the expression From is a
5778 /// converted constant expression of type T, perform the conversion and produce
5779 /// the converted expression, per C++11 [expr.const]p3.
CheckConvertedConstantExpression(Sema & S,Expr * From,QualType T,APValue & Value,Sema::CCEKind CCE,bool RequireInt,NamedDecl * Dest)5780 static ExprResult CheckConvertedConstantExpression(Sema &S, Expr *From,
5781 QualType T, APValue &Value,
5782 Sema::CCEKind CCE,
5783 bool RequireInt,
5784 NamedDecl *Dest) {
5785 assert(S.getLangOpts().CPlusPlus11 &&
5786 "converted constant expression outside C++11");
5787
5788 if (checkPlaceholderForOverload(S, From))
5789 return ExprError();
5790
5791 // C++1z [expr.const]p3:
5792 // A converted constant expression of type T is an expression,
5793 // implicitly converted to type T, where the converted
5794 // expression is a constant expression and the implicit conversion
5795 // sequence contains only [... list of conversions ...].
5796 ImplicitConversionSequence ICS =
5797 (CCE == Sema::CCEK_ExplicitBool || CCE == Sema::CCEK_Noexcept)
5798 ? TryContextuallyConvertToBool(S, From)
5799 : TryCopyInitialization(S, From, T,
5800 /*SuppressUserConversions=*/false,
5801 /*InOverloadResolution=*/false,
5802 /*AllowObjCWritebackConversion=*/false,
5803 /*AllowExplicit=*/false);
5804 StandardConversionSequence *SCS = nullptr;
5805 switch (ICS.getKind()) {
5806 case ImplicitConversionSequence::StandardConversion:
5807 SCS = &ICS.Standard;
5808 break;
5809 case ImplicitConversionSequence::UserDefinedConversion:
5810 if (T->isRecordType())
5811 SCS = &ICS.UserDefined.Before;
5812 else
5813 SCS = &ICS.UserDefined.After;
5814 break;
5815 case ImplicitConversionSequence::AmbiguousConversion:
5816 case ImplicitConversionSequence::BadConversion:
5817 if (!S.DiagnoseMultipleUserDefinedConversion(From, T))
5818 return S.Diag(From->getBeginLoc(),
5819 diag::err_typecheck_converted_constant_expression)
5820 << From->getType() << From->getSourceRange() << T;
5821 return ExprError();
5822
5823 case ImplicitConversionSequence::EllipsisConversion:
5824 case ImplicitConversionSequence::StaticObjectArgumentConversion:
5825 llvm_unreachable("bad conversion in converted constant expression");
5826 }
5827
5828 // Check that we would only use permitted conversions.
5829 if (!CheckConvertedConstantConversions(S, *SCS)) {
5830 return S.Diag(From->getBeginLoc(),
5831 diag::err_typecheck_converted_constant_expression_disallowed)
5832 << From->getType() << From->getSourceRange() << T;
5833 }
5834 // [...] and where the reference binding (if any) binds directly.
5835 if (SCS->ReferenceBinding && !SCS->DirectBinding) {
5836 return S.Diag(From->getBeginLoc(),
5837 diag::err_typecheck_converted_constant_expression_indirect)
5838 << From->getType() << From->getSourceRange() << T;
5839 }
5840
5841 // Usually we can simply apply the ImplicitConversionSequence we formed
5842 // earlier, but that's not guaranteed to work when initializing an object of
5843 // class type.
5844 ExprResult Result;
5845 if (T->isRecordType()) {
5846 assert(CCE == Sema::CCEK_TemplateArg &&
5847 "unexpected class type converted constant expr");
5848 Result = S.PerformCopyInitialization(
5849 InitializedEntity::InitializeTemplateParameter(
5850 T, cast<NonTypeTemplateParmDecl>(Dest)),
5851 SourceLocation(), From);
5852 } else {
5853 Result = S.PerformImplicitConversion(From, T, ICS, Sema::AA_Converting);
5854 }
5855 if (Result.isInvalid())
5856 return Result;
5857
5858 // C++2a [intro.execution]p5:
5859 // A full-expression is [...] a constant-expression [...]
5860 Result = S.ActOnFinishFullExpr(Result.get(), From->getExprLoc(),
5861 /*DiscardedValue=*/false, /*IsConstexpr=*/true,
5862 CCE == Sema::CCEKind::CCEK_TemplateArg);
5863 if (Result.isInvalid())
5864 return Result;
5865
5866 // Check for a narrowing implicit conversion.
5867 bool ReturnPreNarrowingValue = false;
5868 APValue PreNarrowingValue;
5869 QualType PreNarrowingType;
5870 switch (SCS->getNarrowingKind(S.Context, Result.get(), PreNarrowingValue,
5871 PreNarrowingType)) {
5872 case NK_Dependent_Narrowing:
5873 // Implicit conversion to a narrower type, but the expression is
5874 // value-dependent so we can't tell whether it's actually narrowing.
5875 case NK_Variable_Narrowing:
5876 // Implicit conversion to a narrower type, and the value is not a constant
5877 // expression. We'll diagnose this in a moment.
5878 case NK_Not_Narrowing:
5879 break;
5880
5881 case NK_Constant_Narrowing:
5882 if (CCE == Sema::CCEK_ArrayBound &&
5883 PreNarrowingType->isIntegralOrEnumerationType() &&
5884 PreNarrowingValue.isInt()) {
5885 // Don't diagnose array bound narrowing here; we produce more precise
5886 // errors by allowing the un-narrowed value through.
5887 ReturnPreNarrowingValue = true;
5888 break;
5889 }
5890 S.Diag(From->getBeginLoc(), diag::ext_cce_narrowing)
5891 << CCE << /*Constant*/ 1
5892 << PreNarrowingValue.getAsString(S.Context, PreNarrowingType) << T;
5893 break;
5894
5895 case NK_Type_Narrowing:
5896 // FIXME: It would be better to diagnose that the expression is not a
5897 // constant expression.
5898 S.Diag(From->getBeginLoc(), diag::ext_cce_narrowing)
5899 << CCE << /*Constant*/ 0 << From->getType() << T;
5900 break;
5901 }
5902
5903 if (Result.get()->isValueDependent()) {
5904 Value = APValue();
5905 return Result;
5906 }
5907
5908 // Check the expression is a constant expression.
5909 SmallVector<PartialDiagnosticAt, 8> Notes;
5910 Expr::EvalResult Eval;
5911 Eval.Diag = &Notes;
5912
5913 ConstantExprKind Kind;
5914 if (CCE == Sema::CCEK_TemplateArg && T->isRecordType())
5915 Kind = ConstantExprKind::ClassTemplateArgument;
5916 else if (CCE == Sema::CCEK_TemplateArg)
5917 Kind = ConstantExprKind::NonClassTemplateArgument;
5918 else
5919 Kind = ConstantExprKind::Normal;
5920
5921 if (!Result.get()->EvaluateAsConstantExpr(Eval, S.Context, Kind) ||
5922 (RequireInt && !Eval.Val.isInt())) {
5923 // The expression can't be folded, so we can't keep it at this position in
5924 // the AST.
5925 Result = ExprError();
5926 } else {
5927 Value = Eval.Val;
5928
5929 if (Notes.empty()) {
5930 // It's a constant expression.
5931 Expr *E = ConstantExpr::Create(S.Context, Result.get(), Value);
5932 if (ReturnPreNarrowingValue)
5933 Value = std::move(PreNarrowingValue);
5934 return E;
5935 }
5936 }
5937
5938 // It's not a constant expression. Produce an appropriate diagnostic.
5939 if (Notes.size() == 1 &&
5940 Notes[0].second.getDiagID() == diag::note_invalid_subexpr_in_const_expr) {
5941 S.Diag(Notes[0].first, diag::err_expr_not_cce) << CCE;
5942 } else if (!Notes.empty() && Notes[0].second.getDiagID() ==
5943 diag::note_constexpr_invalid_template_arg) {
5944 Notes[0].second.setDiagID(diag::err_constexpr_invalid_template_arg);
5945 for (unsigned I = 0; I < Notes.size(); ++I)
5946 S.Diag(Notes[I].first, Notes[I].second);
5947 } else {
5948 S.Diag(From->getBeginLoc(), diag::err_expr_not_cce)
5949 << CCE << From->getSourceRange();
5950 for (unsigned I = 0; I < Notes.size(); ++I)
5951 S.Diag(Notes[I].first, Notes[I].second);
5952 }
5953 return ExprError();
5954 }
5955
CheckConvertedConstantExpression(Expr * From,QualType T,APValue & Value,CCEKind CCE,NamedDecl * Dest)5956 ExprResult Sema::CheckConvertedConstantExpression(Expr *From, QualType T,
5957 APValue &Value, CCEKind CCE,
5958 NamedDecl *Dest) {
5959 return ::CheckConvertedConstantExpression(*this, From, T, Value, CCE, false,
5960 Dest);
5961 }
5962
CheckConvertedConstantExpression(Expr * From,QualType T,llvm::APSInt & Value,CCEKind CCE)5963 ExprResult Sema::CheckConvertedConstantExpression(Expr *From, QualType T,
5964 llvm::APSInt &Value,
5965 CCEKind CCE) {
5966 assert(T->isIntegralOrEnumerationType() && "unexpected converted const type");
5967
5968 APValue V;
5969 auto R = ::CheckConvertedConstantExpression(*this, From, T, V, CCE, true,
5970 /*Dest=*/nullptr);
5971 if (!R.isInvalid() && !R.get()->isValueDependent())
5972 Value = V.getInt();
5973 return R;
5974 }
5975
5976
5977 /// dropPointerConversions - If the given standard conversion sequence
5978 /// involves any pointer conversions, remove them. This may change
5979 /// the result type of the conversion sequence.
dropPointerConversion(StandardConversionSequence & SCS)5980 static void dropPointerConversion(StandardConversionSequence &SCS) {
5981 if (SCS.Second == ICK_Pointer_Conversion) {
5982 SCS.Second = ICK_Identity;
5983 SCS.Third = ICK_Identity;
5984 SCS.ToTypePtrs[2] = SCS.ToTypePtrs[1] = SCS.ToTypePtrs[0];
5985 }
5986 }
5987
5988 /// TryContextuallyConvertToObjCPointer - Attempt to contextually
5989 /// convert the expression From to an Objective-C pointer type.
5990 static ImplicitConversionSequence
TryContextuallyConvertToObjCPointer(Sema & S,Expr * From)5991 TryContextuallyConvertToObjCPointer(Sema &S, Expr *From) {
5992 // Do an implicit conversion to 'id'.
5993 QualType Ty = S.Context.getObjCIdType();
5994 ImplicitConversionSequence ICS
5995 = TryImplicitConversion(S, From, Ty,
5996 // FIXME: Are these flags correct?
5997 /*SuppressUserConversions=*/false,
5998 AllowedExplicit::Conversions,
5999 /*InOverloadResolution=*/false,
6000 /*CStyle=*/false,
6001 /*AllowObjCWritebackConversion=*/false,
6002 /*AllowObjCConversionOnExplicit=*/true);
6003
6004 // Strip off any final conversions to 'id'.
6005 switch (ICS.getKind()) {
6006 case ImplicitConversionSequence::BadConversion:
6007 case ImplicitConversionSequence::AmbiguousConversion:
6008 case ImplicitConversionSequence::EllipsisConversion:
6009 case ImplicitConversionSequence::StaticObjectArgumentConversion:
6010 break;
6011
6012 case ImplicitConversionSequence::UserDefinedConversion:
6013 dropPointerConversion(ICS.UserDefined.After);
6014 break;
6015
6016 case ImplicitConversionSequence::StandardConversion:
6017 dropPointerConversion(ICS.Standard);
6018 break;
6019 }
6020
6021 return ICS;
6022 }
6023
6024 /// PerformContextuallyConvertToObjCPointer - Perform a contextual
6025 /// conversion of the expression From to an Objective-C pointer type.
6026 /// Returns a valid but null ExprResult if no conversion sequence exists.
PerformContextuallyConvertToObjCPointer(Expr * From)6027 ExprResult Sema::PerformContextuallyConvertToObjCPointer(Expr *From) {
6028 if (checkPlaceholderForOverload(*this, From))
6029 return ExprError();
6030
6031 QualType Ty = Context.getObjCIdType();
6032 ImplicitConversionSequence ICS =
6033 TryContextuallyConvertToObjCPointer(*this, From);
6034 if (!ICS.isBad())
6035 return PerformImplicitConversion(From, Ty, ICS, AA_Converting);
6036 return ExprResult();
6037 }
6038
6039 /// Determine whether the provided type is an integral type, or an enumeration
6040 /// type of a permitted flavor.
match(QualType T)6041 bool Sema::ICEConvertDiagnoser::match(QualType T) {
6042 return AllowScopedEnumerations ? T->isIntegralOrEnumerationType()
6043 : T->isIntegralOrUnscopedEnumerationType();
6044 }
6045
6046 static ExprResult
diagnoseAmbiguousConversion(Sema & SemaRef,SourceLocation Loc,Expr * From,Sema::ContextualImplicitConverter & Converter,QualType T,UnresolvedSetImpl & ViableConversions)6047 diagnoseAmbiguousConversion(Sema &SemaRef, SourceLocation Loc, Expr *From,
6048 Sema::ContextualImplicitConverter &Converter,
6049 QualType T, UnresolvedSetImpl &ViableConversions) {
6050
6051 if (Converter.Suppress)
6052 return ExprError();
6053
6054 Converter.diagnoseAmbiguous(SemaRef, Loc, T) << From->getSourceRange();
6055 for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) {
6056 CXXConversionDecl *Conv =
6057 cast<CXXConversionDecl>(ViableConversions[I]->getUnderlyingDecl());
6058 QualType ConvTy = Conv->getConversionType().getNonReferenceType();
6059 Converter.noteAmbiguous(SemaRef, Conv, ConvTy);
6060 }
6061 return From;
6062 }
6063
6064 static bool
diagnoseNoViableConversion(Sema & SemaRef,SourceLocation Loc,Expr * & From,Sema::ContextualImplicitConverter & Converter,QualType T,bool HadMultipleCandidates,UnresolvedSetImpl & ExplicitConversions)6065 diagnoseNoViableConversion(Sema &SemaRef, SourceLocation Loc, Expr *&From,
6066 Sema::ContextualImplicitConverter &Converter,
6067 QualType T, bool HadMultipleCandidates,
6068 UnresolvedSetImpl &ExplicitConversions) {
6069 if (ExplicitConversions.size() == 1 && !Converter.Suppress) {
6070 DeclAccessPair Found = ExplicitConversions[0];
6071 CXXConversionDecl *Conversion =
6072 cast<CXXConversionDecl>(Found->getUnderlyingDecl());
6073
6074 // The user probably meant to invoke the given explicit
6075 // conversion; use it.
6076 QualType ConvTy = Conversion->getConversionType().getNonReferenceType();
6077 std::string TypeStr;
6078 ConvTy.getAsStringInternal(TypeStr, SemaRef.getPrintingPolicy());
6079
6080 Converter.diagnoseExplicitConv(SemaRef, Loc, T, ConvTy)
6081 << FixItHint::CreateInsertion(From->getBeginLoc(),
6082 "static_cast<" + TypeStr + ">(")
6083 << FixItHint::CreateInsertion(
6084 SemaRef.getLocForEndOfToken(From->getEndLoc()), ")");
6085 Converter.noteExplicitConv(SemaRef, Conversion, ConvTy);
6086
6087 // If we aren't in a SFINAE context, build a call to the
6088 // explicit conversion function.
6089 if (SemaRef.isSFINAEContext())
6090 return true;
6091
6092 SemaRef.CheckMemberOperatorAccess(From->getExprLoc(), From, nullptr, Found);
6093 ExprResult Result = SemaRef.BuildCXXMemberCallExpr(From, Found, Conversion,
6094 HadMultipleCandidates);
6095 if (Result.isInvalid())
6096 return true;
6097 // Record usage of conversion in an implicit cast.
6098 From = ImplicitCastExpr::Create(SemaRef.Context, Result.get()->getType(),
6099 CK_UserDefinedConversion, Result.get(),
6100 nullptr, Result.get()->getValueKind(),
6101 SemaRef.CurFPFeatureOverrides());
6102 }
6103 return false;
6104 }
6105
recordConversion(Sema & SemaRef,SourceLocation Loc,Expr * & From,Sema::ContextualImplicitConverter & Converter,QualType T,bool HadMultipleCandidates,DeclAccessPair & Found)6106 static bool recordConversion(Sema &SemaRef, SourceLocation Loc, Expr *&From,
6107 Sema::ContextualImplicitConverter &Converter,
6108 QualType T, bool HadMultipleCandidates,
6109 DeclAccessPair &Found) {
6110 CXXConversionDecl *Conversion =
6111 cast<CXXConversionDecl>(Found->getUnderlyingDecl());
6112 SemaRef.CheckMemberOperatorAccess(From->getExprLoc(), From, nullptr, Found);
6113
6114 QualType ToType = Conversion->getConversionType().getNonReferenceType();
6115 if (!Converter.SuppressConversion) {
6116 if (SemaRef.isSFINAEContext())
6117 return true;
6118
6119 Converter.diagnoseConversion(SemaRef, Loc, T, ToType)
6120 << From->getSourceRange();
6121 }
6122
6123 ExprResult Result = SemaRef.BuildCXXMemberCallExpr(From, Found, Conversion,
6124 HadMultipleCandidates);
6125 if (Result.isInvalid())
6126 return true;
6127 // Record usage of conversion in an implicit cast.
6128 From = ImplicitCastExpr::Create(SemaRef.Context, Result.get()->getType(),
6129 CK_UserDefinedConversion, Result.get(),
6130 nullptr, Result.get()->getValueKind(),
6131 SemaRef.CurFPFeatureOverrides());
6132 return false;
6133 }
6134
finishContextualImplicitConversion(Sema & SemaRef,SourceLocation Loc,Expr * From,Sema::ContextualImplicitConverter & Converter)6135 static ExprResult finishContextualImplicitConversion(
6136 Sema &SemaRef, SourceLocation Loc, Expr *From,
6137 Sema::ContextualImplicitConverter &Converter) {
6138 if (!Converter.match(From->getType()) && !Converter.Suppress)
6139 Converter.diagnoseNoMatch(SemaRef, Loc, From->getType())
6140 << From->getSourceRange();
6141
6142 return SemaRef.DefaultLvalueConversion(From);
6143 }
6144
6145 static void
collectViableConversionCandidates(Sema & SemaRef,Expr * From,QualType ToType,UnresolvedSetImpl & ViableConversions,OverloadCandidateSet & CandidateSet)6146 collectViableConversionCandidates(Sema &SemaRef, Expr *From, QualType ToType,
6147 UnresolvedSetImpl &ViableConversions,
6148 OverloadCandidateSet &CandidateSet) {
6149 for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) {
6150 DeclAccessPair FoundDecl = ViableConversions[I];
6151 NamedDecl *D = FoundDecl.getDecl();
6152 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
6153 if (isa<UsingShadowDecl>(D))
6154 D = cast<UsingShadowDecl>(D)->getTargetDecl();
6155
6156 CXXConversionDecl *Conv;
6157 FunctionTemplateDecl *ConvTemplate;
6158 if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D)))
6159 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
6160 else
6161 Conv = cast<CXXConversionDecl>(D);
6162
6163 if (ConvTemplate)
6164 SemaRef.AddTemplateConversionCandidate(
6165 ConvTemplate, FoundDecl, ActingContext, From, ToType, CandidateSet,
6166 /*AllowObjCConversionOnExplicit=*/false, /*AllowExplicit*/ true);
6167 else
6168 SemaRef.AddConversionCandidate(Conv, FoundDecl, ActingContext, From,
6169 ToType, CandidateSet,
6170 /*AllowObjCConversionOnExplicit=*/false,
6171 /*AllowExplicit*/ true);
6172 }
6173 }
6174
6175 /// Attempt to convert the given expression to a type which is accepted
6176 /// by the given converter.
6177 ///
6178 /// This routine will attempt to convert an expression of class type to a
6179 /// type accepted by the specified converter. In C++11 and before, the class
6180 /// must have a single non-explicit conversion function converting to a matching
6181 /// type. In C++1y, there can be multiple such conversion functions, but only
6182 /// one target type.
6183 ///
6184 /// \param Loc The source location of the construct that requires the
6185 /// conversion.
6186 ///
6187 /// \param From The expression we're converting from.
6188 ///
6189 /// \param Converter Used to control and diagnose the conversion process.
6190 ///
6191 /// \returns The expression, converted to an integral or enumeration type if
6192 /// successful.
PerformContextualImplicitConversion(SourceLocation Loc,Expr * From,ContextualImplicitConverter & Converter)6193 ExprResult Sema::PerformContextualImplicitConversion(
6194 SourceLocation Loc, Expr *From, ContextualImplicitConverter &Converter) {
6195 // We can't perform any more checking for type-dependent expressions.
6196 if (From->isTypeDependent())
6197 return From;
6198
6199 // Process placeholders immediately.
6200 if (From->hasPlaceholderType()) {
6201 ExprResult result = CheckPlaceholderExpr(From);
6202 if (result.isInvalid())
6203 return result;
6204 From = result.get();
6205 }
6206
6207 // If the expression already has a matching type, we're golden.
6208 QualType T = From->getType();
6209 if (Converter.match(T))
6210 return DefaultLvalueConversion(From);
6211
6212 // FIXME: Check for missing '()' if T is a function type?
6213
6214 // We can only perform contextual implicit conversions on objects of class
6215 // type.
6216 const RecordType *RecordTy = T->getAs<RecordType>();
6217 if (!RecordTy || !getLangOpts().CPlusPlus) {
6218 if (!Converter.Suppress)
6219 Converter.diagnoseNoMatch(*this, Loc, T) << From->getSourceRange();
6220 return From;
6221 }
6222
6223 // We must have a complete class type.
6224 struct TypeDiagnoserPartialDiag : TypeDiagnoser {
6225 ContextualImplicitConverter &Converter;
6226 Expr *From;
6227
6228 TypeDiagnoserPartialDiag(ContextualImplicitConverter &Converter, Expr *From)
6229 : Converter(Converter), From(From) {}
6230
6231 void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
6232 Converter.diagnoseIncomplete(S, Loc, T) << From->getSourceRange();
6233 }
6234 } IncompleteDiagnoser(Converter, From);
6235
6236 if (Converter.Suppress ? !isCompleteType(Loc, T)
6237 : RequireCompleteType(Loc, T, IncompleteDiagnoser))
6238 return From;
6239
6240 // Look for a conversion to an integral or enumeration type.
6241 UnresolvedSet<4>
6242 ViableConversions; // These are *potentially* viable in C++1y.
6243 UnresolvedSet<4> ExplicitConversions;
6244 const auto &Conversions =
6245 cast<CXXRecordDecl>(RecordTy->getDecl())->getVisibleConversionFunctions();
6246
6247 bool HadMultipleCandidates =
6248 (std::distance(Conversions.begin(), Conversions.end()) > 1);
6249
6250 // To check that there is only one target type, in C++1y:
6251 QualType ToType;
6252 bool HasUniqueTargetType = true;
6253
6254 // Collect explicit or viable (potentially in C++1y) conversions.
6255 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
6256 NamedDecl *D = (*I)->getUnderlyingDecl();
6257 CXXConversionDecl *Conversion;
6258 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
6259 if (ConvTemplate) {
6260 if (getLangOpts().CPlusPlus14)
6261 Conversion = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
6262 else
6263 continue; // C++11 does not consider conversion operator templates(?).
6264 } else
6265 Conversion = cast<CXXConversionDecl>(D);
6266
6267 assert((!ConvTemplate || getLangOpts().CPlusPlus14) &&
6268 "Conversion operator templates are considered potentially "
6269 "viable in C++1y");
6270
6271 QualType CurToType = Conversion->getConversionType().getNonReferenceType();
6272 if (Converter.match(CurToType) || ConvTemplate) {
6273
6274 if (Conversion->isExplicit()) {
6275 // FIXME: For C++1y, do we need this restriction?
6276 // cf. diagnoseNoViableConversion()
6277 if (!ConvTemplate)
6278 ExplicitConversions.addDecl(I.getDecl(), I.getAccess());
6279 } else {
6280 if (!ConvTemplate && getLangOpts().CPlusPlus14) {
6281 if (ToType.isNull())
6282 ToType = CurToType.getUnqualifiedType();
6283 else if (HasUniqueTargetType &&
6284 (CurToType.getUnqualifiedType() != ToType))
6285 HasUniqueTargetType = false;
6286 }
6287 ViableConversions.addDecl(I.getDecl(), I.getAccess());
6288 }
6289 }
6290 }
6291
6292 if (getLangOpts().CPlusPlus14) {
6293 // C++1y [conv]p6:
6294 // ... An expression e of class type E appearing in such a context
6295 // is said to be contextually implicitly converted to a specified
6296 // type T and is well-formed if and only if e can be implicitly
6297 // converted to a type T that is determined as follows: E is searched
6298 // for conversion functions whose return type is cv T or reference to
6299 // cv T such that T is allowed by the context. There shall be
6300 // exactly one such T.
6301
6302 // If no unique T is found:
6303 if (ToType.isNull()) {
6304 if (diagnoseNoViableConversion(*this, Loc, From, Converter, T,
6305 HadMultipleCandidates,
6306 ExplicitConversions))
6307 return ExprError();
6308 return finishContextualImplicitConversion(*this, Loc, From, Converter);
6309 }
6310
6311 // If more than one unique Ts are found:
6312 if (!HasUniqueTargetType)
6313 return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T,
6314 ViableConversions);
6315
6316 // If one unique T is found:
6317 // First, build a candidate set from the previously recorded
6318 // potentially viable conversions.
6319 OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
6320 collectViableConversionCandidates(*this, From, ToType, ViableConversions,
6321 CandidateSet);
6322
6323 // Then, perform overload resolution over the candidate set.
6324 OverloadCandidateSet::iterator Best;
6325 switch (CandidateSet.BestViableFunction(*this, Loc, Best)) {
6326 case OR_Success: {
6327 // Apply this conversion.
6328 DeclAccessPair Found =
6329 DeclAccessPair::make(Best->Function, Best->FoundDecl.getAccess());
6330 if (recordConversion(*this, Loc, From, Converter, T,
6331 HadMultipleCandidates, Found))
6332 return ExprError();
6333 break;
6334 }
6335 case OR_Ambiguous:
6336 return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T,
6337 ViableConversions);
6338 case OR_No_Viable_Function:
6339 if (diagnoseNoViableConversion(*this, Loc, From, Converter, T,
6340 HadMultipleCandidates,
6341 ExplicitConversions))
6342 return ExprError();
6343 [[fallthrough]];
6344 case OR_Deleted:
6345 // We'll complain below about a non-integral condition type.
6346 break;
6347 }
6348 } else {
6349 switch (ViableConversions.size()) {
6350 case 0: {
6351 if (diagnoseNoViableConversion(*this, Loc, From, Converter, T,
6352 HadMultipleCandidates,
6353 ExplicitConversions))
6354 return ExprError();
6355
6356 // We'll complain below about a non-integral condition type.
6357 break;
6358 }
6359 case 1: {
6360 // Apply this conversion.
6361 DeclAccessPair Found = ViableConversions[0];
6362 if (recordConversion(*this, Loc, From, Converter, T,
6363 HadMultipleCandidates, Found))
6364 return ExprError();
6365 break;
6366 }
6367 default:
6368 return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T,
6369 ViableConversions);
6370 }
6371 }
6372
6373 return finishContextualImplicitConversion(*this, Loc, From, Converter);
6374 }
6375
6376 /// IsAcceptableNonMemberOperatorCandidate - Determine whether Fn is
6377 /// an acceptable non-member overloaded operator for a call whose
6378 /// arguments have types T1 (and, if non-empty, T2). This routine
6379 /// implements the check in C++ [over.match.oper]p3b2 concerning
6380 /// enumeration types.
IsAcceptableNonMemberOperatorCandidate(ASTContext & Context,FunctionDecl * Fn,ArrayRef<Expr * > Args)6381 static bool IsAcceptableNonMemberOperatorCandidate(ASTContext &Context,
6382 FunctionDecl *Fn,
6383 ArrayRef<Expr *> Args) {
6384 QualType T1 = Args[0]->getType();
6385 QualType T2 = Args.size() > 1 ? Args[1]->getType() : QualType();
6386
6387 if (T1->isDependentType() || (!T2.isNull() && T2->isDependentType()))
6388 return true;
6389
6390 if (T1->isRecordType() || (!T2.isNull() && T2->isRecordType()))
6391 return true;
6392
6393 const auto *Proto = Fn->getType()->castAs<FunctionProtoType>();
6394 if (Proto->getNumParams() < 1)
6395 return false;
6396
6397 if (T1->isEnumeralType()) {
6398 QualType ArgType = Proto->getParamType(0).getNonReferenceType();
6399 if (Context.hasSameUnqualifiedType(T1, ArgType))
6400 return true;
6401 }
6402
6403 if (Proto->getNumParams() < 2)
6404 return false;
6405
6406 if (!T2.isNull() && T2->isEnumeralType()) {
6407 QualType ArgType = Proto->getParamType(1).getNonReferenceType();
6408 if (Context.hasSameUnqualifiedType(T2, ArgType))
6409 return true;
6410 }
6411
6412 return false;
6413 }
6414
6415 /// AddOverloadCandidate - Adds the given function to the set of
6416 /// candidate functions, using the given function call arguments. If
6417 /// @p SuppressUserConversions, then don't allow user-defined
6418 /// conversions via constructors or conversion operators.
6419 ///
6420 /// \param PartialOverloading true if we are performing "partial" overloading
6421 /// based on an incomplete set of function arguments. This feature is used by
6422 /// code completion.
AddOverloadCandidate(FunctionDecl * Function,DeclAccessPair FoundDecl,ArrayRef<Expr * > Args,OverloadCandidateSet & CandidateSet,bool SuppressUserConversions,bool PartialOverloading,bool AllowExplicit,bool AllowExplicitConversions,ADLCallKind IsADLCandidate,ConversionSequenceList EarlyConversions,OverloadCandidateParamOrder PO)6423 void Sema::AddOverloadCandidate(
6424 FunctionDecl *Function, DeclAccessPair FoundDecl, ArrayRef<Expr *> Args,
6425 OverloadCandidateSet &CandidateSet, bool SuppressUserConversions,
6426 bool PartialOverloading, bool AllowExplicit, bool AllowExplicitConversions,
6427 ADLCallKind IsADLCandidate, ConversionSequenceList EarlyConversions,
6428 OverloadCandidateParamOrder PO) {
6429 const FunctionProtoType *Proto
6430 = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>());
6431 assert(Proto && "Functions without a prototype cannot be overloaded");
6432 assert(!Function->getDescribedFunctionTemplate() &&
6433 "Use AddTemplateOverloadCandidate for function templates");
6434
6435 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
6436 if (!isa<CXXConstructorDecl>(Method)) {
6437 // If we get here, it's because we're calling a member function
6438 // that is named without a member access expression (e.g.,
6439 // "this->f") that was either written explicitly or created
6440 // implicitly. This can happen with a qualified call to a member
6441 // function, e.g., X::f(). We use an empty type for the implied
6442 // object argument (C++ [over.call.func]p3), and the acting context
6443 // is irrelevant.
6444 AddMethodCandidate(Method, FoundDecl, Method->getParent(), QualType(),
6445 Expr::Classification::makeSimpleLValue(), Args,
6446 CandidateSet, SuppressUserConversions,
6447 PartialOverloading, EarlyConversions, PO);
6448 return;
6449 }
6450 // We treat a constructor like a non-member function, since its object
6451 // argument doesn't participate in overload resolution.
6452 }
6453
6454 if (!CandidateSet.isNewCandidate(Function, PO))
6455 return;
6456
6457 // C++11 [class.copy]p11: [DR1402]
6458 // A defaulted move constructor that is defined as deleted is ignored by
6459 // overload resolution.
6460 CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function);
6461 if (Constructor && Constructor->isDefaulted() && Constructor->isDeleted() &&
6462 Constructor->isMoveConstructor())
6463 return;
6464
6465 // Overload resolution is always an unevaluated context.
6466 EnterExpressionEvaluationContext Unevaluated(
6467 *this, Sema::ExpressionEvaluationContext::Unevaluated);
6468
6469 // C++ [over.match.oper]p3:
6470 // if no operand has a class type, only those non-member functions in the
6471 // lookup set that have a first parameter of type T1 or "reference to
6472 // (possibly cv-qualified) T1", when T1 is an enumeration type, or (if there
6473 // is a right operand) a second parameter of type T2 or "reference to
6474 // (possibly cv-qualified) T2", when T2 is an enumeration type, are
6475 // candidate functions.
6476 if (CandidateSet.getKind() == OverloadCandidateSet::CSK_Operator &&
6477 !IsAcceptableNonMemberOperatorCandidate(Context, Function, Args))
6478 return;
6479
6480 // Add this candidate
6481 OverloadCandidate &Candidate =
6482 CandidateSet.addCandidate(Args.size(), EarlyConversions);
6483 Candidate.FoundDecl = FoundDecl;
6484 Candidate.Function = Function;
6485 Candidate.Viable = true;
6486 Candidate.RewriteKind =
6487 CandidateSet.getRewriteInfo().getRewriteKind(Function, PO);
6488 Candidate.IsSurrogate = false;
6489 Candidate.IsADLCandidate = IsADLCandidate;
6490 Candidate.IgnoreObjectArgument = false;
6491 Candidate.ExplicitCallArguments = Args.size();
6492
6493 // Explicit functions are not actually candidates at all if we're not
6494 // allowing them in this context, but keep them around so we can point
6495 // to them in diagnostics.
6496 if (!AllowExplicit && ExplicitSpecifier::getFromDecl(Function).isExplicit()) {
6497 Candidate.Viable = false;
6498 Candidate.FailureKind = ovl_fail_explicit;
6499 return;
6500 }
6501
6502 // Functions with internal linkage are only viable in the same module unit.
6503 if (auto *MF = Function->getOwningModule()) {
6504 if (getLangOpts().CPlusPlusModules && !MF->isModuleMapModule() &&
6505 !isModuleUnitOfCurrentTU(MF)) {
6506 /// FIXME: Currently, the semantics of linkage in clang is slightly
6507 /// different from the semantics in C++ spec. In C++ spec, only names
6508 /// have linkage. So that all entities of the same should share one
6509 /// linkage. But in clang, different entities of the same could have
6510 /// different linkage.
6511 NamedDecl *ND = Function;
6512 if (auto *SpecInfo = Function->getTemplateSpecializationInfo())
6513 ND = SpecInfo->getTemplate();
6514
6515 if (ND->getFormalLinkage() == Linkage::InternalLinkage) {
6516 Candidate.Viable = false;
6517 Candidate.FailureKind = ovl_fail_module_mismatched;
6518 return;
6519 }
6520 }
6521 }
6522
6523 if (Function->isMultiVersion() &&
6524 ((Function->hasAttr<TargetAttr>() &&
6525 !Function->getAttr<TargetAttr>()->isDefaultVersion()) ||
6526 (Function->hasAttr<TargetVersionAttr>() &&
6527 !Function->getAttr<TargetVersionAttr>()->isDefaultVersion()))) {
6528 Candidate.Viable = false;
6529 Candidate.FailureKind = ovl_non_default_multiversion_function;
6530 return;
6531 }
6532
6533 if (Constructor) {
6534 // C++ [class.copy]p3:
6535 // A member function template is never instantiated to perform the copy
6536 // of a class object to an object of its class type.
6537 QualType ClassType = Context.getTypeDeclType(Constructor->getParent());
6538 if (Args.size() == 1 && Constructor->isSpecializationCopyingObject() &&
6539 (Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()) ||
6540 IsDerivedFrom(Args[0]->getBeginLoc(), Args[0]->getType(),
6541 ClassType))) {
6542 Candidate.Viable = false;
6543 Candidate.FailureKind = ovl_fail_illegal_constructor;
6544 return;
6545 }
6546
6547 // C++ [over.match.funcs]p8: (proposed DR resolution)
6548 // A constructor inherited from class type C that has a first parameter
6549 // of type "reference to P" (including such a constructor instantiated
6550 // from a template) is excluded from the set of candidate functions when
6551 // constructing an object of type cv D if the argument list has exactly
6552 // one argument and D is reference-related to P and P is reference-related
6553 // to C.
6554 auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(FoundDecl.getDecl());
6555 if (Shadow && Args.size() == 1 && Constructor->getNumParams() >= 1 &&
6556 Constructor->getParamDecl(0)->getType()->isReferenceType()) {
6557 QualType P = Constructor->getParamDecl(0)->getType()->getPointeeType();
6558 QualType C = Context.getRecordType(Constructor->getParent());
6559 QualType D = Context.getRecordType(Shadow->getParent());
6560 SourceLocation Loc = Args.front()->getExprLoc();
6561 if ((Context.hasSameUnqualifiedType(P, C) || IsDerivedFrom(Loc, P, C)) &&
6562 (Context.hasSameUnqualifiedType(D, P) || IsDerivedFrom(Loc, D, P))) {
6563 Candidate.Viable = false;
6564 Candidate.FailureKind = ovl_fail_inhctor_slice;
6565 return;
6566 }
6567 }
6568
6569 // Check that the constructor is capable of constructing an object in the
6570 // destination address space.
6571 if (!Qualifiers::isAddressSpaceSupersetOf(
6572 Constructor->getMethodQualifiers().getAddressSpace(),
6573 CandidateSet.getDestAS())) {
6574 Candidate.Viable = false;
6575 Candidate.FailureKind = ovl_fail_object_addrspace_mismatch;
6576 }
6577 }
6578
6579 unsigned NumParams = Proto->getNumParams();
6580
6581 // (C++ 13.3.2p2): A candidate function having fewer than m
6582 // parameters is viable only if it has an ellipsis in its parameter
6583 // list (8.3.5).
6584 if (TooManyArguments(NumParams, Args.size(), PartialOverloading) &&
6585 !Proto->isVariadic() &&
6586 shouldEnforceArgLimit(PartialOverloading, Function)) {
6587 Candidate.Viable = false;
6588 Candidate.FailureKind = ovl_fail_too_many_arguments;
6589 return;
6590 }
6591
6592 // (C++ 13.3.2p2): A candidate function having more than m parameters
6593 // is viable only if the (m+1)st parameter has a default argument
6594 // (8.3.6). For the purposes of overload resolution, the
6595 // parameter list is truncated on the right, so that there are
6596 // exactly m parameters.
6597 unsigned MinRequiredArgs = Function->getMinRequiredArguments();
6598 if (Args.size() < MinRequiredArgs && !PartialOverloading) {
6599 // Not enough arguments.
6600 Candidate.Viable = false;
6601 Candidate.FailureKind = ovl_fail_too_few_arguments;
6602 return;
6603 }
6604
6605 // (CUDA B.1): Check for invalid calls between targets.
6606 if (getLangOpts().CUDA)
6607 if (const FunctionDecl *Caller = getCurFunctionDecl(/*AllowLambda=*/true))
6608 // Skip the check for callers that are implicit members, because in this
6609 // case we may not yet know what the member's target is; the target is
6610 // inferred for the member automatically, based on the bases and fields of
6611 // the class.
6612 if (!Caller->isImplicit() && !IsAllowedCUDACall(Caller, Function)) {
6613 Candidate.Viable = false;
6614 Candidate.FailureKind = ovl_fail_bad_target;
6615 return;
6616 }
6617
6618 if (Function->getTrailingRequiresClause()) {
6619 ConstraintSatisfaction Satisfaction;
6620 if (CheckFunctionConstraints(Function, Satisfaction, /*Loc*/ {},
6621 /*ForOverloadResolution*/ true) ||
6622 !Satisfaction.IsSatisfied) {
6623 Candidate.Viable = false;
6624 Candidate.FailureKind = ovl_fail_constraints_not_satisfied;
6625 return;
6626 }
6627 }
6628
6629 // Determine the implicit conversion sequences for each of the
6630 // arguments.
6631 for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) {
6632 unsigned ConvIdx =
6633 PO == OverloadCandidateParamOrder::Reversed ? 1 - ArgIdx : ArgIdx;
6634 if (Candidate.Conversions[ConvIdx].isInitialized()) {
6635 // We already formed a conversion sequence for this parameter during
6636 // template argument deduction.
6637 } else if (ArgIdx < NumParams) {
6638 // (C++ 13.3.2p3): for F to be a viable function, there shall
6639 // exist for each argument an implicit conversion sequence
6640 // (13.3.3.1) that converts that argument to the corresponding
6641 // parameter of F.
6642 QualType ParamType = Proto->getParamType(ArgIdx);
6643 Candidate.Conversions[ConvIdx] = TryCopyInitialization(
6644 *this, Args[ArgIdx], ParamType, SuppressUserConversions,
6645 /*InOverloadResolution=*/true,
6646 /*AllowObjCWritebackConversion=*/
6647 getLangOpts().ObjCAutoRefCount, AllowExplicitConversions);
6648 if (Candidate.Conversions[ConvIdx].isBad()) {
6649 Candidate.Viable = false;
6650 Candidate.FailureKind = ovl_fail_bad_conversion;
6651 return;
6652 }
6653 } else {
6654 // (C++ 13.3.2p2): For the purposes of overload resolution, any
6655 // argument for which there is no corresponding parameter is
6656 // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
6657 Candidate.Conversions[ConvIdx].setEllipsis();
6658 }
6659 }
6660
6661 if (EnableIfAttr *FailedAttr =
6662 CheckEnableIf(Function, CandidateSet.getLocation(), Args)) {
6663 Candidate.Viable = false;
6664 Candidate.FailureKind = ovl_fail_enable_if;
6665 Candidate.DeductionFailure.Data = FailedAttr;
6666 return;
6667 }
6668 }
6669
6670 ObjCMethodDecl *
SelectBestMethod(Selector Sel,MultiExprArg Args,bool IsInstance,SmallVectorImpl<ObjCMethodDecl * > & Methods)6671 Sema::SelectBestMethod(Selector Sel, MultiExprArg Args, bool IsInstance,
6672 SmallVectorImpl<ObjCMethodDecl *> &Methods) {
6673 if (Methods.size() <= 1)
6674 return nullptr;
6675
6676 for (unsigned b = 0, e = Methods.size(); b < e; b++) {
6677 bool Match = true;
6678 ObjCMethodDecl *Method = Methods[b];
6679 unsigned NumNamedArgs = Sel.getNumArgs();
6680 // Method might have more arguments than selector indicates. This is due
6681 // to addition of c-style arguments in method.
6682 if (Method->param_size() > NumNamedArgs)
6683 NumNamedArgs = Method->param_size();
6684 if (Args.size() < NumNamedArgs)
6685 continue;
6686
6687 for (unsigned i = 0; i < NumNamedArgs; i++) {
6688 // We can't do any type-checking on a type-dependent argument.
6689 if (Args[i]->isTypeDependent()) {
6690 Match = false;
6691 break;
6692 }
6693
6694 ParmVarDecl *param = Method->parameters()[i];
6695 Expr *argExpr = Args[i];
6696 assert(argExpr && "SelectBestMethod(): missing expression");
6697
6698 // Strip the unbridged-cast placeholder expression off unless it's
6699 // a consumed argument.
6700 if (argExpr->hasPlaceholderType(BuiltinType::ARCUnbridgedCast) &&
6701 !param->hasAttr<CFConsumedAttr>())
6702 argExpr = stripARCUnbridgedCast(argExpr);
6703
6704 // If the parameter is __unknown_anytype, move on to the next method.
6705 if (param->getType() == Context.UnknownAnyTy) {
6706 Match = false;
6707 break;
6708 }
6709
6710 ImplicitConversionSequence ConversionState
6711 = TryCopyInitialization(*this, argExpr, param->getType(),
6712 /*SuppressUserConversions*/false,
6713 /*InOverloadResolution=*/true,
6714 /*AllowObjCWritebackConversion=*/
6715 getLangOpts().ObjCAutoRefCount,
6716 /*AllowExplicit*/false);
6717 // This function looks for a reasonably-exact match, so we consider
6718 // incompatible pointer conversions to be a failure here.
6719 if (ConversionState.isBad() ||
6720 (ConversionState.isStandard() &&
6721 ConversionState.Standard.Second ==
6722 ICK_Incompatible_Pointer_Conversion)) {
6723 Match = false;
6724 break;
6725 }
6726 }
6727 // Promote additional arguments to variadic methods.
6728 if (Match && Method->isVariadic()) {
6729 for (unsigned i = NumNamedArgs, e = Args.size(); i < e; ++i) {
6730 if (Args[i]->isTypeDependent()) {
6731 Match = false;
6732 break;
6733 }
6734 ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod,
6735 nullptr);
6736 if (Arg.isInvalid()) {
6737 Match = false;
6738 break;
6739 }
6740 }
6741 } else {
6742 // Check for extra arguments to non-variadic methods.
6743 if (Args.size() != NumNamedArgs)
6744 Match = false;
6745 else if (Match && NumNamedArgs == 0 && Methods.size() > 1) {
6746 // Special case when selectors have no argument. In this case, select
6747 // one with the most general result type of 'id'.
6748 for (unsigned b = 0, e = Methods.size(); b < e; b++) {
6749 QualType ReturnT = Methods[b]->getReturnType();
6750 if (ReturnT->isObjCIdType())
6751 return Methods[b];
6752 }
6753 }
6754 }
6755
6756 if (Match)
6757 return Method;
6758 }
6759 return nullptr;
6760 }
6761
convertArgsForAvailabilityChecks(Sema & S,FunctionDecl * Function,Expr * ThisArg,SourceLocation CallLoc,ArrayRef<Expr * > Args,Sema::SFINAETrap & Trap,bool MissingImplicitThis,Expr * & ConvertedThis,SmallVectorImpl<Expr * > & ConvertedArgs)6762 static bool convertArgsForAvailabilityChecks(
6763 Sema &S, FunctionDecl *Function, Expr *ThisArg, SourceLocation CallLoc,
6764 ArrayRef<Expr *> Args, Sema::SFINAETrap &Trap, bool MissingImplicitThis,
6765 Expr *&ConvertedThis, SmallVectorImpl<Expr *> &ConvertedArgs) {
6766 if (ThisArg) {
6767 CXXMethodDecl *Method = cast<CXXMethodDecl>(Function);
6768 assert(!isa<CXXConstructorDecl>(Method) &&
6769 "Shouldn't have `this` for ctors!");
6770 assert(!Method->isStatic() && "Shouldn't have `this` for static methods!");
6771 ExprResult R = S.PerformObjectArgumentInitialization(
6772 ThisArg, /*Qualifier=*/nullptr, Method, Method);
6773 if (R.isInvalid())
6774 return false;
6775 ConvertedThis = R.get();
6776 } else {
6777 if (auto *MD = dyn_cast<CXXMethodDecl>(Function)) {
6778 (void)MD;
6779 assert((MissingImplicitThis || MD->isStatic() ||
6780 isa<CXXConstructorDecl>(MD)) &&
6781 "Expected `this` for non-ctor instance methods");
6782 }
6783 ConvertedThis = nullptr;
6784 }
6785
6786 // Ignore any variadic arguments. Converting them is pointless, since the
6787 // user can't refer to them in the function condition.
6788 unsigned ArgSizeNoVarargs = std::min(Function->param_size(), Args.size());
6789
6790 // Convert the arguments.
6791 for (unsigned I = 0; I != ArgSizeNoVarargs; ++I) {
6792 ExprResult R;
6793 R = S.PerformCopyInitialization(InitializedEntity::InitializeParameter(
6794 S.Context, Function->getParamDecl(I)),
6795 SourceLocation(), Args[I]);
6796
6797 if (R.isInvalid())
6798 return false;
6799
6800 ConvertedArgs.push_back(R.get());
6801 }
6802
6803 if (Trap.hasErrorOccurred())
6804 return false;
6805
6806 // Push default arguments if needed.
6807 if (!Function->isVariadic() && Args.size() < Function->getNumParams()) {
6808 for (unsigned i = Args.size(), e = Function->getNumParams(); i != e; ++i) {
6809 ParmVarDecl *P = Function->getParamDecl(i);
6810 if (!P->hasDefaultArg())
6811 return false;
6812 ExprResult R = S.BuildCXXDefaultArgExpr(CallLoc, Function, P);
6813 if (R.isInvalid())
6814 return false;
6815 ConvertedArgs.push_back(R.get());
6816 }
6817
6818 if (Trap.hasErrorOccurred())
6819 return false;
6820 }
6821 return true;
6822 }
6823
CheckEnableIf(FunctionDecl * Function,SourceLocation CallLoc,ArrayRef<Expr * > Args,bool MissingImplicitThis)6824 EnableIfAttr *Sema::CheckEnableIf(FunctionDecl *Function,
6825 SourceLocation CallLoc,
6826 ArrayRef<Expr *> Args,
6827 bool MissingImplicitThis) {
6828 auto EnableIfAttrs = Function->specific_attrs<EnableIfAttr>();
6829 if (EnableIfAttrs.begin() == EnableIfAttrs.end())
6830 return nullptr;
6831
6832 SFINAETrap Trap(*this);
6833 SmallVector<Expr *, 16> ConvertedArgs;
6834 // FIXME: We should look into making enable_if late-parsed.
6835 Expr *DiscardedThis;
6836 if (!convertArgsForAvailabilityChecks(
6837 *this, Function, /*ThisArg=*/nullptr, CallLoc, Args, Trap,
6838 /*MissingImplicitThis=*/true, DiscardedThis, ConvertedArgs))
6839 return *EnableIfAttrs.begin();
6840
6841 for (auto *EIA : EnableIfAttrs) {
6842 APValue Result;
6843 // FIXME: This doesn't consider value-dependent cases, because doing so is
6844 // very difficult. Ideally, we should handle them more gracefully.
6845 if (EIA->getCond()->isValueDependent() ||
6846 !EIA->getCond()->EvaluateWithSubstitution(
6847 Result, Context, Function, llvm::ArrayRef(ConvertedArgs)))
6848 return EIA;
6849
6850 if (!Result.isInt() || !Result.getInt().getBoolValue())
6851 return EIA;
6852 }
6853 return nullptr;
6854 }
6855
6856 template <typename CheckFn>
diagnoseDiagnoseIfAttrsWith(Sema & S,const NamedDecl * ND,bool ArgDependent,SourceLocation Loc,CheckFn && IsSuccessful)6857 static bool diagnoseDiagnoseIfAttrsWith(Sema &S, const NamedDecl *ND,
6858 bool ArgDependent, SourceLocation Loc,
6859 CheckFn &&IsSuccessful) {
6860 SmallVector<const DiagnoseIfAttr *, 8> Attrs;
6861 for (const auto *DIA : ND->specific_attrs<DiagnoseIfAttr>()) {
6862 if (ArgDependent == DIA->getArgDependent())
6863 Attrs.push_back(DIA);
6864 }
6865
6866 // Common case: No diagnose_if attributes, so we can quit early.
6867 if (Attrs.empty())
6868 return false;
6869
6870 auto WarningBegin = std::stable_partition(
6871 Attrs.begin(), Attrs.end(),
6872 [](const DiagnoseIfAttr *DIA) { return DIA->isError(); });
6873
6874 // Note that diagnose_if attributes are late-parsed, so they appear in the
6875 // correct order (unlike enable_if attributes).
6876 auto ErrAttr = llvm::find_if(llvm::make_range(Attrs.begin(), WarningBegin),
6877 IsSuccessful);
6878 if (ErrAttr != WarningBegin) {
6879 const DiagnoseIfAttr *DIA = *ErrAttr;
6880 S.Diag(Loc, diag::err_diagnose_if_succeeded) << DIA->getMessage();
6881 S.Diag(DIA->getLocation(), diag::note_from_diagnose_if)
6882 << DIA->getParent() << DIA->getCond()->getSourceRange();
6883 return true;
6884 }
6885
6886 for (const auto *DIA : llvm::make_range(WarningBegin, Attrs.end()))
6887 if (IsSuccessful(DIA)) {
6888 S.Diag(Loc, diag::warn_diagnose_if_succeeded) << DIA->getMessage();
6889 S.Diag(DIA->getLocation(), diag::note_from_diagnose_if)
6890 << DIA->getParent() << DIA->getCond()->getSourceRange();
6891 }
6892
6893 return false;
6894 }
6895
diagnoseArgDependentDiagnoseIfAttrs(const FunctionDecl * Function,const Expr * ThisArg,ArrayRef<const Expr * > Args,SourceLocation Loc)6896 bool Sema::diagnoseArgDependentDiagnoseIfAttrs(const FunctionDecl *Function,
6897 const Expr *ThisArg,
6898 ArrayRef<const Expr *> Args,
6899 SourceLocation Loc) {
6900 return diagnoseDiagnoseIfAttrsWith(
6901 *this, Function, /*ArgDependent=*/true, Loc,
6902 [&](const DiagnoseIfAttr *DIA) {
6903 APValue Result;
6904 // It's sane to use the same Args for any redecl of this function, since
6905 // EvaluateWithSubstitution only cares about the position of each
6906 // argument in the arg list, not the ParmVarDecl* it maps to.
6907 if (!DIA->getCond()->EvaluateWithSubstitution(
6908 Result, Context, cast<FunctionDecl>(DIA->getParent()), Args, ThisArg))
6909 return false;
6910 return Result.isInt() && Result.getInt().getBoolValue();
6911 });
6912 }
6913
diagnoseArgIndependentDiagnoseIfAttrs(const NamedDecl * ND,SourceLocation Loc)6914 bool Sema::diagnoseArgIndependentDiagnoseIfAttrs(const NamedDecl *ND,
6915 SourceLocation Loc) {
6916 return diagnoseDiagnoseIfAttrsWith(
6917 *this, ND, /*ArgDependent=*/false, Loc,
6918 [&](const DiagnoseIfAttr *DIA) {
6919 bool Result;
6920 return DIA->getCond()->EvaluateAsBooleanCondition(Result, Context) &&
6921 Result;
6922 });
6923 }
6924
6925 /// Add all of the function declarations in the given function set to
6926 /// the overload candidate set.
AddFunctionCandidates(const UnresolvedSetImpl & Fns,ArrayRef<Expr * > Args,OverloadCandidateSet & CandidateSet,TemplateArgumentListInfo * ExplicitTemplateArgs,bool SuppressUserConversions,bool PartialOverloading,bool FirstArgumentIsBase)6927 void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns,
6928 ArrayRef<Expr *> Args,
6929 OverloadCandidateSet &CandidateSet,
6930 TemplateArgumentListInfo *ExplicitTemplateArgs,
6931 bool SuppressUserConversions,
6932 bool PartialOverloading,
6933 bool FirstArgumentIsBase) {
6934 for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) {
6935 NamedDecl *D = F.getDecl()->getUnderlyingDecl();
6936 ArrayRef<Expr *> FunctionArgs = Args;
6937
6938 FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D);
6939 FunctionDecl *FD =
6940 FunTmpl ? FunTmpl->getTemplatedDecl() : cast<FunctionDecl>(D);
6941
6942 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) {
6943 QualType ObjectType;
6944 Expr::Classification ObjectClassification;
6945 if (Args.size() > 0) {
6946 if (Expr *E = Args[0]) {
6947 // Use the explicit base to restrict the lookup:
6948 ObjectType = E->getType();
6949 // Pointers in the object arguments are implicitly dereferenced, so we
6950 // always classify them as l-values.
6951 if (!ObjectType.isNull() && ObjectType->isPointerType())
6952 ObjectClassification = Expr::Classification::makeSimpleLValue();
6953 else
6954 ObjectClassification = E->Classify(Context);
6955 } // .. else there is an implicit base.
6956 FunctionArgs = Args.slice(1);
6957 }
6958 if (FunTmpl) {
6959 AddMethodTemplateCandidate(
6960 FunTmpl, F.getPair(),
6961 cast<CXXRecordDecl>(FunTmpl->getDeclContext()),
6962 ExplicitTemplateArgs, ObjectType, ObjectClassification,
6963 FunctionArgs, CandidateSet, SuppressUserConversions,
6964 PartialOverloading);
6965 } else {
6966 AddMethodCandidate(cast<CXXMethodDecl>(FD), F.getPair(),
6967 cast<CXXMethodDecl>(FD)->getParent(), ObjectType,
6968 ObjectClassification, FunctionArgs, CandidateSet,
6969 SuppressUserConversions, PartialOverloading);
6970 }
6971 } else {
6972 // This branch handles both standalone functions and static methods.
6973
6974 // Slice the first argument (which is the base) when we access
6975 // static method as non-static.
