1 //===--------------------- SemaLookup.cpp - Name Lookup ------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements name lookup for C, C++, Objective-C, and
11 // Objective-C++.
12 //
13 //===----------------------------------------------------------------------===//
14 #include "clang/Sema/Lookup.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/CXXInheritance.h"
17 #include "clang/AST/Decl.h"
18 #include "clang/AST/DeclCXX.h"
19 #include "clang/AST/DeclLookups.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/DeclTemplate.h"
22 #include "clang/AST/Expr.h"
23 #include "clang/AST/ExprCXX.h"
24 #include "clang/Basic/Builtins.h"
25 #include "clang/Basic/LangOptions.h"
26 #include "clang/Lex/ModuleLoader.h"
27 #include "clang/Sema/DeclSpec.h"
28 #include "clang/Sema/ExternalSemaSource.h"
29 #include "clang/Sema/Overload.h"
30 #include "clang/Sema/Scope.h"
31 #include "clang/Sema/ScopeInfo.h"
32 #include "clang/Sema/Sema.h"
33 #include "clang/Sema/SemaInternal.h"
34 #include "clang/Sema/TemplateDeduction.h"
35 #include "clang/Sema/TypoCorrection.h"
36 #include "llvm/ADT/STLExtras.h"
37 #include "llvm/ADT/SetVector.h"
38 #include "llvm/ADT/SmallPtrSet.h"
39 #include "llvm/ADT/StringMap.h"
40 #include "llvm/ADT/TinyPtrVector.h"
41 #include "llvm/ADT/edit_distance.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include <algorithm>
44 #include <iterator>
45 #include <limits>
46 #include <list>
47 #include <map>
48 #include <set>
49 #include <utility>
50 #include <vector>
51
52 using namespace clang;
53 using namespace sema