6976 if (Args.size() > 0 &&
6977 (!Args[0] || (FirstArgumentIsBase && isa<CXXMethodDecl>(FD) &&
6978 !isa<CXXConstructorDecl>(FD)))) {
6979 assert(cast<CXXMethodDecl>(FD)->isStatic());
6980 FunctionArgs = Args.slice(1);
6981 }
6982 if (FunTmpl) {
6983 AddTemplateOverloadCandidate(FunTmpl, F.getPair(),
6984 ExplicitTemplateArgs, FunctionArgs,
6985 CandidateSet, SuppressUserConversions,
6986 PartialOverloading);
6987 } else {
6988 AddOverloadCandidate(FD, F.getPair(), FunctionArgs, CandidateSet,
6989 SuppressUserConversions, PartialOverloading);
6990 }
6991 }
6992 }
6993 }
6994
6995 /// AddMethodCandidate - Adds a named decl (which is some kind of
6996 /// method) as a method candidate to the given overload set.
AddMethodCandidate(DeclAccessPair FoundDecl,QualType ObjectType,Expr::Classification ObjectClassification,ArrayRef<Expr * > Args,OverloadCandidateSet & CandidateSet,bool SuppressUserConversions,OverloadCandidateParamOrder PO)6997 void Sema::AddMethodCandidate(DeclAccessPair FoundDecl, QualType ObjectType,
6998 Expr::Classification ObjectClassification,
6999 ArrayRef<Expr *> Args,
7000 OverloadCandidateSet &CandidateSet,
7001 bool SuppressUserConversions,
7002 OverloadCandidateParamOrder PO) {
7003 NamedDecl *Decl = FoundDecl.getDecl();
7004 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext());
7005
7006 if (isa<UsingShadowDecl>(Decl))
7007 Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl();
7008
7009 if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) {
7010 assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) &&
7011 "Expected a member function template");
7012 AddMethodTemplateCandidate(TD, FoundDecl, ActingContext,
7013 /*ExplicitArgs*/ nullptr, ObjectType,
7014 ObjectClassification, Args, CandidateSet,
7015 SuppressUserConversions, false, PO);
7016 } else {
7017 AddMethodCandidate(cast<CXXMethodDecl>(Decl), FoundDecl, ActingContext,
7018 ObjectType, ObjectClassification, Args, CandidateSet,
7019 SuppressUserConversions, false, std::nullopt, PO);
7020 }
7021 }
7022
7023 /// AddMethodCandidate - Adds the given C++ member function to the set
7024 /// of candidate functions, using the given function call arguments
7025 /// and the object argument (@c Object). For example, in a call
7026 /// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
7027 /// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
7028 /// allow user-defined conversions via constructors or conversion
7029 /// operators.
7030 void
AddMethodCandidate(CXXMethodDecl * Method,DeclAccessPair FoundDecl,CXXRecordDecl * ActingContext,QualType ObjectType,Expr::Classification ObjectClassification,ArrayRef<Expr * > Args,OverloadCandidateSet & CandidateSet,bool SuppressUserConversions,bool PartialOverloading,ConversionSequenceList EarlyConversions,OverloadCandidateParamOrder PO)7031 Sema::AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl,
7032 CXXRecordDecl *ActingContext, QualType ObjectType,
7033 Expr::Classification ObjectClassification,
7034 ArrayRef<Expr *> Args,
7035 OverloadCandidateSet &CandidateSet,
7036 bool SuppressUserConversions,
7037 bool PartialOverloading,
7038 ConversionSequenceList EarlyConversions,
7039 OverloadCandidateParamOrder PO) {
7040 const FunctionProtoType *Proto
7041 = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>());
7042 assert(Proto && "Methods without a prototype cannot be overloaded");
7043 assert(!isa<CXXConstructorDecl>(Method) &&
7044 "Use AddOverloadCandidate for constructors");
7045
7046 if (!CandidateSet.isNewCandidate(Method, PO))
7047 return;
7048
7049 // C++11 [class.copy]p23: [DR1402]
7050 // A defaulted move assignment operator that is defined as deleted is
7051 // ignored by overload resolution.
7052 if (Method->isDefaulted() && Method->isDeleted() &&
7053 Method->isMoveAssignmentOperator())
7054 return;
7055
7056 // Overload resolution is always an unevaluated context.
7057 EnterExpressionEvaluationContext Unevaluated(
7058 *this, Sema::ExpressionEvaluationContext::Unevaluated);
7059
7060 // Add this candidate
7061 OverloadCandidate &Candidate =
7062 CandidateSet.addCandidate(Args.size() + 1, EarlyConversions);
7063 Candidate.FoundDecl = FoundDecl;
7064 Candidate.Function = Method;
7065 Candidate.RewriteKind =
7066 CandidateSet.getRewriteInfo().getRewriteKind(Method, PO);
7067 Candidate.IsSurrogate = false;
7068 Candidate.IgnoreObjectArgument = false;
7069 Candidate.ExplicitCallArguments = Args.size();
7070
7071 unsigned NumParams = Proto->getNumParams();
7072
7073 // (C++ 13.3.2p2): A candidate function having fewer than m
7074 // parameters is viable only if it has an ellipsis in its parameter
7075 // list (8.3.5).
7076 if (TooManyArguments(NumParams, Args.size(), PartialOverloading) &&
7077 !Proto->isVariadic() &&
7078 shouldEnforceArgLimit(PartialOverloading, Method)) {
7079 Candidate.Viable = false;
7080 Candidate.FailureKind = ovl_fail_too_many_arguments;
7081 return;
7082 }
7083
7084 // (C++ 13.3.2p2): A candidate function having more than m parameters
7085 // is viable only if the (m+1)st parameter has a default argument
7086 // (8.3.6). For the purposes of overload resolution, the
7087 // parameter list is truncated on the right, so that there are
7088 // exactly m parameters.
7089 unsigned MinRequiredArgs = Method->getMinRequiredArguments();
7090 if (Args.size() < MinRequiredArgs && !PartialOverloading) {
7091 // Not enough arguments.
7092 Candidate.Viable = false;
7093 Candidate.FailureKind = ovl_fail_too_few_arguments;
7094 return;
7095 }
7096
7097 Candidate.Viable = true;
7098
7099 unsigned FirstConvIdx = PO == OverloadCandidateParamOrder::Reversed ? 1 : 0;
7100 if (ObjectType.isNull())
7101 Candidate.IgnoreObjectArgument = true;
7102 else if (Method->isStatic()) {
7103 // [over.best.ics.general]p8
7104 // When the parameter is the implicit object parameter of a static member
7105 // function, the implicit conversion sequence is a standard conversion
7106 // sequence that is neither better nor worse than any other standard
7107 // conversion sequence.
7108 //
7109 // This is a rule that was introduced in C++23 to support static lambdas. We
7110 // apply it retroactively because we want to support static lambdas as an
7111 // extension and it doesn't hurt previous code.
7112 Candidate.Conversions[FirstConvIdx].setStaticObjectArgument();
7113 } else {
7114 // Determine the implicit conversion sequence for the object
7115 // parameter.
7116 Candidate.Conversions[FirstConvIdx] = TryObjectArgumentInitialization(
7117 *this, CandidateSet.getLocation(), ObjectType, ObjectClassification,
7118 Method, ActingContext);
7119 if (Candidate.Conversions[FirstConvIdx].isBad()) {
7120 Candidate.Viable = false;
7121 Candidate.FailureKind = ovl_fail_bad_conversion;
7122 return;
7123 }
7124 }
7125
7126 // (CUDA B.1): Check for invalid calls between targets.
7127 if (getLangOpts().CUDA)
7128 if (const FunctionDecl *Caller = getCurFunctionDecl(/*AllowLambda=*/true))
7129 if (!IsAllowedCUDACall(Caller, Method)) {
7130 Candidate.Viable = false;
7131 Candidate.FailureKind = ovl_fail_bad_target;
7132 return;
7133 }
7134
7135 if (Method->getTrailingRequiresClause()) {
7136 ConstraintSatisfaction Satisfaction;
7137 if (CheckFunctionConstraints(Method, Satisfaction, /*Loc*/ {},
7138 /*ForOverloadResolution*/ true) ||
7139 !Satisfaction.IsSatisfied) {
7140 Candidate.Viable = false;
7141 Candidate.FailureKind = ovl_fail_constraints_not_satisfied;
7142 return;
7143 }
7144 }
7145
7146 // Determine the implicit conversion sequences for each of the
7147 // arguments.
7148 for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) {
7149 unsigned ConvIdx =
7150 PO == OverloadCandidateParamOrder::Reversed ? 0 : (ArgIdx + 1);
7151 if (Candidate.Conversions[ConvIdx].isInitialized()) {
7152 // We already formed a conversion sequence for this parameter during
7153 // template argument deduction.
7154 } else if (ArgIdx < NumParams) {
7155 // (C++ 13.3.2p3): for F to be a viable function, there shall
7156 // exist for each argument an implicit conversion sequence
7157 // (13.3.3.1) that converts that argument to the corresponding
7158 // parameter of F.
7159 QualType ParamType = Proto->getParamType(ArgIdx);
7160 Candidate.Conversions[ConvIdx]
7161 = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
7162 SuppressUserConversions,
7163 /*InOverloadResolution=*/true,
7164 /*AllowObjCWritebackConversion=*/
7165 getLangOpts().ObjCAutoRefCount);
7166 if (Candidate.Conversions[ConvIdx].isBad()) {
7167 Candidate.Viable = false;
7168 Candidate.FailureKind = ovl_fail_bad_conversion;
7169 return;
7170 }
7171 } else {
7172 // (C++ 13.3.2p2): For the purposes of overload resolution, any
7173 // argument for which there is no corresponding parameter is
7174 // considered to "match the ellipsis" (C+ 13.3.3.1.3).
7175 Candidate.Conversions[ConvIdx].setEllipsis();
7176 }
7177 }
7178
7179 if (EnableIfAttr *FailedAttr =
7180 CheckEnableIf(Method, CandidateSet.getLocation(), Args, true)) {
7181 Candidate.Viable = false;
7182 Candidate.FailureKind = ovl_fail_enable_if;
7183 Candidate.DeductionFailure.Data = FailedAttr;
7184 return;
7185 }
7186
7187 if (Method->isMultiVersion() &&
7188 ((Method->hasAttr<TargetAttr>() &&
7189 !Method->getAttr<TargetAttr>()->isDefaultVersion()) ||
7190 (Method->hasAttr<TargetVersionAttr>() &&
7191 !Method->getAttr<TargetVersionAttr>()->isDefaultVersion()))) {
7192 Candidate.Viable = false;
7193 Candidate.FailureKind = ovl_non_default_multiversion_function;
7194 }
7195 }
7196
7197 /// Add a C++ member function template as a candidate to the candidate
7198 /// set, using template argument deduction to produce an appropriate member
7199 /// function template specialization.
AddMethodTemplateCandidate(FunctionTemplateDecl * MethodTmpl,DeclAccessPair FoundDecl,CXXRecordDecl * ActingContext,TemplateArgumentListInfo * ExplicitTemplateArgs,QualType ObjectType,Expr::Classification ObjectClassification,ArrayRef<Expr * > Args,OverloadCandidateSet & CandidateSet,bool SuppressUserConversions,bool PartialOverloading,OverloadCandidateParamOrder PO)7200 void Sema::AddMethodTemplateCandidate(
7201 FunctionTemplateDecl *MethodTmpl, DeclAccessPair FoundDecl,
7202 CXXRecordDecl *ActingContext,
7203 TemplateArgumentListInfo *ExplicitTemplateArgs, QualType ObjectType,
7204 Expr::Classification ObjectClassification, ArrayRef<Expr *> Args,
7205 OverloadCandidateSet &CandidateSet, bool SuppressUserConversions,
7206 bool PartialOverloading, OverloadCandidateParamOrder PO) {
7207 if (!CandidateSet.isNewCandidate(MethodTmpl, PO))
7208 return;
7209
7210 // C++ [over.match.funcs]p7:
7211 // In each case where a candidate is a function template, candidate
7212 // function template specializations are generated using template argument
7213 // deduction (14.8.3, 14.8.2). Those candidates are then handled as
7214 // candidate functions in the usual way.113) A given name can refer to one
7215 // or more function templates and also to a set of overloaded non-template
7216 // functions. In such a case, the candidate functions generated from each
7217 // function template are combined with the set of non-template candidate
7218 // functions.
7219 TemplateDeductionInfo Info(CandidateSet.getLocation());
7220 FunctionDecl *Specialization = nullptr;
7221 ConversionSequenceList Conversions;
7222 if (TemplateDeductionResult Result = DeduceTemplateArguments(
7223 MethodTmpl, ExplicitTemplateArgs, Args, Specialization, Info,
7224 PartialOverloading, [&](ArrayRef<QualType> ParamTypes) {
7225 return CheckNonDependentConversions(
7226 MethodTmpl, ParamTypes, Args, CandidateSet, Conversions,
7227 SuppressUserConversions, ActingContext, ObjectType,
7228 ObjectClassification, PO);
7229 })) {
7230 OverloadCandidate &Candidate =
7231 CandidateSet.addCandidate(Conversions.size(), Conversions);
7232 Candidate.FoundDecl = FoundDecl;
7233 Candidate.Function = MethodTmpl->getTemplatedDecl();
7234 Candidate.Viable = false;
7235 Candidate.RewriteKind =
7236 CandidateSet.getRewriteInfo().getRewriteKind(Candidate.Function, PO);
7237 Candidate.IsSurrogate = false;
7238 Candidate.IgnoreObjectArgument =
7239 cast<CXXMethodDecl>(Candidate.Function)->isStatic() ||
7240 ObjectType.isNull();
7241 Candidate.ExplicitCallArguments = Args.size();
7242 if (Result == TDK_NonDependentConversionFailure)
7243 Candidate.FailureKind = ovl_fail_bad_conversion;
7244 else {
7245 Candidate.FailureKind = ovl_fail_bad_deduction;
7246 Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
7247 Info);
7248 }
7249 return;
7250 }
7251
7252 // Add the function template specialization produced by template argument
7253 // deduction as a candidate.
7254 assert(Specialization && "Missing member function template specialization?");
7255 assert(isa<CXXMethodDecl>(Specialization) &&
7256 "Specialization is not a member function?");
7257 AddMethodCandidate(cast<CXXMethodDecl>(Specialization), FoundDecl,
7258 ActingContext, ObjectType, ObjectClassification, Args,
7259 CandidateSet, SuppressUserConversions, PartialOverloading,
7260 Conversions, PO);
7261 }
7262
7263 /// Determine whether a given function template has a simple explicit specifier
7264 /// or a non-value-dependent explicit-specification that evaluates to true.
isNonDependentlyExplicit(FunctionTemplateDecl * FTD)7265 static bool isNonDependentlyExplicit(FunctionTemplateDecl *FTD) {
7266 return ExplicitSpecifier::getFromDecl(FTD->getTemplatedDecl()).isExplicit();
7267 }
7268
7269 /// Add a C++ function template specialization as a candidate
7270 /// in the candidate set, using template argument deduction to produce
7271 /// an appropriate function template specialization.
AddTemplateOverloadCandidate(FunctionTemplateDecl * FunctionTemplate,DeclAccessPair FoundDecl,TemplateArgumentListInfo * ExplicitTemplateArgs,ArrayRef<Expr * > Args,OverloadCandidateSet & CandidateSet,bool SuppressUserConversions,bool PartialOverloading,bool AllowExplicit,ADLCallKind IsADLCandidate,OverloadCandidateParamOrder PO)7272 void Sema::AddTemplateOverloadCandidate(
7273 FunctionTemplateDecl *FunctionTemplate, DeclAccessPair FoundDecl,
7274 TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef<Expr *> Args,
7275 OverloadCandidateSet &CandidateSet, bool SuppressUserConversions,
7276 bool PartialOverloading, bool AllowExplicit, ADLCallKind IsADLCandidate,
7277 OverloadCandidateParamOrder PO) {
7278 if (!CandidateSet.isNewCandidate(FunctionTemplate, PO))
7279 return;
7280
7281 // If the function template has a non-dependent explicit specification,
7282 // exclude it now if appropriate; we are not permitted to perform deduction
7283 // and substitution in this case.
7284 if (!AllowExplicit && isNonDependentlyExplicit(FunctionTemplate)) {
7285 OverloadCandidate &Candidate = CandidateSet.addCandidate();
7286 Candidate.FoundDecl = FoundDecl;
7287 Candidate.Function = FunctionTemplate->getTemplatedDecl();
7288 Candidate.Viable = false;
7289 Candidate.FailureKind = ovl_fail_explicit;
7290 return;
7291 }
7292
7293 // C++ [over.match.funcs]p7:
7294 // In each case where a candidate is a function template, candidate
7295 // function template specializations are generated using template argument
7296 // deduction (14.8.3, 14.8.2). Those candidates are then handled as
7297 // candidate functions in the usual way.113) A given name can refer to one
7298 // or more function templates and also to a set of overloaded non-template
7299 // functions. In such a case, the candidate functions generated from each
7300 // function template are combined with the set of non-template candidate
7301 // functions.
7302 TemplateDeductionInfo Info(CandidateSet.getLocation());
7303 FunctionDecl *Specialization = nullptr;
7304 ConversionSequenceList Conversions;
7305 if (TemplateDeductionResult Result = DeduceTemplateArguments(
7306 FunctionTemplate, ExplicitTemplateArgs, Args, Specialization, Info,
7307 PartialOverloading, [&](ArrayRef<QualType> ParamTypes) {
7308 return CheckNonDependentConversions(
7309 FunctionTemplate, ParamTypes, Args, CandidateSet, Conversions,
7310 SuppressUserConversions, nullptr, QualType(), {}, PO);
7311 })) {
7312 OverloadCandidate &Candidate =
7313 CandidateSet.addCandidate(Conversions.size(), Conversions);
7314 Candidate.FoundDecl = FoundDecl;
7315 Candidate.Function = FunctionTemplate->getTemplatedDecl();
7316 Candidate.Viable = false;
7317 Candidate.RewriteKind =
7318 CandidateSet.getRewriteInfo().getRewriteKind(Candidate.Function, PO);
7319 Candidate.IsSurrogate = false;
7320 Candidate.IsADLCandidate = IsADLCandidate;
7321 // Ignore the object argument if there is one, since we don't have an object
7322 // type.
7323 Candidate.IgnoreObjectArgument =
7324 isa<CXXMethodDecl>(Candidate.Function) &&
7325 !isa<CXXConstructorDecl>(Candidate.Function);
7326 Candidate.ExplicitCallArguments = Args.size();
7327 if (Result == TDK_NonDependentConversionFailure)
7328 Candidate.FailureKind = ovl_fail_bad_conversion;
7329 else {
7330 Candidate.FailureKind = ovl_fail_bad_deduction;
7331 Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
7332 Info);
7333 }
7334 return;
7335 }
7336
7337 // Add the function template specialization produced by template argument
7338 // deduction as a candidate.
7339 assert(Specialization && "Missing function template specialization?");
7340 AddOverloadCandidate(
7341 Specialization, FoundDecl, Args, CandidateSet, SuppressUserConversions,
7342 PartialOverloading, AllowExplicit,
7343 /*AllowExplicitConversions*/ false, IsADLCandidate, Conversions, PO);
7344 }
7345
7346 /// Check that implicit conversion sequences can be formed for each argument
7347 /// whose corresponding parameter has a non-dependent type, per DR1391's
7348 /// [temp.deduct.call]p10.
CheckNonDependentConversions(FunctionTemplateDecl * FunctionTemplate,ArrayRef<QualType> ParamTypes,ArrayRef<Expr * > Args,OverloadCandidateSet & CandidateSet,ConversionSequenceList & Conversions,bool SuppressUserConversions,CXXRecordDecl * ActingContext,QualType ObjectType,Expr::Classification ObjectClassification,OverloadCandidateParamOrder PO)7349 bool Sema::CheckNonDependentConversions(
7350 FunctionTemplateDecl *FunctionTemplate, ArrayRef<QualType> ParamTypes,
7351 ArrayRef<Expr *> Args, OverloadCandidateSet &CandidateSet,
7352 ConversionSequenceList &Conversions, bool SuppressUserConversions,
7353 CXXRecordDecl *ActingContext, QualType ObjectType,
7354 Expr::Classification ObjectClassification, OverloadCandidateParamOrder PO) {
7355 // FIXME: The cases in which we allow explicit conversions for constructor
7356 // arguments never consider calling a constructor template. It's not clear
7357 // that is correct.
7358 const bool AllowExplicit = false;
7359
7360 auto *FD = FunctionTemplate->getTemplatedDecl();
7361 auto *Method = dyn_cast<CXXMethodDecl>(FD);
7362 bool HasThisConversion = Method && !isa<CXXConstructorDecl>(Method);
7363 unsigned ThisConversions = HasThisConversion ? 1 : 0;
7364
7365 Conversions =
7366 CandidateSet.allocateConversionSequences(ThisConversions + Args.size());
7367
7368 // Overload resolution is always an unevaluated context.
7369 EnterExpressionEvaluationContext Unevaluated(
7370 *this, Sema::ExpressionEvaluationContext::Unevaluated);
7371
7372 // For a method call, check the 'this' conversion here too. DR1391 doesn't
7373 // require that, but this check should never result in a hard error, and
7374 // overload resolution is permitted to sidestep instantiations.
7375 if (HasThisConversion && !cast<CXXMethodDecl>(FD)->isStatic() &&
7376 !ObjectType.isNull()) {
7377 unsigned ConvIdx = PO == OverloadCandidateParamOrder::Reversed ? 1 : 0;
7378 Conversions[ConvIdx] = TryObjectArgumentInitialization(
7379 *this, CandidateSet.getLocation(), ObjectType, ObjectClassification,
7380 Method, ActingContext);
7381 if (Conversions[ConvIdx].isBad())
7382 return true;
7383 }
7384
7385 for (unsigned I = 0, N = std::min(ParamTypes.size(), Args.size()); I != N;
7386 ++I) {
7387 QualType ParamType = ParamTypes[I];
7388 if (!ParamType->isDependentType()) {
7389 unsigned ConvIdx = PO == OverloadCandidateParamOrder::Reversed
7390 ? 0
7391 : (ThisConversions + I);
7392 Conversions[ConvIdx]
7393 = TryCopyInitialization(*this, Args[I], ParamType,
7394 SuppressUserConversions,
7395 /*InOverloadResolution=*/true,
7396 /*AllowObjCWritebackConversion=*/
7397 getLangOpts().ObjCAutoRefCount,
7398 AllowExplicit);
7399 if (Conversions[ConvIdx].isBad())
7400 return true;
7401 }
7402 }
7403
7404 return false;
7405 }
7406
7407 /// Determine whether this is an allowable conversion from the result
7408 /// of an explicit conversion operator to the expected type, per C++
7409 /// [over.match.conv]p1 and [over.match.ref]p1.
7410 ///
7411 /// \param ConvType The return type of the conversion function.
7412 ///
7413 /// \param ToType The type we are converting to.
7414 ///
7415 /// \param AllowObjCPointerConversion Allow a conversion from one
7416 /// Objective-C pointer to another.
7417 ///
7418 /// \returns true if the conversion is allowable, false otherwise.
isAllowableExplicitConversion(Sema & S,QualType ConvType,QualType ToType,bool AllowObjCPointerConversion)7419 static bool isAllowableExplicitConversion(Sema &S,
7420 QualType ConvType, QualType ToType,
7421 bool AllowObjCPointerConversion) {
7422 QualType ToNonRefType = ToType.getNonReferenceType();
7423
7424 // Easy case: the types are the same.
7425 if (S.Context.hasSameUnqualifiedType(ConvType, ToNonRefType))
7426 return true;
7427
7428 // Allow qualification conversions.
7429 bool ObjCLifetimeConversion;
7430 if (S.IsQualificationConversion(ConvType, ToNonRefType, /*CStyle*/false,
7431 ObjCLifetimeConversion))
7432 return true;
7433
7434 // If we're not allowed to consider Objective-C pointer conversions,
7435 // we're done.
7436 if (!AllowObjCPointerConversion)
7437 return false;
7438
7439 // Is this an Objective-C pointer conversion?
7440 bool IncompatibleObjC = false;
7441 QualType ConvertedType;
7442 return S.isObjCPointerConversion(ConvType, ToNonRefType, ConvertedType,
7443 IncompatibleObjC);
7444 }
7445
7446 /// AddConversionCandidate - Add a C++ conversion function as a
7447 /// candidate in the candidate set (C++ [over.match.conv],
7448 /// C++ [over.match.copy]). From is the expression we're converting from,
7449 /// and ToType is the type that we're eventually trying to convert to
7450 /// (which may or may not be the same type as the type that the
7451 /// conversion function produces).
AddConversionCandidate(CXXConversionDecl * Conversion,DeclAccessPair FoundDecl,CXXRecordDecl * ActingContext,Expr * From,QualType ToType,OverloadCandidateSet & CandidateSet,bool AllowObjCConversionOnExplicit,bool AllowExplicit,bool AllowResultConversion)7452 void Sema::AddConversionCandidate(
7453 CXXConversionDecl *Conversion, DeclAccessPair FoundDecl,
7454 CXXRecordDecl *ActingContext, Expr *From, QualType ToType,
7455 OverloadCandidateSet &CandidateSet, bool AllowObjCConversionOnExplicit,
7456 bool AllowExplicit, bool AllowResultConversion) {
7457 assert(!Conversion->getDescribedFunctionTemplate() &&
7458 "Conversion function templates use AddTemplateConversionCandidate");
7459 QualType ConvType = Conversion->getConversionType().getNonReferenceType();
7460 if (!CandidateSet.isNewCandidate(Conversion))
7461 return;
7462
7463 // If the conversion function has an undeduced return type, trigger its
7464 // deduction now.
7465 if (getLangOpts().CPlusPlus14 && ConvType->isUndeducedType()) {
7466 if (DeduceReturnType(Conversion, From->getExprLoc()))
7467 return;
7468 ConvType = Conversion->getConversionType().getNonReferenceType();
7469 }
7470
7471 // If we don't allow any conversion of the result type, ignore conversion
7472 // functions that don't convert to exactly (possibly cv-qualified) T.
7473 if (!AllowResultConversion &&
7474 !Context.hasSameUnqualifiedType(Conversion->getConversionType(), ToType))
7475 return;
7476
7477 // Per C++ [over.match.conv]p1, [over.match.ref]p1, an explicit conversion
7478 // operator is only a candidate if its return type is the target type or
7479 // can be converted to the target type with a qualification conversion.
7480 //
7481 // FIXME: Include such functions in the candidate list and explain why we
7482 // can't select them.
7483 if (Conversion->isExplicit() &&
7484 !isAllowableExplicitConversion(*this, ConvType, ToType,
7485 AllowObjCConversionOnExplicit))
7486 return;
7487
7488 // Overload resolution is always an unevaluated context.
7489 EnterExpressionEvaluationContext Unevaluated(
7490 *this, Sema::ExpressionEvaluationContext::Unevaluated);
7491
7492 // Add this candidate
7493 OverloadCandidate &Candidate = CandidateSet.addCandidate(1);
7494 Candidate.FoundDecl = FoundDecl;
7495 Candidate.Function = Conversion;
7496 Candidate.IsSurrogate = false;
7497 Candidate.IgnoreObjectArgument = false;
7498 Candidate.FinalConversion.setAsIdentityConversion();
7499 Candidate.FinalConversion.setFromType(ConvType);
7500 Candidate.FinalConversion.setAllToTypes(ToType);
7501 Candidate.Viable = true;
7502 Candidate.ExplicitCallArguments = 1;
7503
7504 // Explicit functions are not actually candidates at all if we're not
7505 // allowing them in this context, but keep them around so we can point
7506 // to them in diagnostics.
7507 if (!AllowExplicit && Conversion->isExplicit()) {
7508 Candidate.Viable = false;
7509 Candidate.FailureKind = ovl_fail_explicit;
7510 return;
7511 }
7512
7513 // C++ [over.match.funcs]p4:
7514 // For conversion functions, the function is considered to be a member of
7515 // the class of the implicit implied object argument for the purpose of
7516 // defining the type of the implicit object parameter.
7517 //
7518 // Determine the implicit conversion sequence for the implicit
7519 // object parameter.
7520 QualType ImplicitParamType = From->getType();
7521 if (const PointerType *FromPtrType = ImplicitParamType->getAs<PointerType>())
7522 ImplicitParamType = FromPtrType->getPointeeType();
7523 CXXRecordDecl *ConversionContext
7524 = cast<CXXRecordDecl>(ImplicitParamType->castAs<RecordType>()->getDecl());
7525
7526 Candidate.Conversions[0] = TryObjectArgumentInitialization(
7527 *this, CandidateSet.getLocation(), From->getType(),
7528 From->Classify(Context), Conversion, ConversionContext);
7529
7530 if (Candidate.Conversions[0].isBad()) {
7531 Candidate.Viable = false;
7532 Candidate.FailureKind = ovl_fail_bad_conversion;
7533 return;
7534 }
7535
7536 if (Conversion->getTrailingRequiresClause()) {
7537 ConstraintSatisfaction Satisfaction;
7538 if (CheckFunctionConstraints(Conversion, Satisfaction) ||
7539 !Satisfaction.IsSatisfied) {
7540 Candidate.Viable = false;
7541 Candidate.FailureKind = ovl_fail_constraints_not_satisfied;
7542 return;
7543 }
7544 }
7545
7546 // We won't go through a user-defined type conversion function to convert a
7547 // derived to base as such conversions are given Conversion Rank. They only
7548 // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user]
7549 QualType FromCanon
7550 = Context.getCanonicalType(From->getType().getUnqualifiedType());
7551 QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
7552 if (FromCanon == ToCanon ||
7553 IsDerivedFrom(CandidateSet.getLocation(), FromCanon, ToCanon)) {
7554 Candidate.Viable = false;
7555 Candidate.FailureKind = ovl_fail_trivial_conversion;
7556 return;
7557 }
7558
7559 // To determine what the conversion from the result of calling the
7560 // conversion function to the type we're eventually trying to
7561 // convert to (ToType), we need to synthesize a call to the
7562 // conversion function and attempt copy initialization from it. This
7563 // makes sure that we get the right semantics with respect to
7564 // lvalues/rvalues and the type. Fortunately, we can allocate this
7565 // call on the stack and we don't need its arguments to be
7566 // well-formed.
7567 DeclRefExpr ConversionRef(Context, Conversion, false, Conversion->getType(),
7568 VK_LValue, From->getBeginLoc());
7569 ImplicitCastExpr ConversionFn(ImplicitCastExpr::OnStack,
7570 Context.getPointerType(Conversion->getType()),
7571 CK_FunctionToPointerDecay, &ConversionRef,
7572 VK_PRValue, FPOptionsOverride());
7573
7574 QualType ConversionType = Conversion->getConversionType();
7575 if (!isCompleteType(From->getBeginLoc(), ConversionType)) {
7576 Candidate.Viable = false;
7577 Candidate.FailureKind = ovl_fail_bad_final_conversion;
7578 return;
7579 }
7580
7581 ExprValueKind VK = Expr::getValueKindForType(ConversionType);
7582
7583 // Note that it is safe to allocate CallExpr on the stack here because
7584 // there are 0 arguments (i.e., nothing is allocated using ASTContext's
7585 // allocator).
7586 QualType CallResultType = ConversionType.getNonLValueExprType(Context);
7587
7588 alignas(CallExpr) char Buffer[sizeof(CallExpr) + sizeof(Stmt *)];
7589 CallExpr *TheTemporaryCall = CallExpr::CreateTemporary(
7590 Buffer, &ConversionFn, CallResultType, VK, From->getBeginLoc());
7591
7592 ImplicitConversionSequence ICS =
7593 TryCopyInitialization(*this, TheTemporaryCall, ToType,
7594 /*SuppressUserConversions=*/true,
7595 /*InOverloadResolution=*/false,
7596 /*AllowObjCWritebackConversion=*/false);
7597
7598 switch (ICS.getKind()) {
7599 case ImplicitConversionSequence::StandardConversion:
7600 Candidate.FinalConversion = ICS.Standard;
7601
7602 // C++ [over.ics.user]p3:
7603 // If the user-defined conversion is specified by a specialization of a
7604 // conversion function template, the second standard conversion sequence
7605 // shall have exact match rank.
7606 if (Conversion->getPrimaryTemplate() &&
7607 GetConversionRank(ICS.Standard.Second) != ICR_Exact_Match) {
7608 Candidate.Viable = false;
7609 Candidate.FailureKind = ovl_fail_final_conversion_not_exact;
7610 return;
7611 }
7612
7613 // C++0x [dcl.init.ref]p5:
7614 // In the second case, if the reference is an rvalue reference and
7615 // the second standard conversion sequence of the user-defined
7616 // conversion sequence includes an lvalue-to-rvalue conversion, the
7617 // program is ill-formed.
7618 if (ToType->isRValueReferenceType() &&
7619 ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
7620 Candidate.Viable = false;
7621 Candidate.FailureKind = ovl_fail_bad_final_conversion;
7622 return;
7623 }
7624 break;
7625
7626 case ImplicitConversionSequence::BadConversion:
7627 Candidate.Viable = false;
7628 Candidate.FailureKind = ovl_fail_bad_final_conversion;
7629 return;
7630
7631 default:
7632 llvm_unreachable(
7633 "Can only end up with a standard conversion sequence or failure");
7634 }
7635
7636 if (EnableIfAttr *FailedAttr =
7637 CheckEnableIf(Conversion, CandidateSet.getLocation(), std::nullopt)) {
7638 Candidate.Viable = false;
7639 Candidate.FailureKind = ovl_fail_enable_if;
7640 Candidate.DeductionFailure.Data = FailedAttr;
7641 return;
7642 }
7643
7644 if (Conversion->isMultiVersion() &&
7645 ((Conversion->hasAttr<TargetAttr>() &&
7646 !Conversion->getAttr<TargetAttr>()->isDefaultVersion()) ||
7647 (Conversion->hasAttr<TargetVersionAttr>() &&
7648 !Conversion->getAttr<TargetVersionAttr>()->isDefaultVersion()))) {
7649 Candidate.Viable = false;
7650 Candidate.FailureKind = ovl_non_default_multiversion_function;
7651 }
7652 }
7653
7654 /// Adds a conversion function template specialization
7655 /// candidate to the overload set, using template argument deduction
7656 /// to deduce the template arguments of the conversion function
7657 /// template from the type that we are converting to (C++
7658 /// [temp.deduct.conv]).
AddTemplateConversionCandidate(FunctionTemplateDecl * FunctionTemplate,DeclAccessPair FoundDecl,CXXRecordDecl * ActingDC,Expr * From,QualType ToType,OverloadCandidateSet & CandidateSet,bool AllowObjCConversionOnExplicit,bool AllowExplicit,bool AllowResultConversion)7659 void Sema::AddTemplateConversionCandidate(
7660 FunctionTemplateDecl *FunctionTemplate, DeclAccessPair FoundDecl,
7661 CXXRecordDecl *ActingDC, Expr *From, QualType ToType,
7662 OverloadCandidateSet &CandidateSet, bool AllowObjCConversionOnExplicit,
7663 bool AllowExplicit, bool AllowResultConversion) {
7664 assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) &&
7665 "Only conversion function templates permitted here");
7666
7667 if (!CandidateSet.isNewCandidate(FunctionTemplate))
7668 return;
7669
7670 // If the function template has a non-dependent explicit specification,
7671 // exclude it now if appropriate; we are not permitted to perform deduction
7672 // and substitution in this case.
7673 if (!AllowExplicit && isNonDependentlyExplicit(FunctionTemplate)) {
7674 OverloadCandidate &Candidate = CandidateSet.addCandidate();
7675 Candidate.FoundDecl = FoundDecl;
7676 Candidate.Function = FunctionTemplate->getTemplatedDecl();
7677 Candidate.Viable = false;
7678 Candidate.FailureKind = ovl_fail_explicit;
7679 return;
7680 }
7681
7682 TemplateDeductionInfo Info(CandidateSet.getLocation());
7683 CXXConversionDecl *Specialization = nullptr;
7684 if (TemplateDeductionResult Result
7685 = DeduceTemplateArguments(FunctionTemplate, ToType,
7686 Specialization, Info)) {
7687 OverloadCandidate &Candidate = CandidateSet.addCandidate();
7688 Candidate.FoundDecl = FoundDecl;
7689 Candidate.Function = FunctionTemplate->getTemplatedDecl();
7690 Candidate.Viable = false;
7691 Candidate.FailureKind = ovl_fail_bad_deduction;
7692 Candidate.IsSurrogate = false;
7693 Candidate.IgnoreObjectArgument = false;
7694 Candidate.ExplicitCallArguments = 1;
7695 Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
7696 Info);
7697 return;
7698 }
7699
7700 // Add the conversion function template specialization produced by
7701 // template argument deduction as a candidate.
7702 assert(Specialization && "Missing function template specialization?");
7703 AddConversionCandidate(Specialization, FoundDecl, ActingDC, From, ToType,
7704 CandidateSet, AllowObjCConversionOnExplicit,
7705 AllowExplicit, AllowResultConversion);
7706 }
7707
7708 /// AddSurrogateCandidate - Adds a "surrogate" candidate function that
7709 /// converts the given @c Object to a function pointer via the
7710 /// conversion function @c Conversion, and then attempts to call it
7711 /// with the given arguments (C++ [over.call.object]p2-4). Proto is
7712 /// the type of function that we'll eventually be calling.
AddSurrogateCandidate(CXXConversionDecl * Conversion,DeclAccessPair FoundDecl,CXXRecordDecl * ActingContext,const FunctionProtoType * Proto,Expr * Object,ArrayRef<Expr * > Args,OverloadCandidateSet & CandidateSet)7713 void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
7714 DeclAccessPair FoundDecl,
7715 CXXRecordDecl *ActingContext,
7716 const FunctionProtoType *Proto,
7717 Expr *Object,
7718 ArrayRef<Expr *> Args,
7719 OverloadCandidateSet& CandidateSet) {
7720 if (!CandidateSet.isNewCandidate(Conversion))
7721 return;
7722
7723 // Overload resolution is always an unevaluated context.
7724 EnterExpressionEvaluationContext Unevaluated(
7725 *this, Sema::ExpressionEvaluationContext::Unevaluated);
7726
7727 OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size() + 1);
7728 Candidate.FoundDecl = FoundDecl;
7729 Candidate.Function = nullptr;
7730 Candidate.Surrogate = Conversion;
7731 Candidate.Viable = true;
7732 Candidate.IsSurrogate = true;
7733 Candidate.IgnoreObjectArgument = false;
7734 Candidate.ExplicitCallArguments = Args.size();
7735
7736 // Determine the implicit conversion sequence for the implicit
7737 // object parameter.
7738 ImplicitConversionSequence ObjectInit = TryObjectArgumentInitialization(
7739 *this, CandidateSet.getLocation(), Object->getType(),
7740 Object->Classify(Context), Conversion, ActingContext);
7741 if (ObjectInit.isBad()) {
7742 Candidate.Viable = false;
7743 Candidate.FailureKind = ovl_fail_bad_conversion;
7744 Candidate.Conversions[0] = ObjectInit;
7745 return;
7746 }
7747
7748 // The first conversion is actually a user-defined conversion whose
7749 // first conversion is ObjectInit's standard conversion (which is
7750 // effectively a reference binding). Record it as such.
7751 Candidate.Conversions[0].setUserDefined();
7752 Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
7753 Candidate.Conversions[0].UserDefined.EllipsisConversion = false;
7754 Candidate.Conversions[0].UserDefined.HadMultipleCandidates = false;
7755 Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
7756 Candidate.Conversions[0].UserDefined.FoundConversionFunction = FoundDecl;
7757 Candidate.Conversions[0].UserDefined.After
7758 = Candidate.Conversions[0].UserDefined.Before;
7759 Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
7760
7761 // Find the
7762 unsigned NumParams = Proto->getNumParams();
7763
7764 // (C++ 13.3.2p2): A candidate function having fewer than m
7765 // parameters is viable only if it has an ellipsis in its parameter
7766 // list (8.3.5).
7767 if (Args.size() > NumParams && !Proto->isVariadic()) {
7768 Candidate.Viable = false;
7769 Candidate.FailureKind = ovl_fail_too_many_arguments;
7770 return;
7771 }
7772
7773 // Function types don't have any default arguments, so just check if
7774 // we have enough arguments.
7775 if (Args.size() < NumParams) {
7776 // Not enough arguments.
7777 Candidate.Viable = false;
7778 Candidate.FailureKind = ovl_fail_too_few_arguments;
7779 return;
7780 }
7781
7782 // Determine the implicit conversion sequences for each of the
7783 // arguments.
7784 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
7785 if (ArgIdx < NumParams) {
7786 // (C++ 13.3.2p3): for F to be a viable function, there shall
7787 // exist for each argument an implicit conversion sequence
7788 // (13.3.3.1) that converts that argument to the corresponding
7789 // parameter of F.
7790 QualType ParamType = Proto->getParamType(ArgIdx);
7791 Candidate.Conversions[ArgIdx + 1]
7792 = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
7793 /*SuppressUserConversions=*/false,
7794 /*InOverloadResolution=*/false,
7795 /*AllowObjCWritebackConversion=*/
7796 getLangOpts().ObjCAutoRefCount);
7797 if (Candidate.Conversions[ArgIdx + 1].isBad()) {
7798 Candidate.Viable = false;
7799 Candidate.FailureKind = ovl_fail_bad_conversion;
7800 return;
7801 }
7802 } else {
7803 // (C++ 13.3.2p2): For the purposes of overload resolution, any
7804 // argument for which there is no corresponding parameter is
7805 // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
7806 Candidate.Conversions[ArgIdx + 1].setEllipsis();
7807 }
7808 }
7809
7810 if (EnableIfAttr *FailedAttr =
7811 CheckEnableIf(Conversion, CandidateSet.getLocation(), std::nullopt)) {
7812 Candidate.Viable = false;
7813 Candidate.FailureKind = ovl_fail_enable_if;
7814 Candidate.DeductionFailure.Data = FailedAttr;
7815 return;
7816 }
7817 }
7818
7819 /// Add all of the non-member operator function declarations in the given
7820 /// function set to the overload candidate set.
AddNonMemberOperatorCandidates(const UnresolvedSetImpl & Fns,ArrayRef<Expr * > Args,OverloadCandidateSet & CandidateSet,TemplateArgumentListInfo * ExplicitTemplateArgs)7821 void Sema::AddNonMemberOperatorCandidates(
7822 const UnresolvedSetImpl &Fns, ArrayRef<Expr *> Args,
7823 OverloadCandidateSet &CandidateSet,
7824 TemplateArgumentListInfo *ExplicitTemplateArgs) {
7825 for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) {
7826 NamedDecl *D = F.getDecl()->getUnderlyingDecl();
7827 ArrayRef<Expr *> FunctionArgs = Args;
7828
7829 FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D);
7830 FunctionDecl *FD =
7831 FunTmpl ? FunTmpl->getTemplatedDecl() : cast<FunctionDecl>(D);
7832
7833 // Don't consider rewritten functions if we're not rewriting.
7834 if (!CandidateSet.getRewriteInfo().isAcceptableCandidate(FD))
7835 continue;
7836
7837 assert(!isa<CXXMethodDecl>(FD) &&
7838 "unqualified operator lookup found a member function");
7839
7840 if (FunTmpl) {
7841 AddTemplateOverloadCandidate(FunTmpl, F.getPair(), ExplicitTemplateArgs,
7842 FunctionArgs, CandidateSet);
7843 if (CandidateSet.getRewriteInfo().shouldAddReversed(*this, Args, FD))
7844 AddTemplateOverloadCandidate(
7845 FunTmpl, F.getPair(), ExplicitTemplateArgs,
7846 {FunctionArgs[1], FunctionArgs[0]}, CandidateSet, false, false,
7847 true, ADLCallKind::NotADL, OverloadCandidateParamOrder::Reversed);
7848 } else {
7849 if (ExplicitTemplateArgs)
7850 continue;
7851 AddOverloadCandidate(FD, F.getPair(), FunctionArgs, CandidateSet);
7852 if (CandidateSet.getRewriteInfo().shouldAddReversed(*this, Args, FD))
7853 AddOverloadCandidate(
7854 FD, F.getPair(), {FunctionArgs[1], FunctionArgs[0]}, CandidateSet,
7855 false, false, true, false, ADLCallKind::NotADL, std::nullopt,
7856 OverloadCandidateParamOrder::Reversed);
7857 }
7858 }
7859 }
7860
7861 /// Add overload candidates for overloaded operators that are
7862 /// member functions.
7863 ///
7864 /// Add the overloaded operator candidates that are member functions
7865 /// for the operator Op that was used in an operator expression such
7866 /// as "x Op y". , Args/NumArgs provides the operator arguments, and
7867 /// CandidateSet will store the added overload candidates. (C++
7868 /// [over.match.oper]).
AddMemberOperatorCandidates(OverloadedOperatorKind Op,SourceLocation OpLoc,ArrayRef<Expr * > Args,OverloadCandidateSet & CandidateSet,OverloadCandidateParamOrder PO)7869 void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
7870 SourceLocation OpLoc,
7871 ArrayRef<Expr *> Args,
7872 OverloadCandidateSet &CandidateSet,
7873 OverloadCandidateParamOrder PO) {
7874 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
7875
7876 // C++ [over.match.oper]p3:
7877 // For a unary operator @ with an operand of a type whose
7878 // cv-unqualified version is T1, and for a binary operator @ with
7879 // a left operand of a type whose cv-unqualified version is T1 and
7880 // a right operand of a type whose cv-unqualified version is T2,
7881 // three sets of candidate functions, designated member
7882 // candidates, non-member candidates and built-in candidates, are
7883 // constructed as follows:
7884 QualType T1 = Args[0]->getType();
7885
7886 // -- If T1 is a complete class type or a class currently being
7887 // defined, the set of member candidates is the result of the
7888 // qualified lookup of T1::operator@ (13.3.1.1.1); otherwise,
7889 // the set of member candidates is empty.
7890 if (const RecordType *T1Rec = T1->getAs<RecordType>()) {
7891 // Complete the type if it can be completed.
7892 if (!isCompleteType(OpLoc, T1) && !T1Rec->isBeingDefined())
7893 return;
7894 // If the type is neither complete nor being defined, bail out now.
7895 if (!T1Rec->getDecl()->getDefinition())
7896 return;
7897
7898 LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName);
7899 LookupQualifiedName(Operators, T1Rec->getDecl());
7900 Operators.suppressDiagnostics();
7901
7902 for (LookupResult::iterator Oper = Operators.begin(),
7903 OperEnd = Operators.end();
7904 Oper != OperEnd; ++Oper) {
7905 if (Oper->getAsFunction() &&
7906 PO == OverloadCandidateParamOrder::Reversed &&
7907 !CandidateSet.getRewriteInfo().shouldAddReversed(
7908 *this, {Args[1], Args[0]}, Oper->getAsFunction()))
7909 continue;
7910 AddMethodCandidate(Oper.getPair(), Args[0]->getType(),
7911 Args[0]->Classify(Context), Args.slice(1),
7912 CandidateSet, /*SuppressUserConversion=*/false, PO);
7913 }
7914 }
7915 }
7916
7917 /// AddBuiltinCandidate - Add a candidate for a built-in
7918 /// operator. ResultTy and ParamTys are the result and parameter types
7919 /// of the built-in candidate, respectively. Args and NumArgs are the
7920 /// arguments being passed to the candidate. IsAssignmentOperator
7921 /// should be true when this built-in candidate is an assignment
7922 /// operator. NumContextualBoolArguments is the number of arguments
7923 /// (at the beginning of the argument list) that will be contextually
7924 /// converted to bool.
AddBuiltinCandidate(QualType * ParamTys,ArrayRef<Expr * > Args,OverloadCandidateSet & CandidateSet,bool IsAssignmentOperator,unsigned NumContextualBoolArguments)7925 void Sema::AddBuiltinCandidate(QualType *ParamTys, ArrayRef<Expr *> Args,
7926 OverloadCandidateSet& CandidateSet,
7927 bool IsAssignmentOperator,
7928 unsigned NumContextualBoolArguments) {
7929 // Overload resolution is always an unevaluated context.
7930 EnterExpressionEvaluationContext Unevaluated(
7931 *this, Sema::ExpressionEvaluationContext::Unevaluated);
7932
7933 // Add this candidate
7934 OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size());
7935 Candidate.FoundDecl = DeclAccessPair::make(nullptr, AS_none);
7936 Candidate.Function = nullptr;
7937 Candidate.IsSurrogate = false;
7938 Candidate.IgnoreObjectArgument = false;
7939 std::copy(ParamTys, ParamTys + Args.size(), Candidate.BuiltinParamTypes);
7940
7941 // Determine the implicit conversion sequences for each of the
7942 // arguments.
7943 Candidate.Viable = true;
7944 Candidate.ExplicitCallArguments = Args.size();
7945 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
7946 // C++ [over.match.oper]p4:
7947 // For the built-in assignment operators, conversions of the
7948 // left operand are restricted as follows:
7949 // -- no temporaries are introduced to hold the left operand, and
7950 // -- no user-defined conversions are applied to the left
7951 // operand to achieve a type match with the left-most
7952 // parameter of a built-in candidate.
7953 //
7954 // We block these conversions by turning off user-defined
7955 // conversions, since that is the only way that initialization of
7956 // a reference to a non-class type can occur from something that
7957 // is not of the same type.
7958 if (ArgIdx < NumContextualBoolArguments) {
7959 assert(ParamTys[ArgIdx] == Context.BoolTy &&
7960 "Contextual conversion to bool requires bool type");
7961 Candidate.Conversions[ArgIdx]
7962 = TryContextuallyConvertToBool(*this, Args[ArgIdx]);
7963 } else {
7964 Candidate.Conversions[ArgIdx]
7965 = TryCopyInitialization(*this, Args[ArgIdx], ParamTys[ArgIdx],
7966 ArgIdx == 0 && IsAssignmentOperator,
7967 /*InOverloadResolution=*/false,
7968 /*AllowObjCWritebackConversion=*/
7969 getLangOpts().ObjCAutoRefCount);
7970 }
7971 if (Candidate.Conversions[ArgIdx].isBad()) {
7972 Candidate.Viable = false;
7973 Candidate.FailureKind = ovl_fail_bad_conversion;
7974 break;
7975 }
7976 }
7977 }
7978
7979 namespace {
7980
7981 /// BuiltinCandidateTypeSet - A set of types that will be used for the
7982 /// candidate operator functions for built-in operators (C++
7983 /// [over.built]). The types are separated into pointer types and
7984 /// enumeration types.
7985 class BuiltinCandidateTypeSet {
7986 /// TypeSet - A set of types.
7987 typedef llvm::SetVector<QualType, SmallVector<QualType, 8>,
7988 llvm::SmallPtrSet<QualType, 8>> TypeSet;
7989
7990 /// PointerTypes - The set of pointer types that will be used in the
7991 /// built-in candidates.
7992 TypeSet PointerTypes;
7993
7994 /// MemberPointerTypes - The set of member pointer types that will be
7995 /// used in the built-in candidates.
7996 TypeSet MemberPointerTypes;
7997
7998 /// EnumerationTypes - The set of enumeration types that will be
7999 /// used in the built-in candidates.
8000 TypeSet EnumerationTypes;
8001
8002 /// The set of vector types that will be used in the built-in
8003 /// candidates.
8004 TypeSet VectorTypes;
8005
8006 /// The set of matrix types that will be used in the built-in
8007 /// candidates.
8008 TypeSet MatrixTypes;
8009
8010 /// A flag indicating non-record types are viable candidates
8011 bool HasNonRecordTypes;
8012
8013 /// A flag indicating whether either arithmetic or enumeration types
8014 /// were present in the candidate set.
8015 bool HasArithmeticOrEnumeralTypes;
8016
8017 /// A flag indicating whether the nullptr type was present in the
8018 /// candidate set.
8019 bool HasNullPtrType;
8020
8021 /// Sema - The semantic analysis instance where we are building the
8022 /// candidate type set.
8023 Sema &SemaRef;
8024
8025 /// Context - The AST context in which we will build the type sets.
8026 ASTContext &Context;
8027
8028 bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
8029 const Qualifiers &VisibleQuals);
8030 bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);
8031
8032 public:
8033 /// iterator - Iterates through the types that are part of the set.
8034 typedef TypeSet::iterator iterator;
8035
BuiltinCandidateTypeSet(Sema & SemaRef)8036 BuiltinCandidateTypeSet(Sema &SemaRef)
8037 : HasNonRecordTypes(false),
8038 HasArithmeticOrEnumeralTypes(false),
8039 HasNullPtrType(false),
8040 SemaRef(SemaRef),
8041 Context(SemaRef.Context) { }
8042
8043 void AddTypesConvertedFrom(QualType Ty,
8044 SourceLocation Loc,
8045 bool AllowUserConversions,
8046 bool AllowExplicitConversions,
8047 const Qualifiers &VisibleTypeConversionsQuals);
8048
pointer_types()8049 llvm::iterator_range<iterator> pointer_types() { return PointerTypes; }
member_pointer_types()8050 llvm::iterator_range<iterator> member_pointer_types() {
8051 return MemberPointerTypes;
8052 }
enumeration_types()8053 llvm::iterator_range<iterator> enumeration_types() {
8054 return EnumerationTypes;
8055 }
vector_types()8056 llvm::iterator_range<iterator> vector_types() { return VectorTypes; }
matrix_types()8057 llvm::iterator_range<iterator> matrix_types() { return MatrixTypes; }
8058
containsMatrixType(QualType Ty) const8059 bool containsMatrixType(QualType Ty) const { return MatrixTypes.count(Ty); }
hasNonRecordTypes()8060 bool hasNonRecordTypes() { return HasNonRecordTypes; }
hasArithmeticOrEnumeralTypes()8061 bool hasArithmeticOrEnumeralTypes() { return HasArithmeticOrEnumeralTypes; }
hasNullPtrType() const8062 bool hasNullPtrType() const { return HasNullPtrType; }
8063 };
8064
8065 } // end anonymous namespace
8066
8067 /// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
8068 /// the set of pointer types along with any more-qualified variants of
8069 /// that type. For example, if @p Ty is "int const *", this routine
8070 /// will add "int const *", "int const volatile *", "int const
8071 /// restrict *", and "int const volatile restrict *" to the set of
8072 /// pointer types. Returns true if the add of @p Ty itself succeeded,
8073 /// false otherwise.
8074 ///
8075 /// FIXME: what to do about extended qualifiers?
8076 bool
AddPointerWithMoreQualifiedTypeVariants(QualType Ty,const Qualifiers & VisibleQuals)8077 BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
8078 const Qualifiers &VisibleQuals) {
8079
8080 // Insert this type.
8081 if (!PointerTypes.insert(Ty))
8082 return false;
8083
8084 QualType PointeeTy;
8085 const PointerType *PointerTy = Ty->getAs<PointerType>();
8086 bool buildObjCPtr = false;
8087 if (!PointerTy) {
8088 const ObjCObjectPointerType *PTy = Ty->castAs<ObjCObjectPointerType>();
8089 PointeeTy = PTy->getPointeeType();
8090 buildObjCPtr = true;
8091 } else {
8092 PointeeTy = PointerTy->getPointeeType();
8093 }
8094
8095 // Don't add qualified variants of arrays. For one, they're not allowed
8096 // (the qualifier would sink to the element type), and for another, the
8097 // only overload situation where it matters is subscript or pointer +- int,
8098 // and those shouldn't have qualifier variants anyway.
8099 if (PointeeTy->isArrayType())
8100 return true;
8101
8102 unsigned BaseCVR = PointeeTy.getCVRQualifiers();
8103 bool hasVolatile = VisibleQuals.hasVolatile();
8104 bool hasRestrict = VisibleQuals.hasRestrict();
8105
8106 // Iterate through all strict supersets of BaseCVR.
8107 for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
8108 if ((CVR | BaseCVR) != CVR) continue;
8109 // Skip over volatile if no volatile found anywhere in the types.
8110 if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue;
8111
8112 // Skip over restrict if no restrict found anywhere in the types, or if
8113 // the type cannot be restrict-qualified.
8114 if ((CVR & Qualifiers::Restrict) &&
8115 (!hasRestrict ||
8116 (!(PointeeTy->isAnyPointerType() || PointeeTy->isReferenceType()))))
8117 continue;
8118
8119 // Build qualified pointee type.
8120 QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
8121
8122 // Build qualified pointer type.
8123 QualType QPointerTy;
8124 if (!buildObjCPtr)
8125 QPointerTy = Context.getPointerType(QPointeeTy);
8126 else
8127 QPointerTy = Context.getObjCObjectPointerType(QPointeeTy);
8128
8129 // Insert qualified pointer type.
8130 PointerTypes.insert(QPointerTy);
8131 }
8132
8133 return true;
8134 }
8135
8136 /// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
8137 /// to the set of pointer types along with any more-qualified variants of
8138 /// that type. For example, if @p Ty is "int const *", this routine
8139 /// will add "int const *", "int const volatile *", "int const
8140 /// restrict *", and "int const volatile restrict *" to the set of
8141 /// pointer types. Returns true if the add of @p Ty itself succeeded,
8142 /// false otherwise.
8143 ///
8144 /// FIXME: what to do about extended qualifiers?
8145 bool
AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty)8146 BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
8147 QualType Ty) {
8148 // Insert this type.
8149 if (!MemberPointerTypes.insert(Ty))
8150 return false;
8151
8152 const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>();
8153 assert(PointerTy && "type was not a member pointer type!");
8154
8155 QualType PointeeTy = PointerTy->getPointeeType();
8156 // Don't add qualified variants of arrays. For one, they're not allowed
8157 // (the qualifier would sink to the element type), and for another, the
8158 // only overload situation where it matters is subscript or pointer +- int,
8159 // and those shouldn't have qualifier variants anyway.
8160 if (PointeeTy->isArrayType())
8161 return true;
8162 const Type *ClassTy = PointerTy->getClass();
8163
8164 // Iterate through all strict supersets of the pointee type's CVR
8165 // qualifiers.
8166 unsigned BaseCVR = PointeeTy.getCVRQualifiers();
8167 for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
8168 if ((CVR | BaseCVR) != CVR) continue;
8169
8170 QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
8171 MemberPointerTypes.insert(
8172 Context.getMemberPointerType(QPointeeTy, ClassTy));
8173 }
8174
8175 return true;
8176 }
8177
8178 /// AddTypesConvertedFrom - Add each of the types to which the type @p
8179 /// Ty can be implicit converted to the given set of @p Types. We're
8180 /// primarily interested in pointer types and enumeration types. We also
8181 /// take member pointer types, for the conditional operator.
8182 /// AllowUserConversions is true if we should look at the conversion
8183 /// functions of a class type, and AllowExplicitConversions if we
8184 /// should also include the explicit conversion functions of a class
8185 /// type.
8186 void
AddTypesConvertedFrom(QualType Ty,SourceLocation Loc,bool AllowUserConversions,bool AllowExplicitConversions,const Qualifiers & VisibleQuals)8187 BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
8188 SourceLocation Loc,
8189 bool AllowUserConversions,
8190 bool AllowExplicitConversions,
8191 const Qualifiers &VisibleQuals) {
8192 // Only deal with canonical types.
8193 Ty = Context.getCanonicalType(Ty);
8194
8195 // Look through reference types; they aren't part of the type of an
8196 // expression for the purposes of conversions.
8197 if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>())
8198 Ty = RefTy->getPointeeType();
8199
8200 // If we're dealing with an array type, decay to the pointer.
8201 if (Ty->isArrayType())
8202 Ty = SemaRef.Context.getArrayDecayedType(Ty);
8203
8204 // Otherwise, we don't care about qualifiers on the type.
8205 Ty = Ty.getLocalUnqualifiedType();
8206
8207 // Flag if we ever add a non-record type.
8208 const RecordType *TyRec = Ty->getAs<RecordType>();
8209 HasNonRecordTypes = HasNonRecordTypes || !TyRec;
8210
8211 // Flag if we encounter an arithmetic type.
8212 HasArithmeticOrEnumeralTypes =
8213 HasArithmeticOrEnumeralTypes || Ty->isArithmeticType();
8214
8215 if (Ty->isObjCIdType() || Ty->isObjCClassType())
8216 PointerTypes.insert(Ty);
8217 else if (Ty->getAs<PointerType>() || Ty->getAs<ObjCObjectPointerType>()) {
8218 // Insert our type, and its more-qualified variants, into the set
8219 // of types.
8220 if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals))
8221 return;
8222 } else if (Ty->isMemberPointerType()) {
8223 // Member pointers are far easier, since the pointee can't be converted.
8224 if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
8225 return;
8226 } else if (Ty->isEnumeralType()) {
8227 HasArithmeticOrEnumeralTypes = true;
8228 EnumerationTypes.insert(Ty);
8229 } else if (Ty->isVectorType()) {
8230 // We treat vector types as arithmetic types in many contexts as an
8231 // extension.
8232 HasArithmeticOrEnumeralTypes = true;
8233 VectorTypes.insert(Ty);
8234 } else if (Ty->isMatrixType()) {
8235 // Similar to vector types, we treat vector types as arithmetic types in
8236 // many contexts as an extension.
8237 HasArithmeticOrEnumeralTypes = true;
8238 MatrixTypes.insert(Ty);
8239 } else if (Ty->isNullPtrType()) {
8240 HasNullPtrType = true;
8241 } else if (AllowUserConversions && TyRec) {
8242 // No conversion functions in incomplete types.
8243 if (!SemaRef.isCompleteType(Loc, Ty))
8244 return;
8245
8246 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
8247 for (NamedDecl *D : ClassDecl->getVisibleConversionFunctions()) {
8248 if (isa<UsingShadowDecl>(D))
8249 D = cast<UsingShadowDecl>(D)->getTargetDecl();
8250
8251 // Skip conversion function templates; they don't tell us anything
8252 // about which builtin types we can convert to.
8253 if (isa<FunctionTemplateDecl>(D))
8254 continue;
8255
8256 CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
8257 if (AllowExplicitConversions || !Conv->isExplicit()) {
8258 AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false,
8259 VisibleQuals);
8260 }
8261 }
8262 }
8263 }
8264 /// Helper function for adjusting address spaces for the pointer or reference
8265 /// operands of builtin operators depending on the argument.
AdjustAddressSpaceForBuiltinOperandType(Sema & S,QualType T,Expr * Arg)8266 static QualType AdjustAddressSpaceForBuiltinOperandType(Sema &S, QualType T,
8267 Expr *Arg) {
8268 return S.Context.getAddrSpaceQualType(T, Arg->getType().getAddressSpace());
8269 }
8270
8271 /// Helper function for AddBuiltinOperatorCandidates() that adds
8272 /// the volatile- and non-volatile-qualified assignment operators for the
8273 /// given type to the candidate set.
AddBuiltinAssignmentOperatorCandidates(Sema & S,QualType T,ArrayRef<Expr * > Args,OverloadCandidateSet & CandidateSet)8274 static void AddBuiltinAssignmentOperatorCandidates(Sema &S,
8275 QualType T,
8276 ArrayRef<Expr *> Args,
8277 OverloadCandidateSet &CandidateSet) {
8278 QualType ParamTypes[2];
8279
8280 // T& operator=(T&, T)
8281 ParamTypes[0] = S.Context.getLValueReferenceType(
8282 AdjustAddressSpaceForBuiltinOperandType(S, T, Args[0]));
8283 ParamTypes[1] = T;
8284 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8285 /*IsAssignmentOperator=*/true);
8286
8287 if (!S.Context.getCanonicalType(T).isVolatileQualified()) {
8288 // volatile T& operator=(volatile T&, T)
8289 ParamTypes[0] = S.Context.getLValueReferenceType(
8290 AdjustAddressSpaceForBuiltinOperandType(S, S.Context.getVolatileType(T),
8291 Args[0]));
8292 ParamTypes[1] = T;
8293 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8294 /*IsAssignmentOperator=*/true);
8295 }
8296 }
8297
8298 /// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers,
8299 /// if any, found in visible type conversion functions found in ArgExpr's type.
CollectVRQualifiers(ASTContext & Context,Expr * ArgExpr)8300 static Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) {
8301 Qualifiers VRQuals;
8302 const RecordType *TyRec;
8303 if (const MemberPointerType *RHSMPType =
8304 ArgExpr->getType()->getAs<MemberPointerType>())
8305 TyRec = RHSMPType->getClass()->getAs<RecordType>();
8306 else
8307 TyRec = ArgExpr->getType()->getAs<RecordType>();
8308 if (!TyRec) {
8309 // Just to be safe, assume the worst case.
8310 VRQuals.addVolatile();
8311 VRQuals.addRestrict();
8312 return VRQuals;
8313 }
8314
8315 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
8316 if (!ClassDecl->hasDefinition())
8317 return VRQuals;
8318
8319 for (NamedDecl *D : ClassDecl->getVisibleConversionFunctions()) {
8320 if (isa<UsingShadowDecl>(D))
8321 D = cast<UsingShadowDecl>(D)->getTargetDecl();
8322 if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(D)) {
8323 QualType CanTy = Context.getCanonicalType(Conv->getConversionType());
8324 if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>())
8325 CanTy = ResTypeRef->getPointeeType();
8326 // Need to go down the pointer/mempointer chain and add qualifiers
8327 // as see them.
8328 bool done = false;
8329 while (!done) {
8330 if (CanTy.isRestrictQualified())
8331 VRQuals.addRestrict();
8332 if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>())
8333 CanTy = ResTypePtr->getPointeeType();
8334 else if (const MemberPointerType *ResTypeMPtr =
8335 CanTy->getAs<MemberPointerType>())
8336 CanTy = ResTypeMPtr->getPointeeType();
8337 else
8338 done = true;
8339 if (CanTy.isVolatileQualified())
8340 VRQuals.addVolatile();
8341 if (VRQuals.hasRestrict() && VRQuals.hasVolatile())
8342 return VRQuals;
8343 }
8344 }
8345 }
8346 return VRQuals;
8347 }
8348
8349 // Note: We're currently only handling qualifiers that are meaningful for the
8350 // LHS of compound assignment overloading.
forAllQualifierCombinationsImpl(QualifiersAndAtomic Available,QualifiersAndAtomic Applied,llvm::function_ref<void (QualifiersAndAtomic)> Callback)8351 static void forAllQualifierCombinationsImpl(
8352 QualifiersAndAtomic Available, QualifiersAndAtomic Applied,
8353 llvm::function_ref<void(QualifiersAndAtomic)> Callback) {
8354 // _Atomic
8355 if (Available.hasAtomic()) {
8356 Available.removeAtomic();
8357 forAllQualifierCombinationsImpl(Available, Applied.withAtomic(), Callback);
8358 forAllQualifierCombinationsImpl(Available, Applied, Callback);
8359 return;
8360 }
8361
8362 // volatile
8363 if (Available.hasVolatile()) {
8364 Available.removeVolatile();
8365 assert(!Applied.hasVolatile());
8366 forAllQualifierCombinationsImpl(Available, Applied.withVolatile(),
8367 Callback);
8368 forAllQualifierCombinationsImpl(Available, Applied, Callback);
8369 return;
8370 }
8371
8372 Callback(Applied);
8373 }
8374
forAllQualifierCombinations(QualifiersAndAtomic Quals,llvm::function_ref<void (QualifiersAndAtomic)> Callback)8375 static void forAllQualifierCombinations(
8376 QualifiersAndAtomic Quals,
8377 llvm::function_ref<void(QualifiersAndAtomic)> Callback) {
8378 return forAllQualifierCombinationsImpl(Quals, QualifiersAndAtomic(),
8379 Callback);
8380 }
8381
makeQualifiedLValueReferenceType(QualType Base,QualifiersAndAtomic Quals,Sema & S)8382 static QualType makeQualifiedLValueReferenceType(QualType Base,
8383 QualifiersAndAtomic Quals,
8384 Sema &S) {
8385 if (Quals.hasAtomic())
8386 Base = S.Context.getAtomicType(Base);
8387 if (Quals.hasVolatile())
8388 Base = S.Context.getVolatileType(Base);
8389 return S.Context.getLValueReferenceType(Base);
8390 }
8391
8392 namespace {
8393
8394 /// Helper class to manage the addition of builtin operator overload
8395 /// candidates. It provides shared state and utility methods used throughout
8396 /// the process, as well as a helper method to add each group of builtin
8397 /// operator overloads from the standard to a candidate set.
8398 class BuiltinOperatorOverloadBuilder {
8399 // Common instance state available to all overload candidate addition methods.
8400 Sema &S;
8401 ArrayRef<Expr *> Args;
8402 QualifiersAndAtomic VisibleTypeConversionsQuals;
8403 bool HasArithmeticOrEnumeralCandidateType;
8404 SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes;
8405 OverloadCandidateSet &CandidateSet;
8406
8407 static constexpr int ArithmeticTypesCap = 24;
8408 SmallVector<CanQualType, ArithmeticTypesCap> ArithmeticTypes;
8409
8410 // Define some indices used to iterate over the arithmetic types in
8411 // ArithmeticTypes. The "promoted arithmetic types" are the arithmetic
8412 // types are that preserved by promotion (C++ [over.built]p2).
8413 unsigned FirstIntegralType,
8414 LastIntegralType;
8415 unsigned FirstPromotedIntegralType,
8416 LastPromotedIntegralType;
8417 unsigned FirstPromotedArithmeticType,
8418 LastPromotedArithmeticType;
8419 unsigned NumArithmeticTypes;
8420
InitArithmeticTypes()8421 void InitArithmeticTypes() {
8422 // Start of promoted types.
8423 FirstPromotedArithmeticType = 0;
8424 ArithmeticTypes.push_back(S.Context.FloatTy);
8425 ArithmeticTypes.push_back(S.Context.DoubleTy);
8426 ArithmeticTypes.push_back(S.Context.LongDoubleTy);
8427 if (S.Context.getTargetInfo().hasFloat128Type())
8428 ArithmeticTypes.push_back(S.Context.Float128Ty);
8429 if (S.Context.getTargetInfo().hasIbm128Type())
8430 ArithmeticTypes.push_back(S.Context.Ibm128Ty);
8431
8432 // Start of integral types.
8433 FirstIntegralType = ArithmeticTypes.size();
8434 FirstPromotedIntegralType = ArithmeticTypes.size();
8435 ArithmeticTypes.push_back(S.Context.IntTy);
8436 ArithmeticTypes.push_back(S.Context.LongTy);
8437 ArithmeticTypes.push_back(S.Context.LongLongTy);
8438 if (S.Context.getTargetInfo().hasInt128Type() ||
8439 (S.Context.getAuxTargetInfo() &&
8440 S.Context.getAuxTargetInfo()->hasInt128Type()))
8441 ArithmeticTypes.push_back(S.Context.Int128Ty);
8442 ArithmeticTypes.push_back(S.Context.UnsignedIntTy);
8443 ArithmeticTypes.push_back(S.Context.UnsignedLongTy);
8444 ArithmeticTypes.push_back(S.Context.UnsignedLongLongTy);
8445 if (S.Context.getTargetInfo().hasInt128Type() ||
8446 (S.Context.getAuxTargetInfo() &&
8447 S.Context.getAuxTargetInfo()->hasInt128Type()))
8448 ArithmeticTypes.push_back(S.Context.UnsignedInt128Ty);
8449 LastPromotedIntegralType = ArithmeticTypes.size();
8450 LastPromotedArithmeticType = ArithmeticTypes.size();
8451 // End of promoted types.
8452
8453 ArithmeticTypes.push_back(S.Context.BoolTy);
8454 ArithmeticTypes.push_back(S.Context.CharTy);
8455 ArithmeticTypes.push_back(S.Context.WCharTy);
8456 if (S.Context.getLangOpts().Char8)
8457 ArithmeticTypes.push_back(S.Context.Char8Ty);
8458 ArithmeticTypes.push_back(S.Context.Char16Ty);
8459 ArithmeticTypes.push_back(S.Context.Char32Ty);
8460 ArithmeticTypes.push_back(S.Context.SignedCharTy);
8461 ArithmeticTypes.push_back(S.Context.ShortTy);
8462 ArithmeticTypes.push_back(S.Context.UnsignedCharTy);
8463 ArithmeticTypes.push_back(S.Context.UnsignedShortTy);
8464 LastIntegralType = ArithmeticTypes.size();
8465 NumArithmeticTypes = ArithmeticTypes.size();
8466 // End of integral types.
8467 // FIXME: What about complex? What about half?
8468
8469 assert(ArithmeticTypes.size() <= ArithmeticTypesCap &&
8470 "Enough inline storage for all arithmetic types.");
8471 }
8472
8473 /// Helper method to factor out the common pattern of adding overloads
8474 /// for '++' and '--' builtin operators.
addPlusPlusMinusMinusStyleOverloads(QualType CandidateTy,bool HasVolatile,bool HasRestrict)8475 void addPlusPlusMinusMinusStyleOverloads(QualType CandidateTy,
8476 bool HasVolatile,
8477 bool HasRestrict) {
8478 QualType ParamTypes[2] = {
8479 S.Context.getLValueReferenceType(CandidateTy),
8480 S.Context.IntTy
8481 };
8482
8483 // Non-volatile version.
8484 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8485
8486 // Use a heuristic to reduce number of builtin candidates in the set:
8487 // add volatile version only if there are conversions to a volatile type.
8488 if (HasVolatile) {
8489 ParamTypes[0] =
8490 S.Context.getLValueReferenceType(
8491 S.Context.getVolatileType(CandidateTy));
8492 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8493 }
8494
8495 // Add restrict version only if there are conversions to a restrict type
8496 // and our candidate type is a non-restrict-qualified pointer.
8497 if (HasRestrict && CandidateTy->isAnyPointerType() &&
8498 !CandidateTy.isRestrictQualified()) {
8499 ParamTypes[0]
8500 = S.Context.getLValueReferenceType(
8501 S.Context.getCVRQualifiedType(CandidateTy, Qualifiers::Restrict));
8502 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8503
8504 if (HasVolatile) {
8505 ParamTypes[0]
8506 = S.Context.getLValueReferenceType(
8507 S.Context.getCVRQualifiedType(CandidateTy,
8508 (Qualifiers::Volatile |
8509 Qualifiers::Restrict)));
8510 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8511 }
8512 }
8513
8514 }
8515
8516 /// Helper to add an overload candidate for a binary builtin with types \p L
8517 /// and \p R.
AddCandidate(QualType L,QualType R)8518 void AddCandidate(QualType L, QualType R) {
8519 QualType LandR[2] = {L, R};
8520 S.AddBuiltinCandidate(LandR, Args, CandidateSet);
8521 }
8522
8523 public:
BuiltinOperatorOverloadBuilder(Sema & S,ArrayRef<Expr * > Args,QualifiersAndAtomic VisibleTypeConversionsQuals,bool HasArithmeticOrEnumeralCandidateType,SmallVectorImpl<BuiltinCandidateTypeSet> & CandidateTypes,OverloadCandidateSet & CandidateSet)8524 BuiltinOperatorOverloadBuilder(
8525 Sema &S, ArrayRef<Expr *> Args,
8526 QualifiersAndAtomic VisibleTypeConversionsQuals,
8527 bool HasArithmeticOrEnumeralCandidateType,
8528 SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes,
8529 OverloadCandidateSet &CandidateSet)
8530 : S(S), Args(Args),
8531 VisibleTypeConversionsQuals(VisibleTypeConversionsQuals),
8532 HasArithmeticOrEnumeralCandidateType(
8533 HasArithmeticOrEnumeralCandidateType),
8534 CandidateTypes(CandidateTypes),
8535 CandidateSet(CandidateSet) {
8536
8537 InitArithmeticTypes();
8538 }
8539
8540 // Increment is deprecated for bool since C++17.
8541 //
8542 // C++ [over.built]p3:
8543 //
8544 // For every pair (T, VQ), where T is an arithmetic type other
8545 // than bool, and VQ is either volatile or empty, there exist
8546 // candidate operator functions of the form
8547 //
8548 // VQ T& operator++(VQ T&);
8549 // T operator++(VQ T&, int);
8550 //
8551 // C++ [over.built]p4:
8552 //
8553 // For every pair (T, VQ), where T is an arithmetic type other
8554 // than bool, and VQ is either volatile or empty, there exist
8555 // candidate operator functions of the form
8556 //
8557 // VQ T& operator--(VQ T&);
8558 // T operator--(VQ T&, int);
addPlusPlusMinusMinusArithmeticOverloads(OverloadedOperatorKind Op)8559 void addPlusPlusMinusMinusArithmeticOverloads(OverloadedOperatorKind Op) {
8560 if (!HasArithmeticOrEnumeralCandidateType)
8561 return;
8562
8563 for (unsigned Arith = 0; Arith < NumArithmeticTypes; ++Arith) {
8564 const auto TypeOfT = ArithmeticTypes[Arith];
8565 if (TypeOfT == S.Context.BoolTy) {
8566 if (Op == OO_MinusMinus)
8567 continue;
8568 if (Op == OO_PlusPlus && S.getLangOpts().CPlusPlus17)
8569 continue;
8570 }
8571 addPlusPlusMinusMinusStyleOverloads(
8572 TypeOfT,
8573 VisibleTypeConversionsQuals.hasVolatile(),
8574 VisibleTypeConversionsQuals.hasRestrict());
8575 }
8576 }
8577
8578 // C++ [over.built]p5:
8579 //
8580 // For every pair (T, VQ), where T is a cv-qualified or
8581 // cv-unqualified object type, and VQ is either volatile or
8582 // empty, there exist candidate operator functions of the form
8583 //
8584 // T*VQ& operator++(T*VQ&);
8585 // T*VQ& operator--(T*VQ&);
8586 // T* operator++(T*VQ&, int);
8587 // T* operator--(T*VQ&, int);
addPlusPlusMinusMinusPointerOverloads()8588 void addPlusPlusMinusMinusPointerOverloads() {
8589 for (QualType PtrTy : CandidateTypes[0].pointer_types()) {
8590 // Skip pointer types that aren't pointers to object types.
8591 if (!PtrTy->getPointeeType()->isObjectType())
8592 continue;
8593
8594 addPlusPlusMinusMinusStyleOverloads(
8595 PtrTy,
8596 (!PtrTy.isVolatileQualified() &&
8597 VisibleTypeConversionsQuals.hasVolatile()),
8598 (!PtrTy.isRestrictQualified() &&
8599 VisibleTypeConversionsQuals.hasRestrict()));
8600 }
8601 }
8602
8603 // C++ [over.built]p6:
8604 // For every cv-qualified or cv-unqualified object type T, there
8605 // exist candidate operator functions of the form
8606 //
8607 // T& operator*(T*);
8608 //
8609 // C++ [over.built]p7:
8610 // For every function type T that does not have cv-qualifiers or a
8611 // ref-qualifier, there exist candidate operator functions of the form
8612 // T& operator*(T*);
addUnaryStarPointerOverloads()8613 void addUnaryStarPointerOverloads() {
8614 for (QualType ParamTy : CandidateTypes[0].pointer_types()) {
8615 QualType PointeeTy = ParamTy->getPointeeType();
8616 if (!PointeeTy->isObjectType() && !PointeeTy->isFunctionType())
8617 continue;
8618
8619 if (const FunctionProtoType *Proto =PointeeTy->getAs<FunctionProtoType>())
8620 if (Proto->getMethodQuals() || Proto->getRefQualifier())
8621 continue;
8622
8623 S.AddBuiltinCandidate(&ParamTy, Args, CandidateSet);
8624 }
8625 }
8626
8627 // C++ [over.built]p9:
8628 // For every promoted arithmetic type T, there exist candidate
8629 // operator functions of the form
8630 //
8631 // T operator+(T);
8632 // T operator-(T);
addUnaryPlusOrMinusArithmeticOverloads()8633 void addUnaryPlusOrMinusArithmeticOverloads() {
8634 if (!HasArithmeticOrEnumeralCandidateType)
8635 return;
8636
8637 for (unsigned Arith = FirstPromotedArithmeticType;
8638 Arith < LastPromotedArithmeticType; ++Arith) {
8639 QualType ArithTy = ArithmeticTypes[Arith];
8640 S.AddBuiltinCandidate(&ArithTy, Args, CandidateSet);
8641 }
8642
8643 // Extension: We also add these operators for vector types.
8644 for (QualType VecTy : CandidateTypes[0].vector_types())
8645 S.AddBuiltinCandidate(&VecTy, Args, CandidateSet);
8646 }
8647
8648 // C++ [over.built]p8:
8649 // For every type T, there exist candidate operator functions of
8650 // the form
8651 //
8652 // T* operator+(T*);
addUnaryPlusPointerOverloads()8653 void addUnaryPlusPointerOverloads() {
8654 for (QualType ParamTy : CandidateTypes[0].pointer_types())
8655 S.AddBuiltinCandidate(&ParamTy, Args, CandidateSet);
8656 }
8657
8658 // C++ [over.built]p10:
8659 // For every promoted integral type T, there exist candidate
8660 // operator functions of the form
8661 //
8662 // T operator~(T);
addUnaryTildePromotedIntegralOverloads()8663 void addUnaryTildePromotedIntegralOverloads() {
8664 if (!HasArithmeticOrEnumeralCandidateType)
8665 return;
8666
8667 for (unsigned Int = FirstPromotedIntegralType;
8668 Int < LastPromotedIntegralType; ++Int) {
8669 QualType IntTy = ArithmeticTypes[Int];
8670 S.AddBuiltinCandidate(&IntTy, Args, CandidateSet);
8671 }
8672
8673 // Extension: We also add this operator for vector types.
8674 for (QualType VecTy : CandidateTypes[0].vector_types())
8675 S.AddBuiltinCandidate(&VecTy, Args, CandidateSet);
8676 }
8677
8678 // C++ [over.match.oper]p16:
8679 // For every pointer to member type T or type std::nullptr_t, there
8680 // exist candidate operator functions of the form
8681 //
8682 // bool operator==(T,T);
8683 // bool operator!=(T,T);
addEqualEqualOrNotEqualMemberPointerOrNullptrOverloads()8684 void addEqualEqualOrNotEqualMemberPointerOrNullptrOverloads() {
8685 /// Set of (canonical) types that we've already handled.
8686 llvm::SmallPtrSet<QualType, 8> AddedTypes;
8687
8688 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
8689 for (QualType MemPtrTy : CandidateTypes[ArgIdx].member_pointer_types()) {
8690 // Don't add the same builtin candidate twice.
8691 if (!AddedTypes.insert(S.Context.getCanonicalType(MemPtrTy)).second)
8692 continue;
8693
8694 QualType ParamTypes[2] = {MemPtrTy, MemPtrTy};
8695 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8696 }
8697
8698 if (CandidateTypes[ArgIdx].hasNullPtrType()) {
8699 CanQualType NullPtrTy = S.Context.getCanonicalType(S.Context.NullPtrTy);
8700 if (AddedTypes.insert(NullPtrTy).second) {
8701 QualType ParamTypes[2] = { NullPtrTy, NullPtrTy };
8702 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8703 }
8704 }
8705 }
8706 }
8707
8708 // C++ [over.built]p15:
8709 //
8710 // For every T, where T is an enumeration type or a pointer type,
8711 // there exist candidate operator functions of the form
8712 //
8713 // bool operator<(T, T);
8714 // bool operator>(T, T);
8715 // bool operator<=(T, T);
8716 // bool operator>=(T, T);
8717 // bool operator==(T, T);
8718 // bool operator!=(T, T);
8719 // R operator<=>(T, T)
addGenericBinaryPointerOrEnumeralOverloads(bool IsSpaceship)8720 void addGenericBinaryPointerOrEnumeralOverloads(bool IsSpaceship) {
8721 // C++ [over.match.oper]p3:
8722 // [...]the built-in candidates include all of the candidate operator
8723 // functions defined in 13.6 that, compared to the given operator, [...]
8724 // do not have the same parameter-type-list as any non-template non-member
8725 // candidate.
8726 //
8727 // Note that in practice, this only affects enumeration types because there
8728 // aren't any built-in candidates of record type, and a user-defined operator
8729 // must have an operand of record or enumeration type. Also, the only other
8730 // overloaded operator with enumeration arguments, operator=,
8731 // cannot be overloaded for enumeration types, so this is the only place
8732 // where we must suppress candidates like this.
8733 llvm::DenseSet<std::pair<CanQualType, CanQualType> >
8734 UserDefinedBinaryOperators;
8735
8736 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
8737 if (!CandidateTypes[ArgIdx].enumeration_types().empty()) {
8738 for (OverloadCandidateSet::iterator C = CandidateSet.begin(),
8739 CEnd = CandidateSet.end();
8740 C != CEnd; ++C) {
8741 if (!C->Viable || !C->Function || C->Function->getNumParams() != 2)
8742 continue;
8743
8744 if (C->Function->isFunctionTemplateSpecialization())
8745 continue;
8746
8747 // We interpret "same parameter-type-list" as applying to the
8748 // "synthesized candidate, with the order of the two parameters
8749 // reversed", not to the original function.
8750 bool Reversed = C->isReversed();
8751 QualType FirstParamType = C->Function->getParamDecl(Reversed ? 1 : 0)
8752 ->getType()
8753 .getUnqualifiedType();
8754 QualType SecondParamType = C->Function->getParamDecl(Reversed ? 0 : 1)
8755 ->getType()
8756 .getUnqualifiedType();
8757
8758 // Skip if either parameter isn't of enumeral type.
8759 if (!FirstParamType->isEnumeralType() ||
8760 !SecondParamType->isEnumeralType())
8761 continue;
8762
8763 // Add this operator to the set of known user-defined operators.
8764 UserDefinedBinaryOperators.insert(
8765 std::make_pair(S.Context.getCanonicalType(FirstParamType),
8766 S.Context.getCanonicalType(SecondParamType)));
8767 }
8768 }
8769 }
8770
8771 /// Set of (canonical) types that we've already handled.
8772 llvm::SmallPtrSet<QualType, 8> AddedTypes;
8773
8774 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
8775 for (QualType PtrTy : CandidateTypes[ArgIdx].pointer_types()) {
8776 // Don't add the same builtin candidate twice.
8777 if (!AddedTypes.insert(S.Context.getCanonicalType(PtrTy)).second)
8778 continue;
8779 if (IsSpaceship && PtrTy->isFunctionPointerType())
8780 continue;
8781
8782 QualType ParamTypes[2] = {PtrTy, PtrTy};
8783 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8784 }
8785 for (QualType EnumTy : CandidateTypes[ArgIdx].enumeration_types()) {
8786 CanQualType CanonType = S.Context.getCanonicalType(EnumTy);
8787
8788 // Don't add the same builtin candidate twice, or if a user defined
8789 // candidate exists.
8790 if (!AddedTypes.insert(CanonType).second ||
8791 UserDefinedBinaryOperators.count(std::make_pair(CanonType,
8792 CanonType)))
8793 continue;
8794 QualType ParamTypes[2] = {EnumTy, EnumTy};
8795 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8796 }
8797 }
8798 }
8799
8800 // C++ [over.built]p13:
8801 //
8802 // For every cv-qualified or cv-unqualified object type T
8803 // there exist candidate operator functions of the form
8804 //
8805 // T* operator+(T*, ptrdiff_t);
8806 // T& operator[](T*, ptrdiff_t); [BELOW]
8807 // T* operator-(T*, ptrdiff_t);
8808 // T* operator+(ptrdiff_t, T*);
8809 // T& operator[](ptrdiff_t, T*); [BELOW]
8810 //
8811 // C++ [over.built]p14:
8812 //
8813 // For every T, where T is a pointer to object type, there
8814 // exist candidate operator functions of the form
8815 //
8816 // ptrdiff_t operator-(T, T);
addBinaryPlusOrMinusPointerOverloads(OverloadedOperatorKind Op)8817 void addBinaryPlusOrMinusPointerOverloads(OverloadedOperatorKind Op) {
8818 /// Set of (canonical) types that we've already handled.
8819 llvm::SmallPtrSet<QualType, 8> AddedTypes;
8820
8821 for (int Arg = 0; Arg < 2; ++Arg) {
8822 QualType AsymmetricParamTypes[2] = {
8823 S.Context.getPointerDiffType(),
8824 S.Context.getPointerDiffType(),
8825 };
8826 for (QualType PtrTy : CandidateTypes[Arg].pointer_types()) {
8827 QualType PointeeTy = PtrTy->getPointeeType();
8828 if (!PointeeTy->isObjectType())
8829 continue;
8830
8831 AsymmetricParamTypes[Arg] = PtrTy;
8832 if (Arg == 0 || Op == OO_Plus) {
8833 // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
8834 // T* operator+(ptrdiff_t, T*);
8835 S.AddBuiltinCandidate(AsymmetricParamTypes, Args, CandidateSet);
8836 }
8837 if (Op == OO_Minus) {
8838 // ptrdiff_t operator-(T, T);
8839 if (!AddedTypes.insert(S.Context.getCanonicalType(PtrTy)).second)
8840 continue;
8841
8842 QualType ParamTypes[2] = {PtrTy, PtrTy};
8843 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8844 }
8845 }
8846 }
8847 }
8848
8849 // C++ [over.built]p12:
8850 //
8851 // For every pair of promoted arithmetic types L and R, there
8852 // exist candidate operator functions of the form
8853 //
8854 // LR operator*(L, R);
8855 // LR operator/(L, R);
8856 // LR operator+(L, R);
8857 // LR operator-(L, R);
8858 // bool operator<(L, R);
8859 // bool operator>(L, R);
8860 // bool operator<=(L, R);
8861 // bool operator>=(L, R);
8862 // bool operator==(L, R);
8863 // bool operator!=(L, R);
8864 //
8865 // where LR is the result of the usual arithmetic conversions
8866 // between types L and R.
8867 //
8868 // C++ [over.built]p24:
8869 //
8870 // For every pair of promoted arithmetic types L and R, there exist
8871 // candidate operator functions of the form
8872 //
8873 // LR operator?(bool, L, R);
8874 //
8875 // where LR is the result of the usual arithmetic conversions
8876 // between types L and R.
8877 // Our candidates ignore the first parameter.
addGenericBinaryArithmeticOverloads()8878 void addGenericBinaryArithmeticOverloads() {
8879 if (!HasArithmeticOrEnumeralCandidateType)
8880 return;
8881
8882 for (unsigned Left = FirstPromotedArithmeticType;
8883 Left < LastPromotedArithmeticType; ++Left) {
8884 for (unsigned Right = FirstPromotedArithmeticType;
8885 Right < LastPromotedArithmeticType; ++Right) {
8886 QualType LandR[2] = { ArithmeticTypes[Left],
8887 ArithmeticTypes[Right] };
8888 S.AddBuiltinCandidate(LandR, Args, CandidateSet);
8889 }
8890 }
8891
8892 // Extension: Add the binary operators ==, !=, <, <=, >=, >, *, /, and the
8893 // conditional operator for vector types.
8894 for (QualType Vec1Ty : CandidateTypes[0].vector_types())
8895 for (QualType Vec2Ty : CandidateTypes[1].vector_types()) {
8896 QualType LandR[2] = {Vec1Ty, Vec2Ty};
8897 S.AddBuiltinCandidate(LandR, Args, CandidateSet);
8898 }
8899 }
8900
8901 /// Add binary operator overloads for each candidate matrix type M1, M2:
8902 /// * (M1, M1) -> M1
8903 /// * (M1, M1.getElementType()) -> M1
8904 /// * (M2.getElementType(), M2) -> M2
8905 /// * (M2, M2) -> M2 // Only if M2 is not part of CandidateTypes[0].
addMatrixBinaryArithmeticOverloads()8906 void addMatrixBinaryArithmeticOverloads() {
8907 if (!HasArithmeticOrEnumeralCandidateType)
8908 return;
8909
8910 for (QualType M1 : CandidateTypes[0].matrix_types()) {
8911 AddCandidate(M1, cast<MatrixType>(M1)->getElementType());
8912 AddCandidate(M1, M1);
8913 }
8914
8915 for (QualType M2 : CandidateTypes[1].matrix_types()) {
8916 AddCandidate(cast<MatrixType>(M2)->getElementType(), M2);
8917 if (!CandidateTypes[0].containsMatrixType(M2))
8918 AddCandidate(M2, M2);
8919 }
8920 }
8921
8922 // C++2a [over.built]p14:
8923 //
8924 // For every integral type T there exists a candidate operator function
8925 // of the form
8926 //
8927 // std::strong_ordering operator<=>(T, T)
8928 //
8929 // C++2a [over.built]p15:
8930 //
8931 // For every pair of floating-point types L and R, there exists a candidate
8932 // operator function of the form
8933 //
8934 // std::partial_ordering operator<=>(L, R);
8935 //
8936 // FIXME: The current specification for integral types doesn't play nice with
8937 // the direction of p0946r0, which allows mixed integral and unscoped-enum
8938 // comparisons. Under the current spec this can lead to ambiguity during
8939 // overload resolution. For example:
8940 //
8941 // enum A : int {a};
8942 // auto x = (a <=> (long)42);
8943 //
8944 // error: call is ambiguous for arguments 'A' and 'long'.
8945 // note: candidate operator<=>(int, int)
8946 // note: candidate operator<=>(long, long)
8947 //
8948 // To avoid this error, this function deviates from the specification and adds
8949 // the mixed overloads `operator<=>(L, R)` where L and R are promoted
8950 // arithmetic types (the same as the generic relational overloads).
8951 //
8952 // For now this function acts as a placeholder.
addThreeWayArithmeticOverloads()8953 void addThreeWayArithmeticOverloads() {
8954 addGenericBinaryArithmeticOverloads();
8955 }
8956
8957 // C++ [over.built]p17:
8958 //
8959 // For every pair of promoted integral types L and R, there
8960 // exist candidate operator functions of the form
8961 //
8962 // LR operator%(L, R);
8963 // LR operator&(L, R);
8964 // LR operator^(L, R);
8965 // LR operator|(L, R);
8966 // L operator<<(L, R);
8967 // L operator>>(L, R);
8968 //
8969 // where LR is the result of the usual arithmetic conversions
8970 // between types L and R.
addBinaryBitwiseArithmeticOverloads()8971 void addBinaryBitwiseArithmeticOverloads() {
8972 if (!HasArithmeticOrEnumeralCandidateType)
8973 return;
8974
8975 for (unsigned Left = FirstPromotedIntegralType;
8976 Left < LastPromotedIntegralType; ++Left) {
8977 for (unsigned Right = FirstPromotedIntegralType;
8978 Right < LastPromotedIntegralType; ++Right) {
8979 QualType LandR[2] = { ArithmeticTypes[Left],
8980 ArithmeticTypes[Right] };
8981 S.AddBuiltinCandidate(LandR, Args, CandidateSet);
8982 }
8983 }
8984 }
8985
8986 // C++ [over.built]p20:
8987 //
8988 // For every pair (T, VQ), where T is an enumeration or
8989 // pointer to member type and VQ is either volatile or
8990 // empty, there exist candidate operator functions of the form
8991 //
8992 // VQ T& operator=(VQ T&, T);
addAssignmentMemberPointerOrEnumeralOverloads()8993 void addAssignmentMemberPointerOrEnumeralOverloads() {
8994 /// Set of (canonical) types that we've already handled.
8995 llvm::SmallPtrSet<QualType, 8> AddedTypes;
8996
8997 for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
8998 for (QualType EnumTy : CandidateTypes[ArgIdx].enumeration_types()) {
8999 if (!AddedTypes.insert(S.Context.getCanonicalType(EnumTy)).second)
9000 continue;
9001
9002 AddBuiltinAssignmentOperatorCandidates(S, EnumTy, Args, CandidateSet);
9003 }
9004
9005 for (QualType MemPtrTy : CandidateTypes[ArgIdx].member_pointer_types()) {
9006 if (!AddedTypes.insert(S.Context.getCanonicalType(MemPtrTy)).second)
9007 continue;
9008
9009 AddBuiltinAssignmentOperatorCandidates(S, MemPtrTy, Args, CandidateSet);
9010 }
9011 }
9012 }
9013
9014 // C++ [over.built]p19:
9015 //
9016 // For every pair (T, VQ), where T is any type and VQ is either
9017 // volatile or empty, there exist candidate operator functions
9018 // of the form
9019 //
9020 // T*VQ& operator=(T*VQ&, T*);
9021 //
9022 // C++ [over.built]p21:
9023 //
9024 // For every pair (T, VQ), where T is a cv-qualified or
9025 // cv-unqualified object type and VQ is either volatile or
9026 // empty, there exist candidate operator functions of the form
9027 //
9028 // T*VQ& operator+=(T*VQ&, ptrdiff_t);
9029 // T*VQ& operator-=(T*VQ&, ptrdiff_t);
addAssignmentPointerOverloads(bool isEqualOp)9030 void addAssignmentPointerOverloads(bool isEqualOp) {
9031 /// Set of (canonical) types that we've already handled.
9032 llvm::SmallPtrSet<QualType, 8> AddedTypes;
9033
9034 for (QualType PtrTy : CandidateTypes[0].pointer_types()) {
9035 // If this is operator=, keep track of the builtin candidates we added.
9036 if (isEqualOp)
9037 AddedTypes.insert(S.Context.getCanonicalType(PtrTy));
9038 else if (!PtrTy->getPointeeType()->isObjectType())
9039 continue;
9040
9041 // non-volatile version
9042 QualType ParamTypes[2] = {
9043 S.Context.getLValueReferenceType(PtrTy),
9044 isEqualOp ? PtrTy : S.Context.getPointerDiffType(),
9045 };
9046 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
9047 /*IsAssignmentOperator=*/ isEqualOp);
9048
9049 bool NeedVolatile = !PtrTy.isVolatileQualified() &&
9050 VisibleTypeConversionsQuals.hasVolatile();
9051 if (NeedVolatile) {
9052 // volatile version
9053 ParamTypes[0] =
9054 S.Context.getLValueReferenceType(S.Context.getVolatileType(PtrTy));
9055 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
9056 /*IsAssignmentOperator=*/isEqualOp);
9057 }
9058
9059 if (!PtrTy.isRestrictQualified() &&
9060 VisibleTypeConversionsQuals.hasRestrict()) {
9061 // restrict version
9062 ParamTypes[0] =
9063 S.Context.getLValueReferenceType(S.Context.getRestrictType(PtrTy));
9064 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
9065 /*IsAssignmentOperator=*/isEqualOp);
9066
9067 if (NeedVolatile) {
9068 // volatile restrict version
9069 ParamTypes[0] =
9070 S.Context.getLValueReferenceType(S.Context.getCVRQualifiedType(
9071 PtrTy, (Qualifiers::Volatile | Qualifiers::Restrict)));
9072 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
9073 /*IsAssignmentOperator=*/isEqualOp);
9074 }
9075 }
9076 }
9077
9078 if (isEqualOp) {
9079 for (QualType PtrTy : CandidateTypes[1].pointer_types()) {
9080 // Make sure we don't add the same candidate twice.
9081 if (!AddedTypes.insert(S.Context.getCanonicalType(PtrTy)).second)
9082 continue;
9083
9084 QualType ParamTypes[2] = {
9085 S.Context.getLValueReferenceType(PtrTy),
9086 PtrTy,
9087 };
9088
9089 // non-volatile version
9090 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
9091 /*IsAssignmentOperator=*/true);
9092
9093 bool NeedVolatile = !PtrTy.isVolatileQualified() &&
9094 VisibleTypeConversionsQuals.hasVolatile();
9095 if (NeedVolatile) {
9096 // volatile version
9097 ParamTypes[0] = S.Context.getLValueReferenceType(
9098 S.Context.getVolatileType(PtrTy));
9099 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
9100 /*IsAssignmentOperator=*/true);
9101 }
9102
9103 if (!PtrTy.isRestrictQualified() &&
9104 VisibleTypeConversionsQuals.hasRestrict()) {
9105 // restrict version
9106 ParamTypes[0] = S.Context.getLValueReferenceType(
9107 S.Context.getRestrictType(PtrTy));
9108 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
9109 /*IsAssignmentOperator=*/true);
9110
9111 if (NeedVolatile) {
9112 // volatile restrict version
9113 ParamTypes[0] =
9114 S.Context.getLValueReferenceType(S.Context.getCVRQualifiedType(
9115 PtrTy, (Qualifiers::Volatile | Qualifiers::Restrict)));
9116 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
9117 /*IsAssignmentOperator=*/true);
9118 }
9119 }
9120 }
9121 }
9122 }
9123
9124 // C++ [over.built]p18:
9125 //
9126 // For every triple (L, VQ, R), where L is an arithmetic type,
9127 // VQ is either volatile or empty, and R is a promoted
9128 // arithmetic type, there exist candidate operator functions of
9129 // the form
9130 //
9131 // VQ L& operator=(VQ L&, R);
9132 // VQ L& operator*=(VQ L&, R);
9133 // VQ L& operator/=(VQ L&, R);
9134 // VQ L& operator+=(VQ L&, R);
9135 // VQ L& operator-=(VQ L&, R);
addAssignmentArithmeticOverloads(bool isEqualOp)9136 void addAssignmentArithmeticOverloads(bool isEqualOp) {
9137 if (!HasArithmeticOrEnumeralCandidateType)
9138 return;
9139
9140 for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
9141 for (unsigned Right = FirstPromotedArithmeticType;
9142 Right < LastPromotedArithmeticType; ++Right) {
9143 QualType ParamTypes[2];
9144 ParamTypes[1] = ArithmeticTypes[Right];
9145 auto LeftBaseTy = AdjustAddressSpaceForBuiltinOperandType(
9146 S, ArithmeticTypes[Left], Args[0]);
9147
9148 forAllQualifierCombinations(
9149 VisibleTypeConversionsQuals, [&](QualifiersAndAtomic Quals) {
9150 ParamTypes[0] =
9151 makeQualifiedLValueReferenceType(LeftBaseTy, Quals, S);
9152 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
9153 /*IsAssignmentOperator=*/isEqualOp);
9154 });
9155 }
9156 }
9157
9158 // Extension: Add the binary operators =, +=, -=, *=, /= for vector types.
9159 for (QualType Vec1Ty : CandidateTypes[0].vector_types())
9160 for (QualType Vec2Ty : CandidateTypes[0].vector_types()) {
9161 QualType ParamTypes[2];
9162 ParamTypes[1] = Vec2Ty;
9163 // Add this built-in operator as a candidate (VQ is empty).
9164 ParamTypes[0] = S.Context.getLValueReferenceType(Vec1Ty);
9165 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
9166 /*IsAssignmentOperator=*/isEqualOp);
9167
9168 // Add this built-in operator as a candidate (VQ is 'volatile').
9169 if (VisibleTypeConversionsQuals.hasVolatile()) {
9170 ParamTypes[0] = S.Context.getVolatileType(Vec1Ty);
9171 ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
9172 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
9173 /*IsAssignmentOperator=*/isEqualOp);
9174 }
9175 }
9176 }
9177
9178 // C++ [over.built]p22:
9179 //
9180 // For every triple (L, VQ, R), where L is an integral type, VQ
9181 // is either volatile or empty, and R is a promoted integral
9182 // type, there exist candidate operator functions of the form
9183 //
9184 // VQ L& operator%=(VQ L&, R);
9185 // VQ L& operator<<=(VQ L&, R);
9186 // VQ L& operator>>=(VQ L&, R);
9187 // VQ L& operator&=(VQ L&, R);
9188 // VQ L& operator^=(VQ L&, R);
9189 // VQ L& operator|=(VQ L&, R);
addAssignmentIntegralOverloads()9190 void addAssignmentIntegralOverloads() {
9191 if (!HasArithmeticOrEnumeralCandidateType)
9192 return;
9193
9194 for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
9195 for (unsigned Right = FirstPromotedIntegralType;
9196 Right < LastPromotedIntegralType; ++Right) {
9197 QualType ParamTypes[2];
9198 ParamTypes[1] = ArithmeticTypes[Right];
9199 auto LeftBaseTy = AdjustAddressSpaceForBuiltinOperandType(
9200 S, ArithmeticTypes[Left], Args[0]);
9201
9202 forAllQualifierCombinations(
9203 VisibleTypeConversionsQuals, [&](QualifiersAndAtomic Quals) {
9204 ParamTypes[0] =
9205 makeQualifiedLValueReferenceType(LeftBaseTy, Quals, S);
9206 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
9207 });
9208 }
9209 }
9210 }
9211
9212 // C++ [over.operator]p23:
9213 //
9214 // There also exist candidate operator functions of the form
9215 //
9216 // bool operator!(bool);
9217 // bool operator&&(bool, bool);
9218 // bool operator||(bool, bool);
addExclaimOverload()9219 void addExclaimOverload() {
9220 QualType ParamTy = S.Context.BoolTy;
9221 S.AddBuiltinCandidate(&ParamTy, Args, CandidateSet,
9222 /*IsAssignmentOperator=*/false,
9223 /*NumContextualBoolArguments=*/1);
9224 }
addAmpAmpOrPipePipeOverload()9225 void addAmpAmpOrPipePipeOverload() {
9226 QualType ParamTypes[2] = { S.Context.BoolTy, S.Context.BoolTy };
9227 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
9228 /*IsAssignmentOperator=*/false,
9229 /*NumContextualBoolArguments=*/2);
9230 }
9231
9232 // C++ [over.built]p13:
9233 //
9234 // For every cv-qualified or cv-unqualified object type T there
9235 // exist candidate operator functions of the form
9236 //
9237 // T* operator+(T*, ptrdiff_t); [ABOVE]
9238 // T& operator[](T*, ptrdiff_t);
9239 // T* operator-(T*, ptrdiff_t); [ABOVE]
9240 // T* operator+(ptrdiff_t, T*); [ABOVE]
9241 // T& operator[](ptrdiff_t, T*);
addSubscriptOverloads()9242 void addSubscriptOverloads() {
9243 for (QualType PtrTy : CandidateTypes[0].pointer_types()) {
9244 QualType ParamTypes[2] = {PtrTy, S.Context.getPointerDiffType()};
9245 QualType PointeeType = PtrTy->getPointeeType();
9246 if (!PointeeType->isObjectType())
9247 continue;
9248
9249 // T& operator[](T*, ptrdiff_t)
9250 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
9251 }
9252
9253 for (QualType PtrTy : CandidateTypes[1].pointer_types()) {
9254 QualType ParamTypes[2] = {S.Context.getPointerDiffType(), PtrTy};
9255 QualType PointeeType = PtrTy->getPointeeType();
9256 if (!PointeeType->isObjectType())
9257 continue;
9258
9259 // T& operator[](ptrdiff_t, T*)
9260 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
9261 }
9262 }
9263
9264 // C++ [over.built]p11:
9265 // For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type,
9266 // C1 is the same type as C2 or is a derived class of C2, T is an object
9267 // type or a function type, and CV1 and CV2 are cv-qualifier-seqs,
9268 // there exist candidate operator functions of the form
9269 //
9270 // CV12 T& operator->*(CV1 C1*, CV2 T C2::*);
9271 //
9272 // where CV12 is the union of CV1 and CV2.
addArrowStarOverloads()9273 void addArrowStarOverloads() {
9274 for (QualType PtrTy : CandidateTypes[0].pointer_types()) {
9275 QualType C1Ty = PtrTy;
9276 QualType C1;
9277 QualifierCollector Q1;
9278 C1 = QualType(Q1.strip(C1Ty->getPointeeType()), 0);
9279 if (!isa<RecordType>(C1))
9280 continue;
9281 // heuristic to reduce number of builtin candidates in the set.
9282 // Add volatile/restrict version only if there are conversions to a
9283 // volatile/restrict type.
9284 if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile())
9285 continue;
9286 if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict())
9287 continue;
9288 for (QualType MemPtrTy : CandidateTypes[1].member_pointer_types()) {
9289 const MemberPointerType *mptr = cast<MemberPointerType>(MemPtrTy);
9290 QualType C2 = QualType(mptr->getClass(), 0);
9291 C2 = C2.getUnqualifiedType();
9292 if (C1 != C2 && !S.IsDerivedFrom(CandidateSet.getLocation(), C1, C2))
9293 break;
9294 QualType ParamTypes[2] = {PtrTy, MemPtrTy};
9295 // build CV12 T&
9296 QualType T = mptr->getPointeeType();
9297 if (!VisibleTypeConversionsQuals.hasVolatile() &&
9298 T.isVolatileQualified())
9299 continue;
9300 if (!VisibleTypeConversionsQuals.hasRestrict() &&
9301 T.isRestrictQualified())
9302 continue;
9303 T = Q1.apply(S.Context, T);
9304 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
9305 }
9306 }
9307 }
9308
9309 // Note that we don't consider the first argument, since it has been
9310 // contextually converted to bool long ago. The candidates below are
9311 // therefore added as binary.
9312 //
9313 // C++ [over.built]p25:
9314 // For every type T, where T is a pointer, pointer-to-member, or scoped
9315 // enumeration type, there exist candidate operator functions of the form
9316 //
9317 // T operator?(bool, T, T);
9318 //
addConditionalOperatorOverloads()9319 void addConditionalOperatorOverloads() {
9320 /// Set of (canonical) types that we've already handled.
9321 llvm::SmallPtrSet<QualType, 8> AddedTypes;
9322
9323 for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
9324 for (QualType PtrTy : CandidateTypes[ArgIdx].pointer_types()) {
9325 if (!AddedTypes.insert(S.Context.getCanonicalType(PtrTy)).second)
9326 continue;
9327
9328 QualType ParamTypes[2] = {PtrTy, PtrTy};
9329 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
9330 }
9331
9332 for (QualType MemPtrTy : CandidateTypes[ArgIdx].member_pointer_types()) {
9333 if (!AddedTypes.insert(S.Context.getCanonicalType(MemPtrTy)).second)
9334 continue;
9335
9336 QualType ParamTypes[2] = {MemPtrTy, MemPtrTy};
9337 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
9338 }
9339
9340 if (S.getLangOpts().CPlusPlus11) {
9341 for (QualType EnumTy : CandidateTypes[ArgIdx].enumeration_types()) {
9342 if (!EnumTy->castAs<EnumType>()->getDecl()->isScoped())
9343 continue;
9344
9345 if (!AddedTypes.insert(S.Context.getCanonicalType(EnumTy)).second)
9346 continue;
9347
9348 QualType ParamTypes[2] = {EnumTy, EnumTy};
9349 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
9350 }
9351 }
9352 }
9353 }
9354 };
9355
9356 } // end anonymous namespace
9357
9358 /// AddBuiltinOperatorCandidates - Add the appropriate built-in
9359 /// operator overloads to the candidate set (C++ [over.built]), based
9360 /// on the operator @p Op and the arguments given. For example, if the
9361 /// operator is a binary '+', this routine might add "int
9362 /// operator+(int, int)" to cover integer addition.
AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,SourceLocation OpLoc,ArrayRef<Expr * > Args,OverloadCandidateSet & CandidateSet)9363 void Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
9364 SourceLocation OpLoc,
9365 ArrayRef<Expr *> Args,
9366 OverloadCandidateSet &CandidateSet) {
9367 // Find all of the types that the arguments can convert to, but only
9368 // if the operator we're looking at has built-in operator candidates
9369 // that make use of these types. Also record whether we encounter non-record
9370 // candidate types or either arithmetic or enumeral candidate types.
9371 QualifiersAndAtomic VisibleTypeConversionsQuals;
9372 VisibleTypeConversionsQuals.addConst();
9373 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
9374 VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]);
9375 if (Args[ArgIdx]->getType()->isAtomicType())
9376 VisibleTypeConversionsQuals.addAtomic();
9377 }
9378
9379 bool HasNonRecordCandidateType = false;
9380 bool HasArithmeticOrEnumeralCandidateType = false;
9381 SmallVector<BuiltinCandidateTypeSet, 2> CandidateTypes;
9382 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
9383 CandidateTypes.emplace_back(*this);
9384 CandidateTypes[ArgIdx].AddTypesConvertedFrom(Args[ArgIdx]->getType(),
9385 OpLoc,
9386 true,
9387 (Op == OO_Exclaim ||
9388 Op == OO_AmpAmp ||
9389 Op == OO_PipePipe),
9390 VisibleTypeConversionsQuals);
9391 HasNonRecordCandidateType = HasNonRecordCandidateType ||
9392 CandidateTypes[ArgIdx].hasNonRecordTypes();
9393 HasArithmeticOrEnumeralCandidateType =
9394 HasArithmeticOrEnumeralCandidateType ||
9395 CandidateTypes[ArgIdx].hasArithmeticOrEnumeralTypes();
9396 }
9397
9398 // Exit early when no non-record types have been added to the candidate set
9399 // for any of the arguments to the operator.
9400 //
9401 // We can't exit early for !, ||, or &&, since there we have always have
9402 // 'bool' overloads.
9403 if (!HasNonRecordCandidateType &&
9404 !(Op == OO_Exclaim || Op == OO_AmpAmp || Op == OO_PipePipe))
9405 return;
9406
9407 // Setup an object to manage the common state for building overloads.
9408 BuiltinOperatorOverloadBuilder OpBuilder(*this, Args,
9409 VisibleTypeConversionsQuals,
9410 HasArithmeticOrEnumeralCandidateType,
9411 CandidateTypes, CandidateSet);
9412
9413 // Dispatch over the operation to add in only those overloads which apply.
9414 switch (Op) {
9415 case OO_None:
9416 case NUM_OVERLOADED_OPERATORS:
9417 llvm_unreachable("Expected an overloaded operator");
9418
9419 case OO_New:
9420 case OO_Delete:
9421 case OO_Array_New:
9422 case OO_Array_Delete:
9423 case OO_Call:
9424 llvm_unreachable(
9425 "Special operators don't use AddBuiltinOperatorCandidates");
9426
9427 case OO_Comma:
9428 case OO_Arrow:
9429 case OO_Coawait:
9430 // C++ [over.match.oper]p3:
9431 // -- For the operator ',', the unary operator '&', the
9432 // operator '->', or the operator 'co_await', the
9433 // built-in candidates set is empty.
9434 break;
9435
9436 case OO_Plus: // '+' is either unary or binary
9437 if (Args.size() == 1)
9438 OpBuilder.addUnaryPlusPointerOverloads();
9439 [[fallthrough]];
9440
9441 case OO_Minus: // '-' is either unary or binary
9442 if (Args.size() == 1) {
9443 OpBuilder.addUnaryPlusOrMinusArithmeticOverloads();
9444 } else {
9445 OpBuilder.addBinaryPlusOrMinusPointerOverloads(Op);
9446 OpBuilder.addGenericBinaryArithmeticOverloads();
9447 OpBuilder.addMatrixBinaryArithmeticOverloads();
9448 }
9449 break;
9450
9451 case OO_Star: // '*' is either unary or binary
9452 if (Args.size() == 1)
9453 OpBuilder.addUnaryStarPointerOverloads();
9454 else {
9455 OpBuilder.addGenericBinaryArithmeticOverloads();
9456 OpBuilder.addMatrixBinaryArithmeticOverloads();
9457 }
9458 break;
9459
9460 case OO_Slash:
9461 OpBuilder.addGenericBinaryArithmeticOverloads();
9462 break;
9463
9464 case OO_PlusPlus:
9465 case OO_MinusMinus:
9466 OpBuilder.addPlusPlusMinusMinusArithmeticOverloads(Op);
9467 OpBuilder.addPlusPlusMinusMinusPointerOverloads();
9468 break;
9469
9470 case OO_EqualEqual:
9471 case OO_ExclaimEqual:
9472 OpBuilder.addEqualEqualOrNotEqualMemberPointerOrNullptrOverloads();
9473 OpBuilder.addGenericBinaryPointerOrEnumeralOverloads(/*IsSpaceship=*/false);
9474 OpBuilder.addGenericBinaryArithmeticOverloads();
9475 break;
9476
9477 case OO_Less:
9478 case OO_Greater:
9479 case OO_LessEqual:
9480 case OO_GreaterEqual:
9481 OpBuilder.addGenericBinaryPointerOrEnumeralOverloads(/*IsSpaceship=*/false);
9482 OpBuilder.addGenericBinaryArithmeticOverloads();
9483 break;
9484
9485 case OO_Spaceship:
9486 OpBuilder.addGenericBinaryPointerOrEnumeralOverloads(/*IsSpaceship=*/true);
9487 OpBuilder.addThreeWayArithmeticOverloads();
9488 break;
9489
9490 case OO_Percent:
9491 case OO_Caret:
9492 case OO_Pipe:
9493 case OO_LessLess:
9494 case OO_GreaterGreater:
9495 OpBuilder.addBinaryBitwiseArithmeticOverloads();
9496 break;
9497
9498 case OO_Amp: // '&' is either unary or binary
9499 if (Args.size() == 1)
9500 // C++ [over.match.oper]p3:
9501 // -- For the operator ',', the unary operator '&', or the
9502 // operator '->', the built-in candidates set is empty.
9503 break;
9504
9505 OpBuilder.addBinaryBitwiseArithmeticOverloads();
9506 break;
9507
9508 case OO_Tilde:
9509 OpBuilder.addUnaryTildePromotedIntegralOverloads();
9510 break;
9511
9512 case OO_Equal:
9513 OpBuilder.addAssignmentMemberPointerOrEnumeralOverloads();
9514 [[fallthrough]];
9515
9516 case OO_PlusEqual:
9517 case OO_MinusEqual:
9518 OpBuilder.addAssignmentPointerOverloads(Op == OO_Equal);
9519 [[fallthrough]];
9520
9521 case OO_StarEqual:
9522 case OO_SlashEqual:
9523 OpBuilder.addAssignmentArithmeticOverloads(Op == OO_Equal);
9524 break;
9525
9526 case OO_PercentEqual:
9527 case OO_LessLessEqual:
9528 case OO_GreaterGreaterEqual:
9529 case OO_AmpEqual:
9530 case OO_CaretEqual:
9531 case OO_PipeEqual:
9532 OpBuilder.addAssignmentIntegralOverloads();
9533 break;
9534
9535 case OO_Exclaim:
9536 OpBuilder.addExclaimOverload();
9537 break;
9538
9539 case OO_AmpAmp:
9540 case OO_PipePipe:
9541 OpBuilder.addAmpAmpOrPipePipeOverload();
9542 break;
9543
9544 case OO_Subscript:
9545 if (Args.size() == 2)
9546 OpBuilder.addSubscriptOverloads();
9547 break;
9548
9549 case OO_ArrowStar:
9550 OpBuilder.addArrowStarOverloads();
9551 break;
9552
9553 case OO_Conditional:
9554 OpBuilder.addConditionalOperatorOverloads();
9555 OpBuilder.addGenericBinaryArithmeticOverloads();
9556 break;
9557 }
9558 }
9559
9560 /// Add function candidates found via argument-dependent lookup
9561 /// to the set of overloading candidates.
9562 ///
9563 /// This routine performs argument-dependent name lookup based on the
9564 /// given function name (which may also be an operator name) and adds
9565 /// all of the overload candidates found by ADL to the overload
9566 /// candidate set (C++ [basic.lookup.argdep]).
9567 void
AddArgumentDependentLookupCandidates(DeclarationName Name,SourceLocation Loc,ArrayRef<Expr * > Args,TemplateArgumentListInfo * ExplicitTemplateArgs,OverloadCandidateSet & CandidateSet,bool PartialOverloading)9568 Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
9569 SourceLocation Loc,
9570 ArrayRef<Expr *> Args,
9571 TemplateArgumentListInfo *ExplicitTemplateArgs,
9572 OverloadCandidateSet& CandidateSet,
9573 bool PartialOverloading) {
9574 ADLResult Fns;
9575
9576 // FIXME: This approach for uniquing ADL results (and removing
9577 // redundant candidates from the set) relies on pointer-equality,
9578 // which means we need to key off the canonical decl. However,
9579 // always going back to the canonical decl might not get us the
9580 // right set of default arguments. What default arguments are
9581 // we supposed to consider on ADL candidates, anyway?
9582
9583 // FIXME: Pass in the explicit template arguments?
9584 ArgumentDependentLookup(Name, Loc, Args, Fns);
9585
9586 // Erase all of the candidates we already knew about.
9587 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
9588 CandEnd = CandidateSet.end();
9589 Cand != CandEnd; ++Cand)
9590 if (Cand->Function) {
9591 Fns.erase(Cand->Function);
9592 if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
9593 Fns.erase(FunTmpl);
9594 }
9595
9596 // For each of the ADL candidates we found, add it to the overload
9597 // set.
9598 for (ADLResult::iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
9599 DeclAccessPair FoundDecl = DeclAccessPair::make(*I, AS_none);
9600
9601 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) {
9602 if (ExplicitTemplateArgs)
9603 continue;
9604
9605 AddOverloadCandidate(
9606 FD, FoundDecl, Args, CandidateSet, /*SuppressUserConversions=*/false,
9607 PartialOverloading, /*AllowExplicit=*/true,
9608 /*AllowExplicitConversion=*/false, ADLCallKind::UsesADL);
9609 if (CandidateSet.getRewriteInfo().shouldAddReversed(*this, Args, FD)) {
9610 AddOverloadCandidate(
9611 FD, FoundDecl, {Args[1], Args[0]}, CandidateSet,
9612 /*SuppressUserConversions=*/false, PartialOverloading,
9613 /*AllowExplicit=*/true, /*AllowExplicitConversion=*/false,
9614 ADLCallKind::UsesADL, std::nullopt,
9615 OverloadCandidateParamOrder::Reversed);
9616 }
9617 } else {
9618 auto *FTD = cast<FunctionTemplateDecl>(*I);
9619 AddTemplateOverloadCandidate(
9620 FTD, FoundDecl, ExplicitTemplateArgs, Args, CandidateSet,
9621 /*SuppressUserConversions=*/false, PartialOverloading,
9622 /*AllowExplicit=*/true, ADLCallKind::UsesADL);
9623 if (CandidateSet.getRewriteInfo().shouldAddReversed(
9624 *this, Args, FTD->getTemplatedDecl())) {
9625 AddTemplateOverloadCandidate(
9626 FTD, FoundDecl, ExplicitTemplateArgs, {Args[1], Args[0]},
9627 CandidateSet, /*SuppressUserConversions=*/false, PartialOverloading,
9628 /*AllowExplicit=*/true, ADLCallKind::UsesADL,
9629 OverloadCandidateParamOrder::Reversed);
9630 }
9631 }
9632 }
9633 }
9634
9635 namespace {
9636 enum class Comparison { Equal, Better, Worse };
9637 }
9638
9639 /// Compares the enable_if attributes of two FunctionDecls, for the purposes of
9640 /// overload resolution.
9641 ///
9642 /// Cand1's set of enable_if attributes are said to be "better" than Cand2's iff
9643 /// Cand1's first N enable_if attributes have precisely the same conditions as
9644 /// Cand2's first N enable_if attributes (where N = the number of enable_if
9645 /// attributes on Cand2), and Cand1 has more than N enable_if attributes.
9646 ///
9647 /// Note that you can have a pair of candidates such that Cand1's enable_if
9648 /// attributes are worse than Cand2's, and Cand2's enable_if attributes are
9649 /// worse than Cand1's.
compareEnableIfAttrs(const Sema & S,const FunctionDecl * Cand1,const FunctionDecl * Cand2)9650 static Comparison compareEnableIfAttrs(const Sema &S, const FunctionDecl *Cand1,
9651 const FunctionDecl *Cand2) {
9652 // Common case: One (or both) decls don't have enable_if attrs.
9653 bool Cand1Attr = Cand1->hasAttr<EnableIfAttr>();
9654 bool Cand2Attr = Cand2->hasAttr<EnableIfAttr>();
9655 if (!Cand1Attr || !Cand2Attr) {
9656 if (Cand1Attr == Cand2Attr)
9657 return Comparison::Equal;
9658 return Cand1Attr ? Comparison::Better : Comparison::Worse;
9659 }
9660
9661 auto Cand1Attrs = Cand1->specific_attrs<EnableIfAttr>();
9662 auto Cand2Attrs = Cand2->specific_attrs<EnableIfAttr>();
9663
9664 llvm::FoldingSetNodeID Cand1ID, Cand2ID;
9665 for (auto Pair : zip_longest(Cand1Attrs, Cand2Attrs)) {
9666 std::optional<EnableIfAttr *> Cand1A = std::get<0>(Pair);
9667 std::optional<EnableIfAttr *> Cand2A = std::get<1>(Pair);
9668
9669 // It's impossible for Cand1 to be better than (or equal to) Cand2 if Cand1
9670 // has fewer enable_if attributes than Cand2, and vice versa.
9671 if (!Cand1A)
9672 return Comparison::Worse;
9673 if (!Cand2A)
9674 return Comparison::Better;
9675
9676 Cand1ID.clear();
9677 Cand2ID.clear();
9678
9679 (*Cand1A)->getCond()->Profile(Cand1ID, S.getASTContext(), true);
9680 (*Cand2A)->getCond()->Profile(Cand2ID, S.getASTContext(), true);
9681 if (Cand1ID != Cand2ID)
9682 return Comparison::Worse;
9683 }
9684
9685 return Comparison::Equal;
9686 }
9687
9688 static Comparison
isBetterMultiversionCandidate(const OverloadCandidate & Cand1,const OverloadCandidate & Cand2)9689 isBetterMultiversionCandidate(const OverloadCandidate &Cand1,
9690 const OverloadCandidate &Cand2) {
9691 if (!Cand1.Function || !Cand1.Function->isMultiVersion() || !Cand2.Function ||
9692 !Cand2.Function->isMultiVersion())
9693 return Comparison::Equal;
9694
9695 // If both are invalid, they are equal. If one of them is invalid, the other
9696 // is better.
9697 if (Cand1.Function->isInvalidDecl()) {
9698 if (Cand2.Function->isInvalidDecl())
9699 return Comparison::Equal;
9700 return Comparison::Worse;
9701 }
9702 if (Cand2.Function->isInvalidDecl())
9703 return Comparison::Better;
9704
9705 // If this is a cpu_dispatch/cpu_specific multiversion situation, prefer
9706 // cpu_dispatch, else arbitrarily based on the identifiers.
9707 bool Cand1CPUDisp = Cand1.Function->hasAttr<CPUDispatchAttr>();
9708 bool Cand2CPUDisp = Cand2.Function->hasAttr<CPUDispatchAttr>();
9709 const auto *Cand1CPUSpec = Cand1.Function->getAttr<CPUSpecificAttr>();
9710 const auto *Cand2CPUSpec = Cand2.Function->getAttr<CPUSpecificAttr>();
9711
9712 if (!Cand1CPUDisp && !Cand2CPUDisp && !Cand1CPUSpec && !Cand2CPUSpec)
9713 return Comparison::Equal;
9714
9715 if (Cand1CPUDisp && !Cand2CPUDisp)
9716 return Comparison::Better;
9717 if (Cand2CPUDisp && !Cand1CPUDisp)
9718 return Comparison::Worse;
9719
9720 if (Cand1CPUSpec && Cand2CPUSpec) {
9721 if (Cand1CPUSpec->cpus_size() != Cand2CPUSpec->cpus_size())
9722 return Cand1CPUSpec->cpus_size() < Cand2CPUSpec->cpus_size()
9723 ? Comparison::Better
9724 : Comparison::Worse;
9725
9726 std::pair<CPUSpecificAttr::cpus_iterator, CPUSpecificAttr::cpus_iterator>
9727 FirstDiff = std::mismatch(
9728 Cand1CPUSpec->cpus_begin(), Cand1CPUSpec->cpus_end(),
9729 Cand2CPUSpec->cpus_begin(),
9730 [](const IdentifierInfo *LHS, const IdentifierInfo *RHS) {
9731 return LHS->getName() == RHS->getName();
9732 });
9733
9734 assert(FirstDiff.first != Cand1CPUSpec->cpus_end() &&
9735 "Two different cpu-specific versions should not have the same "
9736 "identifier list, otherwise they'd be the same decl!");
9737 return (*FirstDiff.first)->getName() < (*FirstDiff.second)->getName()
9738 ? Comparison::Better
9739 : Comparison::Worse;
9740 }
9741 llvm_unreachable("No way to get here unless both had cpu_dispatch");
9742 }
9743
9744 /// Compute the type of the implicit object parameter for the given function,
9745 /// if any. Returns std::nullopt if there is no implicit object parameter, and a
9746 /// null QualType if there is a 'matches anything' implicit object parameter.
9747 static std::optional<QualType>
getImplicitObjectParamType(ASTContext & Context,const FunctionDecl * F)9748 getImplicitObjectParamType(ASTContext &Context, const FunctionDecl *F) {
9749 if (!isa<CXXMethodDecl>(F) || isa<CXXConstructorDecl>(F))
9750 return std::nullopt;
9751
9752 auto *M = cast<CXXMethodDecl>(F);
9753 // Static member functions' object parameters match all types.
9754 if (M->isStatic())
9755 return QualType();
9756
9757 QualType T = M->getThisObjectType();
9758 if (M->getRefQualifier() == RQ_RValue)
9759 return Context.getRValueReferenceType(T);
9760 return Context.getLValueReferenceType(T);
9761 }
9762
haveSameParameterTypes(ASTContext & Context,const FunctionDecl * F1,const FunctionDecl * F2,unsigned NumParams)9763 static bool haveSameParameterTypes(ASTContext &Context, const FunctionDecl *F1,
9764 const FunctionDecl *F2, unsigned NumParams) {
9765 if (declaresSameEntity(F1, F2))
9766 return true;
9767
9768 auto NextParam = [&](const FunctionDecl *F, unsigned &I, bool First) {
9769 if (First) {
9770 if (std::optional<QualType> T = getImplicitObjectParamType(Context, F))
9771 return *T;
9772 }
9773 assert(I < F->getNumParams());
9774 return F->getParamDecl(I++)->getType();
9775 };
9776
9777 unsigned I1 = 0, I2 = 0;
9778 for (unsigned I = 0; I != NumParams; ++I) {
9779 QualType T1 = NextParam(F1, I1, I == 0);
9780 QualType T2 = NextParam(F2, I2, I == 0);
9781 assert(!T1.isNull() && !T2.isNull() && "Unexpected null param types");
9782 if (!Context.hasSameUnqualifiedType(T1, T2))
9783 return false;
9784 }
9785 return true;
9786 }
9787
9788 /// We're allowed to use constraints partial ordering only if the candidates
9789 /// have the same parameter types:
9790 /// [over.match.best]p2.6
9791 /// F1 and F2 are non-template functions with the same parameter-type-lists,
9792 /// and F1 is more constrained than F2 [...]
sameFunctionParameterTypeLists(Sema & S,const OverloadCandidate & Cand1,const OverloadCandidate & Cand2)9793 static bool sameFunctionParameterTypeLists(Sema &S,
9794 const OverloadCandidate &Cand1,
9795 const OverloadCandidate &Cand2) {
9796 if (Cand1.Function && Cand2.Function) {
9797 auto *PT1 = cast<FunctionProtoType>(Cand1.Function->getFunctionType());
9798 auto *PT2 = cast<FunctionProtoType>(Cand2.Function->getFunctionType());
9799 if (PT1->getNumParams() == PT2->getNumParams() &&
9800 PT1->isVariadic() == PT2->isVariadic() &&
9801 S.FunctionParamTypesAreEqual(PT1, PT2, nullptr,
9802 Cand1.isReversed() ^ Cand2.isReversed()))
9803 return true;
9804 }
9805 return false;
9806 }
9807
9808 /// isBetterOverloadCandidate - Determines whether the first overload
9809 /// candidate is a better candidate than the second (C++ 13.3.3p1).
isBetterOverloadCandidate(Sema & S,const OverloadCandidate & Cand1,const OverloadCandidate & Cand2,SourceLocation Loc,OverloadCandidateSet::CandidateSetKind Kind)9810 bool clang::isBetterOverloadCandidate(
9811 Sema &S, const OverloadCandidate &Cand1, const OverloadCandidate &Cand2,
9812 SourceLocation Loc, OverloadCandidateSet::CandidateSetKind Kind) {
9813 // Define viable functions to be better candidates than non-viable
9814 // functions.
9815 if (!Cand2.Viable)
9816 return Cand1.Viable;
9817 else if (!Cand1.Viable)
9818 return false;
9819
9820 // [CUDA] A function with 'never' preference is marked not viable, therefore
9821 // is never shown up here. The worst preference shown up here is 'wrong side',
9822 // e.g. an H function called by a HD function in device compilation. This is
9823 // valid AST as long as the HD function is not emitted, e.g. it is an inline
9824 // function which is called only by an H function. A deferred diagnostic will
9825 // be triggered if it is emitted. However a wrong-sided function is still
9826 // a viable candidate here.
9827 //
9828 // If Cand1 can be emitted and Cand2 cannot be emitted in the current
9829 // context, Cand1 is better than Cand2. If Cand1 can not be emitted and Cand2
9830 // can be emitted, Cand1 is not better than Cand2. This rule should have
9831 // precedence over other rules.
9832 //
9833 // If both Cand1 and Cand2 can be emitted, or neither can be emitted, then
9834 // other rules should be used to determine which is better. This is because
9835 // host/device based overloading resolution is mostly for determining
9836 // viability of a function. If two functions are both viable, other factors
9837 // should take precedence in preference, e.g. the standard-defined preferences
9838 // like argument conversion ranks or enable_if partial-ordering. The
9839 // preference for pass-object-size parameters is probably most similar to a
9840 // type-based-overloading decision and so should take priority.
9841 //
9842 // If other rules cannot determine which is better, CUDA preference will be
9843 // used again to determine which is better.
9844 //
9845 // TODO: Currently IdentifyCUDAPreference does not return correct values
9846 // for functions called in global variable initializers due to missing
9847 // correct context about device/host. Therefore we can only enforce this
9848 // rule when there is a caller. We should enforce this rule for functions
9849 // in global variable initializers once proper context is added.
9850 //
9851 // TODO: We can only enable the hostness based overloading resolution when
9852 // -fgpu-exclude-wrong-side-overloads is on since this requires deferring
9853 // overloading resolution diagnostics.
9854 if (S.getLangOpts().CUDA && Cand1.Function && Cand2.Function &&
9855 S.getLangOpts().GPUExcludeWrongSideOverloads) {
9856 if (FunctionDecl *Caller = S.getCurFunctionDecl(/*AllowLambda=*/true)) {
9857 bool IsCallerImplicitHD = Sema::isCUDAImplicitHostDeviceFunction(Caller);
9858 bool IsCand1ImplicitHD =
9859 Sema::isCUDAImplicitHostDeviceFunction(Cand1.Function);
9860 bool IsCand2ImplicitHD =
9861 Sema::isCUDAImplicitHostDeviceFunction(Cand2.Function);
9862 auto P1 = S.IdentifyCUDAPreference(Caller, Cand1.Function);
9863 auto P2 = S.IdentifyCUDAPreference(Caller, Cand2.Function);
9864 assert(P1 != Sema::CFP_Never && P2 != Sema::CFP_Never);
9865 // The implicit HD function may be a function in a system header which
9866 // is forced by pragma. In device compilation, if we prefer HD candidates
9867 // over wrong-sided candidates, overloading resolution may change, which
9868 // may result in non-deferrable diagnostics. As a workaround, we let
9869 // implicit HD candidates take equal preference as wrong-sided candidates.
9870 // This will preserve the overloading resolution.
9871 // TODO: We still need special handling of implicit HD functions since
9872 // they may incur other diagnostics to be deferred. We should make all
9873 // host/device related diagnostics deferrable and remove special handling
9874 // of implicit HD functions.
9875 auto EmitThreshold =
9876 (S.getLangOpts().CUDAIsDevice && IsCallerImplicitHD &&
9877 (IsCand1ImplicitHD || IsCand2ImplicitHD))
9878 ? Sema::CFP_Never
9879 : Sema::CFP_WrongSide;
9880 auto Cand1Emittable = P1 > EmitThreshold;
9881 auto Cand2Emittable = P2 > EmitThreshold;
9882 if (Cand1Emittable && !Cand2Emittable)
9883 return true;
9884 if (!Cand1Emittable && Cand2Emittable)
9885 return false;
9886 }
9887 }
9888
9889 // C++ [over.match.best]p1: (Changed in C++2b)
9890 //
9891 // -- if F is a static member function, ICS1(F) is defined such
9892 // that ICS1(F) is neither better nor worse than ICS1(G) for
9893 // any function G, and, symmetrically, ICS1(G) is neither
9894 // better nor worse than ICS1(F).
9895 unsigned StartArg = 0;
9896 if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
9897 StartArg = 1;
9898
9899 auto IsIllFormedConversion = [&](const ImplicitConversionSequence &ICS) {
9900 // We don't allow incompatible pointer conversions in C++.
9901 if (!S.getLangOpts().CPlusPlus)
9902 return ICS.isStandard() &&
9903 ICS.Standard.Second == ICK_Incompatible_Pointer_Conversion;
9904
9905 // The only ill-formed conversion we allow in C++ is the string literal to
9906 // char* conversion, which is only considered ill-formed after C++11.
9907 return S.getLangOpts().CPlusPlus11 && !S.getLangOpts().WritableStrings &&
9908 hasDeprecatedStringLiteralToCharPtrConversion(ICS);
9909 };
9910
9911 // Define functions that don't require ill-formed conversions for a given
9912 // argument to be better candidates than functions that do.
9913 unsigned NumArgs = Cand1.Conversions.size();
9914 assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
9915 bool HasBetterConversion = false;
9916 for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
9917 bool Cand1Bad = IsIllFormedConversion(Cand1.Conversions[ArgIdx]);
9918 bool Cand2Bad = IsIllFormedConversion(Cand2.Conversions[ArgIdx]);
9919 if (Cand1Bad != Cand2Bad) {
9920 if (Cand1Bad)
9921 return false;
9922 HasBetterConversion = true;
9923 }
9924 }
9925
9926 if (HasBetterConversion)
9927 return true;
9928
9929 // C++ [over.match.best]p1:
9930 // A viable function F1 is defined to be a better function than another
9931 // viable function F2 if for all arguments i, ICSi(F1) is not a worse
9932 // conversion sequence than ICSi(F2), and then...
9933 bool HasWorseConversion = false;
9934 for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
9935 switch (CompareImplicitConversionSequences(S, Loc,
9936 Cand1.Conversions[ArgIdx],
9937 Cand2.Conversions[ArgIdx])) {
9938 case ImplicitConversionSequence::Better:
9939 // Cand1 has a better conversion sequence.
9940 HasBetterConversion = true;
9941 break;
9942
9943 case ImplicitConversionSequence::Worse:
9944 if (Cand1.Function && Cand2.Function &&
9945 Cand1.isReversed() != Cand2.isReversed() &&
9946 haveSameParameterTypes(S.Context, Cand1.Function, Cand2.Function,
9947 NumArgs)) {
9948 // Work around large-scale breakage caused by considering reversed
9949 // forms of operator== in C++20:
9950 //
9951 // When comparing a function against a reversed function with the same
9952 // parameter types, if we have a better conversion for one argument and
9953 // a worse conversion for the other, the implicit conversion sequences
9954 // are treated as being equally good.
9955 //
9956 // This prevents a comparison function from being considered ambiguous
9957 // with a reversed form that is written in the same way.
9958 //
9959 // We diagnose this as an extension from CreateOverloadedBinOp.
9960 HasWorseConversion = true;
9961 break;
9962 }
9963
9964 // Cand1 can't be better than Cand2.
9965 return false;
9966
9967 case ImplicitConversionSequence::Indistinguishable:
9968 // Do nothing.
9969 break;
9970 }
9971 }
9972
9973 // -- for some argument j, ICSj(F1) is a better conversion sequence than
9974 // ICSj(F2), or, if not that,
9975 if (HasBetterConversion && !HasWorseConversion)
9976 return true;
9977
9978 // -- the context is an initialization by user-defined conversion
9979 // (see 8.5, 13.3.1.5) and the standard conversion sequence
9980 // from the return type of F1 to the destination type (i.e.,
9981 // the type of the entity being initialized) is a better
9982 // conversion sequence than the standard conversion sequence
9983 // from the return type of F2 to the destination type.
9984 if (Kind == OverloadCandidateSet::CSK_InitByUserDefinedConversion &&
9985 Cand1.Function && Cand2.Function &&
9986 isa<CXXConversionDecl>(Cand1.Function) &&
9987 isa<CXXConversionDecl>(Cand2.Function)) {
9988 // First check whether we prefer one of the conversion functions over the
9989 // other. This only distinguishes the results in non-standard, extension
9990 // cases such as the conversion from a lambda closure type to a function
9991 // pointer or block.
9992 ImplicitConversionSequence::CompareKind Result =
9993 compareConversionFunctions(S, Cand1.Function, Cand2.Function);
9994 if (Result == ImplicitConversionSequence::Indistinguishable)
9995 Result = CompareStandardConversionSequences(S, Loc,
9996 Cand1.FinalConversion,
9997 Cand2.FinalConversion);
9998
9999 if (Result != ImplicitConversionSequence::Indistinguishable)
10000 return Result == ImplicitConversionSequence::Better;
10001
10002 // FIXME: Compare kind of reference binding if conversion functions
10003 // convert to a reference type used in direct reference binding, per
10004 // C++14 [over.match.best]p1 section 2 bullet 3.
10005 }
10006
10007 // FIXME: Work around a defect in the C++17 guaranteed copy elision wording,
10008 // as combined with the resolution to CWG issue 243.
10009 //
10010 // When the context is initialization by constructor ([over.match.ctor] or
10011 // either phase of [over.match.list]), a constructor is preferred over
10012 // a conversion function.
10013 if (Kind == OverloadCandidateSet::CSK_InitByConstructor && NumArgs == 1 &&
10014 Cand1.Function && Cand2.Function &&
10015 isa<CXXConstructorDecl>(Cand1.Function) !=
10016 isa<CXXConstructorDecl>(Cand2.Function))
10017 return isa<CXXConstructorDecl>(Cand1.Function);
10018
10019 // -- F1 is a non-template function and F2 is a function template
10020 // specialization, or, if not that,
10021 bool Cand1IsSpecialization = Cand1.Function &&
10022 Cand1.Function->getPrimaryTemplate();
10023 bool Cand2IsSpecialization = Cand2.Function &&
10024 Cand2.Function->getPrimaryTemplate();
10025 if (Cand1IsSpecialization != Cand2IsSpecialization)
10026 return Cand2IsSpecialization;
10027
10028 // -- F1 and F2 are function template specializations, and the function
10029 // template for F1 is more specialized than the template for F2
10030 // according to the partial ordering rules described in 14.5.5.2, or,
10031 // if not that,
10032 if (Cand1IsSpecialization && Cand2IsSpecialization) {
10033 if (FunctionTemplateDecl *BetterTemplate = S.getMoreSpecializedTemplate(
10034 Cand1.Function->getPrimaryTemplate(),
10035 Cand2.Function->getPrimaryTemplate(), Loc,
10036 isa<CXXConversionDecl>(Cand1.Function) ? TPOC_Conversion
10037 : TPOC_Call,
10038 Cand1.ExplicitCallArguments, Cand2.ExplicitCallArguments,
10039 Cand1.isReversed() ^ Cand2.isReversed()))
10040 return BetterTemplate == Cand1.Function->getPrimaryTemplate();
10041 }
10042
10043 // -— F1 and F2 are non-template functions with the same
10044 // parameter-type-lists, and F1 is more constrained than F2 [...],
10045 if (!Cand1IsSpecialization && !Cand2IsSpecialization &&
10046 sameFunctionParameterTypeLists(S, Cand1, Cand2)) {
10047 FunctionDecl *Function1 = Cand1.Function;
10048 FunctionDecl *Function2 = Cand2.Function;
10049 if (FunctionDecl *MF = Function1->getInstantiatedFromMemberFunction())
10050 Function1 = MF;
10051 if (FunctionDecl *MF = Function2->getInstantiatedFromMemberFunction())
10052 Function2 = MF;
10053
10054 const Expr *RC1 = Function1->getTrailingRequiresClause();
10055 const Expr *RC2 = Function2->getTrailingRequiresClause();
10056 if (RC1 && RC2) {
10057 bool AtLeastAsConstrained1, AtLeastAsConstrained2;
10058 if (S.IsAtLeastAsConstrained(Function1, RC1, Function2, RC2,
10059 AtLeastAsConstrained1) ||
10060 S.IsAtLeastAsConstrained(Function2, RC2, Function1, RC1,
10061 AtLeastAsConstrained2))
10062 return false;
10063 if (AtLeastAsConstrained1 != AtLeastAsConstrained2)
10064 return AtLeastAsConstrained1;
10065 } else if (RC1 || RC2) {
10066 return RC1 != nullptr;
10067 }
10068 }
10069
10070 // -- F1 is a constructor for a class D, F2 is a constructor for a base
10071 // class B of D, and for all arguments the corresponding parameters of
10072 // F1 and F2 have the same type.
10073 // FIXME: Implement the "all parameters have the same type" check.
10074 bool Cand1IsInherited =
10075 isa_and_nonnull<ConstructorUsingShadowDecl>(Cand1.FoundDecl.getDecl());
10076 bool Cand2IsInherited =
10077 isa_and_nonnull<ConstructorUsingShadowDecl>(Cand2.FoundDecl.getDecl());
10078 if (Cand1IsInherited != Cand2IsInherited)
10079 return Cand2IsInherited;
10080 else if (Cand1IsInherited) {
10081 assert(Cand2IsInherited);
10082 auto *Cand1Class = cast<CXXRecordDecl>(Cand1.Function->getDeclContext());
10083 auto *Cand2Class = cast<CXXRecordDecl>(Cand2.Function->getDeclContext());
10084 if (Cand1Class->isDerivedFrom(Cand2Class))
10085 return true;
10086 if (Cand2Class->isDerivedFrom(Cand1Class))
10087 return false;
10088 // Inherited from sibling base classes: still ambiguous.
10089 }
10090
10091 // -- F2 is a rewritten candidate (12.4.1.2) and F1 is not
10092 // -- F1 and F2 are rewritten candidates, and F2 is a synthesized candidate
10093 // with reversed order of parameters and F1 is not
10094 //
10095 // We rank reversed + different operator as worse than just reversed, but
10096 // that comparison can never happen, because we only consider reversing for
10097 // the maximally-rewritten operator (== or <=>).
10098 if (Cand1.RewriteKind != Cand2.RewriteKind)
10099 return Cand1.RewriteKind < Cand2.RewriteKind;
10100
10101 // Check C++17 tie-breakers for deduction guides.
10102 {
10103 auto *Guide1 = dyn_cast_or_null<CXXDeductionGuideDecl>(Cand1.Function);
10104 auto *Guide2 = dyn_cast_or_null<CXXDeductionGuideDecl>(Cand2.Function);
10105 if (Guide1 && Guide2) {
10106 // -- F1 is generated from a deduction-guide and F2 is not
10107 if (Guide1->isImplicit() != Guide2->isImplicit())
10108 return Guide2->isImplicit();
10109
10110 // -- F1 is the copy deduction candidate(16.3.1.8) and F2 is not
10111 if (Guide1->isCopyDeductionCandidate())
10112 return true;
10113 }
10114 }
10115
10116 // Check for enable_if value-based overload resolution.
10117 if (Cand1.Function && Cand2.Function) {
10118 Comparison Cmp = compareEnableIfAttrs(S, Cand1.Function, Cand2.Function);
10119 if (Cmp != Comparison::Equal)
10120 return Cmp == Comparison::Better;
10121 }
10122
10123 bool HasPS1 = Cand1.Function != nullptr &&
10124 functionHasPassObjectSizeParams(Cand1.Function);
10125 bool HasPS2 = Cand2.Function != nullptr &&
10126 functionHasPassObjectSizeParams(Cand2.Function);
10127 if (HasPS1 != HasPS2 && HasPS1)
10128 return true;
10129
10130 auto MV = isBetterMultiversionCandidate(Cand1, Cand2);
10131 if (MV == Comparison::Better)
10132 return true;
10133 if (MV == Comparison::Worse)
10134 return false;
10135
10136 // If other rules cannot determine which is better, CUDA preference is used
10137 // to determine which is better.
10138 if (S.getLangOpts().CUDA && Cand1.Function && Cand2.Function) {
10139 FunctionDecl *Caller = S.getCurFunctionDecl(/*AllowLambda=*/true);
10140 return S.IdentifyCUDAPreference(Caller, Cand1.Function) >
10141 S.IdentifyCUDAPreference(Caller, Cand2.Function);
10142 }
10143
10144 // General member function overloading is handled above, so this only handles
10145 // constructors with address spaces.
10146 // This only handles address spaces since C++ has no other
10147 // qualifier that can be used with constructors.
10148 const auto *CD1 = dyn_cast_or_null<CXXConstructorDecl>(Cand1.Function);
10149 const auto *CD2 = dyn_cast_or_null<CXXConstructorDecl>(Cand2.Function);
10150 if (CD1 && CD2) {
10151 LangAS AS1 = CD1->getMethodQualifiers().getAddressSpace();
10152 LangAS AS2 = CD2->getMethodQualifiers().getAddressSpace();
10153 if (AS1 != AS2) {
10154 if (Qualifiers::isAddressSpaceSupersetOf(AS2, AS1))
10155 return true;
10156 if (Qualifiers::isAddressSpaceSupersetOf(AS2, AS1))
10157 return false;
10158 }
10159 }
10160
10161 return false;
10162 }
10163
10164 /// Determine whether two declarations are "equivalent" for the purposes of
10165 /// name lookup and overload resolution. This applies when the same internal/no
10166 /// linkage entity is defined by two modules (probably by textually including
10167 /// the same header). In such a case, we don't consider the declarations to
10168 /// declare the same entity, but we also don't want lookups with both
10169 /// declarations visible to be ambiguous in some cases (this happens when using
10170 /// a modularized libstdc++).
isEquivalentInternalLinkageDeclaration(const NamedDecl * A,const NamedDecl * B)10171 bool Sema::isEquivalentInternalLinkageDeclaration(const NamedDecl *A,
10172 const NamedDecl *B) {
10173 auto *VA = dyn_cast_or_null<ValueDecl>(A);
10174 auto *VB = dyn_cast_or_null<ValueDecl>(B);
10175 if (!VA || !VB)
10176 return false;
10177
10178 // The declarations must be declaring the same name as an internal linkage
10179 // entity in different modules.
10180 if (!VA->getDeclContext()->getRedeclContext()->Equals(
10181 VB->getDeclContext()->getRedeclContext()) ||
10182 getOwningModule(VA) == getOwningModule(VB) ||
10183 VA->isExternallyVisible() || VB->isExternallyVisible())
10184 return false;
10185
10186 // Check that the declarations appear to be equivalent.
10187 //
10188 // FIXME: Checking the type isn't really enough to resolve the ambiguity.
10189 // For constants and functions, we should check the initializer or body is
10190 // the same. For non-constant variables, we shouldn't allow it at all.
10191 if (Context.hasSameType(VA->getType(), VB->getType()))
10192 return true;
10193
10194 // Enum constants within unnamed enumerations will have different types, but
10195 // may still be similar enough to be interchangeable for our purposes.
10196 if (auto *EA = dyn_cast<EnumConstantDecl>(VA)) {
10197 if (auto *EB = dyn_cast<EnumConstantDecl>(VB)) {
10198 // Only handle anonymous enums. If the enumerations were named and
10199 // equivalent, they would have been merged to the same type.
10200 auto *EnumA = cast<EnumDecl>(EA->getDeclContext());
10201 auto *EnumB = cast<EnumDecl>(EB->getDeclContext());
10202 if (EnumA->hasNameForLinkage() || EnumB->hasNameForLinkage() ||
10203 !Context.hasSameType(EnumA->getIntegerType(),
10204 EnumB->getIntegerType()))
10205 return false;
10206 // Allow this only if the value is the same for both enumerators.
10207 return llvm::APSInt::isSameValue(EA->getInitVal(), EB->getInitVal());
10208 }
10209 }
10210
10211 // Nothing else is sufficiently similar.
10212 return false;
10213 }
10214
diagnoseEquivalentInternalLinkageDeclarations(SourceLocation Loc,const NamedDecl * D,ArrayRef<const NamedDecl * > Equiv)10215 void Sema::diagnoseEquivalentInternalLinkageDeclarations(
10216 SourceLocation Loc, const NamedDecl *D, ArrayRef<const NamedDecl *> Equiv) {
10217 assert(D && "Unknown declaration");
10218 Diag(Loc, diag::ext_equivalent_internal_linkage_decl_in_modules) << D;
10219
10220 Module *M = getOwningModule(D);
10221 Diag(D->getLocation(), diag::note_equivalent_internal_linkage_decl)
10222 << !M << (M ? M->getFullModuleName() : "");
10223
10224 for (auto *E : Equiv) {
10225 Module *M = getOwningModule(E);
10226 Diag(E->getLocation(), diag::note_equivalent_internal_linkage_decl)
10227 << !M << (M ? M->getFullModuleName() : "");
10228 }
10229 }
10230
NotValidBecauseConstraintExprHasError() const10231 bool OverloadCandidate::NotValidBecauseConstraintExprHasError() const {
10232 return FailureKind == ovl_fail_bad_deduction &&
10233 DeductionFailure.Result == Sema::TDK_ConstraintsNotSatisfied &&
10234 static_cast<CNSInfo *>(DeductionFailure.Data)
10235 ->Satisfaction.ContainsErrors;
10236 }
10237
10238 /// Computes the best viable function (C++ 13.3.3)
10239 /// within an overload candidate set.
10240 ///
10241 /// \param Loc The location of the function name (or operator symbol) for
10242 /// which overload resolution occurs.
10243 ///
10244 /// \param Best If overload resolution was successful or found a deleted
10245 /// function, \p Best points to the candidate function found.
10246 ///
10247 /// \returns The result of overload resolution.
10248 OverloadingResult
BestViableFunction(Sema & S,SourceLocation Loc,iterator & Best)10249 OverloadCandidateSet::BestViableFunction(Sema &S, SourceLocation Loc,
10250 iterator &Best) {
10251 llvm::SmallVector<OverloadCandidate *, 16> Candidates;
10252 std::transform(begin(), end(), std::back_inserter(Candidates),
10253 [](OverloadCandidate &Cand) { return &Cand; });
10254
10255 // [CUDA] HD->H or HD->D calls are technically not allowed by CUDA but
10256 // are accepted by both clang and NVCC. However, during a particular
10257 // compilation mode only one call variant is viable. We need to
10258 // exclude non-viable overload candidates from consideration based
10259 // only on their host/device attributes. Specifically, if one
10260 // candidate call is WrongSide and the other is SameSide, we ignore
10261 // the WrongSide candidate.
10262 // We only need to remove wrong-sided candidates here if
10263 // -fgpu-exclude-wrong-side-overloads is off. When
10264 // -fgpu-exclude-wrong-side-overloads is on, all candidates are compared
10265 // uniformly in isBetterOverloadCandidate.
10266 if (S.getLangOpts().CUDA && !S.getLangOpts().GPUExcludeWrongSideOverloads) {
10267 const FunctionDecl *Caller = S.getCurFunctionDecl(/*AllowLambda=*/true);
10268 bool ContainsSameSideCandidate =
10269 llvm::any_of(Candidates, [&](OverloadCandidate *Cand) {
10270 // Check viable function only.
10271 return Cand->Viable && Cand->Function &&
10272 S.IdentifyCUDAPreference(Caller, Cand->Function) ==
10273 Sema::CFP_SameSide;
10274 });
10275 if (ContainsSameSideCandidate) {
10276 auto IsWrongSideCandidate = [&](OverloadCandidate *Cand) {
10277 // Check viable function only to avoid unnecessary data copying/moving.
10278 return Cand->Viable && Cand->Function &&
10279 S.IdentifyCUDAPreference(Caller, Cand->Function) ==
10280 Sema::CFP_WrongSide;
10281 };
10282 llvm::erase_if(Candidates, IsWrongSideCandidate);
10283 }
10284 }
10285
10286 // Find the best viable function.
10287 Best = end();
10288 for (auto *Cand : Candidates) {
10289 Cand->Best = false;
10290 if (Cand->Viable) {
10291 if (Best == end() ||
10292 isBetterOverloadCandidate(S, *Cand, *Best, Loc, Kind))
10293 Best = Cand;
10294 } else if (Cand->NotValidBecauseConstraintExprHasError()) {
10295 // This candidate has constraint that we were unable to evaluate because
10296 // it referenced an expression that contained an error. Rather than fall
10297 // back onto a potentially unintended candidate (made worse by
10298 // subsuming constraints), treat this as 'no viable candidate'.
10299 Best = end();
10300 return OR_No_Viable_Function;
10301 }
10302 }
10303
10304 // If we didn't find any viable functions, abort.
10305 if (Best == end())
10306 return OR_No_Viable_Function;
10307
10308 llvm::SmallVector<const NamedDecl *, 4> EquivalentCands;
10309
10310 llvm::SmallVector<OverloadCandidate*, 4> PendingBest;
10311 PendingBest.push_back(&*Best);
10312 Best->Best = true;
10313
10314 // Make sure that this function is better than every other viable
10315 // function. If not, we have an ambiguity.
10316 while (!PendingBest.empty()) {
10317 auto *Curr = PendingBest.pop_back_val();
10318 for (auto *Cand : Candidates) {
10319 if (Cand->Viable && !Cand->Best &&
10320 !isBetterOverloadCandidate(S, *Curr, *Cand, Loc, Kind)) {
10321 PendingBest.push_back(Cand);
10322 Cand->Best = true;
10323
10324 if (S.isEquivalentInternalLinkageDeclaration(Cand->Function,
10325 Curr->Function))
10326 EquivalentCands.push_back(Cand->Function);
10327 else
10328 Best = end();
10329 }
10330 }
10331 }
10332
10333 // If we found more than one best candidate, this is ambiguous.
10334 if (Best == end())
10335 return OR_Ambiguous;
10336
10337 // Best is the best viable function.
10338 if (Best->Function && Best->Function->isDeleted())
10339 return OR_Deleted;
10340
10341 if (!EquivalentCands.empty())
10342 S.diagnoseEquivalentInternalLinkageDeclarations(Loc, Best->Function,
10343 EquivalentCands);
10344
10345 return OR_Success;
10346 }
10347
10348 namespace {
10349
10350 enum OverloadCandidateKind {
10351 oc_function,
10352 oc_method,
10353 oc_reversed_binary_operator,
10354 oc_constructor,
10355 oc_implicit_default_constructor,
10356 oc_implicit_copy_constructor,
10357 oc_implicit_move_constructor,
10358 oc_implicit_copy_assignment,
10359 oc_implicit_move_assignment,
10360 oc_implicit_equality_comparison,
10361 oc_inherited_constructor
10362 };
10363
10364 enum OverloadCandidateSelect {
10365 ocs_non_template,
10366 ocs_template,
10367 ocs_described_template,
10368 };
10369
10370 static std::pair<OverloadCandidateKind, OverloadCandidateSelect>
ClassifyOverloadCandidate(Sema & S,NamedDecl * Found,FunctionDecl * Fn,OverloadCandidateRewriteKind CRK,std::string & Description)10371 ClassifyOverloadCandidate(Sema &S, NamedDecl *Found, FunctionDecl *Fn,
10372 OverloadCandidateRewriteKind CRK,
10373 std::string &Description) {
10374
10375 bool isTemplate = Fn->isTemplateDecl() || Found->isTemplateDecl();
10376 if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) {
10377 isTemplate = true;
10378 Description = S.getTemplateArgumentBindingsText(
10379 FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs());
10380 }
10381
10382 OverloadCandidateSelect Select = [&]() {
10383 if (!Description.empty())
10384 return ocs_described_template;
10385 return isTemplate ? ocs_template : ocs_non_template;
10386 }();
10387
10388 OverloadCandidateKind Kind = [&]() {
10389 if (Fn->isImplicit() && Fn->getOverloadedOperator() == OO_EqualEqual)
10390 return oc_implicit_equality_comparison;
10391
10392 if (CRK & CRK_Reversed)
10393 return oc_reversed_binary_operator;
10394
10395 if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn)) {
10396 if (!Ctor->isImplicit()) {
10397 if (isa<ConstructorUsingShadowDecl>(Found))
10398 return oc_inherited_constructor;
10399 else
10400 return oc_constructor;
10401 }
10402
10403 if (Ctor->isDefaultConstructor())
10404 return oc_implicit_default_constructor;
10405
10406 if (Ctor->isMoveConstructor())
10407 return oc_implicit_move_constructor;
10408
10409 assert(Ctor->isCopyConstructor() &&
10410 "unexpected sort of implicit constructor");
10411 return oc_implicit_copy_constructor;
10412 }
10413
10414 if (CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Fn)) {
10415 // This actually gets spelled 'candidate function' for now, but
10416 // it doesn't hurt to split it out.
10417 if (!Meth->isImplicit())
10418 return oc_method;
10419
10420 if (Meth->isMoveAssignmentOperator())
10421 return oc_implicit_move_assignment;
10422
10423 if (Meth->isCopyAssignmentOperator())
10424 return oc_implicit_copy_assignment;
10425
10426 assert(isa<CXXConversionDecl>(Meth) && "expected conversion");
10427 return oc_method;
10428 }
10429
10430 return oc_function;
10431 }();
10432
10433 return std::make_pair(Kind, Select);
10434 }
10435
MaybeEmitInheritedConstructorNote(Sema & S,Decl * FoundDecl)10436 void MaybeEmitInheritedConstructorNote(Sema &S, Decl *FoundDecl) {
10437 // FIXME: It'd be nice to only emit a note once per using-decl per overload
10438 // set.
10439 if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(FoundDecl))
10440 S.Diag(FoundDecl->getLocation(),
10441 diag::note_ovl_candidate_inherited_constructor)
10442 << Shadow->getNominatedBaseClass();
10443 }
10444
10445 } // end anonymous namespace
10446
isFunctionAlwaysEnabled(const ASTContext & Ctx,const FunctionDecl * FD)10447 static bool isFunctionAlwaysEnabled(const ASTContext &Ctx,
10448 const FunctionDecl *FD) {
10449 for (auto *EnableIf : FD->specific_attrs<EnableIfAttr>()) {
10450 bool AlwaysTrue;
10451 if (EnableIf->getCond()->isValueDependent() ||
10452 !EnableIf->getCond()->EvaluateAsBooleanCondition(AlwaysTrue, Ctx))
10453 return false;
10454 if (!AlwaysTrue)
10455 return false;
10456 }
10457 return true;
10458 }
10459
10460 /// Returns true if we can take the address of the function.
10461 ///
10462 /// \param Complain - If true, we'll emit a diagnostic
10463 /// \param InOverloadResolution - For the purposes of emitting a diagnostic, are
10464 /// we in overload resolution?
10465 /// \param Loc - The location of the statement we're complaining about. Ignored
10466 /// if we're not complaining, or if we're in overload resolution.
checkAddressOfFunctionIsAvailable(Sema & S,const FunctionDecl * FD,bool Complain,bool InOverloadResolution,SourceLocation Loc)10467 static bool checkAddressOfFunctionIsAvailable(Sema &S, const FunctionDecl *FD,
10468 bool Complain,
10469 bool InOverloadResolution,
10470 SourceLocation Loc) {
10471 if (!isFunctionAlwaysEnabled(S.Context, FD)) {
10472 if (Complain) {
10473 if (InOverloadResolution)
10474 S.Diag(FD->getBeginLoc(),
10475 diag::note_addrof_ovl_candidate_disabled_by_enable_if_attr);
10476 else
10477 S.Diag(Loc, diag::err_addrof_function_disabled_by_enable_if_attr) << FD;
10478 }
10479 return false;
10480 }
10481
10482 if (FD->getTrailingRequiresClause()) {
10483 ConstraintSatisfaction Satisfaction;
10484 if (S.CheckFunctionConstraints(FD, Satisfaction, Loc))
10485 return false;
10486 if (!Satisfaction.IsSatisfied) {
10487 if (Complain) {
10488 if (InOverloadResolution) {
10489 SmallString<128> TemplateArgString;
10490 if (FunctionTemplateDecl *FunTmpl = FD->getPrimaryTemplate()) {
10491 TemplateArgString += " ";
10492 TemplateArgString += S.getTemplateArgumentBindingsText(
10493 FunTmpl->getTemplateParameters(),
10494 *FD->getTemplateSpecializationArgs());
10495 }
10496
10497 S.Diag(FD->getBeginLoc(),
10498 diag::note_ovl_candidate_unsatisfied_constraints)
10499 << TemplateArgString;
10500 } else
10501 S.Diag(Loc, diag::err_addrof_function_constraints_not_satisfied)
10502 << FD;
10503 S.DiagnoseUnsatisfiedConstraint(Satisfaction);
10504 }
10505 return false;
10506 }
10507 }
10508
10509 auto I = llvm::find_if(FD->parameters(), [](const ParmVarDecl *P) {
10510 return P->hasAttr<PassObjectSizeAttr>();
10511 });
10512 if (I == FD->param_end())
10513 return true;
10514
10515 if (Complain) {
10516 // Add one to ParamNo because it's user-facing
10517 unsigned ParamNo = std::distance(FD->param_begin(), I) + 1;
10518 if (InOverloadResolution)
10519 S.Diag(FD->getLocation(),
10520 diag::note_ovl_candidate_has_pass_object_size_params)
10521 << ParamNo;
10522 else
10523 S.Diag(Loc, diag::err_address_of_function_with_pass_object_size_params)
10524 << FD << ParamNo;
10525 }
10526 return false;
10527 }
10528
checkAddressOfCandidateIsAvailable(Sema & S,const FunctionDecl * FD)10529 static bool checkAddressOfCandidateIsAvailable(Sema &S,
10530 const FunctionDecl *FD) {
10531 return checkAddressOfFunctionIsAvailable(S, FD, /*Complain=*/true,
10532 /*InOverloadResolution=*/true,
10533 /*Loc=*/SourceLocation());
10534 }
10535
checkAddressOfFunctionIsAvailable(const FunctionDecl * Function,bool Complain,SourceLocation Loc)10536 bool Sema::checkAddressOfFunctionIsAvailable(const FunctionDecl *Function,
10537 bool Complain,
10538 SourceLocation Loc) {
10539 return ::checkAddressOfFunctionIsAvailable(*this, Function, Complain,
10540 /*InOverloadResolution=*/false,
10541 Loc);
10542 }
10543
10544 // Don't print candidates other than the one that matches the calling
10545 // convention of the call operator, since that is guaranteed to exist.
shouldSkipNotingLambdaConversionDecl(FunctionDecl * Fn)10546 static bool shouldSkipNotingLambdaConversionDecl(FunctionDecl *Fn) {
10547 const auto *ConvD = dyn_cast<CXXConversionDecl>(Fn);
10548
10549 if (!ConvD)
10550 return false;
10551 const auto *RD = cast<CXXRecordDecl>(Fn->getParent());
10552 if (!RD->isLambda())
10553 return false;
10554
10555 CXXMethodDecl *CallOp = RD->getLambdaCallOperator();
10556 CallingConv CallOpCC =
10557 CallOp->getType()->castAs<FunctionType>()->getCallConv();
10558 QualType ConvRTy = ConvD->getType()->castAs<FunctionType>()->getReturnType();
10559 CallingConv ConvToCC =
10560 ConvRTy->getPointeeType()->castAs<FunctionType>()->getCallConv();
10561
10562 return ConvToCC != CallOpCC;
10563 }
10564
10565 // Notes the location of an overload candidate.
NoteOverloadCandidate(NamedDecl * Found,FunctionDecl * Fn,OverloadCandidateRewriteKind RewriteKind,QualType DestType,bool TakingAddress)10566 void Sema::NoteOverloadCandidate(NamedDecl *Found, FunctionDecl *Fn,
10567 OverloadCandidateRewriteKind RewriteKind,
10568 QualType DestType, bool TakingAddress) {
10569 if (TakingAddress && !checkAddressOfCandidateIsAvailable(*this, Fn))
10570 return;
10571 if (Fn->isMultiVersion() && Fn->hasAttr<TargetAttr>() &&
10572 !Fn->getAttr<TargetAttr>()->isDefaultVersion())
10573 return;
10574 if (Fn->isMultiVersion() && Fn->hasAttr<TargetVersionAttr>() &&
10575 !Fn->getAttr<TargetVersionAttr>()->isDefaultVersion())
10576 return;
10577 if (shouldSkipNotingLambdaConversionDecl(Fn))
10578 return;
10579
10580 std::string FnDesc;
10581 std::pair<OverloadCandidateKind, OverloadCandidateSelect> KSPair =
10582 ClassifyOverloadCandidate(*this, Found, Fn, RewriteKind, FnDesc);
10583 PartialDiagnostic PD = PDiag(diag::note_ovl_candidate)
10584 << (unsigned)KSPair.first << (unsigned)KSPair.second
10585 << Fn << FnDesc;
10586
10587 HandleFunctionTypeMismatch(PD, Fn->getType(), DestType);
10588 Diag(Fn->getLocation(), PD);
10589 MaybeEmitInheritedConstructorNote(*this, Found);
10590 }
10591
10592 static void
MaybeDiagnoseAmbiguousConstraints(Sema & S,ArrayRef<OverloadCandidate> Cands)10593 MaybeDiagnoseAmbiguousConstraints(Sema &S, ArrayRef<OverloadCandidate> Cands) {
10594 // Perhaps the ambiguity was caused by two atomic constraints that are
10595 // 'identical' but not equivalent:
10596 //
10597 // void foo() requires (sizeof(T) > 4) { } // #1
10598 // void foo() requires (sizeof(T) > 4) && T::value { } // #2
10599 //
10600 // The 'sizeof(T) > 4' constraints are seemingly equivalent and should cause
10601 // #2 to subsume #1, but these constraint are not considered equivalent
10602 // according to the subsumption rules because they are not the same
10603 // source-level construct. This behavior is quite confusing and we should try
10604 // to help the user figure out what happened.
10605
10606 SmallVector<const Expr *, 3> FirstAC, SecondAC;
10607 FunctionDecl *FirstCand = nullptr, *SecondCand = nullptr;
10608 for (auto I = Cands.begin(), E = Cands.end(); I != E; ++I) {
10609 if (!I->Function)
10610 continue;
10611 SmallVector<const Expr *, 3> AC;
10612 if (auto *Template = I->Function->getPrimaryTemplate())
10613 Template->getAssociatedConstraints(AC);
10614 else
10615 I->Function->getAssociatedConstraints(AC);
10616 if (AC.empty())
10617 continue;
10618 if (FirstCand == nullptr) {
10619 FirstCand = I->Function;
10620 FirstAC = AC;
10621 } else if (SecondCand == nullptr) {
10622 SecondCand = I->Function;
10623 SecondAC = AC;
10624 } else {
10625 // We have more than one pair of constrained functions - this check is
10626 // expensive and we'd rather not try to diagnose it.
10627 return;
10628 }
10629 }
10630 if (!SecondCand)
10631 return;
10632 // The diagnostic can only happen if there are associated constraints on
10633 // both sides (there needs to be some identical atomic constraint).
10634 if (S.MaybeEmitAmbiguousAtomicConstraintsDiagnostic(FirstCand, FirstAC,
10635 SecondCand, SecondAC))
10636 // Just show the user one diagnostic, they'll probably figure it out
10637 // from here.
10638 return;
10639 }
10640
10641 // Notes the location of all overload candidates designated through
10642 // OverloadedExpr
NoteAllOverloadCandidates(Expr * OverloadedExpr,QualType DestType,bool TakingAddress)10643 void Sema::NoteAllOverloadCandidates(Expr *OverloadedExpr, QualType DestType,
10644 bool TakingAddress) {
10645 assert(OverloadedExpr->getType() == Context.OverloadTy);
10646
10647 OverloadExpr::FindResult Ovl = OverloadExpr::find(OverloadedExpr);
10648 OverloadExpr *OvlExpr = Ovl.Expression;
10649
10650 for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
10651 IEnd = OvlExpr->decls_end();
10652 I != IEnd; ++I) {
10653 if (FunctionTemplateDecl *FunTmpl =
10654 dyn_cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl()) ) {
10655 NoteOverloadCandidate(*I, FunTmpl->getTemplatedDecl(), CRK_None, DestType,
10656 TakingAddress);
10657 } else if (FunctionDecl *Fun
10658 = dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()) ) {
10659 NoteOverloadCandidate(*I, Fun, CRK_None, DestType, TakingAddress);
10660 }
10661 }
10662 }
10663
10664 /// Diagnoses an ambiguous conversion. The partial diagnostic is the
10665 /// "lead" diagnostic; it will be given two arguments, the source and
10666 /// target types of the conversion.
DiagnoseAmbiguousConversion(Sema & S,SourceLocation CaretLoc,const PartialDiagnostic & PDiag) const10667 void ImplicitConversionSequence::DiagnoseAmbiguousConversion(
10668 Sema &S,
10669 SourceLocation CaretLoc,
10670 const PartialDiagnostic &PDiag) const {
10671 S.Diag(CaretLoc, PDiag)
10672 << Ambiguous.getFromType() << Ambiguous.getToType();
10673 unsigned CandsShown = 0;
10674 AmbiguousConversionSequence::const_iterator I, E;
10675 for (I = Ambiguous.begin(), E = Ambiguous.end(); I != E; ++I) {
10676 if (CandsShown >= S.Diags.getNumOverloadCandidatesToShow())
10677 break;
10678 ++CandsShown;
10679 S.NoteOverloadCandidate(I->first, I->second);
10680 }
10681 S.Diags.overloadCandidatesShown(CandsShown);
10682 if (I != E)
10683 S.Diag(SourceLocation(), diag::note_ovl_too_many_candidates) << int(E - I);
10684 }
10685
DiagnoseBadConversion(Sema & S,OverloadCandidate * Cand,unsigned I,bool TakingCandidateAddress)10686 static void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand,
10687 unsigned I, bool TakingCandidateAddress) {
10688 const ImplicitConversionSequence &Conv = Cand->Conversions[I];
10689 assert(Conv.isBad());
10690 assert(Cand->Function && "for now, candidate must be a function");
10691 FunctionDecl *Fn = Cand->Function;
10692
10693 // There's a conversion slot for the object argument if this is a
10694 // non-constructor method. Note that 'I' corresponds the
10695 // conversion-slot index.
10696 bool isObjectArgument = false;
10697 if (isa<CXXMethodDecl>(Fn) && !isa<CXXConstructorDecl>(Fn)) {
10698 if (I == 0)
10699 isObjectArgument = true;
10700 else
10701 I--;
10702 }
10703
10704 std::string FnDesc;
10705 std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair =
10706 ClassifyOverloadCandidate(S, Cand->FoundDecl, Fn, Cand->getRewriteKind(),
10707 FnDesc);
10708
10709 Expr *FromExpr = Conv.Bad.FromExpr;
10710 QualType FromTy = Conv.Bad.getFromType();
10711 QualType ToTy = Conv.Bad.getToType();
10712
10713 if (FromTy == S.Context.OverloadTy) {
10714 assert(FromExpr && "overload set argument came from implicit argument?");
10715 Expr *E = FromExpr->IgnoreParens();
10716 if (isa<UnaryOperator>(E))
10717 E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
10718 DeclarationName Name = cast<OverloadExpr>(E)->getName();
10719
10720 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_overload)
10721 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
10722 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << ToTy
10723 << Name << I + 1;
10724 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10725 return;
10726 }
10727
10728 // Do some hand-waving analysis to see if the non-viability is due
10729 // to a qualifier mismatch.
10730 CanQualType CFromTy = S.Context.getCanonicalType(FromTy);
10731 CanQualType CToTy = S.Context.getCanonicalType(ToTy);
10732 if (CanQual<ReferenceType> RT = CToTy->getAs<ReferenceType>())
10733 CToTy = RT->getPointeeType();
10734 else {
10735 // TODO: detect and diagnose the full richness of const mismatches.
10736 if (CanQual<PointerType> FromPT = CFromTy->getAs<PointerType>())
10737 if (CanQual<PointerType> ToPT = CToTy->getAs<PointerType>()) {
10738 CFromTy = FromPT->getPointeeType();
10739 CToTy = ToPT->getPointeeType();
10740 }
10741 }
10742
10743 if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() &&
10744 !CToTy.isAtLeastAsQualifiedAs(CFromTy)) {
10745 Qualifiers FromQs = CFromTy.getQualifiers();
10746 Qualifiers ToQs = CToTy.getQualifiers();
10747
10748 if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) {
10749 if (isObjectArgument)
10750 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace_this)
10751 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second
10752 << FnDesc << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
10753 << FromQs.getAddressSpace() << ToQs.getAddressSpace();
10754 else
10755 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace)
10756 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second
10757 << FnDesc << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
10758 << FromQs.getAddressSpace() << ToQs.getAddressSpace()
10759 << ToTy->isReferenceType() << I + 1;
10760 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10761 return;
10762 }
10763
10764 if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) {
10765 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_ownership)
10766 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
10767 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
10768 << FromQs.getObjCLifetime() << ToQs.getObjCLifetime()
10769 << (unsigned)isObjectArgument << I + 1;
10770 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10771 return;
10772 }
10773
10774 if (FromQs.getObjCGCAttr() != ToQs.getObjCGCAttr()) {
10775 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_gc)
10776 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
10777 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
10778 << FromQs.getObjCGCAttr() << ToQs.getObjCGCAttr()
10779 << (unsigned)isObjectArgument << I + 1;
10780 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10781 return;
10782 }
10783
10784 if (FromQs.hasUnaligned() != ToQs.hasUnaligned()) {
10785 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_unaligned)
10786 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
10787 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
10788 << FromQs.hasUnaligned() << I + 1;
10789 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10790 return;
10791 }
10792
10793 unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
10794 assert(CVR && "expected qualifiers mismatch");
10795
10796 if (isObjectArgument) {
10797 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this)
10798 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
10799 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
10800 << (CVR - 1);
10801 } else {
10802 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr)
10803 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
10804 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
10805 << (CVR - 1) << I + 1;
10806 }
10807 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10808 return;
10809 }
10810
10811 if (Conv.Bad.Kind == BadConversionSequence::lvalue_ref_to_rvalue ||
10812 Conv.Bad.Kind == BadConversionSequence::rvalue_ref_to_lvalue) {
10813 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_value_category)
10814 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
10815 << (unsigned)isObjectArgument << I + 1
10816 << (Conv.Bad.Kind == BadConversionSequence::rvalue_ref_to_lvalue)
10817 << (FromExpr ? FromExpr->getSourceRange() : SourceRange());
10818 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10819 return;
10820 }
10821
10822 // Special diagnostic for failure to convert an initializer list, since
10823 // telling the user that it has type void is not useful.
10824 if (FromExpr && isa<InitListExpr>(FromExpr)) {
10825 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_list_argument)
10826 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
10827 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
10828 << ToTy << (unsigned)isObjectArgument << I + 1
10829 << (Conv.Bad.Kind == BadConversionSequence::too_few_initializers ? 1
10830 : Conv.Bad.Kind == BadConversionSequence::too_many_initializers
10831 ? 2
10832 : 0);
10833 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10834 return;
10835 }
10836
10837 // Diagnose references or pointers to incomplete types differently,
10838 // since it's far from impossible that the incompleteness triggered
10839 // the failure.
10840 QualType TempFromTy = FromTy.getNonReferenceType();
10841 if (const PointerType *PTy = TempFromTy->getAs<PointerType>())
10842 TempFromTy = PTy->getPointeeType();
10843 if (TempFromTy->isIncompleteType()) {
10844 // Emit the generic diagnostic and, optionally, add the hints to it.
10845 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv_incomplete)
10846 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
10847 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
10848 << ToTy << (unsigned)isObjectArgument << I + 1
10849 << (unsigned)(Cand->Fix.Kind);
10850
10851 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10852 return;
10853 }
10854
10855 // Diagnose base -> derived pointer conversions.
10856 unsigned BaseToDerivedConversion = 0;
10857 if (const PointerType *FromPtrTy = FromTy->getAs<PointerType>()) {
10858 if (const PointerType *ToPtrTy = ToTy->getAs<PointerType>()) {
10859 if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
10860 FromPtrTy->getPointeeType()) &&
10861 !FromPtrTy->getPointeeType()->isIncompleteType() &&
10862 !ToPtrTy->getPointeeType()->isIncompleteType() &&
10863 S.IsDerivedFrom(SourceLocation(), ToPtrTy->getPointeeType(),
10864 FromPtrTy->getPointeeType()))
10865 BaseToDerivedConversion = 1;
10866 }
10867 } else if (const ObjCObjectPointerType *FromPtrTy
10868 = FromTy->getAs<ObjCObjectPointerType>()) {
10869 if (const ObjCObjectPointerType *ToPtrTy
10870 = ToTy->getAs<ObjCObjectPointerType>())
10871 if (const ObjCInterfaceDecl *FromIface = FromPtrTy->getInterfaceDecl())
10872 if (const ObjCInterfaceDecl *ToIface = ToPtrTy->getInterfaceDecl())
10873 if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
10874 FromPtrTy->getPointeeType()) &&
10875 FromIface->isSuperClassOf(ToIface))
10876 BaseToDerivedConversion = 2;
10877 } else if (const ReferenceType *ToRefTy = ToTy->getAs<ReferenceType>()) {
10878 if (ToRefTy->getPointeeType().isAtLeastAsQualifiedAs(FromTy) &&
10879 !FromTy->isIncompleteType() &&
10880 !ToRefTy->getPointeeType()->isIncompleteType() &&
10881 S.IsDerivedFrom(SourceLocation(), ToRefTy->getPointeeType(), FromTy)) {
10882 BaseToDerivedConversion = 3;
10883 }
10884 }
10885
10886 if (BaseToDerivedConversion) {
10887 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_base_to_derived_conv)
10888 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
10889 << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
10890 << (BaseToDerivedConversion - 1) << FromTy << ToTy << I + 1;
10891 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10892 return;
10893 }
10894
10895 if (isa<ObjCObjectPointerType>(CFromTy) &&
10896 isa<PointerType>(CToTy)) {
10897 Qualifiers FromQs = CFromTy.getQualifiers();
10898 Qualifiers ToQs = CToTy.getQualifiers();
10899 if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) {
10900 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_arc_conv)
10901 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second
10902 << FnDesc << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
10903 << FromTy << ToTy << (unsigned)isObjectArgument << I + 1;
10904 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10905 return;
10906 }
10907 }
10908
10909 if (TakingCandidateAddress &&
10910 !checkAddressOfCandidateIsAvailable(S, Cand->Function))
10911 return;
10912
10913 // Emit the generic diagnostic and, optionally, add the hints to it.
10914 PartialDiagnostic FDiag = S.PDiag(diag::note_ovl_candidate_bad_conv);
10915 FDiag << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
10916 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
10917 << ToTy << (unsigned)isObjectArgument << I + 1
10918 << (unsigned)(Cand->Fix.Kind);
10919
10920 // Check that location of Fn is not in system header.
10921 if (!S.SourceMgr.isInSystemHeader(Fn->getLocation())) {
10922 // If we can fix the conversion, suggest the FixIts.
10923 for (const FixItHint &HI : Cand->Fix.Hints)
10924 FDiag << HI;
10925 }
10926
10927 S.Diag(Fn->getLocation(), FDiag);
10928
10929 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10930 }
10931
10932 /// Additional arity mismatch diagnosis specific to a function overload
10933 /// candidates. This is not covered by the more general DiagnoseArityMismatch()
10934 /// over a candidate in any candidate set.
CheckArityMismatch(Sema & S,OverloadCandidate * Cand,unsigned NumArgs)10935 static bool CheckArityMismatch(Sema &S, OverloadCandidate *Cand,
10936 unsigned NumArgs) {
10937 FunctionDecl *Fn = Cand->Function;
10938 unsigned MinParams = Fn->getMinRequiredArguments();
10939
10940 // With invalid overloaded operators, it's possible that we think we
10941 // have an arity mismatch when in fact it looks like we have the
10942 // right number of arguments, because only overloaded operators have
10943 // the weird behavior of overloading member and non-member functions.
10944 // Just don't report anything.
10945 if (Fn->isInvalidDecl() &&
10946 Fn->getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
10947 return true;
10948
10949 if (NumArgs < MinParams) {
10950 assert((Cand->FailureKind == ovl_fail_too_few_arguments) ||
10951 (Cand->FailureKind == ovl_fail_bad_deduction &&
10952 Cand->DeductionFailure.Result == Sema::TDK_TooFewArguments));
10953 } else {
10954 assert((Cand->FailureKind == ovl_fail_too_many_arguments) ||
10955 (Cand->FailureKind == ovl_fail_bad_deduction &&
10956 Cand->DeductionFailure.Result == Sema::TDK_TooManyArguments));
10957 }
10958
10959 return false;
10960 }
10961
10962 /// General arity mismatch diagnosis over a candidate in a candidate set.
DiagnoseArityMismatch(Sema & S,NamedDecl * Found,Decl * D,unsigned NumFormalArgs)10963 static void DiagnoseArityMismatch(Sema &S, NamedDecl *Found, Decl *D,
10964 unsigned NumFormalArgs) {
10965 assert(isa<FunctionDecl>(D) &&
10966 "The templated declaration should at least be a function"
10967 " when diagnosing bad template argument deduction due to too many"
10968 " or too few arguments");
10969
10970 FunctionDecl *Fn = cast<FunctionDecl>(D);
10971
10972 // TODO: treat calls to a missing default constructor as a special case
10973 const auto *FnTy = Fn->getType()->castAs<FunctionProtoType>();
10974 unsigned MinParams = Fn->getMinRequiredArguments();
10975
10976 // at least / at most / exactly
10977 unsigned mode, modeCount;
10978 if (NumFormalArgs < MinParams) {
10979 if (MinParams != FnTy->getNumParams() || FnTy->isVariadic() ||
10980 FnTy->isTemplateVariadic())
10981 mode = 0; // "at least"
10982 else
10983 mode = 2; // "exactly"
10984 modeCount = MinParams;
10985 } else {
10986 if (MinParams != FnTy->getNumParams())
10987 mode = 1; // "at most"
10988 else
10989 mode = 2; // "exactly"
10990 modeCount = FnTy->getNumParams();
10991 }
10992
10993 std::string Description;
10994 std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair =
10995 ClassifyOverloadCandidate(S, Found, Fn, CRK_None, Description);
10996
10997 if (modeCount == 1 && Fn->getParamDecl(0)->getDeclName())
10998 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity_one)
10999 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second
11000 << Description << mode << Fn->getParamDecl(0) << NumFormalArgs;
11001 else
11002 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity)
11003 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second
11004 << Description << mode << modeCount << NumFormalArgs;
11005
11006 MaybeEmitInheritedConstructorNote(S, Found);
11007 }
11008
11009 /// Arity mismatch diagnosis specific to a function overload candidate.
DiagnoseArityMismatch(Sema & S,OverloadCandidate * Cand,unsigned NumFormalArgs)11010 static void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand,
11011 unsigned NumFormalArgs) {
11012 if (!CheckArityMismatch(S, Cand, NumFormalArgs))
11013 DiagnoseArityMismatch(S, Cand->FoundDecl, Cand->Function, NumFormalArgs);
11014 }
11015
getDescribedTemplate(Decl * Templated)11016 static TemplateDecl *getDescribedTemplate(Decl *Templated) {
11017 if (TemplateDecl *TD = Templated->getDescribedTemplate())
11018 return TD;
11019 llvm_unreachable("Unsupported: Getting the described template declaration"
11020 " for bad deduction diagnosis");
11021 }
11022
11023 /// Diagnose a failed template-argument deduction.
DiagnoseBadDeduction(Sema & S,NamedDecl * Found,Decl * Templated,DeductionFailureInfo & DeductionFailure,unsigned NumArgs,bool TakingCandidateAddress)11024 static void DiagnoseBadDeduction(Sema &S, NamedDecl *Found, Decl *Templated,
11025 DeductionFailureInfo &DeductionFailure,
11026 unsigned NumArgs,
11027 bool TakingCandidateAddress) {
11028 TemplateParameter Param = DeductionFailure.getTemplateParameter();
11029 NamedDecl *ParamD;
11030 (ParamD = Param.dyn_cast<TemplateTypeParmDecl*>()) ||
11031 (ParamD = Param.dyn_cast<NonTypeTemplateParmDecl*>()) ||
11032 (ParamD = Param.dyn_cast<TemplateTemplateParmDecl*>());
11033 switch (DeductionFailure.Result) {
11034 case Sema::TDK_Success:
11035 llvm_unreachable("TDK_success while diagnosing bad deduction");
11036
11037 case Sema::TDK_Incomplete: {
11038 assert(ParamD && "no parameter found for incomplete deduction result");
11039 S.Diag(Templated->getLocation(),
11040 diag::note_ovl_candidate_incomplete_deduction)
11041 << ParamD->getDeclName();
11042 MaybeEmitInheritedConstructorNote(S, Found);
11043 return;
11044 }
11045
11046 case Sema::TDK_IncompletePack: {
11047 assert(ParamD && "no parameter found for incomplete deduction result");
11048 S.Diag(Templated->getLocation(),
11049 diag::note_ovl_candidate_incomplete_deduction_pack)
11050 << ParamD->getDeclName()
11051 << (DeductionFailure.getFirstArg()->pack_size() + 1)
11052 << *DeductionFailure.getFirstArg();
11053 MaybeEmitInheritedConstructorNote(S, Found);
11054 return;
11055 }
11056
11057 case Sema::TDK_Underqualified: {
11058 assert(ParamD && "no parameter found for bad qualifiers deduction result");
11059 TemplateTypeParmDecl *TParam = cast<TemplateTypeParmDecl>(ParamD);
11060
11061 QualType Param = DeductionFailure.getFirstArg()->getAsType();
11062
11063 // Param will have been canonicalized, but it should just be a
11064 // qualified version of ParamD, so move the qualifiers to that.
11065 QualifierCollector Qs;
11066 Qs.strip(Param);
11067 QualType NonCanonParam = Qs.apply(S.Context, TParam->getTypeForDecl());
11068 assert(S.Context.hasSameType(Param, NonCanonParam));
11069
11070 // Arg has also been canonicalized, but there's nothing we can do
11071 // about that. It also doesn't matter as much, because it won't
11072 // have any template parameters in it (because deduction isn't
11073 // done on dependent types).
11074 QualType Arg = DeductionFailure.getSecondArg()->getAsType();
11075
11076 S.Diag(Templated->getLocation(), diag::note_ovl_candidate_underqualified)
11077 << ParamD->getDeclName() << Arg << NonCanonParam;
11078 MaybeEmitInheritedConstructorNote(S, Found);
11079 return;
11080 }
11081
11082 case Sema::TDK_Inconsistent: {
11083 assert(ParamD && "no parameter found for inconsistent deduction result");
11084 int which = 0;
11085 if (isa<TemplateTypeParmDecl>(ParamD))
11086 which = 0;
11087 else if (isa<NonTypeTemplateParmDecl>(ParamD)) {
11088 // Deduction might have failed because we deduced arguments of two
11089 // different types for a non-type template parameter.
11090 // FIXME: Use a different TDK value for this.
11091 QualType T1 =
11092 DeductionFailure.getFirstArg()->getNonTypeTemplateArgumentType();
11093 QualType T2 =
11094 DeductionFailure.getSecondArg()->getNonTypeTemplateArgumentType();
11095 if (!T1.isNull() && !T2.isNull() && !S.Context.hasSameType(T1, T2)) {
11096 S.Diag(Templated->getLocation(),
11097 diag::note_ovl_candidate_inconsistent_deduction_types)
11098 << ParamD->getDeclName() << *DeductionFailure.getFirstArg() << T1
11099 << *DeductionFailure.getSecondArg() << T2;
11100 MaybeEmitInheritedConstructorNote(S, Found);
11101 return;
11102 }
11103
11104 which = 1;
11105 } else {
11106 which = 2;
11107 }
11108
11109 // Tweak the diagnostic if the problem is that we deduced packs of
11110 // different arities. We'll print the actual packs anyway in case that
11111 // includes additional useful information.
11112 if (DeductionFailure.getFirstArg()->getKind() == TemplateArgument::Pack &&
11113 DeductionFailure.getSecondArg()->getKind() == TemplateArgument::Pack &&
11114 DeductionFailure.getFirstArg()->pack_size() !=
11115 DeductionFailure.getSecondArg()->pack_size()) {
11116 which = 3;
11117 }
11118
11119 S.Diag(Templated->getLocation(),
11120 diag::note_ovl_candidate_inconsistent_deduction)
11121 << which << ParamD->getDeclName() << *DeductionFailure.getFirstArg()
11122 << *DeductionFailure.getSecondArg();
11123 MaybeEmitInheritedConstructorNote(S, Found);
11124 return;
11125 }
11126
11127 case Sema::TDK_InvalidExplicitArguments:
11128 assert(ParamD && "no parameter found for invalid explicit arguments");
11129 if (ParamD->getDeclName())
11130 S.Diag(Templated->getLocation(),
11131 diag::note_ovl_candidate_explicit_arg_mismatch_named)
11132 << ParamD->getDeclName();
11133 else {
11134 int index = 0;
11135 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ParamD))
11136 index = TTP->getIndex();
11137 else if (NonTypeTemplateParmDecl *NTTP
11138 = dyn_cast<NonTypeTemplateParmDecl>(ParamD))
11139 index = NTTP->getIndex();
11140 else
11141 index = cast<TemplateTemplateParmDecl>(ParamD)->getIndex();
11142 S.Diag(Templated->getLocation(),
11143 diag::note_ovl_candidate_explicit_arg_mismatch_unnamed)
11144 << (index + 1);
11145 }
11146 MaybeEmitInheritedConstructorNote(S, Found);
11147 return;
11148
11149 case Sema::TDK_ConstraintsNotSatisfied: {
11150 // Format the template argument list into the argument string.
11151 SmallString<128> TemplateArgString;
11152 TemplateArgumentList *Args = DeductionFailure.getTemplateArgumentList();
11153 TemplateArgString = " ";
11154 TemplateArgString += S.getTemplateArgumentBindingsText(
11155 getDescribedTemplate(Templated)->getTemplateParameters(), *Args);
11156 if (TemplateArgString.size() == 1)
11157 TemplateArgString.clear();
11158 S.Diag(Templated->getLocation(),
11159 diag::note_ovl_candidate_unsatisfied_constraints)
11160 << TemplateArgString;
11161
11162 S.DiagnoseUnsatisfiedConstraint(
11163 static_cast<CNSInfo*>(DeductionFailure.Data)->Satisfaction);
11164 return;
11165 }
11166 case Sema::TDK_TooManyArguments:
11167 case Sema::TDK_TooFewArguments:
11168 DiagnoseArityMismatch(S, Found, Templated, NumArgs);
11169 return;
11170
11171 case Sema::TDK_InstantiationDepth:
11172 S.Diag(Templated->getLocation(),
11173 diag::note_ovl_candidate_instantiation_depth);
11174 MaybeEmitInheritedConstructorNote(S, Found);
11175 return;
11176
11177 case Sema::TDK_SubstitutionFailure: {
11178 // Format the template argument list into the argument string.
11179 SmallString<128> TemplateArgString;
11180 if (TemplateArgumentList *Args =
11181 DeductionFailure.getTemplateArgumentList()) {
11182 TemplateArgString = " ";
11183 TemplateArgString += S.getTemplateArgumentBindingsText(
11184 getDescribedTemplate(Templated)->getTemplateParameters(), *Args);
11185 if (TemplateArgString.size() == 1)
11186 TemplateArgString.clear();
11187 }
11188
11189 // If this candidate was disabled by enable_if, say so.
11190 PartialDiagnosticAt *PDiag = DeductionFailure.getSFINAEDiagnostic();
11191 if (PDiag && PDiag->second.getDiagID() ==
11192 diag::err_typename_nested_not_found_enable_if) {
11193 // FIXME: Use the source range of the condition, and the fully-qualified
11194 // name of the enable_if template. These are both present in PDiag.
11195 S.Diag(PDiag->first, diag::note_ovl_candidate_disabled_by_enable_if)
11196 << "'enable_if'" << TemplateArgString;
11197 return;
11198 }
11199
11200 // We found a specific requirement that disabled the enable_if.
11201 if (PDiag && PDiag->second.getDiagID() ==
11202 diag::err_typename_nested_not_found_requirement) {
11203 S.Diag(Templated->getLocation(),
11204 diag::note_ovl_candidate_disabled_by_requirement)
11205 << PDiag->second.getStringArg(0) << TemplateArgString;
11206 return;
11207 }
11208
11209 // Format the SFINAE diagnostic into the argument string.
11210 // FIXME: Add a general mechanism to include a PartialDiagnostic *'s
11211 // formatted message in another diagnostic.
11212 SmallString<128> SFINAEArgString;
11213 SourceRange R;
11214 if (PDiag) {
11215 SFINAEArgString = ": ";
11216 R = SourceRange(PDiag->first, PDiag->first);
11217 PDiag->second.EmitToString(S.getDiagnostics(), SFINAEArgString);
11218 }
11219
11220 S.Diag(Templated->getLocation(),
11221 diag::note_ovl_candidate_substitution_failure)
11222 << TemplateArgString << SFINAEArgString << R;
11223 MaybeEmitInheritedConstructorNote(S, Found);
11224 return;
11225 }
11226
11227 case Sema::TDK_DeducedMismatch:
11228 case Sema::TDK_DeducedMismatchNested: {
11229 // Format the template argument list into the argument string.
11230 SmallString<128> TemplateArgString;
11231 if (TemplateArgumentList *Args =
11232 DeductionFailure.getTemplateArgumentList()) {
11233 TemplateArgString = " ";
11234 TemplateArgString += S.getTemplateArgumentBindingsText(
11235 getDescribedTemplate(Templated)->getTemplateParameters(), *Args);
11236 if (TemplateArgString.size() == 1)
11237 TemplateArgString.clear();
11238 }
11239
11240 S.Diag(Templated->getLocation(), diag::note_ovl_candidate_deduced_mismatch)
11241 << (*DeductionFailure.getCallArgIndex() + 1)
11242 << *DeductionFailure.getFirstArg() << *DeductionFailure.getSecondArg()
11243 << TemplateArgString
11244 << (DeductionFailure.Result == Sema::TDK_DeducedMismatchNested);
11245 break;
11246 }
11247
11248 case Sema::TDK_NonDeducedMismatch: {
11249 // FIXME: Provide a source location to indicate what we couldn't match.
11250 TemplateArgument FirstTA = *DeductionFailure.getFirstArg();
11251 TemplateArgument SecondTA = *DeductionFailure.getSecondArg();
11252 if (FirstTA.getKind() == TemplateArgument::Template &&
11253 SecondTA.getKind() == TemplateArgument::Template) {
11254 TemplateName FirstTN = FirstTA.getAsTemplate();
11255 TemplateName SecondTN = SecondTA.getAsTemplate();
11256 if (FirstTN.getKind() == TemplateName::Template &&
11257 SecondTN.getKind() == TemplateName::Template) {
11258 if (FirstTN.getAsTemplateDecl()->getName() ==
11259 SecondTN.getAsTemplateDecl()->getName()) {
11260 // FIXME: This fixes a bad diagnostic where both templates are named
11261 // the same. This particular case is a bit difficult since:
11262 // 1) It is passed as a string to the diagnostic printer.
11263 // 2) The diagnostic printer only attempts to find a better
11264 // name for types, not decls.
11265 // Ideally, this should folded into the diagnostic printer.
11266 S.Diag(Templated->getLocation(),
11267 diag::note_ovl_candidate_non_deduced_mismatch_qualified)
11268 << FirstTN.getAsTemplateDecl() << SecondTN.getAsTemplateDecl();
11269 return;
11270 }
11271 }
11272 }
11273
11274 if (TakingCandidateAddress && isa<FunctionDecl>(Templated) &&
11275 !checkAddressOfCandidateIsAvailable(S, cast<FunctionDecl>(Templated)))
11276 return;
11277
11278 // FIXME: For generic lambda parameters, check if the function is a lambda
11279 // call operator, and if so, emit a prettier and more informative
11280 // diagnostic that mentions 'auto' and lambda in addition to
11281 // (or instead of?) the canonical template type parameters.
11282 S.Diag(Templated->getLocation(),
11283 diag::note_ovl_candidate_non_deduced_mismatch)
11284 << FirstTA << SecondTA;
11285 return;
11286 }
11287 // TODO: diagnose these individually, then kill off
11288 // note_ovl_candidate_bad_deduction, which is uselessly vague.
11289 case Sema::TDK_MiscellaneousDeductionFailure:
11290 S.Diag(Templated->getLocation(), diag::note_ovl_candidate_bad_deduction);
11291 MaybeEmitInheritedConstructorNote(S, Found);
11292 return;
11293 case Sema::TDK_CUDATargetMismatch:
11294 S.Diag(Templated->getLocation(),
11295 diag::note_cuda_ovl_candidate_target_mismatch);
11296 return;
11297 }
11298 }
11299
11300 /// Diagnose a failed template-argument deduction, for function calls.
DiagnoseBadDeduction(Sema & S,OverloadCandidate * Cand,unsigned NumArgs,bool TakingCandidateAddress)11301 static void DiagnoseBadDeduction(Sema &S, OverloadCandidate *Cand,
11302 unsigned NumArgs,
11303 bool TakingCandidateAddress) {
11304 unsigned TDK = Cand->DeductionFailure.Result;
11305 if (TDK == Sema::TDK_TooFewArguments || TDK == Sema::TDK_TooManyArguments) {
11306 if (CheckArityMismatch(S, Cand, NumArgs))
11307 return;
11308 }
11309 DiagnoseBadDeduction(S, Cand->FoundDecl, Cand->Function, // pattern
11310 Cand->DeductionFailure, NumArgs, TakingCandidateAddress);
11311 }
11312
11313 /// CUDA: diagnose an invalid call across targets.
DiagnoseBadTarget(Sema & S,OverloadCandidate * Cand)11314 static void DiagnoseBadTarget(Sema &S, OverloadCandidate *Cand) {
11315 FunctionDecl *Caller = S.getCurFunctionDecl(/*AllowLambda=*/true);
11316 FunctionDecl *Callee = Cand->Function;
11317
11318 Sema::CUDAFunctionTarget CallerTarget = S.IdentifyCUDATarget(Caller),
11319 CalleeTarget = S.IdentifyCUDATarget(Callee);
11320
11321 std::string FnDesc;
11322 std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair =
11323 ClassifyOverloadCandidate(S, Cand->FoundDecl, Callee,
11324 Cand->getRewriteKind(), FnDesc);
11325
11326 S.Diag(Callee->getLocation(), diag::note_ovl_candidate_bad_target)
11327 << (unsigned)FnKindPair.first << (unsigned)ocs_non_template
11328 << FnDesc /* Ignored */
11329 << CalleeTarget << CallerTarget;
11330
11331 // This could be an implicit constructor for which we could not infer the
11332 // target due to a collsion. Diagnose that case.
11333 CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Callee);
11334 if (Meth != nullptr && Meth->isImplicit()) {
11335 CXXRecordDecl *ParentClass = Meth->getParent();
11336 Sema::CXXSpecialMember CSM;
11337
11338 switch (FnKindPair.first) {
11339 default:
11340 return;
11341 case oc_implicit_default_constructor:
11342 CSM = Sema::CXXDefaultConstructor;
11343 break;
11344 case oc_implicit_copy_constructor:
11345 CSM = Sema::CXXCopyConstructor;
11346 break;
11347 case oc_implicit_move_constructor:
11348 CSM = Sema::CXXMoveConstructor;
11349 break;
11350 case oc_implicit_copy_assignment:
11351 CSM = Sema::CXXCopyAssignment;
11352 break;
11353 case oc_implicit_move_assignment:
11354 CSM = Sema::CXXMoveAssignment;
11355 break;
11356 };
11357
11358 bool ConstRHS = false;
11359 if (Meth->getNumParams()) {
11360 if (const ReferenceType *RT =
11361 Meth->getParamDecl(0)->getType()->getAs<ReferenceType>()) {
11362 ConstRHS = RT->getPointeeType().isConstQualified();
11363 }
11364 }
11365
11366 S.inferCUDATargetForImplicitSpecialMember(ParentClass, CSM, Meth,
11367 /* ConstRHS */ ConstRHS,
11368 /* Diagnose */ true);
11369 }
11370 }
11371
DiagnoseFailedEnableIfAttr(Sema & S,OverloadCandidate * Cand)11372 static void DiagnoseFailedEnableIfAttr(Sema &S, OverloadCandidate *Cand) {
11373 FunctionDecl *Callee = Cand->Function;
11374 EnableIfAttr *Attr = static_cast<EnableIfAttr*>(Cand->DeductionFailure.Data);
11375
11376 S.Diag(Callee->getLocation(),
11377 diag::note_ovl_candidate_disabled_by_function_cond_attr)
11378 << Attr->getCond()->getSourceRange() << Attr->getMessage();
11379 }
11380
DiagnoseFailedExplicitSpec(Sema & S,OverloadCandidate * Cand)11381 static void DiagnoseFailedExplicitSpec(Sema &S, OverloadCandidate *Cand) {
11382 ExplicitSpecifier ES = ExplicitSpecifier::getFromDecl(Cand->Function);
11383 assert(ES.isExplicit() && "not an explicit candidate");
11384
11385 unsigned Kind;
11386 switch (Cand->Function->getDeclKind()) {
11387 case Decl::Kind::CXXConstructor:
11388 Kind = 0;
11389 break;
11390 case Decl::Kind::CXXConversion:
11391 Kind = 1;
11392 break;
11393 case Decl::Kind::CXXDeductionGuide:
11394 Kind = Cand->Function->isImplicit() ? 0 : 2;
11395 break;
11396 default:
11397 llvm_unreachable("invalid Decl");
11398 }
11399
11400 // Note the location of the first (in-class) declaration; a redeclaration
11401 // (particularly an out-of-class definition) will typically lack the
11402 // 'explicit' specifier.
11403 // FIXME: This is probably a good thing to do for all 'candidate' notes.
11404 FunctionDecl *First = Cand->Function->getFirstDecl();
11405 if (FunctionDecl *Pattern = First->getTemplateInstantiationPattern())
11406 First = Pattern->getFirstDecl();
11407
11408 S.Diag(First->getLocation(),
11409 diag::note_ovl_candidate_explicit)
11410 << Kind << (ES.getExpr() ? 1 : 0)
11411 << (ES.getExpr() ? ES.getExpr()->getSourceRange() : SourceRange());
11412 }
11413
11414 /// Generates a 'note' diagnostic for an overload candidate. We've
11415 /// already generated a primary error at the call site.
11416 ///
11417 /// It really does need to be a single diagnostic with its caret
11418 /// pointed at the candidate declaration. Yes, this creates some
11419 /// major challenges of technical writing. Yes, this makes pointing
11420 /// out problems with specific arguments quite awkward. It's still
11421 /// better than generating twenty screens of text for every failed
11422 /// overload.
11423 ///
11424 /// It would be great to be able to express per-candidate problems
11425 /// more richly for those diagnostic clients that cared, but we'd
11426 /// still have to be just as careful with the default diagnostics.
11427 /// \param CtorDestAS Addr space of object being constructed (for ctor
11428 /// candidates only).
NoteFunctionCandidate(Sema & S,OverloadCandidate * Cand,unsigned NumArgs,bool TakingCandidateAddress,LangAS CtorDestAS=LangAS::Default)11429 static void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand,
11430 unsigned NumArgs,
11431 bool TakingCandidateAddress,
11432 LangAS CtorDestAS = LangAS::Default) {
11433 FunctionDecl *Fn = Cand->Function;
11434 if (shouldSkipNotingLambdaConversionDecl(Fn))
11435 return;
11436
11437 // There is no physical candidate declaration to point to for OpenCL builtins.
11438 // Except for failed conversions, the notes are identical for each candidate,
11439 // so do not generate such notes.
11440 if (S.getLangOpts().OpenCL && Fn->isImplicit() &&
11441 Cand->FailureKind != ovl_fail_bad_conversion)
11442 return;
11443
11444 // Note deleted candidates, but only if they're viable.
11445 if (Cand->Viable) {
11446 if (Fn->isDeleted()) {
11447 std::string FnDesc;
11448 std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair =
11449 ClassifyOverloadCandidate(S, Cand->FoundDecl, Fn,
11450 Cand->getRewriteKind(), FnDesc);
11451
11452 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted)
11453 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
11454 << (Fn->isDeleted() ? (Fn->isDeletedAsWritten() ? 1 : 2) : 0);
11455 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
11456 return;
11457 }
11458
11459 // We don't really have anything else to say about viable candidates.
11460 S.NoteOverloadCandidate(Cand->FoundDecl, Fn, Cand->getRewriteKind());
11461 return;
11462 }
11463
11464 switch (Cand->FailureKind) {
11465 case ovl_fail_too_many_arguments:
11466 case ovl_fail_too_few_arguments:
11467 return DiagnoseArityMismatch(S, Cand, NumArgs);
11468
11469 case ovl_fail_bad_deduction:
11470 return DiagnoseBadDeduction(S, Cand, NumArgs,
11471 TakingCandidateAddress);
11472
11473 case ovl_fail_illegal_constructor: {
11474 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_illegal_constructor)
11475 << (Fn->getPrimaryTemplate() ? 1 : 0);
11476 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
11477 return;
11478 }
11479
11480 case ovl_fail_object_addrspace_mismatch: {
11481 Qualifiers QualsForPrinting;
11482 QualsForPrinting.setAddressSpace(CtorDestAS);
11483 S.Diag(Fn->getLocation(),
11484 diag::note_ovl_candidate_illegal_constructor_adrspace_mismatch)
11485 << QualsForPrinting;
11486 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
11487 return;
11488 }
11489
11490 case ovl_fail_trivial_conversion:
11491 case ovl_fail_bad_final_conversion:
11492 case ovl_fail_final_conversion_not_exact:
11493 return S.NoteOverloadCandidate(Cand->FoundDecl, Fn, Cand->getRewriteKind());
11494
11495 case ovl_fail_bad_conversion: {
11496 unsigned I = (Cand->IgnoreObjectArgument ? 1 : 0);
11497 for (unsigned N = Cand->Conversions.size(); I != N; ++I)
11498 if (Cand->Conversions[I].isBad())
11499 return DiagnoseBadConversion(S, Cand, I, TakingCandidateAddress);
11500
11501 // FIXME: this currently happens when we're called from SemaInit
11502 // when user-conversion overload fails. Figure out how to handle
11503 // those conditions and diagnose them well.
11504 return S.NoteOverloadCandidate(Cand->FoundDecl, Fn, Cand->getRewriteKind());
11505 }
11506
11507 case ovl_fail_bad_target:
11508 return DiagnoseBadTarget(S, Cand);
11509
11510 case ovl_fail_enable_if:
11511 return DiagnoseFailedEnableIfAttr(S, Cand);
11512
11513 case ovl_fail_explicit:
11514 return DiagnoseFailedExplicitSpec(S, Cand);
11515
11516 case ovl_fail_inhctor_slice:
11517 // It's generally not interesting to note copy/move constructors here.
11518 if (cast<CXXConstructorDecl>(Fn)->isCopyOrMoveConstructor())
11519 return;
11520 S.Diag(Fn->getLocation(),
11521 diag::note_ovl_candidate_inherited_constructor_slice)
11522 << (Fn->getPrimaryTemplate() ? 1 : 0)
11523 << Fn->getParamDecl(0)->getType()->isRValueReferenceType();
11524 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
11525 return;
11526
11527 case ovl_fail_addr_not_available: {
11528 bool Available = checkAddressOfCandidateIsAvailable(S, Cand->Function);
11529 (void)Available;
11530 assert(!Available);
11531 break;
11532 }
11533 case ovl_non_default_multiversion_function:
11534 // Do nothing, these should simply be ignored.
11535 break;
11536
11537 case ovl_fail_constraints_not_satisfied: {
11538 std::string FnDesc;
11539 std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair =
11540 ClassifyOverloadCandidate(S, Cand->FoundDecl, Fn,
11541 Cand->getRewriteKind(), FnDesc);
11542
11543 S.Diag(Fn->getLocation(),
11544 diag::note_ovl_candidate_constraints_not_satisfied)
11545 << (unsigned)FnKindPair.first << (unsigned)ocs_non_template
11546 << FnDesc /* Ignored */;
11547 ConstraintSatisfaction Satisfaction;
11548 if (S.CheckFunctionConstraints(Fn, Satisfaction))
11549 break;
11550 S.DiagnoseUnsatisfiedConstraint(Satisfaction);
11551 }
11552 }
11553 }
11554
NoteSurrogateCandidate(Sema & S,OverloadCandidate * Cand)11555 static void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) {
11556 if (shouldSkipNotingLambdaConversionDecl(Cand->Surrogate))
11557 return;
11558
11559 // Desugar the type of the surrogate down to a function type,
11560 // retaining as many typedefs as possible while still showing
11561 // the function type (and, therefore, its parameter types).
11562 QualType FnType = Cand->Surrogate->getConversionType();
11563 bool isLValueReference = false;
11564 bool isRValueReference = false;
11565 bool isPointer = false;
11566 if (const LValueReferenceType *FnTypeRef =
11567 FnType->getAs<LValueReferenceType>()) {
11568 FnType = FnTypeRef->getPointeeType();
11569 isLValueReference = true;
11570 } else if (const RValueReferenceType *FnTypeRef =
11571 FnType->getAs<RValueReferenceType>()) {
11572 FnType = FnTypeRef->getPointeeType();
11573 isRValueReference = true;
11574 }
11575 if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) {
11576 FnType = FnTypePtr->getPointeeType();
11577 isPointer = true;
11578 }
11579 // Desugar down to a function type.
11580 FnType = QualType(FnType->getAs<FunctionType>(), 0);
11581 // Reconstruct the pointer/reference as appropriate.
11582 if (isPointer) FnType = S.Context.getPointerType(FnType);
11583 if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType);
11584 if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType);
11585
11586 S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand)
11587 << FnType;
11588 }
11589
NoteBuiltinOperatorCandidate(Sema & S,StringRef Opc,SourceLocation OpLoc,OverloadCandidate * Cand)11590 static void NoteBuiltinOperatorCandidate(Sema &S, StringRef Opc,
11591 SourceLocation OpLoc,
11592 OverloadCandidate *Cand) {
11593 assert(Cand->Conversions.size() <= 2 && "builtin operator is not binary");
11594 std::string TypeStr("operator");
11595 TypeStr += Opc;
11596 TypeStr += "(";
11597 TypeStr += Cand->BuiltinParamTypes[0].getAsString();
11598 if (Cand->Conversions.size() == 1) {
11599 TypeStr += ")";
11600 S.Diag(OpLoc, diag::note_ovl_builtin_candidate) << TypeStr;
11601 } else {
11602 TypeStr += ", ";
11603 TypeStr += Cand->BuiltinParamTypes[1].getAsString();
11604 TypeStr += ")";
11605 S.Diag(OpLoc, diag::note_ovl_builtin_candidate) << TypeStr;
11606 }
11607 }
11608
NoteAmbiguousUserConversions(Sema & S,SourceLocation OpLoc,OverloadCandidate * Cand)11609 static void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc,
11610 OverloadCandidate *Cand) {
11611 for (const ImplicitConversionSequence &ICS : Cand->Conversions) {
11612 if (ICS.isBad()) break; // all meaningless after first invalid
11613 if (!ICS.isAmbiguous()) continue;
11614
11615 ICS.DiagnoseAmbiguousConversion(
11616 S, OpLoc, S.PDiag(diag::note_ambiguous_type_conversion));
11617 }
11618 }
11619
GetLocationForCandidate(const OverloadCandidate * Cand)11620 static SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) {
11621 if (Cand->Function)
11622 return Cand->Function->getLocation();
11623 if (Cand->IsSurrogate)
11624 return Cand->Surrogate->getLocation();
11625 return SourceLocation();
11626 }
11627
RankDeductionFailure(const DeductionFailureInfo & DFI)11628 static unsigned RankDeductionFailure(const DeductionFailureInfo &DFI) {
11629 switch ((Sema::TemplateDeductionResult)DFI.Result) {
11630 case Sema::TDK_Success:
11631 case Sema::TDK_NonDependentConversionFailure:
11632 case Sema::TDK_AlreadyDiagnosed:
11633 llvm_unreachable("non-deduction failure while diagnosing bad deduction");
11634
11635 case Sema::TDK_Invalid:
11636 case Sema::TDK_Incomplete:
11637 case Sema::TDK_IncompletePack:
11638 return 1;
11639
11640 case Sema::TDK_Underqualified:
11641 case Sema::TDK_Inconsistent:
11642 return 2;
11643
11644 case Sema::TDK_SubstitutionFailure:
11645 case Sema::TDK_DeducedMismatch:
11646 case Sema::TDK_ConstraintsNotSatisfied:
11647 case Sema::TDK_DeducedMismatchNested:
11648 case Sema::TDK_NonDeducedMismatch:
11649 case Sema::TDK_MiscellaneousDeductionFailure:
11650 case Sema::TDK_CUDATargetMismatch:
11651 return 3;
11652
11653 case Sema::TDK_InstantiationDepth:
11654 return 4;
11655
11656 case Sema::TDK_InvalidExplicitArguments:
11657 return 5;
11658
11659 case Sema::TDK_TooManyArguments:
11660 case Sema::TDK_TooFewArguments:
11661 return 6;
11662 }
11663 llvm_unreachable("Unhandled deduction result");
11664 }
11665
11666 namespace {
11667 struct CompareOverloadCandidatesForDisplay {
11668 Sema &S;
11669 SourceLocation Loc;
11670 size_t NumArgs;
11671 OverloadCandidateSet::CandidateSetKind CSK;
11672
CompareOverloadCandidatesForDisplay__anon42b62cde1a11::CompareOverloadCandidatesForDisplay11673 CompareOverloadCandidatesForDisplay(
11674 Sema &S, SourceLocation Loc, size_t NArgs,
11675 OverloadCandidateSet::CandidateSetKind CSK)
11676 : S(S), NumArgs(NArgs), CSK(CSK) {}
11677
EffectiveFailureKind__anon42b62cde1a11::CompareOverloadCandidatesForDisplay11678 OverloadFailureKind EffectiveFailureKind(const OverloadCandidate *C) const {
11679 // If there are too many or too few arguments, that's the high-order bit we
11680 // want to sort by, even if the immediate failure kind was something else.
11681 if (C->FailureKind == ovl_fail_too_many_arguments ||
11682 C->FailureKind == ovl_fail_too_few_arguments)
11683 return static_cast<OverloadFailureKind>(C->FailureKind);
11684
11685 if (C->Function) {
11686 if (NumArgs > C->Function->getNumParams() && !C->Function->isVariadic())
11687 return ovl_fail_too_many_arguments;
11688 if (NumArgs < C->Function->getMinRequiredArguments())
11689 return ovl_fail_too_few_arguments;
11690 }
11691
11692 return static_cast<OverloadFailureKind>(C->FailureKind);
11693 }
11694
operator ()__anon42b62cde1a11::CompareOverloadCandidatesForDisplay11695 bool operator()(const OverloadCandidate *L,
11696 const OverloadCandidate *R) {
11697 // Fast-path this check.
11698 if (L == R) return false;
11699
11700 // Order first by viability.
11701 if (L->Viable) {
11702 if (!R->Viable) return true;
11703
11704 // TODO: introduce a tri-valued comparison for overload
11705 // candidates. Would be more worthwhile if we had a sort
11706 // that could exploit it.
11707 if (isBetterOverloadCandidate(S, *L, *R, SourceLocation(), CSK))
11708 return true;
11709 if (isBetterOverloadCandidate(S, *R, *L, SourceLocation(), CSK))
11710 return false;
11711 } else if (R->Viable)
11712 return false;
11713
11714 assert(L->Viable == R->Viable);
11715
11716 // Criteria by which we can sort non-viable candidates:
11717 if (!L->Viable) {
11718 OverloadFailureKind LFailureKind = EffectiveFailureKind(L);
11719 OverloadFailureKind RFailureKind = EffectiveFailureKind(R);
11720
11721 // 1. Arity mismatches come after other candidates.
11722 if (LFailureKind == ovl_fail_too_many_arguments ||
11723 LFailureKind == ovl_fail_too_few_arguments) {
11724 if (RFailureKind == ovl_fail_too_many_arguments ||
11725 RFailureKind == ovl_fail_too_few_arguments) {
11726 int LDist = std::abs((int)L->getNumParams() - (int)NumArgs);
11727 int RDist = std::abs((int)R->getNumParams() - (int)NumArgs);
11728 if (LDist == RDist) {
11729 if (LFailureKind == RFailureKind)
11730 // Sort non-surrogates before surrogates.
11731 return !L->IsSurrogate && R->IsSurrogate;
11732 // Sort candidates requiring fewer parameters than there were
11733 // arguments given after candidates requiring more parameters
11734 // than there were arguments given.
11735 return LFailureKind == ovl_fail_too_many_arguments;
11736 }
11737 return LDist < RDist;
11738 }
11739 return false;
11740 }
11741 if (RFailureKind == ovl_fail_too_many_arguments ||
11742 RFailureKind == ovl_fail_too_few_arguments)
11743 return true;
11744
11745 // 2. Bad conversions come first and are ordered by the number
11746 // of bad conversions and quality of good conversions.
11747 if (LFailureKind == ovl_fail_bad_conversion) {
11748 if (RFailureKind != ovl_fail_bad_conversion)
11749 return true;
11750
11751 // The conversion that can be fixed with a smaller number of changes,
11752 // comes first.
11753 unsigned numLFixes = L->Fix.NumConversionsFixed;
11754 unsigned numRFixes = R->Fix.NumConversionsFixed;
11755 numLFixes = (numLFixes == 0) ? UINT_MAX : numLFixes;
11756 numRFixes = (numRFixes == 0) ? UINT_MAX : numRFixes;
11757 if (numLFixes != numRFixes) {
11758 return numLFixes < numRFixes;
11759 }
11760
11761 // If there's any ordering between the defined conversions...
11762 // FIXME: this might not be transitive.
11763 assert(L->Conversions.size() == R->Conversions.size());
11764
11765 int leftBetter = 0;
11766 unsigned I = (L->IgnoreObjectArgument || R->IgnoreObjectArgument);
11767 for (unsigned E = L->Conversions.size(); I != E; ++I) {
11768 switch (CompareImplicitConversionSequences(S, Loc,
11769 L->Conversions[I],
11770 R->Conversions[I])) {
11771 case ImplicitConversionSequence::Better:
11772 leftBetter++;
11773 break;
11774
11775 case ImplicitConversionSequence::Worse:
11776 leftBetter--;
11777 break;
11778
11779 case ImplicitConversionSequence::Indistinguishable:
11780 break;
11781 }
11782 }
11783 if (leftBetter > 0) return true;
11784 if (leftBetter < 0) return false;
11785
11786 } else if (RFailureKind == ovl_fail_bad_conversion)
11787 return false;
11788
11789 if (LFailureKind == ovl_fail_bad_deduction) {
11790 if (RFailureKind != ovl_fail_bad_deduction)
11791 return true;
11792
11793 if (L->DeductionFailure.Result != R->DeductionFailure.Result)
11794 return RankDeductionFailure(L->DeductionFailure)
11795 < RankDeductionFailure(R->DeductionFailure);
11796 } else if (RFailureKind == ovl_fail_bad_deduction)
11797 return false;
11798
11799 // TODO: others?
11800 }
11801
11802 // Sort everything else by location.
11803 SourceLocation LLoc = GetLocationForCandidate(L);
11804 SourceLocation RLoc = GetLocationForCandidate(R);
11805
11806 // Put candidates without locations (e.g. builtins) at the end.
11807 if (LLoc.isInvalid()) return false;
11808 if (RLoc.isInvalid()) return true;
11809
11810 return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
11811 }
11812 };
11813 }
11814
11815 /// CompleteNonViableCandidate - Normally, overload resolution only
11816 /// computes up to the first bad conversion. Produces the FixIt set if
11817 /// possible.
11818 static void
CompleteNonViableCandidate(Sema & S,OverloadCandidate * Cand,ArrayRef<Expr * > Args,OverloadCandidateSet::CandidateSetKind CSK)11819 CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand,
11820 ArrayRef<Expr *> Args,
11821 OverloadCandidateSet::CandidateSetKind CSK) {
11822 assert(!Cand->Viable);
11823
11824 // Don't do anything on failures other than bad conversion.
11825 if (Cand->FailureKind != ovl_fail_bad_conversion)
11826 return;
11827
11828 // We only want the FixIts if all the arguments can be corrected.
11829 bool Unfixable = false;
11830 // Use a implicit copy initialization to check conversion fixes.
11831 Cand->Fix.setConversionChecker(TryCopyInitialization);
11832
11833 // Attempt to fix the bad conversion.
11834 unsigned ConvCount = Cand->Conversions.size();
11835 for (unsigned ConvIdx = (Cand->IgnoreObjectArgument ? 1 : 0); /**/;
11836 ++ConvIdx) {
11837 assert(ConvIdx != ConvCount && "no bad conversion in candidate");
11838 if (Cand->Conversions[ConvIdx].isInitialized() &&
11839 Cand->Conversions[ConvIdx].isBad()) {
11840 Unfixable = !Cand->TryToFixBadConversion(ConvIdx, S);
11841 break;
11842 }
11843 }
11844
11845 // FIXME: this should probably be preserved from the overload
11846 // operation somehow.
11847 bool SuppressUserConversions = false;
11848
11849 unsigned ConvIdx = 0;
11850 unsigned ArgIdx = 0;
11851 ArrayRef<QualType> ParamTypes;
11852 bool Reversed = Cand->isReversed();
11853
11854 if (Cand->IsSurrogate) {
11855 QualType ConvType
11856 = Cand->Surrogate->getConversionType().getNonReferenceType();
11857 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
11858 ConvType = ConvPtrType->getPointeeType();
11859 ParamTypes = ConvType->castAs<FunctionProtoType>()->getParamTypes();
11860 // Conversion 0 is 'this', which doesn't have a corresponding parameter.
11861 ConvIdx = 1;
11862 } else if (Cand->Function) {
11863 ParamTypes =
11864 Cand->Function->getType()->castAs<FunctionProtoType>()->getParamTypes();
11865 if (isa<CXXMethodDecl>(Cand->Function) &&
11866 !isa<CXXConstructorDecl>(Cand->Function) && !Reversed) {
11867 // Conversion 0 is 'this', which doesn't have a corresponding parameter.
11868 ConvIdx = 1;
11869 if (CSK == OverloadCandidateSet::CSK_Operator &&
11870 Cand->Function->getDeclName().getCXXOverloadedOperator() != OO_Call &&
11871 Cand->Function->getDeclName().getCXXOverloadedOperator() !=
11872 OO_Subscript)
11873 // Argument 0 is 'this', which doesn't have a corresponding parameter.
11874 ArgIdx = 1;
11875 }
11876 } else {
11877 // Builtin operator.
11878 assert(ConvCount <= 3);
11879 ParamTypes = Cand->BuiltinParamTypes;
11880 }
11881
11882 // Fill in the rest of the conversions.
11883 for (unsigned ParamIdx = Reversed ? ParamTypes.size() - 1 : 0;
11884 ConvIdx != ConvCount;
11885 ++ConvIdx, ++ArgIdx, ParamIdx += (Reversed ? -1 : 1)) {
11886 assert(ArgIdx < Args.size() && "no argument for this arg conversion");
11887 if (Cand->Conversions[ConvIdx].isInitialized()) {
11888 // We've already checked this conversion.
11889 } else if (ParamIdx < ParamTypes.size()) {
11890 if (ParamTypes[ParamIdx]->isDependentType())
11891 Cand->Conversions[ConvIdx].setAsIdentityConversion(
11892 Args[ArgIdx]->getType());
11893 else {
11894 Cand->Conversions[ConvIdx] =
11895 TryCopyInitialization(S, Args[ArgIdx], ParamTypes[ParamIdx],
11896 SuppressUserConversions,
11897 /*InOverloadResolution=*/true,
11898 /*AllowObjCWritebackConversion=*/
11899 S.getLangOpts().ObjCAutoRefCount);
11900 // Store the FixIt in the candidate if it exists.
11901 if (!Unfixable && Cand->Conversions[ConvIdx].isBad())
11902 Unfixable = !Cand->TryToFixBadConversion(ConvIdx, S);
11903 }
11904 } else
11905 Cand->Conversions[ConvIdx].setEllipsis();
11906 }
11907 }
11908
CompleteCandidates(Sema & S,OverloadCandidateDisplayKind OCD,ArrayRef<Expr * > Args,SourceLocation OpLoc,llvm::function_ref<bool (OverloadCandidate &)> Filter)11909 SmallVector<OverloadCandidate *, 32> OverloadCandidateSet::CompleteCandidates(
11910 Sema &S, OverloadCandidateDisplayKind OCD, ArrayRef<Expr *> Args,
11911 SourceLocation OpLoc,
11912 llvm::function_ref<bool(OverloadCandidate &)> Filter) {
11913 // Sort the candidates by viability and position. Sorting directly would
11914 // be prohibitive, so we make a set of pointers and sort those.
11915 SmallVector<OverloadCandidate*, 32> Cands;
11916 if (OCD == OCD_AllCandidates) Cands.reserve(size());
11917 for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) {
11918 if (!Filter(*Cand))
11919 continue;
11920 switch (OCD) {
11921 case OCD_AllCandidates:
11922 if (!Cand->Viable) {
11923 if (!Cand->Function && !Cand->IsSurrogate) {
11924 // This a non-viable builtin candidate. We do not, in general,
11925 // want to list every possible builtin candidate.
11926 continue;
11927 }
11928 CompleteNonViableCandidate(S, Cand, Args, Kind);
11929 }
11930 break;
11931
11932 case OCD_ViableCandidates:
11933 if (!Cand->Viable)
11934 continue;
11935 break;
11936
11937 case OCD_AmbiguousCandidates:
11938 if (!Cand->Best)
11939 continue;
11940 break;
11941 }
11942
11943 Cands.push_back(Cand);
11944 }
11945
11946 llvm::stable_sort(
11947 Cands, CompareOverloadCandidatesForDisplay(S, OpLoc, Args.size(), Kind));
11948
11949 return Cands;
11950 }
11951
shouldDeferDiags(Sema & S,ArrayRef<Expr * > Args,SourceLocation OpLoc)11952 bool OverloadCandidateSet::shouldDeferDiags(Sema &S, ArrayRef<Expr *> Args,
11953 SourceLocation OpLoc) {
11954 bool DeferHint = false;
11955 if (S.getLangOpts().CUDA && S.getLangOpts().GPUDeferDiag) {
11956 // Defer diagnostic for CUDA/HIP if there are wrong-sided candidates or
11957 // host device candidates.
11958 auto WrongSidedCands =
11959 CompleteCandidates(S, OCD_AllCandidates, Args, OpLoc, [](auto &Cand) {
11960 return (Cand.Viable == false &&
11961 Cand.FailureKind == ovl_fail_bad_target) ||
11962 (Cand.Function &&
11963 Cand.Function->template hasAttr<CUDAHostAttr>() &&
11964 Cand.Function->template hasAttr<CUDADeviceAttr>());
11965 });
11966 DeferHint = !WrongSidedCands.empty();
11967 }
11968 return DeferHint;
11969 }
11970
11971 /// When overload resolution fails, prints diagnostic messages containing the
11972 /// candidates in the candidate set.
NoteCandidates(PartialDiagnosticAt PD,Sema & S,OverloadCandidateDisplayKind OCD,ArrayRef<Expr * > Args,StringRef Opc,SourceLocation OpLoc,llvm::function_ref<bool (OverloadCandidate &)> Filter)11973 void OverloadCandidateSet::NoteCandidates(
11974 PartialDiagnosticAt PD, Sema &S, OverloadCandidateDisplayKind OCD,
11975 ArrayRef<Expr *> Args, StringRef Opc, SourceLocation OpLoc,
11976 llvm::function_ref<bool(OverloadCandidate &)> Filter) {
11977
11978 auto Cands = CompleteCandidates(S, OCD, Args, OpLoc, Filter);
11979
11980 S.Diag(PD.first, PD.second, shouldDeferDiags(S, Args, OpLoc));
11981
11982 NoteCandidates(S, Args, Cands, Opc, OpLoc);
11983
11984 if (OCD == OCD_AmbiguousCandidates)
11985 MaybeDiagnoseAmbiguousConstraints(S, {begin(), end()});
11986 }
11987
NoteCandidates(Sema & S,ArrayRef<Expr * > Args,ArrayRef<OverloadCandidate * > Cands,StringRef Opc,SourceLocation OpLoc)11988 void OverloadCandidateSet::NoteCandidates(Sema &S, ArrayRef<Expr *> Args,
11989 ArrayRef<OverloadCandidate *> Cands,
11990 StringRef Opc, SourceLocation OpLoc) {
11991 bool ReportedAmbiguousConversions = false;
11992
11993 const OverloadsShown ShowOverloads = S.Diags.getShowOverloads();
11994 unsigned CandsShown = 0;
11995 auto I = Cands.begin(), E = Cands.end();
11996 for (; I != E; ++I) {
11997 OverloadCandidate *Cand = *I;
11998
11999 if (CandsShown >= S.Diags.getNumOverloadCandidatesToShow() &&
12000 ShowOverloads == Ovl_Best) {
12001 break;
12002 }
12003 ++CandsShown;
12004
12005 if (Cand->Function)
12006 NoteFunctionCandidate(S, Cand, Args.size(),
12007 /*TakingCandidateAddress=*/false, DestAS);
12008 else if (Cand->IsSurrogate)
12009 NoteSurrogateCandidate(S, Cand);
12010 else {
12011 assert(Cand->Viable &&
12012 "Non-viable built-in candidates are not added to Cands.");
12013 // Generally we only see ambiguities including viable builtin
12014 // operators if overload resolution got screwed up by an
12015 // ambiguous user-defined conversion.
12016 //
12017 // FIXME: It's quite possible for different conversions to see
12018 // different ambiguities, though.
12019 if (!ReportedAmbiguousConversions) {
12020 NoteAmbiguousUserConversions(S, OpLoc, Cand);
12021 ReportedAmbiguousConversions = true;
12022 }
12023
12024 // If this is a viable builtin, print it.
12025 NoteBuiltinOperatorCandidate(S, Opc, OpLoc, Cand);
12026 }
12027 }
12028
12029 // Inform S.Diags that we've shown an overload set with N elements. This may
12030 // inform the future value of S.Diags.getNumOverloadCandidatesToShow().
12031 S.Diags.overloadCandidatesShown(CandsShown);
12032
12033 if (I != E)
12034 S.Diag(OpLoc, diag::note_ovl_too_many_candidates,
12035 shouldDeferDiags(S, Args, OpLoc))
12036 << int(E - I);
12037 }
12038
12039 static SourceLocation
GetLocationForCandidate(const TemplateSpecCandidate * Cand)12040 GetLocationForCandidate(const TemplateSpecCandidate *Cand) {
12041 return Cand->Specialization ? Cand->Specialization->getLocation()
12042 : SourceLocation();
12043 }
12044
12045 namespace {
12046 struct CompareTemplateSpecCandidatesForDisplay {
12047 Sema &S;
CompareTemplateSpecCandidatesForDisplay__anon42b62cde1c11::CompareTemplateSpecCandidatesForDisplay12048 CompareTemplateSpecCandidatesForDisplay(Sema &S) : S(S) {}
12049
operator ()__anon42b62cde1c11::CompareTemplateSpecCandidatesForDisplay12050 bool operator()(const TemplateSpecCandidate *L,
12051 const TemplateSpecCandidate *R) {
12052 // Fast-path this check.
12053 if (L == R)
12054 return false;
12055
12056 // Assuming that both candidates are not matches...
12057
12058 // Sort by the ranking of deduction failures.
12059 if (L->DeductionFailure.Result != R->DeductionFailure.Result)
12060 return RankDeductionFailure(L->DeductionFailure) <
12061 RankDeductionFailure(R->DeductionFailure);
12062
12063 // Sort everything else by location.
12064 SourceLocation LLoc = GetLocationForCandidate(L);
12065 SourceLocation RLoc = GetLocationForCandidate(R);
12066
12067 // Put candidates without locations (e.g. builtins) at the end.
12068 if (LLoc.isInvalid())
12069 return false;
12070 if (RLoc.isInvalid())
12071 return true;
12072
12073 return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
12074 }
12075 };
12076 }
12077
12078 /// Diagnose a template argument deduction failure.
12079 /// We are treating these failures as overload failures due to bad
12080 /// deductions.
NoteDeductionFailure(Sema & S,bool ForTakingAddress)12081 void TemplateSpecCandidate::NoteDeductionFailure(Sema &S,
12082 bool ForTakingAddress) {
12083 DiagnoseBadDeduction(S, FoundDecl, Specialization, // pattern
12084 DeductionFailure, /*NumArgs=*/0, ForTakingAddress);
12085 }
12086
destroyCandidates()12087 void TemplateSpecCandidateSet::destroyCandidates() {
12088 for (iterator i = begin(), e = end(); i != e; ++i) {
12089 i->DeductionFailure.Destroy();
12090 }
12091 }
12092
clear()12093 void TemplateSpecCandidateSet::clear() {
12094 destroyCandidates();
12095 Candidates.clear();
12096 }
12097
12098 /// NoteCandidates - When no template specialization match is found, prints
12099 /// diagnostic messages containing the non-matching specializations that form
12100 /// the candidate set.
12101 /// This is analoguous to OverloadCandidateSet::NoteCandidates() with
12102 /// OCD == OCD_AllCandidates and Cand->Viable == false.
NoteCandidates(Sema & S,SourceLocation Loc)12103 void TemplateSpecCandidateSet::NoteCandidates(Sema &S, SourceLocation Loc) {
12104 // Sort the candidates by position (assuming no candidate is a match).
12105 // Sorting directly would be prohibitive, so we make a set of pointers
12106 // and sort those.
12107 SmallVector<TemplateSpecCandidate *, 32> Cands;
12108 Cands.reserve(size());
12109 for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) {
12110 if (Cand->Specialization)
12111 Cands.push_back(Cand);
12112 // Otherwise, this is a non-matching builtin candidate. We do not,
12113 // in general, want to list every possible builtin candidate.
12114 }
12115
12116 llvm::sort(Cands, CompareTemplateSpecCandidatesForDisplay(S));
12117
12118 // FIXME: Perhaps rename OverloadsShown and getShowOverloads()
12119 // for generalization purposes (?).
12120 const OverloadsShown ShowOverloads = S.Diags.getShowOverloads();
12121
12122 SmallVectorImpl<TemplateSpecCandidate *>::iterator I, E;
12123 unsigned CandsShown = 0;
12124 for (I = Cands.begin(), E = Cands.end(); I != E; ++I) {
12125 TemplateSpecCandidate *Cand = *I;
12126
12127 // Set an arbitrary limit on the number of candidates we'll spam
12128 // the user with. FIXME: This limit should depend on details of the
12129 // candidate list.
12130 if (CandsShown >= 4 && ShowOverloads == Ovl_Best)
12131 break;
12132 ++CandsShown;
12133
12134 assert(Cand->Specialization &&
12135 "Non-matching built-in candidates are not added to Cands.");
12136 Cand->NoteDeductionFailure(S, ForTakingAddress);
12137 }
12138
12139 if (I != E)
12140 S.Diag(Loc, diag::note_ovl_too_many_candidates) << int(E - I);
12141 }
12142
12143 // [PossiblyAFunctionType] --> [Return]
12144 // NonFunctionType --> NonFunctionType
12145 // R (A) --> R(A)
12146 // R (*)(A) --> R (A)
12147 // R (&)(A) --> R (A)
12148 // R (S::*)(A) --> R (A)
ExtractUnqualifiedFunctionType(QualType PossiblyAFunctionType)12149 QualType Sema::ExtractUnqualifiedFunctionType(QualType PossiblyAFunctionType) {
12150 QualType Ret = PossiblyAFunctionType;
12151 if (const PointerType *ToTypePtr =
12152 PossiblyAFunctionType->getAs<PointerType>())
12153 Ret = ToTypePtr->getPointeeType();
12154 else if (const ReferenceType *ToTypeRef =
12155 PossiblyAFunctionType->getAs<ReferenceType>())
12156 Ret = ToTypeRef->getPointeeType();
12157 else if (const MemberPointerType *MemTypePtr =
12158 PossiblyAFunctionType->getAs<MemberPointerType>())
12159 Ret = MemTypePtr->getPointeeType();
12160 Ret =
12161 Context.getCanonicalType(Ret).getUnqualifiedType();
12162 return Ret;
12163 }
12164
completeFunctionType(Sema & S,FunctionDecl * FD,SourceLocation Loc,bool Complain=true)12165 static bool completeFunctionType(Sema &S, FunctionDecl *FD, SourceLocation Loc,
12166 bool Complain = true) {
12167 if (S.getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() &&
12168 S.DeduceReturnType(FD, Loc, Complain))
12169 return true;
12170
12171 auto *FPT = FD->getType()->castAs<FunctionProtoType>();
12172 if (S.getLangOpts().CPlusPlus17 &&
12173 isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) &&
12174 !S.ResolveExceptionSpec(Loc, FPT))
12175 return true;
12176
12177 return false;
12178 }
12179
12180 namespace {
12181 // A helper class to help with address of function resolution
12182 // - allows us to avoid passing around all those ugly parameters
12183 class AddressOfFunctionResolver {
12184 Sema& S;
12185 Expr* SourceExpr;
12186 const QualType& TargetType;
12187 QualType TargetFunctionType; // Extracted function type from target type
12188
12189 bool Complain;
12190 //DeclAccessPair& ResultFunctionAccessPair;
12191 ASTContext& Context;
12192
12193 bool TargetTypeIsNonStaticMemberFunction;
12194 bool FoundNonTemplateFunction;
12195 bool StaticMemberFunctionFromBoundPointer;
12196 bool HasComplained;
12197
12198 OverloadExpr::FindResult OvlExprInfo;
12199 OverloadExpr *OvlExpr;
12200 TemplateArgumentListInfo OvlExplicitTemplateArgs;
12201 SmallVector<std::pair<DeclAccessPair, FunctionDecl*>, 4> Matches;
12202 TemplateSpecCandidateSet FailedCandidates;
12203
12204 public:
AddressOfFunctionResolver(Sema & S,Expr * SourceExpr,const QualType & TargetType,bool Complain)12205 AddressOfFunctionResolver(Sema &S, Expr *SourceExpr,
12206 const QualType &TargetType, bool Complain)
12207 : S(S), SourceExpr(SourceExpr), TargetType(TargetType),
12208 Complain(Complain), Context(S.getASTContext()),
12209 TargetTypeIsNonStaticMemberFunction(
12210 !!TargetType->getAs<MemberPointerType>()),
12211 FoundNonTemplateFunction(false),
12212 StaticMemberFunctionFromBoundPointer(false),
12213 HasComplained(false),
12214 OvlExprInfo(OverloadExpr::find(SourceExpr)),
12215 OvlExpr(OvlExprInfo.Expression),
12216 FailedCandidates(OvlExpr->getNameLoc(), /*ForTakingAddress=*/true) {
12217 ExtractUnqualifiedFunctionTypeFromTargetType();
12218
12219 if (TargetFunctionType->isFunctionType()) {
12220 if (UnresolvedMemberExpr *UME = dyn_cast<UnresolvedMemberExpr>(OvlExpr))
12221 if (!UME->isImplicitAccess() &&
12222 !S.ResolveSingleFunctionTemplateSpecialization(UME))
12223 StaticMemberFunctionFromBoundPointer = true;
12224 } else if (OvlExpr->hasExplicitTemplateArgs()) {
12225 DeclAccessPair dap;
12226 if (FunctionDecl *Fn = S.ResolveSingleFunctionTemplateSpecialization(
12227 OvlExpr, false, &dap)) {
12228 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn))
12229 if (!Method->isStatic()) {
12230 // If the target type is a non-function type and the function found
12231 // is a non-static member function, pretend as if that was the
12232 // target, it's the only possible type to end up with.
12233 TargetTypeIsNonStaticMemberFunction = true;
12234
12235 // And skip adding the function if its not in the proper form.
12236 // We'll diagnose this due to an empty set of functions.
12237 if (!OvlExprInfo.HasFormOfMemberPointer)
12238 return;
12239 }
12240
12241 Matches.push_back(std::make_pair(dap, Fn));
12242 }
12243 return;
12244 }
12245
12246 if (OvlExpr->hasExplicitTemplateArgs())
12247 OvlExpr->copyTemplateArgumentsInto(OvlExplicitTemplateArgs);
12248
12249 if (FindAllFunctionsThatMatchTargetTypeExactly()) {
12250 // C++ [over.over]p4:
12251 // If more than one function is selected, [...]
12252 if (Matches.size() > 1 && !eliminiateSuboptimalOverloadCandidates()) {
12253 if (FoundNonTemplateFunction)
12254 EliminateAllTemplateMatches();
12255 else
12256 EliminateAllExceptMostSpecializedTemplate();
12257 }
12258 }
12259
12260 if (S.getLangOpts().CUDA && Matches.size() > 1)
12261 EliminateSuboptimalCudaMatches();
12262 }
12263
hasComplained() const12264 bool hasComplained() const { return HasComplained; }
12265
12266 private:
candidateHasExactlyCorrectType(const FunctionDecl * FD)12267 bool candidateHasExactlyCorrectType(const FunctionDecl *FD) {
12268 QualType Discard;
12269 return Context.hasSameUnqualifiedType(TargetFunctionType, FD->getType()) ||
12270 S.IsFunctionConversion(FD->getType(), TargetFunctionType, Discard);
12271 }
12272
12273 /// \return true if A is considered a better overload candidate for the
12274 /// desired type than B.
isBetterCandidate(const FunctionDecl * A,const FunctionDecl * B)12275 bool isBetterCandidate(const FunctionDecl *A, const FunctionDecl *B) {
12276 // If A doesn't have exactly the correct type, we don't want to classify it
12277 // as "better" than anything else. This way, the user is required to
12278 // disambiguate for us if there are multiple candidates and no exact match.
12279 return candidateHasExactlyCorrectType(A) &&
12280 (!candidateHasExactlyCorrectType(B) ||
12281 compareEnableIfAttrs(S, A, B) == Comparison::Better);
12282 }
12283
12284 /// \return true if we were able to eliminate all but one overload candidate,
12285 /// false otherwise.
eliminiateSuboptimalOverloadCandidates()12286 bool eliminiateSuboptimalOverloadCandidates() {
12287 // Same algorithm as overload resolution -- one pass to pick the "best",
12288 // another pass to be sure that nothing is better than the best.
12289 auto Best = Matches.begin();
12290 for (auto I = Matches.begin()+1, E = Matches.end(); I != E; ++I)
12291 if (isBetterCandidate(I->second, Best->second))
12292 Best = I;
12293
12294 const FunctionDecl *BestFn = Best->second;
12295 auto IsBestOrInferiorToBest = [this, BestFn](
12296 const std::pair<DeclAccessPair, FunctionDecl *> &Pair) {
12297 return BestFn == Pair.second || isBetterCandidate(BestFn, Pair.second);
12298 };
12299
12300 // Note: We explicitly leave Matches unmodified if there isn't a clear best
12301 // option, so we can potentially give the user a better error
12302 if (!llvm::all_of(Matches, IsBestOrInferiorToBest))
12303 return false;
12304 Matches[0] = *Best;
12305 Matches.resize(1);
12306 return true;
12307 }
12308
isTargetTypeAFunction() const12309 bool isTargetTypeAFunction() const {
12310 return TargetFunctionType->isFunctionType();
12311 }
12312
12313 // [ToType] [Return]
12314
12315 // R (*)(A) --> R (A), IsNonStaticMemberFunction = false
12316 // R (&)(A) --> R (A), IsNonStaticMemberFunction = false
12317 // R (S::*)(A) --> R (A), IsNonStaticMemberFunction = true
ExtractUnqualifiedFunctionTypeFromTargetType()12318 void inline ExtractUnqualifiedFunctionTypeFromTargetType() {
12319 TargetFunctionType = S.ExtractUnqualifiedFunctionType(TargetType);
12320 }
12321
12322 // return true if any matching specializations were found
AddMatchingTemplateFunction(FunctionTemplateDecl * FunctionTemplate,const DeclAccessPair & CurAccessFunPair)12323 bool AddMatchingTemplateFunction(FunctionTemplateDecl* FunctionTemplate,
12324 const DeclAccessPair& CurAccessFunPair) {
12325 if (CXXMethodDecl *Method
12326 = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) {
12327 // Skip non-static function templates when converting to pointer, and
12328 // static when converting to member pointer.
12329 if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction)
12330 return false;
12331 }
12332 else if (TargetTypeIsNonStaticMemberFunction)
12333 return false;
12334
12335 // C++ [over.over]p2:
12336 // If the name is a function template, template argument deduction is
12337 // done (14.8.2.2), and if the argument deduction succeeds, the
12338 // resulting template argument list is used to generate a single
12339 // function template specialization, which is added to the set of
12340 // overloaded functions considered.
12341 FunctionDecl *Specialization = nullptr;
12342 TemplateDeductionInfo Info(FailedCandidates.getLocation());
12343 if (Sema::TemplateDeductionResult Result
12344 = S.DeduceTemplateArguments(FunctionTemplate,
12345 &OvlExplicitTemplateArgs,
12346 TargetFunctionType, Specialization,
12347 Info, /*IsAddressOfFunction*/true)) {
12348 // Make a note of the failed deduction for diagnostics.
12349 FailedCandidates.addCandidate()
12350 .set(CurAccessFunPair, FunctionTemplate->getTemplatedDecl(),
12351 MakeDeductionFailureInfo(Context, Result, Info));
12352 return false;
12353 }
12354
12355 // Template argument deduction ensures that we have an exact match or
12356 // compatible pointer-to-function arguments that would be adjusted by ICS.
12357 // This function template specicalization works.
12358 assert(S.isSameOrCompatibleFunctionType(
12359 Context.getCanonicalType(Specialization->getType()),
12360 Context.getCanonicalType(TargetFunctionType)));
12361
12362 if (!S.checkAddressOfFunctionIsAvailable(Specialization))
12363 return false;
12364
12365 Matches.push_back(std::make_pair(CurAccessFunPair, Specialization));
12366 return true;
12367 }
12368
AddMatchingNonTemplateFunction(NamedDecl * Fn,const DeclAccessPair & CurAccessFunPair)12369 bool AddMatchingNonTemplateFunction(NamedDecl* Fn,
12370 const DeclAccessPair& CurAccessFunPair) {
12371 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
12372 // Skip non-static functions when converting to pointer, and static
12373 // when converting to member pointer.
12374 if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction)
12375 return false;
12376 }
12377 else if (TargetTypeIsNonStaticMemberFunction)
12378 return false;
12379
12380 if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) {
12381 if (S.getLangOpts().CUDA)
12382 if (FunctionDecl *Caller = S.getCurFunctionDecl(/*AllowLambda=*/true))
12383 if (!Caller->isImplicit() && !S.IsAllowedCUDACall(Caller, FunDecl))
12384 return false;
12385 if (FunDecl->isMultiVersion()) {
12386 const auto *TA = FunDecl->getAttr<TargetAttr>();
12387 if (TA && !TA->isDefaultVersion())
12388 return false;
12389 const auto *TVA = FunDecl->getAttr<TargetVersionAttr>();
12390 if (TVA && !TVA->isDefaultVersion())
12391 return false;
12392 }
12393
12394 // If any candidate has a placeholder return type, trigger its deduction
12395 // now.
12396 if (completeFunctionType(S, FunDecl, SourceExpr->getBeginLoc(),
12397 Complain)) {
12398 HasComplained |= Complain;
12399 return false;
12400 }
12401
12402 if (!S.checkAddressOfFunctionIsAvailable(FunDecl))
12403 return false;
12404
12405 // If we're in C, we need to support types that aren't exactly identical.
12406 if (!S.getLangOpts().CPlusPlus ||
12407 candidateHasExactlyCorrectType(FunDecl)) {
12408 Matches.push_back(std::make_pair(
12409 CurAccessFunPair, cast<FunctionDecl>(FunDecl->getCanonicalDecl())));
12410 FoundNonTemplateFunction = true;
12411 return true;
12412 }
12413 }
12414
12415 return false;
12416 }
12417
FindAllFunctionsThatMatchTargetTypeExactly()12418 bool FindAllFunctionsThatMatchTargetTypeExactly() {
12419 bool Ret = false;
12420
12421 // If the overload expression doesn't have the form of a pointer to
12422 // member, don't try to convert it to a pointer-to-member type.
12423 if (IsInvalidFormOfPointerToMemberFunction())
12424 return false;
12425
12426 for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
12427 E = OvlExpr->decls_end();
12428 I != E; ++I) {
12429 // Look through any using declarations to find the underlying function.
12430 NamedDecl *Fn = (*I)->getUnderlyingDecl();
12431
12432 // C++ [over.over]p3:
12433 // Non-member functions and static member functions match
12434 // targets of type "pointer-to-function" or "reference-to-function."
12435 // Nonstatic member functions match targets of
12436 // type "pointer-to-member-function."
12437 // Note that according to DR 247, the containing class does not matter.
12438 if (FunctionTemplateDecl *FunctionTemplate
12439 = dyn_cast<FunctionTemplateDecl>(Fn)) {
12440 if (AddMatchingTemplateFunction(FunctionTemplate, I.getPair()))
12441 Ret = true;
12442 }
12443 // If we have explicit template arguments supplied, skip non-templates.
12444 else if (!OvlExpr->hasExplicitTemplateArgs() &&
12445 AddMatchingNonTemplateFunction(Fn, I.getPair()))
12446 Ret = true;
12447 }
12448 assert(Ret || Matches.empty());
12449 return Ret;
12450 }
12451
EliminateAllExceptMostSpecializedTemplate()12452 void EliminateAllExceptMostSpecializedTemplate() {
12453 // [...] and any given function template specialization F1 is
12454 // eliminated if the set contains a second function template
12455 // specialization whose function template is more specialized
12456 // than the function template of F1 according to the partial
12457 // ordering rules of 14.5.5.2.
12458
12459 // The algorithm specified above is quadratic. We instead use a
12460 // two-pass algorithm (similar to the one used to identify the
12461 // best viable function in an overload set) that identifies the
12462 // best function template (if it exists).
12463
12464 UnresolvedSet<4> MatchesCopy; // TODO: avoid!
12465 for (unsigned I = 0, E = Matches.size(); I != E; ++I)
12466 MatchesCopy.addDecl(Matches[I].second, Matches[I].first.getAccess());
12467
12468 // TODO: It looks like FailedCandidates does not serve much purpose
12469 // here, since the no_viable diagnostic has index 0.
12470 UnresolvedSetIterator Result = S.getMostSpecialized(
12471 MatchesCopy.begin(), MatchesCopy.end(), FailedCandidates,
12472 SourceExpr->getBeginLoc(), S.PDiag(),
12473 S.PDiag(diag::err_addr_ovl_ambiguous)
12474 << Matches[0].second->getDeclName(),
12475 S.PDiag(diag::note_ovl_candidate)
12476 << (unsigned)oc_function << (unsigned)ocs_described_template,
12477 Complain, TargetFunctionType);
12478
12479 if (Result != MatchesCopy.end()) {
12480 // Make it the first and only element
12481 Matches[0].first = Matches[Result - MatchesCopy.begin()].first;
12482 Matches[0].second = cast<FunctionDecl>(*Result);
12483 Matches.resize(1);
12484 } else
12485 HasComplained |= Complain;
12486 }
12487
EliminateAllTemplateMatches()12488 void EliminateAllTemplateMatches() {
12489 // [...] any function template specializations in the set are
12490 // eliminated if the set also contains a non-template function, [...]
12491 for (unsigned I = 0, N = Matches.size(); I != N; ) {
12492 if (Matches[I].second->getPrimaryTemplate() == nullptr)
12493 ++I;
12494 else {
12495 Matches[I] = Matches[--N];
12496 Matches.resize(N);
12497 }
12498 }
12499 }
12500
EliminateSuboptimalCudaMatches()12501 void EliminateSuboptimalCudaMatches() {
12502 S.EraseUnwantedCUDAMatches(S.getCurFunctionDecl(/*AllowLambda=*/true),
12503 Matches);
12504 }
12505
12506 public:
ComplainNoMatchesFound() const12507 void ComplainNoMatchesFound() const {
12508 assert(Matches.empty());
12509 S.Diag(OvlExpr->getBeginLoc(), diag::err_addr_ovl_no_viable)
12510 << OvlExpr->getName() << TargetFunctionType
12511 << OvlExpr->getSourceRange();
12512 if (FailedCandidates.empty())
12513 S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType,
12514 /*TakingAddress=*/true);
12515 else {
12516 // We have some deduction failure messages. Use them to diagnose
12517 // the function templates, and diagnose the non-template candidates
12518 // normally.
12519 for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
12520 IEnd = OvlExpr->decls_end();
12521 I != IEnd; ++I)
12522 if (FunctionDecl *Fun =
12523 dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()))
12524 if (!functionHasPassObjectSizeParams(Fun))
12525 S.NoteOverloadCandidate(*I, Fun, CRK_None, TargetFunctionType,
12526 /*TakingAddress=*/true);
12527 FailedCandidates.NoteCandidates(S, OvlExpr->getBeginLoc());
12528 }
12529 }
12530
IsInvalidFormOfPointerToMemberFunction() const12531 bool IsInvalidFormOfPointerToMemberFunction() const {
12532 return TargetTypeIsNonStaticMemberFunction &&
12533 !OvlExprInfo.HasFormOfMemberPointer;
12534 }
12535
ComplainIsInvalidFormOfPointerToMemberFunction() const12536 void ComplainIsInvalidFormOfPointerToMemberFunction() const {
12537 // TODO: Should we condition this on whether any functions might
12538 // have matched, or is it more appropriate to do that in callers?
12539 // TODO: a fixit wouldn't hurt.
12540 S.Diag(OvlExpr->getNameLoc(), diag::err_addr_ovl_no_qualifier)
12541 << TargetType << OvlExpr->getSourceRange();
12542 }
12543
IsStaticMemberFunctionFromBoundPointer() const12544 bool IsStaticMemberFunctionFromBoundPointer() const {
12545 return StaticMemberFunctionFromBoundPointer;
12546 }
12547
ComplainIsStaticMemberFunctionFromBoundPointer() const12548 void ComplainIsStaticMemberFunctionFromBoundPointer() const {
12549 S.Diag(OvlExpr->getBeginLoc(),
12550 diag::err_invalid_form_pointer_member_function)
12551 << OvlExpr->getSourceRange();
12552 }
12553
ComplainOfInvalidConversion() const12554 void ComplainOfInvalidConversion() const {
12555 S.Diag(OvlExpr->getBeginLoc(), diag::err_addr_ovl_not_func_ptrref)
12556 << OvlExpr->getName() << TargetType;
12557 }
12558
ComplainMultipleMatchesFound() const12559 void ComplainMultipleMatchesFound() const {
12560 assert(Matches.size() > 1);
12561 S.Diag(OvlExpr->getBeginLoc(), diag::err_addr_ovl_ambiguous)
12562 << OvlExpr->getName() << OvlExpr->getSourceRange();
12563 S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType,
12564 /*TakingAddress=*/true);
12565 }
12566
hadMultipleCandidates() const12567 bool hadMultipleCandidates() const { return (OvlExpr->getNumDecls() > 1); }
12568
getNumMatches() const12569 int getNumMatches() const { return Matches.size(); }
12570
getMatchingFunctionDecl() const12571 FunctionDecl* getMatchingFunctionDecl() const {
12572 if (Matches.size() != 1) return nullptr;
12573 return Matches[0].second;
12574 }
12575
getMatchingFunctionAccessPair() const12576 const DeclAccessPair* getMatchingFunctionAccessPair() const {
12577 if (Matches.size() != 1) return nullptr;
12578 return &Matches[0].first;
12579 }
12580 };
12581 }
12582
12583 /// ResolveAddressOfOverloadedFunction - Try to resolve the address of
12584 /// an overloaded function (C++ [over.over]), where @p From is an
12585 /// expression with overloaded function type and @p ToType is the type
12586 /// we're trying to resolve to. For example:
12587 ///
12588 /// @code
12589 /// int f(double);
12590 /// int f(int);
12591 ///
12592 /// int (*pfd)(double) = f; // selects f(double)
12593 /// @endcode
12594 ///
12595 /// This routine returns the resulting FunctionDecl if it could be
12596 /// resolved, and NULL otherwise. When @p Complain is true, this
12597 /// routine will emit diagnostics if there is an error.
12598 FunctionDecl *
ResolveAddressOfOverloadedFunction(Expr * AddressOfExpr,QualType TargetType,bool Complain,DeclAccessPair & FoundResult,bool * pHadMultipleCandidates)12599 Sema::ResolveAddressOfOverloadedFunction(Expr *AddressOfExpr,
12600 QualType TargetType,
12601 bool Complain,
12602 DeclAccessPair &FoundResult,
12603 bool *pHadMultipleCandidates) {
12604 assert(AddressOfExpr->getType() == Context.OverloadTy);
12605
12606 AddressOfFunctionResolver Resolver(*this, AddressOfExpr, TargetType,
12607 Complain);
12608 int NumMatches = Resolver.getNumMatches();
12609 FunctionDecl *Fn = nullptr;
12610 bool ShouldComplain = Complain && !Resolver.hasComplained();
12611 if (NumMatches == 0 && ShouldComplain) {
12612 if (Resolver.IsInvalidFormOfPointerToMemberFunction())
12613 Resolver.ComplainIsInvalidFormOfPointerToMemberFunction();
12614 else
12615 Resolver.ComplainNoMatchesFound();
12616 }
12617 else if (NumMatches > 1 && ShouldComplain)
12618 Resolver.ComplainMultipleMatchesFound();
12619 else if (NumMatches == 1) {
12620 Fn = Resolver.getMatchingFunctionDecl();
12621 assert(Fn);
12622 if (auto *FPT = Fn->getType()->getAs<FunctionProtoType>())
12623 ResolveExceptionSpec(AddressOfExpr->getExprLoc(), FPT);
12624 FoundResult = *Resolver.getMatchingFunctionAccessPair();
12625 if (Complain) {
12626 if (Resolver.IsStaticMemberFunctionFromBoundPointer())
12627 Resolver.ComplainIsStaticMemberFunctionFromBoundPointer();
12628 else
12629 CheckAddressOfMemberAccess(AddressOfExpr, FoundResult);
12630 }
12631 }
12632
12633 if (pHadMultipleCandidates)
12634 *pHadMultipleCandidates = Resolver.hadMultipleCandidates();
12635 return Fn;
12636 }
12637
12638 /// Given an expression that refers to an overloaded function, try to
12639 /// resolve that function to a single function that can have its address taken.
12640 /// This will modify `Pair` iff it returns non-null.
12641 ///
12642 /// This routine can only succeed if from all of the candidates in the overload
12643 /// set for SrcExpr that can have their addresses taken, there is one candidate
12644 /// that is more constrained than the rest.
12645 FunctionDecl *
resolveAddressOfSingleOverloadCandidate(Expr * E,DeclAccessPair & Pair)12646 Sema::resolveAddressOfSingleOverloadCandidate(Expr *E, DeclAccessPair &Pair) {
12647 OverloadExpr::FindResult R = OverloadExpr::find(E);
12648 OverloadExpr *Ovl = R.Expression;
12649 bool IsResultAmbiguous = false;
12650 FunctionDecl *Result = nullptr;
12651 DeclAccessPair DAP;
12652 SmallVector<FunctionDecl *, 2> AmbiguousDecls;
12653
12654 auto CheckMoreConstrained = [&](FunctionDecl *FD1,
12655 FunctionDecl *FD2) -> std::optional<bool> {
12656 if (FunctionDecl *MF = FD1->getInstantiatedFromMemberFunction())
12657 FD1 = MF;
12658 if (FunctionDecl *MF = FD2->getInstantiatedFromMemberFunction())
12659 FD2 = MF;
12660 SmallVector<const Expr *, 1> AC1, AC2;
12661 FD1->getAssociatedConstraints(AC1);
12662 FD2->getAssociatedConstraints(AC2);
12663 bool AtLeastAsConstrained1, AtLeastAsConstrained2;
12664 if (IsAtLeastAsConstrained(FD1, AC1, FD2, AC2, AtLeastAsConstrained1))
12665 return std::nullopt;
12666 if (IsAtLeastAsConstrained(FD2, AC2, FD1, AC1, AtLeastAsConstrained2))
12667 return std::nullopt;
12668 if (AtLeastAsConstrained1 == AtLeastAsConstrained2)
12669 return std::nullopt;
12670 return AtLeastAsConstrained1;
12671 };
12672
12673 // Don't use the AddressOfResolver because we're specifically looking for
12674 // cases where we have one overload candidate that lacks
12675 // enable_if/pass_object_size/...
12676 for (auto I = Ovl->decls_begin(), E = Ovl->decls_end(); I != E; ++I) {
12677 auto *FD = dyn_cast<FunctionDecl>(I->getUnderlyingDecl());
12678 if (!FD)
12679 return nullptr;
12680
12681 if (!checkAddressOfFunctionIsAvailable(FD))
12682 continue;
12683
12684 // We have more than one result - see if it is more constrained than the
12685 // previous one.
12686 if (Result) {
12687 std::optional<bool> MoreConstrainedThanPrevious =
12688 CheckMoreConstrained(FD, Result);
12689 if (!MoreConstrainedThanPrevious) {
12690 IsResultAmbiguous = true;
12691 AmbiguousDecls.push_back(FD);
12692 continue;
12693 }
12694 if (!*MoreConstrainedThanPrevious)
12695 continue;
12696 // FD is more constrained - replace Result with it.
12697 }
12698 IsResultAmbiguous = false;
12699 DAP = I.getPair();
12700 Result = FD;
12701 }
12702
12703 if (IsResultAmbiguous)
12704 return nullptr;
12705
12706 if (Result) {
12707 SmallVector<const Expr *, 1> ResultAC;
12708 // We skipped over some ambiguous declarations which might be ambiguous with
12709 // the selected result.
12710 for (FunctionDecl *Skipped : AmbiguousDecls)
12711 if (!CheckMoreConstrained(Skipped, Result))
12712 return nullptr;
12713 Pair = DAP;
12714 }
12715 return Result;
12716 }
12717
12718 /// Given an overloaded function, tries to turn it into a non-overloaded
12719 /// function reference using resolveAddressOfSingleOverloadCandidate. This
12720 /// will perform access checks, diagnose the use of the resultant decl, and, if
12721 /// requested, potentially perform a function-to-pointer decay.
12722 ///
12723 /// Returns false if resolveAddressOfSingleOverloadCandidate fails.
12724 /// Otherwise, returns true. This may emit diagnostics and return true.
resolveAndFixAddressOfSingleOverloadCandidate(ExprResult & SrcExpr,bool DoFunctionPointerConversion)12725 bool Sema::resolveAndFixAddressOfSingleOverloadCandidate(
12726 ExprResult &SrcExpr, bool DoFunctionPointerConversion) {
12727 Expr *E = SrcExpr.get();
12728 assert(E->getType() == Context.OverloadTy && "SrcExpr must be an overload");
12729
12730 DeclAccessPair DAP;
12731 FunctionDecl *Found = resolveAddressOfSingleOverloadCandidate(E, DAP);
12732 if (!Found || Found->isCPUDispatchMultiVersion() ||
12733 Found->isCPUSpecificMultiVersion())
12734 return false;
12735
12736 // Emitting multiple diagnostics for a function that is both inaccessible and
12737 // unavailable is consistent with our behavior elsewhere. So, always check
12738 // for both.
12739 DiagnoseUseOfDecl(Found, E->getExprLoc());
12740 CheckAddressOfMemberAccess(E, DAP);
12741 Expr *Fixed = FixOverloadedFunctionReference(E, DAP, Found);
12742 if (DoFunctionPointerConversion && Fixed->getType()->isFunctionType())
12743 SrcExpr = DefaultFunctionArrayConversion(Fixed, /*Diagnose=*/false);
12744 else
12745 SrcExpr = Fixed;
12746 return true;
12747 }
12748
12749 /// Given an expression that refers to an overloaded function, try to
12750 /// resolve that overloaded function expression down to a single function.
12751 ///
12752 /// This routine can only resolve template-ids that refer to a single function
12753 /// template, where that template-id refers to a single template whose template
12754 /// arguments are either provided by the template-id or have defaults,
12755 /// as described in C++0x [temp.arg.explicit]p3.
12756 ///
12757 /// If no template-ids are found, no diagnostics are emitted and NULL is
12758 /// returned.
12759 FunctionDecl *
ResolveSingleFunctionTemplateSpecialization(OverloadExpr * ovl,bool Complain,DeclAccessPair * FoundResult)12760 Sema::ResolveSingleFunctionTemplateSpecialization(OverloadExpr *ovl,
12761 bool Complain,
12762 DeclAccessPair *FoundResult) {
12763 // C++ [over.over]p1:
12764 // [...] [Note: any redundant set of parentheses surrounding the
12765 // overloaded function name is ignored (5.1). ]
12766 // C++ [over.over]p1:
12767 // [...] The overloaded function name can be preceded by the &
12768 // operator.
12769
12770 // If we didn't actually find any template-ids, we're done.
12771 if (!ovl->hasExplicitTemplateArgs())
12772 return nullptr;
12773
12774 TemplateArgumentListInfo ExplicitTemplateArgs;
12775 ovl->copyTemplateArgumentsInto(ExplicitTemplateArgs);
12776 TemplateSpecCandidateSet FailedCandidates(ovl->getNameLoc());
12777
12778 // Look through all of the overloaded functions, searching for one
12779 // whose type matches exactly.
12780 FunctionDecl *Matched = nullptr;
12781 for (UnresolvedSetIterator I = ovl->decls_begin(),
12782 E = ovl->decls_end(); I != E; ++I) {
12783 // C++0x [temp.arg.explicit]p3:
12784 // [...] In contexts where deduction is done and fails, or in contexts
12785 // where deduction is not done, if a template argument list is
12786 // specified and it, along with any default template arguments,
12787 // identifies a single function template specialization, then the
12788 // template-id is an lvalue for the function template specialization.
12789 FunctionTemplateDecl *FunctionTemplate
12790 = cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl());
12791
12792 // C++ [over.over]p2:
12793 // If the name is a function template, template argument deduction is
12794 // done (14.8.2.2), and if the argument deduction succeeds, the
12795 // resulting template argument list is used to generate a single
12796 // function template specialization, which is added to the set of
12797 // overloaded functions considered.
12798 FunctionDecl *Specialization = nullptr;
12799 TemplateDeductionInfo Info(FailedCandidates.getLocation());
12800 if (TemplateDeductionResult Result
12801 = DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs,
12802 Specialization, Info,
12803 /*IsAddressOfFunction*/true)) {
12804 // Make a note of the failed deduction for diagnostics.
12805 // TODO: Actually use the failed-deduction info?
12806 FailedCandidates.addCandidate()
12807 .set(I.getPair(), FunctionTemplate->getTemplatedDecl(),
12808 MakeDeductionFailureInfo(Context, Result, Info));
12809 continue;
12810 }
12811
12812 assert(Specialization && "no specialization and no error?");
12813
12814 // Multiple matches; we can't resolve to a single declaration.
12815 if (Matched) {
12816 if (Complain) {
12817 Diag(ovl->getExprLoc(), diag::err_addr_ovl_ambiguous)
12818 << ovl->getName();
12819 NoteAllOverloadCandidates(ovl);
12820 }
12821 return nullptr;
12822 }
12823
12824 Matched = Specialization;
12825 if (FoundResult) *FoundResult = I.getPair();
12826 }
12827
12828 if (Matched &&
12829 completeFunctionType(*this, Matched, ovl->getExprLoc(), Complain))
12830 return nullptr;
12831
12832 return Matched;
12833 }
12834
12835 // Resolve and fix an overloaded expression that can be resolved
12836 // because it identifies a single function template specialization.
12837 //
12838 // Last three arguments should only be supplied if Complain = true
12839 //
12840 // Return true if it was logically possible to so resolve the
12841 // expression, regardless of whether or not it succeeded. Always
12842 // returns true if 'complain' is set.
ResolveAndFixSingleFunctionTemplateSpecialization(ExprResult & SrcExpr,bool doFunctionPointerConversion,bool complain,SourceRange OpRangeForComplaining,QualType DestTypeForComplaining,unsigned DiagIDForComplaining)12843 bool Sema::ResolveAndFixSingleFunctionTemplateSpecialization(
12844 ExprResult &SrcExpr, bool doFunctionPointerConversion, bool complain,
12845 SourceRange OpRangeForComplaining, QualType DestTypeForComplaining,
12846 unsigned DiagIDForComplaining) {
12847 assert(SrcExpr.get()->getType() == Context.OverloadTy);
12848
12849 OverloadExpr::FindResult ovl = OverloadExpr::find(SrcExpr.get());
12850
12851 DeclAccessPair found;
12852 ExprResult SingleFunctionExpression;
12853 if (FunctionDecl *fn = ResolveSingleFunctionTemplateSpecialization(
12854 ovl.Expression, /*complain*/ false, &found)) {
12855 if (DiagnoseUseOfDecl(fn, SrcExpr.get()->getBeginLoc())) {
12856 SrcExpr = ExprError();
12857 return true;
12858 }
12859
12860 // It is only correct to resolve to an instance method if we're
12861 // resolving a form that's permitted to be a pointer to member.
12862 // Otherwise we'll end up making a bound member expression, which
12863 // is illegal in all the contexts we resolve like this.
12864 if (!ovl.HasFormOfMemberPointer &&
12865 isa<CXXMethodDecl>(fn) &&
12866 cast<CXXMethodDecl>(fn)->isInstance()) {
12867 if (!complain) return false;
12868
12869 Diag(ovl.Expression->getExprLoc(),
12870 diag::err_bound_member_function)
12871 << 0 << ovl.Expression->getSourceRange();
12872
12873 // TODO: I believe we only end up here if there's a mix of
12874 // static and non-static candidates (otherwise the expression
12875 // would have 'bound member' type, not 'overload' type).
12876 // Ideally we would note which candidate was chosen and why
12877 // the static candidates were rejected.
12878 SrcExpr = ExprError();
12879 return true;
12880 }
12881
12882 // Fix the expression to refer to 'fn'.
12883 SingleFunctionExpression =
12884 FixOverloadedFunctionReference(SrcExpr.get(), found, fn);
12885
12886 // If desired, do function-to-pointer decay.
12887 if (doFunctionPointerConversion) {
12888 SingleFunctionExpression =
12889 DefaultFunctionArrayLvalueConversion(SingleFunctionExpression.get());
12890 if (SingleFunctionExpression.isInvalid()) {
12891 SrcExpr = ExprError();
12892 return true;
12893 }
12894 }
12895 }
12896
12897 if (!SingleFunctionExpression.isUsable()) {
12898 if (complain) {
12899 Diag(OpRangeForComplaining.getBegin(), DiagIDForComplaining)
12900 << ovl.Expression->getName()
12901 << DestTypeForComplaining
12902 << OpRangeForComplaining
12903 << ovl.Expression->getQualifierLoc().getSourceRange();
12904 NoteAllOverloadCandidates(SrcExpr.get());
12905
12906 SrcExpr = ExprError();
12907 return true;
12908 }
12909
12910 return false;
12911 }
12912
12913 SrcExpr = SingleFunctionExpression;
12914 return true;
12915 }
12916
12917 /// Add a single candidate to the overload set.
AddOverloadedCallCandidate(Sema & S,DeclAccessPair FoundDecl,TemplateArgumentListInfo * ExplicitTemplateArgs,ArrayRef<Expr * > Args,OverloadCandidateSet & CandidateSet,bool PartialOverloading,bool KnownValid)12918 static void AddOverloadedCallCandidate(Sema &S,
12919 DeclAccessPair FoundDecl,
12920 TemplateArgumentListInfo *ExplicitTemplateArgs,
12921 ArrayRef<Expr *> Args,
12922 OverloadCandidateSet &CandidateSet,
12923 bool PartialOverloading,
12924 bool KnownValid) {
12925 NamedDecl *Callee = FoundDecl.getDecl();
12926 if (isa<UsingShadowDecl>(Callee))
12927 Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl();
12928
12929 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) {
12930 if (ExplicitTemplateArgs) {
12931 assert(!KnownValid && "Explicit template arguments?");
12932 return;
12933 }
12934 // Prevent ill-formed function decls to be added as overload candidates.
12935 if (!isa<FunctionProtoType>(Func->getType()->getAs<FunctionType>()))
12936 return;
12937
12938 S.AddOverloadCandidate(Func, FoundDecl, Args, CandidateSet,
12939 /*SuppressUserConversions=*/false,
12940 PartialOverloading);
12941 return;
12942 }
12943
12944 if (FunctionTemplateDecl *FuncTemplate
12945 = dyn_cast<FunctionTemplateDecl>(Callee)) {
12946 S.AddTemplateOverloadCandidate(FuncTemplate, FoundDecl,
12947 ExplicitTemplateArgs, Args, CandidateSet,
12948 /*SuppressUserConversions=*/false,
12949 PartialOverloading);
12950 return;
12951 }
12952
12953 assert(!KnownValid && "unhandled case in overloaded call candidate");
12954 }
12955
12956 /// Add the overload candidates named by callee and/or found by argument
12957 /// dependent lookup to the given overload set.
AddOverloadedCallCandidates(UnresolvedLookupExpr * ULE,ArrayRef<Expr * > Args,OverloadCandidateSet & CandidateSet,bool PartialOverloading)12958 void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE,
12959 ArrayRef<Expr *> Args,
12960 OverloadCandidateSet &CandidateSet,
12961 bool PartialOverloading) {
12962
12963 #ifndef NDEBUG
12964 // Verify that ArgumentDependentLookup is consistent with the rules
12965 // in C++0x [basic.lookup.argdep]p3:
12966 //
12967 // Let X be the lookup set produced by unqualified lookup (3.4.1)
12968 // and let Y be the lookup set produced by argument dependent
12969 // lookup (defined as follows). If X contains
12970 //
12971 // -- a declaration of a class member, or
12972 //
12973 // -- a block-scope function declaration that is not a
12974 // using-declaration, or
12975 //
12976 // -- a declaration that is neither a function or a function
12977 // template
12978 //
12979 // then Y is empty.
12980
12981 if (ULE->requiresADL()) {
12982 for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
12983 E = ULE->decls_end(); I != E; ++I) {
12984 assert(!(*I)->getDeclContext()->isRecord());
12985 assert(isa<UsingShadowDecl>(*I) ||
12986 !(*I)->getDeclContext()->isFunctionOrMethod());
12987 assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate());
12988 }
12989 }
12990 #endif
12991
12992 // It would be nice to avoid this copy.
12993 TemplateArgumentListInfo TABuffer;
12994 TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr;
12995 if (ULE->hasExplicitTemplateArgs()) {
12996 ULE->copyTemplateArgumentsInto(TABuffer);
12997 ExplicitTemplateArgs = &TABuffer;
12998 }
12999
13000 for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
13001 E = ULE->decls_end(); I != E; ++I)
13002 AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs, Args,
13003 CandidateSet, PartialOverloading,
13004 /*KnownValid*/ true);
13005
13006 if (ULE->requiresADL())
13007 AddArgumentDependentLookupCandidates(ULE->getName(), ULE->getExprLoc(),
13008 Args, ExplicitTemplateArgs,
13009 CandidateSet, PartialOverloading);
13010 }
13011
13012 /// Add the call candidates from the given set of lookup results to the given
13013 /// overload set. Non-function lookup results are ignored.
AddOverloadedCallCandidates(LookupResult & R,TemplateArgumentListInfo * ExplicitTemplateArgs,ArrayRef<Expr * > Args,OverloadCandidateSet & CandidateSet)13014 void Sema::AddOverloadedCallCandidates(
13015 LookupResult &R, TemplateArgumentListInfo *ExplicitTemplateArgs,
13016 ArrayRef<Expr *> Args, OverloadCandidateSet &CandidateSet) {
13017 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
13018 AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs, Args,
13019 CandidateSet, false, /*KnownValid*/ false);
13020 }
13021
13022 /// Determine whether a declaration with the specified name could be moved into
13023 /// a different namespace.
canBeDeclaredInNamespace(const DeclarationName & Name)13024 static bool canBeDeclaredInNamespace(const DeclarationName &Name) {
13025 switch (Name.getCXXOverloadedOperator()) {
13026 case OO_New: case OO_Array_New:
13027 case OO_Delete: case OO_Array_Delete:
13028 return false;
13029
13030 default:
13031 return true;
13032 }
13033 }
13034
13035 /// Attempt to recover from an ill-formed use of a non-dependent name in a
13036 /// template, where the non-dependent name was declared after the template
13037 /// was defined. This is common in code written for a compilers which do not
13038 /// correctly implement two-stage name lookup.
13039 ///
13040 /// Returns true if a viable candidate was found and a diagnostic was issued.
DiagnoseTwoPhaseLookup(Sema & SemaRef,SourceLocation FnLoc,const CXXScopeSpec & SS,LookupResult & R,OverloadCandidateSet::CandidateSetKind CSK,TemplateArgumentListInfo * ExplicitTemplateArgs,ArrayRef<Expr * > Args,CXXRecordDecl ** FoundInClass=nullptr)13041 static bool DiagnoseTwoPhaseLookup(
13042 Sema &SemaRef, SourceLocation FnLoc, const CXXScopeSpec &SS,
13043 LookupResult &R, OverloadCandidateSet::CandidateSetKind CSK,
13044 TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef<Expr *> Args,
13045 CXXRecordDecl **FoundInClass = nullptr) {
13046 if (!SemaRef.inTemplateInstantiation() || !SS.isEmpty())
13047 return false;
13048
13049 for (DeclContext *DC = SemaRef.CurContext; DC; DC = DC->getParent()) {
13050 if (DC->isTransparentContext())
13051 continue;
13052
13053 SemaRef.LookupQualifiedName(R, DC);
13054
13055 if (!R.empty()) {
13056 R.suppressDiagnostics();
13057
13058 OverloadCandidateSet Candidates(FnLoc, CSK);
13059 SemaRef.AddOverloadedCallCandidates(R, ExplicitTemplateArgs, Args,
13060 Candidates);
13061
13062 OverloadCandidateSet::iterator Best;
13063 OverloadingResult OR =
13064 Candidates.BestViableFunction(SemaRef, FnLoc, Best);
13065
13066 if (auto *RD = dyn_cast<CXXRecordDecl>(DC)) {
13067 // We either found non-function declarations or a best viable function
13068 // at class scope. A class-scope lookup result disables ADL. Don't
13069 // look past this, but let the caller know that we found something that
13070 // either is, or might be, usable in this class.
13071 if (FoundInClass) {
13072 *FoundInClass = RD;
13073 if (OR == OR_Success) {
13074 R.clear();
13075 R.addDecl(Best->FoundDecl.getDecl(), Best->FoundDecl.getAccess());
13076 R.resolveKind();
13077 }
13078 }
13079 return false;
13080 }
13081
13082 if (OR != OR_Success) {
13083 // There wasn't a unique best function or function template.
13084 return false;
13085 }
13086
13087 // Find the namespaces where ADL would have looked, and suggest
13088 // declaring the function there instead.
13089 Sema::AssociatedNamespaceSet AssociatedNamespaces;
13090 Sema::AssociatedClassSet AssociatedClasses;
13091 SemaRef.FindAssociatedClassesAndNamespaces(FnLoc, Args,
13092 AssociatedNamespaces,
13093 AssociatedClasses);
13094 Sema::AssociatedNamespaceSet SuggestedNamespaces;
13095 if (canBeDeclaredInNamespace(R.getLookupName())) {
13096 DeclContext *Std = SemaRef.getStdNamespace();
13097 for (Sema::AssociatedNamespaceSet::iterator
13098 it = AssociatedNamespaces.begin(),
13099 end = AssociatedNamespaces.end(); it != end; ++it) {
13100 // Never suggest declaring a function within namespace 'std'.
13101 if (Std && Std->Encloses(*it))
13102 continue;
13103
13104 // Never suggest declaring a function within a namespace with a
13105 // reserved name, like __gnu_cxx.
13106 NamespaceDecl *NS = dyn_cast<NamespaceDecl>(*it);
13107 if (NS &&
13108 NS->getQualifiedNameAsString().find("__") != std::string::npos)
13109 continue;
13110
13111 SuggestedNamespaces.insert(*it);
13112 }
13113 }
13114
13115 SemaRef.Diag(R.getNameLoc(), diag::err_not_found_by_two_phase_lookup)
13116 << R.getLookupName();
13117 if (SuggestedNamespaces.empty()) {
13118 SemaRef.Diag(Best->Function->getLocation(),
13119 diag::note_not_found_by_two_phase_lookup)
13120 << R.getLookupName() << 0;
13121 } else if (SuggestedNamespaces.size() == 1) {
13122 SemaRef.Diag(Best->Function->getLocation(),
13123 diag::note_not_found_by_two_phase_lookup)
13124 << R.getLookupName() << 1 << *SuggestedNamespaces.begin();
13125 } else {
13126 // FIXME: It would be useful to list the associated namespaces here,
13127 // but the diagnostics infrastructure doesn't provide a way to produce
13128 // a localized representation of a list of items.
13129 SemaRef.Diag(Best->Function->getLocation(),
13130 diag::note_not_found_by_two_phase_lookup)
13131 << R.getLookupName() << 2;
13132 }
13133
13134 // Try to recover by calling this function.
13135 return true;
13136 }
13137
13138 R.clear();
13139 }
13140
13141 return false;
13142 }
13143
13144 /// Attempt to recover from ill-formed use of a non-dependent operator in a
13145 /// template, where the non-dependent operator was declared after the template
13146 /// was defined.
13147 ///
13148 /// Returns true if a viable candidate was found and a diagnostic was issued.
13149 static bool
DiagnoseTwoPhaseOperatorLookup(Sema & SemaRef,OverloadedOperatorKind Op,SourceLocation OpLoc,ArrayRef<Expr * > Args)13150 DiagnoseTwoPhaseOperatorLookup(Sema &SemaRef, OverloadedOperatorKind Op,
13151 SourceLocation OpLoc,
13152 ArrayRef<Expr *> Args) {
13153 DeclarationName OpName =
13154 SemaRef.Context.DeclarationNames.getCXXOperatorName(Op);
13155 LookupResult R(SemaRef, OpName, OpLoc, Sema::LookupOperatorName);
13156 return DiagnoseTwoPhaseLookup(SemaRef, OpLoc, CXXScopeSpec(), R,
13157 OverloadCandidateSet::CSK_Operator,
13158 /*ExplicitTemplateArgs=*/nullptr, Args);
13159 }
13160
13161 namespace {
13162 class BuildRecoveryCallExprRAII {
13163 Sema &SemaRef;
13164 Sema::SatisfactionStackResetRAII SatStack;
13165
13166 public:
BuildRecoveryCallExprRAII(Sema & S)13167 BuildRecoveryCallExprRAII(Sema &S) : SemaRef(S), SatStack(S) {
13168 assert(SemaRef.IsBuildingRecoveryCallExpr == false);
13169 SemaRef.IsBuildingRecoveryCallExpr = true;
13170 }
13171
~BuildRecoveryCallExprRAII()13172 ~BuildRecoveryCallExprRAII() { SemaRef.IsBuildingRecoveryCallExpr = false; }
13173 };
13174 }
13175
13176 /// Attempts to recover from a call where no functions were found.
13177 ///
13178 /// This function will do one of three things:
13179 /// * Diagnose, recover, and return a recovery expression.
13180 /// * Diagnose, fail to recover, and return ExprError().
13181 /// * Do not diagnose, do not recover, and return ExprResult(). The caller is
13182 /// expected to diagnose as appropriate.
13183 static ExprResult
BuildRecoveryCallExpr(Sema & SemaRef,Scope * S,Expr * Fn,UnresolvedLookupExpr * ULE,SourceLocation LParenLoc,MutableArrayRef<Expr * > Args,SourceLocation RParenLoc,bool EmptyLookup,bool AllowTypoCorrection)13184 BuildRecoveryCallExpr(Sema &SemaRef, Scope *S, Expr *Fn,
13185 UnresolvedLookupExpr *ULE,
13186 SourceLocation LParenLoc,
13187 MutableArrayRef<Expr *> Args,
13188 SourceLocation RParenLoc,
13189 bool EmptyLookup, bool AllowTypoCorrection) {
13190 // Do not try to recover if it is already building a recovery call.
13191 // This stops infinite loops for template instantiations like
13192 //
13193 // template <typename T> auto foo(T t) -> decltype(foo(t)) {}
13194 // template <typename T> auto foo(T t) -> decltype(foo(&t)) {}
13195 if (SemaRef.IsBuildingRecoveryCallExpr)
13196 return ExprResult();
13197 BuildRecoveryCallExprRAII RCE(SemaRef);
13198
13199 CXXScopeSpec SS;
13200 SS.Adopt(ULE->getQualifierLoc());
13201 SourceLocation TemplateKWLoc = ULE->getTemplateKeywordLoc();
13202
13203 TemplateArgumentListInfo TABuffer;
13204 TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr;
13205 if (ULE->hasExplicitTemplateArgs()) {
13206 ULE->copyTemplateArgumentsInto(TABuffer);
13207 ExplicitTemplateArgs = &TABuffer;
13208 }
13209
13210 LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(),
13211 Sema::LookupOrdinaryName);
13212 CXXRecordDecl *FoundInClass = nullptr;
13213 if (DiagnoseTwoPhaseLookup(SemaRef, Fn->getExprLoc(), SS, R,
13214 OverloadCandidateSet::CSK_Normal,
13215 ExplicitTemplateArgs, Args, &FoundInClass)) {
13216 // OK, diagnosed a two-phase lookup issue.
13217 } else if (EmptyLookup) {
13218 // Try to recover from an empty lookup with typo correction.
13219 R.clear();
13220 NoTypoCorrectionCCC NoTypoValidator{};
13221 FunctionCallFilterCCC FunctionCallValidator(SemaRef, Args.size(),
13222 ExplicitTemplateArgs != nullptr,
13223 dyn_cast<MemberExpr>(Fn));
13224 CorrectionCandidateCallback &Validator =
13225 AllowTypoCorrection
13226 ? static_cast<CorrectionCandidateCallback &>(FunctionCallValidator)
13227 : static_cast<CorrectionCandidateCallback &>(NoTypoValidator);
13228 if (SemaRef.DiagnoseEmptyLookup(S, SS, R, Validator, ExplicitTemplateArgs,
13229 Args))
13230 return ExprError();
13231 } else if (FoundInClass && SemaRef.getLangOpts().MSVCCompat) {
13232 // We found a usable declaration of the name in a dependent base of some
13233 // enclosing class.
13234 // FIXME: We should also explain why the candidates found by name lookup
13235 // were not viable.
13236 if (SemaRef.DiagnoseDependentMemberLookup(R))
13237 return ExprError();
13238 } else {
13239 // We had viable candidates and couldn't recover; let the caller diagnose
13240 // this.
13241 return ExprResult();
13242 }
13243
13244 // If we get here, we should have issued a diagnostic and formed a recovery
13245 // lookup result.
13246 assert(!R.empty() && "lookup results empty despite recovery");
13247
13248 // If recovery created an ambiguity, just bail out.
13249 if (R.isAmbiguous()) {
13250 R.suppressDiagnostics();
13251 return ExprError();
13252 }
13253
13254 // Build an implicit member call if appropriate. Just drop the
13255 // casts and such from the call, we don't really care.
13256 ExprResult NewFn = ExprError();
13257 if ((*R.begin())->isCXXClassMember())
13258 NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc, R,
13259 ExplicitTemplateArgs, S);
13260 else if (ExplicitTemplateArgs || TemplateKWLoc.isValid())
13261 NewFn = SemaRef.BuildTemplateIdExpr(SS, TemplateKWLoc, R, false,
13262 ExplicitTemplateArgs);
13263 else
13264 NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false);
13265
13266 if (NewFn.isInvalid())
13267 return ExprError();
13268
13269 // This shouldn't cause an infinite loop because we're giving it
13270 // an expression with viable lookup results, which should never
13271 // end up here.
13272 return SemaRef.BuildCallExpr(/*Scope*/ nullptr, NewFn.get(), LParenLoc,
13273 MultiExprArg(Args.data(), Args.size()),
13274 RParenLoc);
13275 }
13276
13277 /// Constructs and populates an OverloadedCandidateSet from
13278 /// the given function.
13279 /// \returns true when an the ExprResult output parameter has been set.
buildOverloadedCallSet(Scope * S,Expr * Fn,UnresolvedLookupExpr * ULE,MultiExprArg Args,SourceLocation RParenLoc,OverloadCandidateSet * CandidateSet,ExprResult * Result)13280 bool Sema::buildOverloadedCallSet(Scope *S, Expr *Fn,
13281 UnresolvedLookupExpr *ULE,
13282 MultiExprArg Args,
13283 SourceLocation RParenLoc,
13284 OverloadCandidateSet *CandidateSet,
13285 ExprResult *Result) {
13286 #ifndef NDEBUG
13287 if (ULE->requiresADL()) {
13288 // To do ADL, we must have found an unqualified name.
13289 assert(!ULE->getQualifier() && "qualified name with ADL");
13290
13291 // We don't perform ADL for implicit declarations of builtins.
13292 // Verify that this was correctly set up.
13293 FunctionDecl *F;
13294 if (ULE->decls_begin() != ULE->decls_end() &&
13295 ULE->decls_begin() + 1 == ULE->decls_end() &&
13296 (F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) &&
13297 F->getBuiltinID() && F->isImplicit())
13298 llvm_unreachable("performing ADL for builtin");
13299
13300 // We don't perform ADL in C.
13301 assert(getLangOpts().CPlusPlus && "ADL enabled in C");
13302 }
13303 #endif
13304
13305 UnbridgedCastsSet UnbridgedCasts;
13306 if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts)) {
13307 *Result = ExprError();
13308 return true;
13309 }
13310
13311 // Add the functions denoted by the callee to the set of candidate
13312 // functions, including those from argument-dependent lookup.
13313 AddOverloadedCallCandidates(ULE, Args, *CandidateSet);
13314
13315 if (getLangOpts().MSVCCompat &&
13316 CurContext->isDependentContext() && !isSFINAEContext() &&
13317 (isa<FunctionDecl>(CurContext) || isa<CXXRecordDecl>(CurContext))) {
13318
13319 OverloadCandidateSet::iterator Best;
13320 if (CandidateSet->empty() ||
13321 CandidateSet->BestViableFunction(*this, Fn->getBeginLoc(), Best) ==
13322 OR_No_Viable_Function) {
13323 // In Microsoft mode, if we are inside a template class member function
13324 // then create a type dependent CallExpr. The goal is to postpone name
13325 // lookup to instantiation time to be able to search into type dependent
13326 // base classes.
13327 CallExpr *CE =
13328 CallExpr::Create(Context, Fn, Args, Context.DependentTy, VK_PRValue,
13329 RParenLoc, CurFPFeatureOverrides());
13330 CE->markDependentForPostponedNameLookup();
13331 *Result = CE;
13332 return true;
13333 }
13334 }
13335
13336 if (CandidateSet->empty())
13337 return false;
13338
13339 UnbridgedCasts.restore();
13340 return false;
13341 }
13342
13343 // Guess at what the return type for an unresolvable overload should be.
chooseRecoveryType(OverloadCandidateSet & CS,OverloadCandidateSet::iterator * Best)13344 static QualType chooseRecoveryType(OverloadCandidateSet &CS,
13345 OverloadCandidateSet::iterator *Best) {
13346 std::optional<QualType> Result;
13347 // Adjust Type after seeing a candidate.
13348 auto ConsiderCandidate = [&](const OverloadCandidate &Candidate) {
13349 if (!Candidate.Function)
13350 return;
13351 if (Candidate.Function->isInvalidDecl())
13352 return;
13353 QualType T = Candidate.Function->getReturnType();
13354 if (T.isNull())
13355 return;
13356 if (!Result)
13357 Result = T;
13358 else if (Result != T)
13359 Result = QualType();
13360 };
13361
13362 // Look for an unambiguous type from a progressively larger subset.
13363 // e.g. if types disagree, but all *viable* overloads return int, choose int.
13364 //
13365 // First, consider only the best candidate.
13366 if (Best && *Best != CS.end())
13367 ConsiderCandidate(**Best);
13368 // Next, consider only viable candidates.
13369 if (!Result)
13370 for (const auto &C : CS)
13371 if (C.Viable)
13372 ConsiderCandidate(C);
13373 // Finally, consider all candidates.
13374 if (!Result)
13375 for (const auto &C : CS)
13376 ConsiderCandidate(C);
13377
13378 if (!Result)
13379 return QualType();
13380 auto Value = *Result;
13381 if (Value.isNull() || Value->isUndeducedType())
13382 return QualType();
13383 return Value;
13384 }
13385
13386 /// FinishOverloadedCallExpr - given an OverloadCandidateSet, builds and returns
13387 /// the completed call expression. If overload resolution fails, emits
13388 /// diagnostics and returns ExprError()
FinishOverloadedCallExpr(Sema & SemaRef,Scope * S,Expr * Fn,UnresolvedLookupExpr * ULE,SourceLocation LParenLoc,MultiExprArg Args,SourceLocation RParenLoc,Expr * ExecConfig,OverloadCandidateSet * CandidateSet,OverloadCandidateSet::iterator * Best,OverloadingResult OverloadResult,bool AllowTypoCorrection)13389 static ExprResult FinishOverloadedCallExpr(Sema &SemaRef, Scope *S, Expr *Fn,
13390 UnresolvedLookupExpr *ULE,
13391 SourceLocation LParenLoc,
13392 MultiExprArg Args,
13393 SourceLocation RParenLoc,
13394 Expr *ExecConfig,
13395 OverloadCandidateSet *CandidateSet,
13396 OverloadCandidateSet::iterator *Best,
13397 OverloadingResult OverloadResult,
13398 bool AllowTypoCorrection) {
13399 switch (OverloadResult) {
13400 case OR_Success: {
13401 FunctionDecl *FDecl = (*Best)->Function;
13402 SemaRef.CheckUnresolvedLookupAccess(ULE, (*Best)->FoundDecl);
13403 if (SemaRef.DiagnoseUseOfDecl(FDecl, ULE->getNameLoc()))
13404 return ExprError();
13405 Fn = SemaRef.FixOverloadedFunctionReference(Fn, (*Best)->FoundDecl, FDecl);
13406 return SemaRef.BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, RParenLoc,
13407 ExecConfig, /*IsExecConfig=*/false,
13408 (*Best)->IsADLCandidate);
13409 }
13410
13411 case OR_No_Viable_Function: {
13412 // Try to recover by looking for viable functions which the user might
13413 // have meant to call.
13414 ExprResult Recovery = BuildRecoveryCallExpr(SemaRef, S, Fn, ULE, LParenLoc,
13415 Args, RParenLoc,
13416 CandidateSet->empty(),
13417 AllowTypoCorrection);
13418 if (Recovery.isInvalid() || Recovery.isUsable())
13419 return Recovery;
13420
13421 // If the user passes in a function that we can't take the address of, we
13422 // generally end up emitting really bad error messages. Here, we attempt to
13423 // emit better ones.
13424 for (const Expr *Arg : Args) {
13425 if (!Arg->getType()->isFunctionType())
13426 continue;
13427 if (auto *DRE = dyn_cast<DeclRefExpr>(Arg->IgnoreParenImpCasts())) {
13428 auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl());
13429 if (FD &&
13430 !SemaRef.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
13431 Arg->getExprLoc()))
13432 return ExprError();
13433 }
13434 }
13435
13436 CandidateSet->NoteCandidates(
13437 PartialDiagnosticAt(
13438 Fn->getBeginLoc(),
13439 SemaRef.PDiag(diag::err_ovl_no_viable_function_in_call)
13440 << ULE->getName() << Fn->getSourceRange()),
13441 SemaRef, OCD_AllCandidates, Args);
13442 break;
13443 }
13444
13445 case OR_Ambiguous:
13446 CandidateSet->NoteCandidates(
13447 PartialDiagnosticAt(Fn->getBeginLoc(),
13448 SemaRef.PDiag(diag::err_ovl_ambiguous_call)
13449 << ULE->getName() << Fn->getSourceRange()),
13450 SemaRef, OCD_AmbiguousCandidates, Args);
13451 break;
13452
13453 case OR_Deleted: {
13454 CandidateSet->NoteCandidates(
13455 PartialDiagnosticAt(Fn->getBeginLoc(),
13456 SemaRef.PDiag(diag::err_ovl_deleted_call)
13457 << ULE->getName() << Fn->getSourceRange()),
13458 SemaRef, OCD_AllCandidates, Args);
13459
13460 // We emitted an error for the unavailable/deleted function call but keep
13461 // the call in the AST.
13462 FunctionDecl *FDecl = (*Best)->Function;
13463 Fn = SemaRef.FixOverloadedFunctionReference(Fn, (*Best)->FoundDecl, FDecl);
13464 return SemaRef.BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, RParenLoc,
13465 ExecConfig, /*IsExecConfig=*/false,
13466 (*Best)->IsADLCandidate);
13467 }
13468 }
13469
13470 // Overload resolution failed, try to recover.
13471 SmallVector<Expr *, 8> SubExprs = {Fn};
13472 SubExprs.append(Args.begin(), Args.end());
13473 return SemaRef.CreateRecoveryExpr(Fn->getBeginLoc(), RParenLoc, SubExprs,
13474 chooseRecoveryType(*CandidateSet, Best));
13475 }
13476
markUnaddressableCandidatesUnviable(Sema & S,OverloadCandidateSet & CS)13477 static void markUnaddressableCandidatesUnviable(Sema &S,
13478 OverloadCandidateSet &CS) {
13479 for (auto I = CS.begin(), E = CS.end(); I != E; ++I) {
13480 if (I->Viable &&
13481 !S.checkAddressOfFunctionIsAvailable(I->Function, /*Complain=*/false)) {
13482 I->Viable = false;
13483 I->FailureKind = ovl_fail_addr_not_available;
13484 }
13485 }
13486 }
13487
13488 /// BuildOverloadedCallExpr - Given the call expression that calls Fn
13489 /// (which eventually refers to the declaration Func) and the call
13490 /// arguments Args/NumArgs, attempt to resolve the function call down
13491 /// to a specific function. If overload resolution succeeds, returns
13492 /// the call expression produced by overload resolution.
13493 /// Otherwise, emits diagnostics and returns ExprError.
BuildOverloadedCallExpr(Scope * S,Expr * Fn,UnresolvedLookupExpr * ULE,SourceLocation LParenLoc,MultiExprArg Args,SourceLocation RParenLoc,Expr * ExecConfig,bool AllowTypoCorrection,bool CalleesAddressIsTaken)13494 ExprResult Sema::BuildOverloadedCallExpr(Scope *S, Expr *Fn,
13495 UnresolvedLookupExpr *ULE,
13496 SourceLocation LParenLoc,
13497 MultiExprArg Args,
13498 SourceLocation RParenLoc,
13499 Expr *ExecConfig,
13500 bool AllowTypoCorrection,
13501 bool CalleesAddressIsTaken) {
13502 OverloadCandidateSet CandidateSet(Fn->getExprLoc(),
13503 OverloadCandidateSet::CSK_Normal);
13504 ExprResult result;
13505
13506 if (buildOverloadedCallSet(S, Fn, ULE, Args, LParenLoc, &CandidateSet,
13507 &result))
13508 return result;
13509
13510 // If the user handed us something like `(&Foo)(Bar)`, we need to ensure that
13511 // functions that aren't addressible are considered unviable.
13512 if (CalleesAddressIsTaken)
13513 markUnaddressableCandidatesUnviable(*this, CandidateSet);
13514
13515 OverloadCandidateSet::iterator Best;
13516 OverloadingResult OverloadResult =
13517 CandidateSet.BestViableFunction(*this, Fn->getBeginLoc(), Best);
13518
13519 return FinishOverloadedCallExpr(*this, S, Fn, ULE, LParenLoc, Args, RParenLoc,
13520 ExecConfig, &CandidateSet, &Best,
13521 OverloadResult, AllowTypoCorrection);
13522 }
13523
IsOverloaded(const UnresolvedSetImpl & Functions)13524 static bool IsOverloaded(const UnresolvedSetImpl &Functions) {
13525 return Functions.size() > 1 ||
13526 (Functions.size() == 1 &&
13527 isa<FunctionTemplateDecl>((*Functions.begin())->getUnderlyingDecl()));
13528 }
13529
CreateUnresolvedLookupExpr(CXXRecordDecl * NamingClass,NestedNameSpecifierLoc NNSLoc,DeclarationNameInfo DNI,const UnresolvedSetImpl & Fns,bool PerformADL)13530 ExprResult Sema::CreateUnresolvedLookupExpr(CXXRecordDecl *NamingClass,
13531 NestedNameSpecifierLoc NNSLoc,
13532 DeclarationNameInfo DNI,
13533 const UnresolvedSetImpl &Fns,
13534 bool PerformADL) {
13535 return UnresolvedLookupExpr::Create(Context, NamingClass, NNSLoc, DNI,
13536 PerformADL, IsOverloaded(Fns),
13537 Fns.begin(), Fns.end());
13538 }
13539
13540 /// Create a unary operation that may resolve to an overloaded
13541 /// operator.
13542 ///
13543 /// \param OpLoc The location of the operator itself (e.g., '*').
13544 ///
13545 /// \param Opc The UnaryOperatorKind that describes this operator.
13546 ///
13547 /// \param Fns The set of non-member functions that will be
13548 /// considered by overload resolution. The caller needs to build this
13549 /// set based on the context using, e.g.,
13550 /// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
13551 /// set should not contain any member functions; those will be added
13552 /// by CreateOverloadedUnaryOp().
13553 ///
13554 /// \param Input The input argument.
13555 ExprResult
CreateOverloadedUnaryOp(SourceLocation OpLoc,UnaryOperatorKind Opc,const UnresolvedSetImpl & Fns,Expr * Input,bool PerformADL)13556 Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, UnaryOperatorKind Opc,
13557 const UnresolvedSetImpl &Fns,
13558 Expr *Input, bool PerformADL) {
13559 OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
13560 assert(Op != OO_None && "Invalid opcode for overloaded unary operator");
13561 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
13562 // TODO: provide better source location info.
13563 DeclarationNameInfo OpNameInfo(OpName, OpLoc);
13564
13565 if (checkPlaceholderForOverload(*this, Input))
13566 return ExprError();
13567
13568 Expr *Args[2] = { Input, nullptr };
13569 unsigned NumArgs = 1;
13570
13571 // For post-increment and post-decrement, add the implicit '0' as
13572 // the second argument, so that we know this is a post-increment or
13573 // post-decrement.
13574 if (Opc == UO_PostInc || Opc == UO_PostDec) {
13575 llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
13576 Args[1] = IntegerLiteral::Create(Context, Zero, Context.IntTy,
13577 SourceLocation());
13578 NumArgs = 2;
13579 }
13580
13581 ArrayRef<Expr *> ArgsArray(Args, NumArgs);
13582
13583 if (Input->isTypeDependent()) {
13584 if (Fns.empty())
13585 return UnaryOperator::Create(Context, Input, Opc, Context.DependentTy,
13586 VK_PRValue, OK_Ordinary, OpLoc, false,
13587 CurFPFeatureOverrides());
13588
13589 CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators
13590 ExprResult Fn = CreateUnresolvedLookupExpr(
13591 NamingClass, NestedNameSpecifierLoc(), OpNameInfo, Fns);
13592 if (Fn.isInvalid())
13593 return ExprError();
13594 return CXXOperatorCallExpr::Create(Context, Op, Fn.get(), ArgsArray,
13595 Context.DependentTy, VK_PRValue, OpLoc,
13596 CurFPFeatureOverrides());
13597 }
13598
13599 // Build an empty overload set.
13600 OverloadCandidateSet CandidateSet(OpLoc, OverloadCandidateSet::CSK_Operator);
13601
13602 // Add the candidates from the given function set.
13603 AddNonMemberOperatorCandidates(Fns, ArgsArray, CandidateSet);
13604
13605 // Add operator candidates that are member functions.
13606 AddMemberOperatorCandidates(Op, OpLoc, ArgsArray, CandidateSet);
13607
13608 // Add candidates from ADL.
13609 if (PerformADL) {
13610 AddArgumentDependentLookupCandidates(OpName, OpLoc, ArgsArray,
13611 /*ExplicitTemplateArgs*/nullptr,
13612 CandidateSet);
13613 }
13614
13615 // Add builtin operator candidates.
13616 AddBuiltinOperatorCandidates(Op, OpLoc, ArgsArray, CandidateSet);
13617
13618 bool HadMultipleCandidates = (CandidateSet.size() > 1);
13619
13620 // Perform overload resolution.
13621 OverloadCandidateSet::iterator Best;
13622 switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
13623 case OR_Success: {
13624 // We found a built-in operator or an overloaded operator.
13625 FunctionDecl *FnDecl = Best->Function;
13626
13627 if (FnDecl) {
13628 Expr *Base = nullptr;
13629 // We matched an overloaded operator. Build a call to that
13630 // operator.
13631
13632 // Convert the arguments.
13633 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
13634 CheckMemberOperatorAccess(OpLoc, Args[0], nullptr, Best->FoundDecl);
13635
13636 ExprResult InputRes =
13637 PerformObjectArgumentInitialization(Input, /*Qualifier=*/nullptr,
13638 Best->FoundDecl, Method);
13639 if (InputRes.isInvalid())
13640 return ExprError();
13641 Base = Input = InputRes.get();
13642 } else {
13643 // Convert the arguments.
13644 ExprResult InputInit
13645 = PerformCopyInitialization(InitializedEntity::InitializeParameter(
13646 Context,
13647 FnDecl->getParamDecl(0)),
13648 SourceLocation(),
13649 Input);
13650 if (InputInit.isInvalid())
13651 return ExprError();
13652 Input = InputInit.get();
13653 }
13654
13655 // Build the actual expression node.
13656 ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl, Best->FoundDecl,
13657 Base, HadMultipleCandidates,
13658 OpLoc);
13659 if (FnExpr.isInvalid())
13660 return ExprError();
13661
13662 // Determine the result type.
13663 QualType ResultTy = FnDecl->getReturnType();
13664 ExprValueKind VK = Expr::getValueKindForType(ResultTy);
13665 ResultTy = ResultTy.getNonLValueExprType(Context);
13666
13667 Args[0] = Input;
13668 CallExpr *TheCall = CXXOperatorCallExpr::Create(
13669 Context, Op, FnExpr.get(), ArgsArray, ResultTy, VK, OpLoc,
13670 CurFPFeatureOverrides(), Best->IsADLCandidate);
13671
13672 if (CheckCallReturnType(FnDecl->getReturnType(), OpLoc, TheCall, FnDecl))
13673 return ExprError();
13674
13675 if (CheckFunctionCall(FnDecl, TheCall,
13676 FnDecl->getType()->castAs<FunctionProtoType>()))
13677 return ExprError();
13678 return CheckForImmediateInvocation(MaybeBindToTemporary(TheCall), FnDecl);
13679 } else {
13680 // We matched a built-in operator. Convert the arguments, then
13681 // break out so that we will build the appropriate built-in
13682 // operator node.
13683 ExprResult InputRes = PerformImplicitConversion(
13684 Input, Best->BuiltinParamTypes[0], Best->Conversions[0], AA_Passing,
13685 CCK_ForBuiltinOverloadedOp);
13686 if (InputRes.isInvalid())
13687 return ExprError();
13688 Input = InputRes.get();
13689 break;
13690 }
13691 }
13692
13693 case OR_No_Viable_Function:
13694 // This is an erroneous use of an operator which can be overloaded by
13695 // a non-member function. Check for non-member operators which were
13696 // defined too late to be candidates.
13697 if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, ArgsArray))
13698 // FIXME: Recover by calling the found function.
13699 return ExprError();
13700
13701 // No viable function; fall through to handling this as a
13702 // built-in operator, which will produce an error message for us.
13703 break;
13704
13705 case OR_Ambiguous:
13706 CandidateSet.NoteCandidates(
13707 PartialDiagnosticAt(OpLoc,
13708 PDiag(diag::err_ovl_ambiguous_oper_unary)
13709 << UnaryOperator::getOpcodeStr(Opc)
13710 << Input->getType() << Input->getSourceRange()),
13711 *this, OCD_AmbiguousCandidates, ArgsArray,
13712 UnaryOperator::getOpcodeStr(Opc), OpLoc);
13713 return ExprError();
13714
13715 case OR_Deleted:
13716 CandidateSet.NoteCandidates(
13717 PartialDiagnosticAt(OpLoc, PDiag(diag::err_ovl_deleted_oper)
13718 << UnaryOperator::getOpcodeStr(Opc)
13719 << Input->getSourceRange()),
13720 *this, OCD_AllCandidates, ArgsArray, UnaryOperator::getOpcodeStr(Opc),
13721 OpLoc);
13722 return ExprError();
13723 }
13724
13725 // Either we found no viable overloaded operator or we matched a
13726 // built-in operator. In either case, fall through to trying to
13727 // build a built-in operation.
13728 return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
13729 }
13730
13731 /// Perform lookup for an overloaded binary operator.
LookupOverloadedBinOp(OverloadCandidateSet & CandidateSet,OverloadedOperatorKind Op,const UnresolvedSetImpl & Fns,ArrayRef<Expr * > Args,bool PerformADL)13732 void Sema::LookupOverloadedBinOp(OverloadCandidateSet &CandidateSet,
13733 OverloadedOperatorKind Op,
13734 const UnresolvedSetImpl &Fns,
13735 ArrayRef<Expr *> Args, bool PerformADL) {
13736 SourceLocation OpLoc = CandidateSet.getLocation();
13737
13738 OverloadedOperatorKind ExtraOp =
13739 CandidateSet.getRewriteInfo().AllowRewrittenCandidates
13740 ? getRewrittenOverloadedOperator(Op)
13741 : OO_None;
13742
13743 // Add the candidates from the given function set. This also adds the
13744 // rewritten candidates using these functions if necessary.
13745 AddNonMemberOperatorCandidates(Fns, Args, CandidateSet);
13746
13747 // Add operator candidates that are member functions.
13748 AddMemberOperatorCandidates(Op, OpLoc, Args, CandidateSet);
13749 if (CandidateSet.getRewriteInfo().allowsReversed(Op))
13750 AddMemberOperatorCandidates(Op, OpLoc, {Args[1], Args[0]}, CandidateSet,
13751 OverloadCandidateParamOrder::Reversed);
13752
13753 // In C++20, also add any rewritten member candidates.
13754 if (ExtraOp) {
13755 AddMemberOperatorCandidates(ExtraOp, OpLoc, Args, CandidateSet);
13756 if (CandidateSet.getRewriteInfo().allowsReversed(ExtraOp))
13757 AddMemberOperatorCandidates(ExtraOp, OpLoc, {Args[1], Args[0]},
13758 CandidateSet,
13759 OverloadCandidateParamOrder::Reversed);
13760 }
13761
13762 // Add candidates from ADL. Per [over.match.oper]p2, this lookup is not
13763 // performed for an assignment operator (nor for operator[] nor operator->,
13764 // which don't get here).
13765 if (Op != OO_Equal && PerformADL) {
13766 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
13767 AddArgumentDependentLookupCandidates(OpName, OpLoc, Args,
13768 /*ExplicitTemplateArgs*/ nullptr,
13769 CandidateSet);
13770 if (ExtraOp) {
13771 DeclarationName ExtraOpName =
13772 Context.DeclarationNames.getCXXOperatorName(ExtraOp);
13773 AddArgumentDependentLookupCandidates(ExtraOpName, OpLoc, Args,
13774 /*ExplicitTemplateArgs*/ nullptr,
13775 CandidateSet);
13776 }
13777 }
13778
13779 // Add builtin operator candidates.
13780 //
13781 // FIXME: We don't add any rewritten candidates here. This is strictly
13782 // incorrect; a builtin candidate could be hidden by a non-viable candidate,
13783 // resulting in our selecting a rewritten builtin candidate. For example:
13784 //
13785 // enum class E { e };
13786 // bool operator!=(E, E) requires false;
13787 // bool k = E::e != E::e;
13788 //
13789 // ... should select the rewritten builtin candidate 'operator==(E, E)'. But
13790 // it seems unreasonable to consider rewritten builtin candidates. A core
13791 // issue has been filed proposing to removed this requirement.
13792 AddBuiltinOperatorCandidates(Op, OpLoc, Args, CandidateSet);
13793 }
13794
13795 /// Create a binary operation that may resolve to an overloaded
13796 /// operator.
13797 ///
13798 /// \param OpLoc The location of the operator itself (e.g., '+').
13799 ///
13800 /// \param Opc The BinaryOperatorKind that describes this operator.
13801 ///
13802 /// \param Fns The set of non-member functions that will be
13803 /// considered by overload resolution. The caller needs to build this
13804 /// set based on the context using, e.g.,
13805 /// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
13806 /// set should not contain any member functions; those will be added
13807 /// by CreateOverloadedBinOp().
13808 ///
13809 /// \param LHS Left-hand argument.
13810 /// \param RHS Right-hand argument.
13811 /// \param PerformADL Whether to consider operator candidates found by ADL.
13812 /// \param AllowRewrittenCandidates Whether to consider candidates found by
13813 /// C++20 operator rewrites.
13814 /// \param DefaultedFn If we are synthesizing a defaulted operator function,
13815 /// the function in question. Such a function is never a candidate in
13816 /// our overload resolution. This also enables synthesizing a three-way
13817 /// comparison from < and == as described in C++20 [class.spaceship]p1.
CreateOverloadedBinOp(SourceLocation OpLoc,BinaryOperatorKind Opc,const UnresolvedSetImpl & Fns,Expr * LHS,Expr * RHS,bool PerformADL,bool AllowRewrittenCandidates,FunctionDecl * DefaultedFn)13818 ExprResult Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
13819 BinaryOperatorKind Opc,
13820 const UnresolvedSetImpl &Fns, Expr *LHS,
13821 Expr *RHS, bool PerformADL,
13822 bool AllowRewrittenCandidates,
13823 FunctionDecl *DefaultedFn) {
13824 Expr *Args[2] = { LHS, RHS };
13825 LHS=RHS=nullptr; // Please use only Args instead of LHS/RHS couple
13826
13827 if (!getLangOpts().CPlusPlus20)
13828 AllowRewrittenCandidates = false;
13829
13830 OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
13831
13832 // If either side is type-dependent, create an appropriate dependent
13833 // expression.
13834 if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
13835 if (Fns.empty()) {
13836 // If there are no functions to store, just build a dependent
13837 // BinaryOperator or CompoundAssignment.
13838 if (BinaryOperator::isCompoundAssignmentOp(Opc))
13839 return CompoundAssignOperator::Create(
13840 Context, Args[0], Args[1], Opc, Context.DependentTy, VK_LValue,
13841 OK_Ordinary, OpLoc, CurFPFeatureOverrides(), Context.DependentTy,
13842 Context.DependentTy);
13843 return BinaryOperator::Create(
13844 Context, Args[0], Args[1], Opc, Context.DependentTy, VK_PRValue,
13845 OK_Ordinary, OpLoc, CurFPFeatureOverrides());
13846 }
13847
13848 // FIXME: save results of ADL from here?
13849 CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators
13850 // TODO: provide better source location info in DNLoc component.
13851 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
13852 DeclarationNameInfo OpNameInfo(OpName, OpLoc);
13853 ExprResult Fn = CreateUnresolvedLookupExpr(
13854 NamingClass, NestedNameSpecifierLoc(), OpNameInfo, Fns, PerformADL);
13855 if (Fn.isInvalid())
13856 return ExprError();
13857 return CXXOperatorCallExpr::Create(Context, Op, Fn.get(), Args,
13858 Context.DependentTy, VK_PRValue, OpLoc,
13859 CurFPFeatureOverrides());
13860 }
13861
13862 // Always do placeholder-like conversions on the RHS.
13863 if (checkPlaceholderForOverload(*this, Args[1]))
13864 return ExprError();
13865
13866 // Do placeholder-like conversion on the LHS; note that we should
13867 // not get here with a PseudoObject LHS.
13868 assert(Args[0]->getObjectKind() != OK_ObjCProperty);
13869 if (checkPlaceholderForOverload(*this, Args[0]))
13870 return ExprError();
13871
13872 // If this is the assignment operator, we only perform overload resolution
13873 // if the left-hand side is a class or enumeration type. This is actually
13874 // a hack. The standard requires that we do overload resolution between the
13875 // various built-in candidates, but as DR507 points out, this can lead to
13876 // problems. So we do it this way, which pretty much follows what GCC does.
13877 // Note that we go the traditional code path for compound assignment forms.
13878 if (Opc == BO_Assign && !Args[0]->getType()->isOverloadableType())
13879 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
13880
13881 // If this is the .* operator, which is not overloadable, just
13882 // create a built-in binary operator.
13883 if (Opc == BO_PtrMemD)
13884 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
13885
13886 // Build the overload set.
13887 OverloadCandidateSet CandidateSet(OpLoc, OverloadCandidateSet::CSK_Operator,
13888 OverloadCandidateSet::OperatorRewriteInfo(
13889 Op, OpLoc, AllowRewrittenCandidates));
13890 if (DefaultedFn)
13891 CandidateSet.exclude(DefaultedFn);
13892 LookupOverloadedBinOp(CandidateSet, Op, Fns, Args, PerformADL);
13893
13894 bool HadMultipleCandidates = (CandidateSet.size() > 1);
13895
13896 // Perform overload resolution.
13897 OverloadCandidateSet::iterator Best;
13898 switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
13899 case OR_Success: {
13900 // We found a built-in operator or an overloaded operator.
13901 FunctionDecl *FnDecl = Best->Function;
13902
13903 bool IsReversed = Best->isReversed();
13904 if (IsReversed)
13905 std::swap(Args[0], Args[1]);
13906
13907 if (FnDecl) {
13908 Expr *Base = nullptr;
13909 // We matched an overloaded operator. Build a call to that
13910 // operator.
13911
13912 OverloadedOperatorKind ChosenOp =
13913 FnDecl->getDeclName().getCXXOverloadedOperator();
13914
13915 // C++2a [over.match.oper]p9:
13916 // If a rewritten operator== candidate is selected by overload
13917 // resolution for an operator@, its return type shall be cv bool
13918 if (Best->RewriteKind && ChosenOp == OO_EqualEqual &&
13919 !FnDecl->getReturnType()->isBooleanType()) {
13920 bool IsExtension =
13921 FnDecl->getReturnType()->isIntegralOrUnscopedEnumerationType();
13922 Diag(OpLoc, IsExtension ? diag::ext_ovl_rewrite_equalequal_not_bool
13923 : diag::err_ovl_rewrite_equalequal_not_bool)
13924 << FnDecl->getReturnType() << BinaryOperator::getOpcodeStr(Opc)
13925 << Args[0]->getSourceRange() << Args[1]->getSourceRange();
13926 Diag(FnDecl->getLocation(), diag::note_declared_at);
13927 if (!IsExtension)
13928 return ExprError();
13929 }
13930
13931 if (AllowRewrittenCandidates && !IsReversed &&
13932 CandidateSet.getRewriteInfo().isReversible()) {
13933 // We could have reversed this operator, but didn't. Check if some
13934 // reversed form was a viable candidate, and if so, if it had a
13935 // better conversion for either parameter. If so, this call is
13936 // formally ambiguous, and allowing it is an extension.
13937 llvm::SmallVector<FunctionDecl*, 4> AmbiguousWith;
13938 for (OverloadCandidate &Cand : CandidateSet) {
13939 if (Cand.Viable && Cand.Function && Cand.isReversed() &&
13940 haveSameParameterTypes(Context, Cand.Function, FnDecl, 2)) {
13941 for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
13942 if (CompareImplicitConversionSequences(
13943 *this, OpLoc, Cand.Conversions[ArgIdx],
13944 Best->Conversions[ArgIdx]) ==
13945 ImplicitConversionSequence::Better) {
13946 AmbiguousWith.push_back(Cand.Function);
13947 break;
13948 }
13949 }
13950 }
13951 }
13952
13953 if (!AmbiguousWith.empty()) {
13954 bool AmbiguousWithSelf =
13955 AmbiguousWith.size() == 1 &&
13956 declaresSameEntity(AmbiguousWith.front(), FnDecl);
13957 Diag(OpLoc, diag::ext_ovl_ambiguous_oper_binary_reversed)
13958 << BinaryOperator::getOpcodeStr(Opc)
13959 << Args[0]->getType() << Args[1]->getType() << AmbiguousWithSelf
13960 << Args[0]->getSourceRange() << Args[1]->getSourceRange();
13961 if (AmbiguousWithSelf) {
13962 Diag(FnDecl->getLocation(),
13963 diag::note_ovl_ambiguous_oper_binary_reversed_self);
13964 // Mark member== const or provide matching != to disallow reversed
13965 // args. Eg.
13966 // struct S { bool operator==(const S&); };
13967 // S()==S();
13968 if (auto *MD = dyn_cast<CXXMethodDecl>(FnDecl))
13969 if (Op == OverloadedOperatorKind::OO_EqualEqual &&
13970 !MD->isConst() &&
13971 Context.hasSameUnqualifiedType(
13972 MD->getThisObjectType(),
13973 MD->getParamDecl(0)->getType().getNonReferenceType()) &&
13974 Context.hasSameUnqualifiedType(MD->getThisObjectType(),
13975 Args[0]->getType()) &&
13976 Context.hasSameUnqualifiedType(MD->getThisObjectType(),
13977 Args[1]->getType()))
13978 Diag(FnDecl->getLocation(),
13979 diag::note_ovl_ambiguous_eqeq_reversed_self_non_const);
13980 } else {
13981 Diag(FnDecl->getLocation(),
13982 diag::note_ovl_ambiguous_oper_binary_selected_candidate);
13983 for (auto *F : AmbiguousWith)
13984 Diag(F->getLocation(),
13985 diag::note_ovl_ambiguous_oper_binary_reversed_candidate);
13986 }
13987 }
13988 }
13989
13990 // Convert the arguments.
13991 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
13992 // Best->Access is only meaningful for class members.
13993 CheckMemberOperatorAccess(OpLoc, Args[0], Args[1], Best->FoundDecl);
13994
13995 ExprResult Arg1 =
13996 PerformCopyInitialization(
13997 InitializedEntity::InitializeParameter(Context,
13998 FnDecl->getParamDecl(0)),
13999 SourceLocation(), Args[1]);
14000 if (Arg1.isInvalid())
14001 return ExprError();
14002
14003 ExprResult Arg0 =
14004 PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/nullptr,
14005 Best->FoundDecl, Method);
14006 if (Arg0.isInvalid())
14007 return ExprError();
14008 Base = Args[0] = Arg0.getAs<Expr>();
14009 Args[1] = RHS = Arg1.getAs<Expr>();
14010 } else {
14011 // Convert the arguments.
14012 ExprResult Arg0 = PerformCopyInitialization(
14013 InitializedEntity::InitializeParameter(Context,
14014 FnDecl->getParamDecl(0)),
14015 SourceLocation(), Args[0]);
14016 if (Arg0.isInvalid())
14017 return ExprError();
14018
14019 ExprResult Arg1 =
14020 PerformCopyInitialization(
14021 InitializedEntity::InitializeParameter(Context,
14022 FnDecl->getParamDecl(1)),
14023 SourceLocation(), Args[1]);
14024 if (Arg1.isInvalid())
14025 return ExprError();
14026 Args[0] = LHS = Arg0.getAs<Expr>();
14027 Args[1] = RHS = Arg1.getAs<Expr>();
14028 }
14029
14030 // Build the actual expression node.
14031 ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl,
14032 Best->FoundDecl, Base,
14033 HadMultipleCandidates, OpLoc);
14034 if (FnExpr.isInvalid())
14035 return ExprError();
14036
14037 // Determine the result type.
14038 QualType ResultTy = FnDecl->getReturnType();
14039 ExprValueKind VK = Expr::getValueKindForType(ResultTy);
14040 ResultTy = ResultTy.getNonLValueExprType(Context);
14041
14042 CXXOperatorCallExpr *TheCall = CXXOperatorCallExpr::Create(
14043 Context, ChosenOp, FnExpr.get(), Args, ResultTy, VK, OpLoc,
14044 CurFPFeatureOverrides(), Best->IsADLCandidate);
14045
14046 if (CheckCallReturnType(FnDecl->getReturnType(), OpLoc, TheCall,
14047 FnDecl))
14048 return ExprError();
14049
14050 ArrayRef<const Expr *> ArgsArray(Args, 2);
14051 const Expr *ImplicitThis = nullptr;
14052 // Cut off the implicit 'this'.
14053 if (isa<CXXMethodDecl>(FnDecl)) {
14054 ImplicitThis = ArgsArray[0];
14055 ArgsArray = ArgsArray.slice(1);
14056 }
14057
14058 // Check for a self move.
14059 if (Op == OO_Equal)
14060 DiagnoseSelfMove(Args[0], Args[1], OpLoc);
14061
14062 if (ImplicitThis) {
14063 QualType ThisType = Context.getPointerType(ImplicitThis->getType());
14064 QualType ThisTypeFromDecl = Context.getPointerType(
14065 cast<CXXMethodDecl>(FnDecl)->getThisObjectType());
14066
14067 CheckArgAlignment(OpLoc, FnDecl, "'this'", ThisType,
14068 ThisTypeFromDecl);
14069 }
14070
14071 checkCall(FnDecl, nullptr, ImplicitThis, ArgsArray,
14072 isa<CXXMethodDecl>(FnDecl), OpLoc, TheCall->getSourceRange(),
14073 VariadicDoesNotApply);
14074
14075 ExprResult R = MaybeBindToTemporary(TheCall);
14076 if (R.isInvalid())
14077 return ExprError();
14078
14079 R = CheckForImmediateInvocation(R, FnDecl);
14080 if (R.isInvalid())
14081 return ExprError();
14082
14083 // For a rewritten candidate, we've already reversed the arguments
14084 // if needed. Perform the rest of the rewrite now.
14085 if ((Best->RewriteKind & CRK_DifferentOperator) ||
14086 (Op == OO_Spaceship && IsReversed)) {
14087 if (Op == OO_ExclaimEqual) {
14088 assert(ChosenOp == OO_EqualEqual && "unexpected operator name");
14089 R = CreateBuiltinUnaryOp(OpLoc, UO_LNot, R.get());
14090 } else {
14091 assert(ChosenOp == OO_Spaceship && "unexpected operator name");
14092 llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
14093 Expr *ZeroLiteral =
14094 IntegerLiteral::Create(Context, Zero, Context.IntTy, OpLoc);
14095
14096 Sema::CodeSynthesisContext Ctx;
14097 Ctx.Kind = Sema::CodeSynthesisContext::RewritingOperatorAsSpaceship;
14098 Ctx.Entity = FnDecl;
14099 pushCodeSynthesisContext(Ctx);
14100
14101 R = CreateOverloadedBinOp(
14102 OpLoc, Opc, Fns, IsReversed ? ZeroLiteral : R.get(),
14103 IsReversed ? R.get() : ZeroLiteral, /*PerformADL=*/true,
14104 /*AllowRewrittenCandidates=*/false);
14105
14106 popCodeSynthesisContext();
14107 }
14108 if (R.isInvalid())
14109 return ExprError();
14110 } else {
14111 assert(ChosenOp == Op && "unexpected operator name");
14112 }
14113
14114 // Make a note in the AST if we did any rewriting.
14115 if (Best->RewriteKind != CRK_None)
14116 R = new (Context) CXXRewrittenBinaryOperator(R.get(), IsReversed);
14117
14118 return R;
14119 } else {
14120 // We matched a built-in operator. Convert the arguments, then
14121 // break out so that we will build the appropriate built-in
14122 // operator node.
14123 ExprResult ArgsRes0 = PerformImplicitConversion(
14124 Args[0], Best->BuiltinParamTypes[0], Best->Conversions[0],
14125 AA_Passing, CCK_ForBuiltinOverloadedOp);
14126 if (ArgsRes0.isInvalid())
14127 return ExprError();
14128 Args[0] = ArgsRes0.get();
14129
14130 ExprResult ArgsRes1 = PerformImplicitConversion(
14131 Args[1], Best->BuiltinParamTypes[1], Best->Conversions[1],
14132 AA_Passing, CCK_ForBuiltinOverloadedOp);
14133 if (ArgsRes1.isInvalid())
14134 return ExprError();
14135 Args[1] = ArgsRes1.get();
14136 break;
14137 }
14138 }
14139
14140 case OR_No_Viable_Function: {
14141 // C++ [over.match.oper]p9:
14142 // If the operator is the operator , [...] and there are no
14143 // viable functions, then the operator is assumed to be the
14144 // built-in operator and interpreted according to clause 5.
14145 if (Opc == BO_Comma)
14146 break;
14147
14148 // When defaulting an 'operator<=>', we can try to synthesize a three-way
14149 // compare result using '==' and '<'.
14150 if (DefaultedFn && Opc == BO_Cmp) {
14151 ExprResult E = BuildSynthesizedThreeWayComparison(OpLoc, Fns, Args[0],
14152 Args[1], DefaultedFn);
14153 if (E.isInvalid() || E.isUsable())
14154 return E;
14155 }
14156
14157 // For class as left operand for assignment or compound assignment
14158 // operator do not fall through to handling in built-in, but report that
14159 // no overloaded assignment operator found
14160 ExprResult Result = ExprError();
14161 StringRef OpcStr = BinaryOperator::getOpcodeStr(Opc);
14162 auto Cands = CandidateSet.CompleteCandidates(*this, OCD_AllCandidates,
14163 Args, OpLoc);
14164 DeferDiagsRAII DDR(*this,
14165 CandidateSet.shouldDeferDiags(*this, Args, OpLoc));
14166 if (Args[0]->getType()->isRecordType() &&
14167 Opc >= BO_Assign && Opc <= BO_OrAssign) {
14168 Diag(OpLoc, diag::err_ovl_no_viable_oper)
14169 << BinaryOperator::getOpcodeStr(Opc)
14170 << Args[0]->getSourceRange() << Args[1]->getSourceRange();
14171 if (Args[0]->getType()->isIncompleteType()) {
14172 Diag(OpLoc, diag::note_assign_lhs_incomplete)
14173 << Args[0]->getType()
14174 << Args[0]->getSourceRange() << Args[1]->getSourceRange();
14175 }
14176 } else {
14177 // This is an erroneous use of an operator which can be overloaded by
14178 // a non-member function. Check for non-member operators which were
14179 // defined too late to be candidates.
14180 if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, Args))
14181 // FIXME: Recover by calling the found function.
14182 return ExprError();
14183
14184 // No viable function; try to create a built-in operation, which will
14185 // produce an error. Then, show the non-viable candidates.
14186 Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
14187 }
14188 assert(Result.isInvalid() &&
14189 "C++ binary operator overloading is missing candidates!");
14190 CandidateSet.NoteCandidates(*this, Args, Cands, OpcStr, OpLoc);
14191 return Result;
14192 }
14193
14194 case OR_Ambiguous:
14195 CandidateSet.NoteCandidates(
14196 PartialDiagnosticAt(OpLoc, PDiag(diag::err_ovl_ambiguous_oper_binary)
14197 << BinaryOperator::getOpcodeStr(Opc)
14198 << Args[0]->getType()
14199 << Args[1]->getType()
14200 << Args[0]->getSourceRange()
14201 << Args[1]->getSourceRange()),
14202 *this, OCD_AmbiguousCandidates, Args, BinaryOperator::getOpcodeStr(Opc),
14203 OpLoc);
14204 return ExprError();
14205
14206 case OR_Deleted:
14207 if (isImplicitlyDeleted(Best->Function)) {
14208 FunctionDecl *DeletedFD = Best->Function;
14209 DefaultedFunctionKind DFK = getDefaultedFunctionKind(DeletedFD);
14210 if (DFK.isSpecialMember()) {
14211 Diag(OpLoc, diag::err_ovl_deleted_special_oper)
14212 << Args[0]->getType() << DFK.asSpecialMember();
14213 } else {
14214 assert(DFK.isComparison());
14215 Diag(OpLoc, diag::err_ovl_deleted_comparison)
14216 << Args[0]->getType() << DeletedFD;
14217 }
14218
14219 // The user probably meant to call this special member. Just
14220 // explain why it's deleted.
14221 NoteDeletedFunction(DeletedFD);
14222 return ExprError();
14223 }
14224 CandidateSet.NoteCandidates(
14225 PartialDiagnosticAt(
14226 OpLoc, PDiag(diag::err_ovl_deleted_oper)
14227 << getOperatorSpelling(Best->Function->getDeclName()
14228 .getCXXOverloadedOperator())
14229 << Args[0]->getSourceRange()
14230 << Args[1]->getSourceRange()),
14231 *this, OCD_AllCandidates, Args, BinaryOperator::getOpcodeStr(Opc),
14232 OpLoc);
14233 return ExprError();
14234 }
14235
14236 // We matched a built-in operator; build it.
14237 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
14238 }
14239
BuildSynthesizedThreeWayComparison(SourceLocation OpLoc,const UnresolvedSetImpl & Fns,Expr * LHS,Expr * RHS,FunctionDecl * DefaultedFn)14240 ExprResult Sema::BuildSynthesizedThreeWayComparison(
14241 SourceLocation OpLoc, const UnresolvedSetImpl &Fns, Expr *LHS, Expr *RHS,
14242 FunctionDecl *DefaultedFn) {
14243 const ComparisonCategoryInfo *Info =
14244 Context.CompCategories.lookupInfoForType(DefaultedFn->getReturnType());
14245 // If we're not producing a known comparison category type, we can't
14246 // synthesize a three-way comparison. Let the caller diagnose this.
14247 if (!Info)
14248 return ExprResult((Expr*)nullptr);
14249
14250 // If we ever want to perform this synthesis more generally, we will need to
14251 // apply the temporary materialization conversion to the operands.
14252 assert(LHS->isGLValue() && RHS->isGLValue() &&
14253 "cannot use prvalue expressions more than once");
14254 Expr *OrigLHS = LHS;
14255 Expr *OrigRHS = RHS;
14256
14257 // Replace the LHS and RHS with OpaqueValueExprs; we're going to refer to
14258 // each of them multiple times below.
14259 LHS = new (Context)
14260 OpaqueValueExpr(LHS->getExprLoc(), LHS->getType(), LHS->getValueKind(),
14261 LHS->getObjectKind(), LHS);
14262 RHS = new (Context)
14263 OpaqueValueExpr(RHS->getExprLoc(), RHS->getType(), RHS->getValueKind(),
14264 RHS->getObjectKind(), RHS);
14265
14266 ExprResult Eq = CreateOverloadedBinOp(OpLoc, BO_EQ, Fns, LHS, RHS, true, true,
14267 DefaultedFn);
14268 if (Eq.isInvalid())
14269 return ExprError();
14270
14271 ExprResult Less = CreateOverloadedBinOp(OpLoc, BO_LT, Fns, LHS, RHS, true,
14272 true, DefaultedFn);
14273 if (Less.isInvalid())
14274 return ExprError();
14275
14276 ExprResult Greater;
14277 if (Info->isPartial()) {
14278 Greater = CreateOverloadedBinOp(OpLoc, BO_LT, Fns, RHS, LHS, true, true,
14279 DefaultedFn);
14280 if (Greater.isInvalid())
14281 return ExprError();
14282 }
14283
14284 // Form the list of comparisons we're going to perform.
14285 struct Comparison {
14286 ExprResult Cmp;
14287 ComparisonCategoryResult Result;
14288 } Comparisons[4] =
14289 { {Eq, Info->isStrong() ? ComparisonCategoryResult::Equal
14290 : ComparisonCategoryResult::Equivalent},
14291 {Less, ComparisonCategoryResult::Less},
14292 {Greater, ComparisonCategoryResult::Greater},
14293 {ExprResult(), ComparisonCategoryResult::Unordered},
14294 };
14295
14296 int I = Info->isPartial() ? 3 : 2;
14297
14298 // Combine the comparisons with suitable conditional expressions.
14299 ExprResult Result;
14300 for (; I >= 0; --I) {
14301 // Build a reference to the comparison category constant.
14302 auto *VI = Info->lookupValueInfo(Comparisons[I].Result);
14303 // FIXME: Missing a constant for a comparison category. Diagnose this?
14304 if (!VI)
14305 return ExprResult((Expr*)nullptr);
14306 ExprResult ThisResult =
14307 BuildDeclarationNameExpr(CXXScopeSpec(), DeclarationNameInfo(), VI->VD);
14308 if (ThisResult.isInvalid())
14309 return ExprError();
14310
14311 // Build a conditional unless this is the final case.
14312 if (Result.get()) {
14313 Result = ActOnConditionalOp(OpLoc, OpLoc, Comparisons[I].Cmp.get(),
14314 ThisResult.get(), Result.get());
14315 if (Result.isInvalid())
14316 return ExprError();
14317 } else {
14318 Result = ThisResult;
14319 }
14320 }
14321
14322 // Build a PseudoObjectExpr to model the rewriting of an <=> operator, and to
14323 // bind the OpaqueValueExprs before they're (repeatedly) used.
14324 Expr *SyntacticForm = BinaryOperator::Create(
14325 Context, OrigLHS, OrigRHS, BO_Cmp, Result.get()->getType(),
14326 Result.get()->getValueKind(), Result.get()->getObjectKind(), OpLoc,
14327 CurFPFeatureOverrides());
14328 Expr *SemanticForm[] = {LHS, RHS, Result.get()};
14329 return PseudoObjectExpr::Create(Context, SyntacticForm, SemanticForm, 2);
14330 }
14331
PrepareArgumentsForCallToObjectOfClassType(Sema & S,SmallVectorImpl<Expr * > & MethodArgs,CXXMethodDecl * Method,MultiExprArg Args,SourceLocation LParenLoc)14332 static bool PrepareArgumentsForCallToObjectOfClassType(
14333 Sema &S, SmallVectorImpl<Expr *> &MethodArgs, CXXMethodDecl *Method,
14334 MultiExprArg Args, SourceLocation LParenLoc) {
14335
14336 const auto *Proto = Method->getType()->castAs<FunctionProtoType>();
14337 unsigned NumParams = Proto->getNumParams();
14338 unsigned NumArgsSlots =
14339 MethodArgs.size() + std::max<unsigned>(Args.size(), NumParams);
14340 // Build the full argument list for the method call (the implicit object
14341 // parameter is placed at the beginning of the list).
14342 MethodArgs.reserve(MethodArgs.size() + NumArgsSlots);
14343 bool IsError = false;
14344 // Initialize the implicit object parameter.
14345 // Check the argument types.
14346 for (unsigned i = 0; i != NumParams; i++) {
14347 Expr *Arg;
14348 if (i < Args.size()) {
14349 Arg = Args[i];
14350 ExprResult InputInit =
14351 S.PerformCopyInitialization(InitializedEntity::InitializeParameter(
14352 S.Context, Method->getParamDecl(i)),
14353 SourceLocation(), Arg);
14354 IsError |= InputInit.isInvalid();
14355 Arg = InputInit.getAs<Expr>();
14356 } else {
14357 ExprResult DefArg =
14358 S.BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i));
14359 if (DefArg.isInvalid()) {
14360 IsError = true;
14361 break;
14362 }
14363 Arg = DefArg.getAs<Expr>();
14364 }
14365
14366 MethodArgs.push_back(Arg);
14367 }
14368 return IsError;
14369 }
14370
CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,SourceLocation RLoc,Expr * Base,MultiExprArg ArgExpr)14371 ExprResult Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,
14372 SourceLocation RLoc,
14373 Expr *Base,
14374 MultiExprArg ArgExpr) {
14375 SmallVector<Expr *, 2> Args;
14376 Args.push_back(Base);
14377 for (auto *e : ArgExpr) {
14378 Args.push_back(e);
14379 }
14380 DeclarationName OpName =
14381 Context.DeclarationNames.getCXXOperatorName(OO_Subscript);
14382
14383 SourceRange Range = ArgExpr.empty()
14384 ? SourceRange{}
14385 : SourceRange(ArgExpr.front()->getBeginLoc(),
14386 ArgExpr.back()->getEndLoc());
14387
14388 // If either side is type-dependent, create an appropriate dependent
14389 // expression.
14390 if (Expr::hasAnyTypeDependentArguments(Args)) {
14391
14392 CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators
14393 // CHECKME: no 'operator' keyword?
14394 DeclarationNameInfo OpNameInfo(OpName, LLoc);
14395 OpNameInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc));
14396 ExprResult Fn = CreateUnresolvedLookupExpr(
14397 NamingClass, NestedNameSpecifierLoc(), OpNameInfo, UnresolvedSet<0>());
14398 if (Fn.isInvalid())
14399 return ExprError();
14400 // Can't add any actual overloads yet
14401
14402 return CXXOperatorCallExpr::Create(Context, OO_Subscript, Fn.get(), Args,
14403 Context.DependentTy, VK_PRValue, RLoc,
14404 CurFPFeatureOverrides());
14405 }
14406
14407 // Handle placeholders
14408 UnbridgedCastsSet UnbridgedCasts;
14409 if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts)) {
14410 return ExprError();
14411 }
14412 // Build an empty overload set.
14413 OverloadCandidateSet CandidateSet(LLoc, OverloadCandidateSet::CSK_Operator);
14414
14415 // Subscript can only be overloaded as a member function.
14416
14417 // Add operator candidates that are member functions.
14418 AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, CandidateSet);
14419
14420 // Add builtin operator candidates.
14421 if (Args.size() == 2)
14422 AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, CandidateSet);
14423
14424 bool HadMultipleCandidates = (CandidateSet.size() > 1);
14425
14426 // Perform overload resolution.
14427 OverloadCandidateSet::iterator Best;
14428 switch (CandidateSet.BestViableFunction(*this, LLoc, Best)) {
14429 case OR_Success: {
14430 // We found a built-in operator or an overloaded operator.
14431 FunctionDecl *FnDecl = Best->Function;
14432
14433 if (FnDecl) {
14434 // We matched an overloaded operator. Build a call to that
14435 // operator.
14436
14437 CheckMemberOperatorAccess(LLoc, Args[0], ArgExpr, Best->FoundDecl);
14438
14439 // Convert the arguments.
14440 CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
14441 SmallVector<Expr *, 2> MethodArgs;
14442
14443 // Handle 'this' parameter if the selected function is not static.
14444 if (Method->isInstance()) {
14445 ExprResult Arg0 = PerformObjectArgumentInitialization(
14446 Args[0], /*Qualifier=*/nullptr, Best->FoundDecl, Method);
14447 if (Arg0.isInvalid())
14448 return ExprError();
14449
14450 MethodArgs.push_back(Arg0.get());
14451 }
14452
14453 bool IsError = PrepareArgumentsForCallToObjectOfClassType(
14454 *this, MethodArgs, Method, ArgExpr, LLoc);
14455 if (IsError)
14456 return ExprError();
14457
14458 // Build the actual expression node.
14459 DeclarationNameInfo OpLocInfo(OpName, LLoc);
14460 OpLocInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc));
14461 ExprResult FnExpr = CreateFunctionRefExpr(
14462 *this, FnDecl, Best->FoundDecl, Base, HadMultipleCandidates,
14463 OpLocInfo.getLoc(), OpLocInfo.getInfo());
14464 if (FnExpr.isInvalid())
14465 return ExprError();
14466
14467 // Determine the result type
14468 QualType ResultTy = FnDecl->getReturnType();
14469 ExprValueKind VK = Expr::getValueKindForType(ResultTy);
14470 ResultTy = ResultTy.getNonLValueExprType(Context);
14471
14472 CallExpr *TheCall;
14473 if (Method->isInstance())
14474 TheCall = CXXOperatorCallExpr::Create(
14475 Context, OO_Subscript, FnExpr.get(), MethodArgs, ResultTy, VK,
14476 RLoc, CurFPFeatureOverrides());
14477 else
14478 TheCall =
14479 CallExpr::Create(Context, FnExpr.get(), MethodArgs, ResultTy, VK,
14480 RLoc, CurFPFeatureOverrides());
14481
14482 if (CheckCallReturnType(FnDecl->getReturnType(), LLoc, TheCall, FnDecl))
14483 return ExprError();
14484
14485 if (CheckFunctionCall(Method, TheCall,
14486 Method->getType()->castAs<FunctionProtoType>()))
14487 return ExprError();
14488
14489 return CheckForImmediateInvocation(MaybeBindToTemporary(TheCall),
14490 FnDecl);
14491 } else {
14492 // We matched a built-in operator. Convert the arguments, then
14493 // break out so that we will build the appropriate built-in
14494 // operator node.
14495 ExprResult ArgsRes0 = PerformImplicitConversion(
14496 Args[0], Best->BuiltinParamTypes[0], Best->Conversions[0],
14497 AA_Passing, CCK_ForBuiltinOverloadedOp);
14498 if (ArgsRes0.isInvalid())
14499 return ExprError();
14500 Args[0] = ArgsRes0.get();
14501
14502 ExprResult ArgsRes1 = PerformImplicitConversion(
14503 Args[1], Best->BuiltinParamTypes[1], Best->Conversions[1],
14504 AA_Passing, CCK_ForBuiltinOverloadedOp);
14505 if (ArgsRes1.isInvalid())
14506 return ExprError();
14507 Args[1] = ArgsRes1.get();
14508
14509 break;
14510 }
14511 }
14512
14513 case OR_No_Viable_Function: {
14514 PartialDiagnostic PD =
14515 CandidateSet.empty()
14516 ? (PDiag(diag::err_ovl_no_oper)
14517 << Args[0]->getType() << /*subscript*/ 0
14518 << Args[0]->getSourceRange() << Range)
14519 : (PDiag(diag::err_ovl_no_viable_subscript)
14520 << Args[0]->getType() << Args[0]->getSourceRange() << Range);
14521 CandidateSet.NoteCandidates(PartialDiagnosticAt(LLoc, PD), *this,
14522 OCD_AllCandidates, ArgExpr, "[]", LLoc);
14523 return ExprError();
14524 }
14525
14526 case OR_Ambiguous:
14527 if (Args.size() == 2) {
14528 CandidateSet.NoteCandidates(
14529 PartialDiagnosticAt(
14530 LLoc, PDiag(diag::err_ovl_ambiguous_oper_binary)
14531 << "[]" << Args[0]->getType() << Args[1]->getType()
14532 << Args[0]->getSourceRange() << Range),
14533 *this, OCD_AmbiguousCandidates, Args, "[]", LLoc);
14534 } else {
14535 CandidateSet.NoteCandidates(
14536 PartialDiagnosticAt(LLoc,
14537 PDiag(diag::err_ovl_ambiguous_subscript_call)
14538 << Args[0]->getType()
14539 << Args[0]->getSourceRange() << Range),
14540 *this, OCD_AmbiguousCandidates, Args, "[]", LLoc);
14541 }
14542 return ExprError();
14543
14544 case OR_Deleted:
14545 CandidateSet.NoteCandidates(
14546 PartialDiagnosticAt(LLoc, PDiag(diag::err_ovl_deleted_oper)
14547 << "[]" << Args[0]->getSourceRange()
14548 << Range),
14549 *this, OCD_AllCandidates, Args, "[]", LLoc);
14550 return ExprError();
14551 }
14552
14553 // We matched a built-in operator; build it.
14554 return CreateBuiltinArraySubscriptExpr(Args[0], LLoc, Args[1], RLoc);
14555 }
14556
14557 /// BuildCallToMemberFunction - Build a call to a member
14558 /// function. MemExpr is the expression that refers to the member
14559 /// function (and includes the object parameter), Args/NumArgs are the
14560 /// arguments to the function call (not including the object
14561 /// parameter). The caller needs to validate that the member
14562 /// expression refers to a non-static member function or an overloaded
14563 /// member function.
BuildCallToMemberFunction(Scope * S,Expr * MemExprE,SourceLocation LParenLoc,MultiExprArg Args,SourceLocation RParenLoc,Expr * ExecConfig,bool IsExecConfig,bool AllowRecovery)14564 ExprResult Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
14565 SourceLocation LParenLoc,
14566 MultiExprArg Args,
14567 SourceLocation RParenLoc,
14568 Expr *ExecConfig, bool IsExecConfig,
14569 bool AllowRecovery) {
14570 assert(MemExprE->getType() == Context.BoundMemberTy ||
14571 MemExprE->getType() == Context.OverloadTy);
14572
14573 // Dig out the member expression. This holds both the object
14574 // argument and the member function we're referring to.
14575 Expr *NakedMemExpr = MemExprE->IgnoreParens();
14576
14577 // Determine whether this is a call to a pointer-to-member function.
14578 if (BinaryOperator *op = dyn_cast<BinaryOperator>(NakedMemExpr)) {
14579 assert(op->getType() == Context.BoundMemberTy);
14580 assert(op->getOpcode() == BO_PtrMemD || op->getOpcode() == BO_PtrMemI);
14581
14582 QualType fnType =
14583 op->getRHS()->getType()->castAs<MemberPointerType>()->getPointeeType();
14584
14585 const FunctionProtoType *proto = fnType->castAs<FunctionProtoType>();
14586 QualType resultType = proto->getCallResultType(Context);
14587 ExprValueKind valueKind = Expr::getValueKindForType(proto->getReturnType());
14588
14589 // Check that the object type isn't more qualified than the
14590 // member function we're calling.
14591 Qualifiers funcQuals = proto->getMethodQuals();
14592
14593 QualType objectType = op->getLHS()->getType();
14594 if (op->getOpcode() == BO_PtrMemI)
14595 objectType = objectType->castAs<PointerType>()->getPointeeType();
14596 Qualifiers objectQuals = objectType.getQualifiers();
14597
14598 Qualifiers difference = objectQuals - funcQuals;
14599 difference.removeObjCGCAttr();
14600 difference.removeAddressSpace();
14601 if (difference) {
14602 std::string qualsString = difference.getAsString();
14603 Diag(LParenLoc, diag::err_pointer_to_member_call_drops_quals)
14604 << fnType.getUnqualifiedType()
14605 << qualsString
14606 << (qualsString.find(' ') == std::string::npos ? 1 : 2);
14607 }
14608
14609 CXXMemberCallExpr *call = CXXMemberCallExpr::Create(
14610 Context, MemExprE, Args, resultType, valueKind, RParenLoc,
14611 CurFPFeatureOverrides(), proto->getNumParams());
14612
14613 if (CheckCallReturnType(proto->getReturnType(), op->getRHS()->getBeginLoc(),
14614 call, nullptr))
14615 return ExprError();
14616
14617 if (ConvertArgumentsForCall(call, op, nullptr, proto, Args, RParenLoc))
14618 return ExprError();
14619
14620 if (CheckOtherCall(call, proto))
14621 return ExprError();
14622
14623 return MaybeBindToTemporary(call);
14624 }
14625
14626 // We only try to build a recovery expr at this level if we can preserve
14627 // the return type, otherwise we return ExprError() and let the caller
14628 // recover.
14629 auto BuildRecoveryExpr = [&](QualType Type) {
14630 if (!AllowRecovery)
14631 return ExprError();
14632 std::vector<Expr *> SubExprs = {MemExprE};
14633 llvm::append_range(SubExprs, Args);
14634 return CreateRecoveryExpr(MemExprE->getBeginLoc(), RParenLoc, SubExprs,
14635 Type);
14636 };
14637 if (isa<CXXPseudoDestructorExpr>(NakedMemExpr))
14638 return CallExpr::Create(Context, MemExprE, Args, Context.VoidTy, VK_PRValue,
14639 RParenLoc, CurFPFeatureOverrides());
14640
14641 UnbridgedCastsSet UnbridgedCasts;
14642 if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts))
14643 return ExprError();
14644
14645 MemberExpr *MemExpr;
14646 CXXMethodDecl *Method = nullptr;
14647 DeclAccessPair FoundDecl = DeclAccessPair::make(nullptr, AS_public);
14648 NestedNameSpecifier *Qualifier = nullptr;
14649 if (isa<MemberExpr>(NakedMemExpr)) {
14650 MemExpr = cast<MemberExpr>(NakedMemExpr);
14651 Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl());
14652 FoundDecl = MemExpr->getFoundDecl();
14653 Qualifier = MemExpr->getQualifier();
14654 UnbridgedCasts.restore();
14655 } else {
14656 UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr);
14657 Qualifier = UnresExpr->getQualifier();
14658
14659 QualType ObjectType = UnresExpr->getBaseType();
14660 Expr::Classification ObjectClassification
14661 = UnresExpr->isArrow()? Expr::Classification::makeSimpleLValue()
14662 : UnresExpr->getBase()->Classify(Context);
14663
14664 // Add overload candidates
14665 OverloadCandidateSet CandidateSet(UnresExpr->getMemberLoc(),
14666 OverloadCandidateSet::CSK_Normal);
14667
14668 // FIXME: avoid copy.
14669 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr;
14670 if (UnresExpr->hasExplicitTemplateArgs()) {
14671 UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
14672 TemplateArgs = &TemplateArgsBuffer;
14673 }
14674
14675 for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(),
14676 E = UnresExpr->decls_end(); I != E; ++I) {
14677
14678 NamedDecl *Func = *I;
14679 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext());
14680 if (isa<UsingShadowDecl>(Func))
14681 Func = cast<UsingShadowDecl>(Func)->getTargetDecl();
14682
14683
14684 // Microsoft supports direct constructor calls.
14685 if (getLangOpts().MicrosoftExt && isa<CXXConstructorDecl>(Func)) {
14686 AddOverloadCandidate(cast<CXXConstructorDecl>(Func), I.getPair(), Args,
14687 CandidateSet,
14688 /*SuppressUserConversions*/ false);
14689 } else if ((Method = dyn_cast<CXXMethodDecl>(Func))) {
14690 // If explicit template arguments were provided, we can't call a
14691 // non-template member function.
14692 if (TemplateArgs)
14693 continue;
14694
14695 AddMethodCandidate(Method, I.getPair(), ActingDC, ObjectType,
14696 ObjectClassification, Args, CandidateSet,
14697 /*SuppressUserConversions=*/false);
14698 } else {
14699 AddMethodTemplateCandidate(
14700 cast<FunctionTemplateDecl>(Func), I.getPair(), ActingDC,
14701 TemplateArgs, ObjectType, ObjectClassification, Args, CandidateSet,
14702 /*SuppressUserConversions=*/false);
14703 }
14704 }
14705
14706 DeclarationName DeclName = UnresExpr->getMemberName();
14707
14708 UnbridgedCasts.restore();
14709
14710 OverloadCandidateSet::iterator Best;
14711 bool Succeeded = false;
14712 switch (CandidateSet.BestViableFunction(*this, UnresExpr->getBeginLoc(),
14713 Best)) {
14714 case OR_Success:
14715 Method = cast<CXXMethodDecl>(Best->Function);
14716 FoundDecl = Best->FoundDecl;
14717 CheckUnresolvedMemberAccess(UnresExpr, Best->FoundDecl);
14718 if (DiagnoseUseOfOverloadedDecl(Best->FoundDecl, UnresExpr->getNameLoc()))
14719 break;
14720 // If FoundDecl is different from Method (such as if one is a template
14721 // and the other a specialization), make sure DiagnoseUseOfDecl is
14722 // called on both.
14723 // FIXME: This would be more comprehensively addressed by modifying
14724 // DiagnoseUseOfDecl to accept both the FoundDecl and the decl
14725 // being used.
14726 if (Method != FoundDecl.getDecl() &&
14727 DiagnoseUseOfOverloadedDecl(Method, UnresExpr->getNameLoc()))
14728 break;
14729 Succeeded = true;
14730 break;
14731
14732 case OR_No_Viable_Function:
14733 CandidateSet.NoteCandidates(
14734 PartialDiagnosticAt(
14735 UnresExpr->getMemberLoc(),
14736 PDiag(diag::err_ovl_no_viable_member_function_in_call)
14737 << DeclName << MemExprE->getSourceRange()),
14738 *this, OCD_AllCandidates, Args);
14739 break;
14740 case OR_Ambiguous:
14741 CandidateSet.NoteCandidates(
14742 PartialDiagnosticAt(UnresExpr->getMemberLoc(),
14743 PDiag(diag::err_ovl_ambiguous_member_call)
14744 << DeclName << MemExprE->getSourceRange()),
14745 *this, OCD_AmbiguousCandidates, Args);
14746 break;
14747 case OR_Deleted:
14748 CandidateSet.NoteCandidates(
14749 PartialDiagnosticAt(UnresExpr->getMemberLoc(),
14750 PDiag(diag::err_ovl_deleted_member_call)
14751 << DeclName << MemExprE->getSourceRange()),
14752 *this, OCD_AllCandidates, Args);
14753 break;
14754 }
14755 // Overload resolution fails, try to recover.
14756 if (!Succeeded)
14757 return BuildRecoveryExpr(chooseRecoveryType(CandidateSet, &Best));
14758
14759 MemExprE = FixOverloadedFunctionReference(MemExprE, FoundDecl, Method);
14760
14761 // If overload resolution picked a static member, build a
14762 // non-member call based on that function.
14763 if (Method->isStatic()) {
14764 return BuildResolvedCallExpr(MemExprE, Method, LParenLoc, Args, RParenLoc,
14765 ExecConfig, IsExecConfig);
14766 }
14767
14768 MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens());
14769 }
14770
14771 QualType ResultType = Method->getReturnType();
14772 ExprValueKind VK = Expr::getValueKindForType(ResultType);
14773 ResultType = ResultType.getNonLValueExprType(Context);
14774
14775 assert(Method && "Member call to something that isn't a method?");
14776 const auto *Proto = Method->getType()->castAs<FunctionProtoType>();
14777 CXXMemberCallExpr *TheCall = CXXMemberCallExpr::Create(
14778 Context, MemExprE, Args, ResultType, VK, RParenLoc,
14779 CurFPFeatureOverrides(), Proto->getNumParams());
14780
14781 // Check for a valid return type.
14782 if (CheckCallReturnType(Method->getReturnType(), MemExpr->getMemberLoc(),
14783 TheCall, Method))
14784 return BuildRecoveryExpr(ResultType);
14785
14786 // Convert the object argument (for a non-static member function call).
14787 // We only need to do this if there was actually an overload; otherwise
14788 // it was done at lookup.
14789 if (!Method->isStatic()) {
14790 ExprResult ObjectArg =
14791 PerformObjectArgumentInitialization(MemExpr->getBase(), Qualifier,
14792 FoundDecl, Method);
14793 if (ObjectArg.isInvalid())
14794 return ExprError();
14795 MemExpr->setBase(ObjectArg.get());
14796 }
14797
14798 // Convert the rest of the arguments
14799 if (ConvertArgumentsForCall(TheCall, MemExpr, Method, Proto, Args,
14800 RParenLoc))
14801 return BuildRecoveryExpr(ResultType);
14802
14803 DiagnoseSentinelCalls(Method, LParenLoc, Args);
14804
14805 if (CheckFunctionCall(Method, TheCall, Proto))
14806 return ExprError();
14807
14808 // In the case the method to call was not selected by the overloading
14809 // resolution process, we still need to handle the enable_if attribute. Do
14810 // that here, so it will not hide previous -- and more relevant -- errors.
14811 if (auto *MemE = dyn_cast<MemberExpr>(NakedMemExpr)) {
14812 if (const EnableIfAttr *Attr =
14813 CheckEnableIf(Method, LParenLoc, Args, true)) {
14814 Diag(MemE->getMemberLoc(),
14815 diag::err_ovl_no_viable_member_function_in_call)
14816 << Method << Method->getSourceRange();
14817 Diag(Method->getLocation(),
14818 diag::note_ovl_candidate_disabled_by_function_cond_attr)
14819 << Attr->getCond()->getSourceRange() << Attr->getMessage();
14820 return ExprError();
14821 }
14822 }
14823
14824 if ((isa<CXXConstructorDecl>(CurContext) ||
14825 isa<CXXDestructorDecl>(CurContext)) &&
14826 TheCall->getMethodDecl()->isPure()) {
14827 const CXXMethodDecl *MD = TheCall->getMethodDecl();
14828
14829 if (isa<CXXThisExpr>(MemExpr->getBase()->IgnoreParenCasts()) &&
14830 MemExpr->performsVirtualDispatch(getLangOpts())) {
14831 Diag(MemExpr->getBeginLoc(),
14832 diag::warn_call_to_pure_virtual_member_function_from_ctor_dtor)
14833 << MD->getDeclName() << isa<CXXDestructorDecl>(CurContext)
14834 << MD->getParent();
14835
14836 Diag(MD->getBeginLoc(), diag::note_previous_decl) << MD->getDeclName();
14837 if (getLangOpts().AppleKext)
14838 Diag(MemExpr->getBeginLoc(), diag::note_pure_qualified_call_kext)
14839 << MD->getParent() << MD->getDeclName();
14840 }
14841 }
14842
14843 if (CXXDestructorDecl *DD =
14844 dyn_cast<CXXDestructorDecl>(TheCall->getMethodDecl())) {
14845 // a->A::f() doesn't go through the vtable, except in AppleKext mode.
14846 bool CallCanBeVirtual = !MemExpr->hasQualifier() || getLangOpts().AppleKext;
14847 CheckVirtualDtorCall(DD, MemExpr->getBeginLoc(), /*IsDelete=*/false,
14848 CallCanBeVirtual, /*WarnOnNonAbstractTypes=*/true,
14849 MemExpr->getMemberLoc());
14850 }
14851
14852 return CheckForImmediateInvocation(MaybeBindToTemporary(TheCall),
14853 TheCall->getMethodDecl());
14854 }
14855
14856 /// BuildCallToObjectOfClassType - Build a call to an object of class
14857 /// type (C++ [over.call.object]), which can end up invoking an
14858 /// overloaded function call operator (@c operator()) or performing a
14859 /// user-defined conversion on the object argument.
14860 ExprResult
BuildCallToObjectOfClassType(Scope * S,Expr * Obj,SourceLocation LParenLoc,MultiExprArg Args,SourceLocation RParenLoc)14861 Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Obj,
14862 SourceLocation LParenLoc,
14863 MultiExprArg Args,
14864 SourceLocation RParenLoc) {
14865 if (checkPlaceholderForOverload(*this, Obj))
14866 return ExprError();
14867 ExprResult Object = Obj;
14868
14869 UnbridgedCastsSet UnbridgedCasts;
14870 if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts))
14871 return ExprError();
14872
14873 assert(Object.get()->getType()->isRecordType() &&
14874 "Requires object type argument");
14875
14876 // C++ [over.call.object]p1:
14877 // If the primary-expression E in the function call syntax
14878 // evaluates to a class object of type "cv T", then the set of
14879 // candidate functions includes at least the function call
14880 // operators of T. The function call operators of T are obtained by
14881 // ordinary lookup of the name operator() in the context of
14882 // (E).operator().
14883 OverloadCandidateSet CandidateSet(LParenLoc,
14884 OverloadCandidateSet::CSK_Operator);
14885 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
14886
14887 if (RequireCompleteType(LParenLoc, Object.get()->getType(),
14888 diag::err_incomplete_object_call, Object.get()))
14889 return true;
14890
14891 const auto *Record = Object.get()->getType()->castAs<RecordType>();
14892 LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName);
14893 LookupQualifiedName(R, Record->getDecl());
14894 R.suppressDiagnostics();
14895
14896 for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
14897 Oper != OperEnd; ++Oper) {
14898 AddMethodCandidate(Oper.getPair(), Object.get()->getType(),
14899 Object.get()->Classify(Context), Args, CandidateSet,
14900 /*SuppressUserConversion=*/false);
14901 }
14902
14903 // C++ [over.call.object]p2:
14904 // In addition, for each (non-explicit in C++0x) conversion function
14905 // declared in T of the form
14906 //
14907 // operator conversion-type-id () cv-qualifier;
14908 //
14909 // where cv-qualifier is the same cv-qualification as, or a
14910 // greater cv-qualification than, cv, and where conversion-type-id
14911 // denotes the type "pointer to function of (P1,...,Pn) returning
14912 // R", or the type "reference to pointer to function of
14913 // (P1,...,Pn) returning R", or the type "reference to function
14914 // of (P1,...,Pn) returning R", a surrogate call function [...]
14915 // is also considered as a candidate function. Similarly,
14916 // surrogate call functions are added to the set of candidate
14917 // functions for each conversion function declared in an
14918 // accessible base class provided the function is not hidden
14919 // within T by another intervening declaration.
14920 const auto &Conversions =
14921 cast<CXXRecordDecl>(Record->getDecl())->getVisibleConversionFunctions();
14922 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
14923 NamedDecl *D = *I;
14924 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
14925 if (isa<UsingShadowDecl>(D))
14926 D = cast<UsingShadowDecl>(D)->getTargetDecl();
14927
14928 // Skip over templated conversion functions; they aren't
14929 // surrogates.
14930 if (isa<FunctionTemplateDecl>(D))
14931 continue;
14932
14933 CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
14934 if (!Conv->isExplicit()) {
14935 // Strip the reference type (if any) and then the pointer type (if
14936 // any) to get down to what might be a function type.
14937 QualType ConvType = Conv->getConversionType().getNonReferenceType();
14938 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
14939 ConvType = ConvPtrType->getPointeeType();
14940
14941 if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>())
14942 {
14943 AddSurrogateCandidate(Conv, I.getPair(), ActingContext, Proto,
14944 Object.get(), Args, CandidateSet);
14945 }
14946 }
14947 }
14948
14949 bool HadMultipleCandidates = (CandidateSet.size() > 1);
14950
14951 // Perform overload resolution.
14952 OverloadCandidateSet::iterator Best;
14953 switch (CandidateSet.BestViableFunction(*this, Object.get()->getBeginLoc(),
14954 Best)) {
14955 case OR_Success:
14956 // Overload resolution succeeded; we'll build the appropriate call
14957 // below.
14958 break;
14959
14960 case OR_No_Viable_Function: {
14961 PartialDiagnostic PD =
14962 CandidateSet.empty()
14963 ? (PDiag(diag::err_ovl_no_oper)
14964 << Object.get()->getType() << /*call*/ 1
14965 << Object.get()->getSourceRange())
14966 : (PDiag(diag::err_ovl_no_viable_object_call)
14967 << Object.get()->getType() << Object.get()->getSourceRange());
14968 CandidateSet.NoteCandidates(
14969 PartialDiagnosticAt(Object.get()->getBeginLoc(), PD), *this,
14970 OCD_AllCandidates, Args);
14971 break;
14972 }
14973 case OR_Ambiguous:
14974 CandidateSet.NoteCandidates(
14975 PartialDiagnosticAt(Object.get()->getBeginLoc(),
14976 PDiag(diag::err_ovl_ambiguous_object_call)
14977 << Object.get()->getType()
14978 << Object.get()->getSourceRange()),
14979 *this, OCD_AmbiguousCandidates, Args);
14980 break;
14981
14982 case OR_Deleted:
14983 CandidateSet.NoteCandidates(
14984 PartialDiagnosticAt(Object.get()->getBeginLoc(),
14985 PDiag(diag::err_ovl_deleted_object_call)
14986 << Object.get()->getType()
14987 << Object.get()->getSourceRange()),
14988 *this, OCD_AllCandidates, Args);
14989 break;
14990 }
14991
14992 if (Best == CandidateSet.end())
14993 return true;
14994
14995 UnbridgedCasts.restore();
14996
14997 if (Best->Function == nullptr) {
14998 // Since there is no function declaration, this is one of the
14999 // surrogate candidates. Dig out the conversion function.
15000 CXXConversionDecl *Conv
15001 = cast<CXXConversionDecl>(
15002 Best->Conversions[0].UserDefined.ConversionFunction);
15003
15004 CheckMemberOperatorAccess(LParenLoc, Object.get(), nullptr,
15005 Best->FoundDecl);
15006 if (DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc))
15007 return ExprError();
15008 assert(Conv == Best->FoundDecl.getDecl() &&
15009 "Found Decl & conversion-to-functionptr should be same, right?!");
15010 // We selected one of the surrogate functions that converts the
15011 // object parameter to a function pointer. Perform the conversion
15012 // on the object argument, then let BuildCallExpr finish the job.
15013
15014 // Create an implicit member expr to refer to the conversion operator.
15015 // and then call it.
15016 ExprResult Call = BuildCXXMemberCallExpr(Object.get(), Best->FoundDecl,
15017 Conv, HadMultipleCandidates);
15018 if (Call.isInvalid())
15019 return ExprError();
15020 // Record usage of conversion in an implicit cast.
15021 Call = ImplicitCastExpr::Create(
15022 Context, Call.get()->getType(), CK_UserDefinedConversion, Call.get(),
15023 nullptr, VK_PRValue, CurFPFeatureOverrides());
15024
15025 return BuildCallExpr(S, Call.get(), LParenLoc, Args, RParenLoc);
15026 }
15027
15028 CheckMemberOperatorAccess(LParenLoc, Object.get(), nullptr, Best->FoundDecl);
15029
15030 // We found an overloaded operator(). Build a CXXOperatorCallExpr
15031 // that calls this method, using Object for the implicit object
15032 // parameter and passing along the remaining arguments.
15033 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
15034
15035 // An error diagnostic has already been printed when parsing the declaration.
15036 if (Method->isInvalidDecl())
15037 return ExprError();
15038
15039 const auto *Proto = Method->getType()->castAs<FunctionProtoType>();
15040 unsigned NumParams = Proto->getNumParams();
15041
15042 DeclarationNameInfo OpLocInfo(
15043 Context.DeclarationNames.getCXXOperatorName(OO_Call), LParenLoc);
15044 OpLocInfo.setCXXOperatorNameRange(SourceRange(LParenLoc, RParenLoc));
15045 ExprResult NewFn = CreateFunctionRefExpr(*this, Method, Best->FoundDecl,
15046 Obj, HadMultipleCandidates,
15047 OpLocInfo.getLoc(),
15048 OpLocInfo.getInfo());
15049 if (NewFn.isInvalid())
15050 return true;
15051
15052 SmallVector<Expr *, 8> MethodArgs;
15053 MethodArgs.reserve(NumParams + 1);
15054
15055 bool IsError = false;
15056
15057 // Initialize the implicit object parameter if needed.
15058 // Since C++2b, this could also be a call to a static call operator
15059 // which we emit as a regular CallExpr.
15060 if (Method->isInstance()) {
15061 ExprResult ObjRes = PerformObjectArgumentInitialization(
15062 Object.get(), /*Qualifier=*/nullptr, Best->FoundDecl, Method);
15063 if (ObjRes.isInvalid())
15064 IsError = true;
15065 else
15066 Object = ObjRes;
15067 MethodArgs.push_back(Object.get());
15068 }
15069
15070 IsError |= PrepareArgumentsForCallToObjectOfClassType(
15071 *this, MethodArgs, Method, Args, LParenLoc);
15072
15073 // If this is a variadic call, handle args passed through "...".
15074 if (Proto->isVariadic()) {
15075 // Promote the arguments (C99 6.5.2.2p7).
15076 for (unsigned i = NumParams, e = Args.size(); i < e; i++) {
15077 ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod,
15078 nullptr);
15079 IsError |= Arg.isInvalid();
15080 MethodArgs.push_back(Arg.get());
15081 }
15082 }
15083
15084 if (IsError)
15085 return true;
15086
15087 DiagnoseSentinelCalls(Method, LParenLoc, Args);
15088
15089 // Once we've built TheCall, all of the expressions are properly owned.
15090 QualType ResultTy = Method->getReturnType();
15091 ExprValueKind VK = Expr::getValueKindForType(ResultTy);
15092 ResultTy = ResultTy.getNonLValueExprType(Context);
15093
15094 CallExpr *TheCall;
15095 if (Method->isInstance())
15096 TheCall = CXXOperatorCallExpr::Create(Context, OO_Call, NewFn.get(),
15097 MethodArgs, ResultTy, VK, RParenLoc,
15098 CurFPFeatureOverrides());
15099 else
15100 TheCall = CallExpr::Create(Context, NewFn.get(), MethodArgs, ResultTy, VK,
15101 RParenLoc, CurFPFeatureOverrides());
15102
15103 if (CheckCallReturnType(Method->getReturnType(), LParenLoc, TheCall, Method))
15104 return true;
15105
15106 if (CheckFunctionCall(Method, TheCall, Proto))
15107 return true;
15108
15109 return CheckForImmediateInvocation(MaybeBindToTemporary(TheCall), Method);
15110 }
15111
15112 /// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
15113 /// (if one exists), where @c Base is an expression of class type and
15114 /// @c Member is the name of the member we're trying to find.
15115 ExprResult
BuildOverloadedArrowExpr(Scope * S,Expr * Base,SourceLocation OpLoc,bool * NoArrowOperatorFound)15116 Sema::BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc,
15117 bool *NoArrowOperatorFound) {
15118 assert(Base->getType()->isRecordType() &&
15119 "left-hand side must have class type");
15120
15121 if (checkPlaceholderForOverload(*this, Base))
15122 return ExprError();
15123
15124 SourceLocation Loc = Base->getExprLoc();
15125
15126 // C++ [over.ref]p1:
15127 //
15128 // [...] An expression x->m is interpreted as (x.operator->())->m
15129 // for a class object x of type T if T::operator->() exists and if
15130 // the operator is selected as the best match function by the
15131 // overload resolution mechanism (13.3).
15132 DeclarationName OpName =
15133 Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
15134 OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Operator);
15135
15136 if (RequireCompleteType(Loc, Base->getType(),
15137 diag::err_typecheck_incomplete_tag, Base))
15138 return ExprError();
15139
15140 LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName);
15141 LookupQualifiedName(R, Base->getType()->castAs<RecordType>()->getDecl());
15142 R.suppressDiagnostics();
15143
15144 for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
15145 Oper != OperEnd; ++Oper) {
15146 AddMethodCandidate(Oper.getPair(), Base->getType(), Base->Classify(Context),
15147 std::nullopt, CandidateSet,
15148 /*SuppressUserConversion=*/false);
15149 }
15150
15151 bool HadMultipleCandidates = (CandidateSet.size() > 1);
15152
15153 // Perform overload resolution.
15154 OverloadCandidateSet::iterator Best;
15155 switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
15156 case OR_Success:
15157 // Overload resolution succeeded; we'll build the call below.
15158 break;
15159
15160 case OR_No_Viable_Function: {
15161 auto Cands = CandidateSet.CompleteCandidates(*this, OCD_AllCandidates, Base);
15162 if (CandidateSet.empty()) {
15163 QualType BaseType = Base->getType();
15164 if (NoArrowOperatorFound) {
15165 // Report this specific error to the caller instead of emitting a
15166 // diagnostic, as requested.
15167 *NoArrowOperatorFound = true;
15168 return ExprError();
15169 }
15170 Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
15171 << BaseType << Base->getSourceRange();
15172 if (BaseType->isRecordType() && !BaseType->isPointerType()) {
15173 Diag(OpLoc, diag::note_typecheck_member_reference_suggestion)
15174 << FixItHint::CreateReplacement(OpLoc, ".");
15175 }
15176 } else
15177 Diag(OpLoc, diag::err_ovl_no_viable_oper)
15178 << "operator->" << Base->getSourceRange();
15179 CandidateSet.NoteCandidates(*this, Base, Cands);
15180 return ExprError();
15181 }
15182 case OR_Ambiguous:
15183 CandidateSet.NoteCandidates(
15184 PartialDiagnosticAt(OpLoc, PDiag(diag::err_ovl_ambiguous_oper_unary)
15185 << "->" << Base->getType()
15186 << Base->getSourceRange()),
15187 *this, OCD_AmbiguousCandidates, Base);
15188 return ExprError();
15189
15190 case OR_Deleted:
15191 CandidateSet.NoteCandidates(
15192 PartialDiagnosticAt(OpLoc, PDiag(diag::err_ovl_deleted_oper)
15193 << "->" << Base->getSourceRange()),
15194 *this, OCD_AllCandidates, Base);
15195 return ExprError();
15196 }
15197
15198 CheckMemberOperatorAccess(OpLoc, Base, nullptr, Best->FoundDecl);
15199
15200 // Convert the object parameter.
15201 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
15202 ExprResult BaseResult =
15203 PerformObjectArgumentInitialization(Base, /*Qualifier=*/nullptr,
15204 Best->FoundDecl, Method);
15205 if (BaseResult.isInvalid())
15206 return ExprError();
15207 Base = BaseResult.get();
15208
15209 // Build the operator call.
15210 ExprResult FnExpr = CreateFunctionRefExpr(*this, Method, Best->FoundDecl,
15211 Base, HadMultipleCandidates, OpLoc);
15212 if (FnExpr.isInvalid())
15213 return ExprError();
15214
15215 QualType ResultTy = Method->getReturnType();
15216 ExprValueKind VK = Expr::getValueKindForType(ResultTy);
15217 ResultTy = ResultTy.getNonLValueExprType(Context);
15218 CXXOperatorCallExpr *TheCall =
15219 CXXOperatorCallExpr::Create(Context, OO_Arrow, FnExpr.get(), Base,
15220 ResultTy, VK, OpLoc, CurFPFeatureOverrides());
15221
15222 if (CheckCallReturnType(Method->getReturnType(), OpLoc, TheCall, Method))
15223 return ExprError();
15224
15225 if (CheckFunctionCall(Method, TheCall,
15226 Method->getType()->castAs<FunctionProtoType>()))
15227 return ExprError();
15228
15229 return CheckForImmediateInvocation(MaybeBindToTemporary(TheCall), Method);
15230 }
15231
15232 /// BuildLiteralOperatorCall - Build a UserDefinedLiteral by creating a call to
15233 /// a literal operator described by the provided lookup results.
BuildLiteralOperatorCall(LookupResult & R,DeclarationNameInfo & SuffixInfo,ArrayRef<Expr * > Args,SourceLocation LitEndLoc,TemplateArgumentListInfo * TemplateArgs)15234 ExprResult Sema::BuildLiteralOperatorCall(LookupResult &R,
15235 DeclarationNameInfo &SuffixInfo,
15236 ArrayRef<Expr*> Args,
15237 SourceLocation LitEndLoc,
15238 TemplateArgumentListInfo *TemplateArgs) {
15239 SourceLocation UDSuffixLoc = SuffixInfo.getCXXLiteralOperatorNameLoc();
15240
15241 OverloadCandidateSet CandidateSet(UDSuffixLoc,
15242 OverloadCandidateSet::CSK_Normal);
15243 AddNonMemberOperatorCandidates(R.asUnresolvedSet(), Args, CandidateSet,
15244 TemplateArgs);
15245
15246 bool HadMultipleCandidates = (CandidateSet.size() > 1);
15247
15248 // Perform overload resolution. This will usually be trivial, but might need
15249 // to perform substitutions for a literal operator template.
15250 OverloadCandidateSet::iterator Best;
15251 switch (CandidateSet.BestViableFunction(*this, UDSuffixLoc, Best)) {
15252 case OR_Success:
15253 case OR_Deleted:
15254 break;
15255
15256 case OR_No_Viable_Function:
15257 CandidateSet.NoteCandidates(
15258 PartialDiagnosticAt(UDSuffixLoc,
15259 PDiag(diag::err_ovl_no_viable_function_in_call)
15260 << R.getLookupName()),
15261 *this, OCD_AllCandidates, Args);
15262 return ExprError();
15263
15264 case OR_Ambiguous:
15265 CandidateSet.NoteCandidates(
15266 PartialDiagnosticAt(R.getNameLoc(), PDiag(diag::err_ovl_ambiguous_call)
15267 << R.getLookupName()),
15268 *this, OCD_AmbiguousCandidates, Args);
15269 return ExprError();
15270 }
15271
15272 FunctionDecl *FD = Best->Function;
15273 ExprResult Fn = CreateFunctionRefExpr(*this, FD, Best->FoundDecl,
15274 nullptr, HadMultipleCandidates,
15275 SuffixInfo.getLoc(),
15276 SuffixInfo.getInfo());
15277 if (Fn.isInvalid())
15278 return true;
15279
15280 // Check the argument types. This should almost always be a no-op, except
15281 // that array-to-pointer decay is applied to string literals.
15282 Expr *ConvArgs[2];
15283 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
15284 ExprResult InputInit = PerformCopyInitialization(
15285 InitializedEntity::InitializeParameter(Context, FD->getParamDecl(ArgIdx)),
15286 SourceLocation(), Args[ArgIdx]);
15287 if (InputInit.isInvalid())
15288 return true;
15289 ConvArgs[ArgIdx] = InputInit.get();
15290 }
15291
15292 QualType ResultTy = FD->getReturnType();
15293 ExprValueKind VK = Expr::getValueKindForType(ResultTy);
15294 ResultTy = ResultTy.getNonLValueExprType(Context);
15295
15296 UserDefinedLiteral *UDL = UserDefinedLiteral::Create(
15297 Context, Fn.get(), llvm::ArrayRef(ConvArgs, Args.size()), ResultTy, VK,
15298 LitEndLoc, UDSuffixLoc, CurFPFeatureOverrides());
15299
15300 if (CheckCallReturnType(FD->getReturnType(), UDSuffixLoc, UDL, FD))
15301 return ExprError();
15302
15303 if (CheckFunctionCall(FD, UDL, nullptr))
15304 return ExprError();
15305
15306 return CheckForImmediateInvocation(MaybeBindToTemporary(UDL), FD);
15307 }
15308
15309 /// Build a call to 'begin' or 'end' for a C++11 for-range statement. If the
15310 /// given LookupResult is non-empty, it is assumed to describe a member which
15311 /// will be invoked. Otherwise, the function will be found via argument
15312 /// dependent lookup.
15313 /// CallExpr is set to a valid expression and FRS_Success returned on success,
15314 /// otherwise CallExpr is set to ExprError() and some non-success value
15315 /// is returned.
15316 Sema::ForRangeStatus
BuildForRangeBeginEndCall(SourceLocation Loc,SourceLocation RangeLoc,const DeclarationNameInfo & NameInfo,LookupResult & MemberLookup,OverloadCandidateSet * CandidateSet,Expr * Range,ExprResult * CallExpr)15317 Sema::BuildForRangeBeginEndCall(SourceLocation Loc,
15318 SourceLocation RangeLoc,
15319 const DeclarationNameInfo &NameInfo,
15320 LookupResult &MemberLookup,
15321 OverloadCandidateSet *CandidateSet,
15322 Expr *Range, ExprResult *CallExpr) {
15323 Scope *S = nullptr;
15324
15325 CandidateSet->clear(OverloadCandidateSet::CSK_Normal);
15326 if (!MemberLookup.empty()) {
15327 ExprResult MemberRef =
15328 BuildMemberReferenceExpr(Range, Range->getType(), Loc,
15329 /*IsPtr=*/false, CXXScopeSpec(),
15330 /*TemplateKWLoc=*/SourceLocation(),
15331 /*FirstQualifierInScope=*/nullptr,
15332 MemberLookup,
15333 /*TemplateArgs=*/nullptr, S);
15334 if (MemberRef.isInvalid()) {
15335 *CallExpr = ExprError();
15336 return FRS_DiagnosticIssued;
15337 }
15338 *CallExpr =
15339 BuildCallExpr(S, MemberRef.get(), Loc, std::nullopt, Loc, nullptr);
15340 if (CallExpr->isInvalid()) {
15341 *CallExpr = ExprError();
15342 return FRS_DiagnosticIssued;
15343 }
15344 } else {
15345 ExprResult FnR = CreateUnresolvedLookupExpr(/*NamingClass=*/nullptr,
15346 NestedNameSpecifierLoc(),
15347 NameInfo, UnresolvedSet<0>());
15348 if (FnR.isInvalid())
15349 return FRS_DiagnosticIssued;
15350 UnresolvedLookupExpr *Fn = cast<UnresolvedLookupExpr>(FnR.get());
15351
15352 bool CandidateSetError = buildOverloadedCallSet(S, Fn, Fn, Range, Loc,
15353 CandidateSet, CallExpr);
15354 if (CandidateSet->empty() || CandidateSetError) {
15355 *CallExpr = ExprError();
15356 return FRS_NoViableFunction;
15357 }
15358 OverloadCandidateSet::iterator Best;
15359 OverloadingResult OverloadResult =
15360 CandidateSet->BestViableFunction(*this, Fn->getBeginLoc(), Best);
15361
15362 if (OverloadResult == OR_No_Viable_Function) {
15363 *CallExpr = ExprError();
15364 return FRS_NoViableFunction;
15365 }
15366 *CallExpr = FinishOverloadedCallExpr(*this, S, Fn, Fn, Loc, Range,
15367 Loc, nullptr, CandidateSet, &Best,
15368 OverloadResult,
15369 /*AllowTypoCorrection=*/false);
15370 if (CallExpr->isInvalid() || OverloadResult != OR_Success) {
15371 *CallExpr = ExprError();
15372 return FRS_DiagnosticIssued;
15373 }
15374 }
15375 return FRS_Success;
15376 }
15377
15378
15379 /// FixOverloadedFunctionReference - E is an expression that refers to
15380 /// a C++ overloaded function (possibly with some parentheses and
15381 /// perhaps a '&' around it). We have resolved the overloaded function
15382 /// to the function declaration Fn, so patch up the expression E to
15383 /// refer (possibly indirectly) to Fn. Returns the new expr.
FixOverloadedFunctionReference(Expr * E,DeclAccessPair Found,FunctionDecl * Fn)15384 Expr *Sema::FixOverloadedFunctionReference(Expr *E, DeclAccessPair Found,
15385 FunctionDecl *Fn) {
15386 if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
15387 Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(),
15388 Found, Fn);
15389 if (SubExpr == PE->getSubExpr())
15390 return PE;
15391
15392 return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr);
15393 }
15394
15395 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
15396 Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(),
15397 Found, Fn);
15398 assert(Context.hasSameType(ICE->getSubExpr()->getType(),
15399 SubExpr->getType()) &&
15400 "Implicit cast type cannot be determined from overload");
15401 assert(ICE->path_empty() && "fixing up hierarchy conversion?");
15402 if (SubExpr == ICE->getSubExpr())
15403 return ICE;
15404
15405 return ImplicitCastExpr::Create(Context, ICE->getType(), ICE->getCastKind(),
15406 SubExpr, nullptr, ICE->getValueKind(),
15407 CurFPFeatureOverrides());
15408 }
15409
15410 if (auto *GSE = dyn_cast<GenericSelectionExpr>(E)) {
15411 if (!GSE->isResultDependent()) {
15412 Expr *SubExpr =
15413 FixOverloadedFunctionReference(GSE->getResultExpr(), Found, Fn);
15414 if (SubExpr == GSE->getResultExpr())
15415 return GSE;
15416
15417 // Replace the resulting type information before rebuilding the generic
15418 // selection expression.
15419 ArrayRef<Expr *> A = GSE->getAssocExprs();
15420 SmallVector<Expr *, 4> AssocExprs(A.begin(), A.end());
15421 unsigned ResultIdx = GSE->getResultIndex();
15422 AssocExprs[ResultIdx] = SubExpr;
15423
15424 return GenericSelectionExpr::Create(
15425 Context, GSE->getGenericLoc(), GSE->getControllingExpr(),
15426 GSE->getAssocTypeSourceInfos(), AssocExprs, GSE->getDefaultLoc(),
15427 GSE->getRParenLoc(), GSE->containsUnexpandedParameterPack(),
15428 ResultIdx);
15429 }
15430 // Rather than fall through to the unreachable, return the original generic
15431 // selection expression.
15432 return GSE;
15433 }
15434
15435 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
15436 assert(UnOp->getOpcode() == UO_AddrOf &&
15437 "Can only take the address of an overloaded function");
15438 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
15439 if (Method->isStatic()) {
15440 // Do nothing: static member functions aren't any different
15441 // from non-member functions.
15442 } else {
15443 // Fix the subexpression, which really has to be an
15444 // UnresolvedLookupExpr holding an overloaded member function
15445 // or template.
15446 Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
15447 Found, Fn);
15448 if (SubExpr == UnOp->getSubExpr())
15449 return UnOp;
15450
15451 assert(isa<DeclRefExpr>(SubExpr)
15452 && "fixed to something other than a decl ref");
15453 assert(cast<DeclRefExpr>(SubExpr)->getQualifier()
15454 && "fixed to a member ref with no nested name qualifier");
15455
15456 // We have taken the address of a pointer to member
15457 // function. Perform the computation here so that we get the
15458 // appropriate pointer to member type.
15459 QualType ClassType
15460 = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
15461 QualType MemPtrType
15462 = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr());
15463 // Under the MS ABI, lock down the inheritance model now.
15464 if (Context.getTargetInfo().getCXXABI().isMicrosoft())
15465 (void)isCompleteType(UnOp->getOperatorLoc(), MemPtrType);
15466
15467 return UnaryOperator::Create(
15468 Context, SubExpr, UO_AddrOf, MemPtrType, VK_PRValue, OK_Ordinary,
15469 UnOp->getOperatorLoc(), false, CurFPFeatureOverrides());
15470 }
15471 }
15472 Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
15473 Found, Fn);
15474 if (SubExpr == UnOp->getSubExpr())
15475 return UnOp;
15476
15477 // FIXME: This can't currently fail, but in principle it could.
15478 return CreateBuiltinUnaryOp(UnOp->getOperatorLoc(), UO_AddrOf, SubExpr)
15479 .get();
15480 }
15481
15482 if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
15483 // FIXME: avoid copy.
15484 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr;
15485 if (ULE->hasExplicitTemplateArgs()) {
15486 ULE->copyTemplateArgumentsInto(TemplateArgsBuffer);
15487 TemplateArgs = &TemplateArgsBuffer;
15488 }
15489
15490 QualType Type = Fn->getType();
15491 ExprValueKind ValueKind = getLangOpts().CPlusPlus ? VK_LValue : VK_PRValue;
15492
15493 // FIXME: Duplicated from BuildDeclarationNameExpr.
15494 if (unsigned BID = Fn->getBuiltinID()) {
15495 if (!Context.BuiltinInfo.isDirectlyAddressable(BID)) {
15496 Type = Context.BuiltinFnTy;
15497 ValueKind = VK_PRValue;
15498 }
15499 }
15500
15501 DeclRefExpr *DRE = BuildDeclRefExpr(
15502 Fn, Type, ValueKind, ULE->getNameInfo(), ULE->getQualifierLoc(),
15503 Found.getDecl(), ULE->getTemplateKeywordLoc(), TemplateArgs);
15504 DRE->setHadMultipleCandidates(ULE->getNumDecls() > 1);
15505 return DRE;
15506 }
15507
15508 if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) {
15509 // FIXME: avoid copy.
15510 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr;
15511 if (MemExpr->hasExplicitTemplateArgs()) {
15512 MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
15513 TemplateArgs = &TemplateArgsBuffer;
15514 }
15515
15516 Expr *Base;
15517
15518 // If we're filling in a static method where we used to have an
15519 // implicit member access, rewrite to a simple decl ref.
15520 if (MemExpr->isImplicitAccess()) {
15521 if (cast<CXXMethodDecl>(Fn)->isStatic()) {
15522 DeclRefExpr *DRE = BuildDeclRefExpr(
15523 Fn, Fn->getType(), VK_LValue, MemExpr->getNameInfo(),
15524 MemExpr->getQualifierLoc(), Found.getDecl(),
15525 MemExpr->getTemplateKeywordLoc(), TemplateArgs);
15526 DRE->setHadMultipleCandidates(MemExpr->getNumDecls() > 1);
15527 return DRE;
15528 } else {
15529 SourceLocation Loc = MemExpr->getMemberLoc();
15530 if (MemExpr->getQualifier())
15531 Loc = MemExpr->getQualifierLoc().getBeginLoc();
15532 Base =
15533 BuildCXXThisExpr(Loc, MemExpr->getBaseType(), /*IsImplicit=*/true);
15534 }
15535 } else
15536 Base = MemExpr->getBase();
15537
15538 ExprValueKind valueKind;
15539 QualType type;
15540 if (cast<CXXMethodDecl>(Fn)->isStatic()) {
15541 valueKind = VK_LValue;
15542 type = Fn->getType();
15543 } else {
15544 valueKind = VK_PRValue;
15545 type = Context.BoundMemberTy;
15546 }
15547
15548 return BuildMemberExpr(
15549 Base, MemExpr->isArrow(), MemExpr->getOperatorLoc(),
15550 MemExpr->getQualifierLoc(), MemExpr->getTemplateKeywordLoc(), Fn, Found,
15551 /*HadMultipleCandidates=*/true, MemExpr->getMemberNameInfo(),
15552 type, valueKind, OK_Ordinary, TemplateArgs);
15553 }
15554
15555 llvm_unreachable("Invalid reference to overloaded function");
15556 }
15557
FixOverloadedFunctionReference(ExprResult E,DeclAccessPair Found,FunctionDecl * Fn)15558 ExprResult Sema::FixOverloadedFunctionReference(ExprResult E,
15559 DeclAccessPair Found,
15560 FunctionDecl *Fn) {
15561 return FixOverloadedFunctionReference(E.get(), Found, Fn);
15562 }
15563
shouldEnforceArgLimit(bool PartialOverloading,FunctionDecl * Function)15564 bool clang::shouldEnforceArgLimit(bool PartialOverloading,
15565 FunctionDecl *Function) {
15566 if (!PartialOverloading || !Function)
15567 return true;
15568 if (Function->isVariadic())
15569 return false;
15570 if (const auto *Proto =
15571 dyn_cast<FunctionProtoType>(Function->getFunctionType()))
15572 if (Proto->isTemplateVariadic())
15573 return false;
15574 if (auto *Pattern = Function->getTemplateInstantiationPattern())
15575 if (const auto *Proto =
15576 dyn_cast<FunctionProtoType>(Pattern->getFunctionType()))
15577 if (Proto->isTemplateVariadic())
15578 return false;
15579 return true;
15580 }
15581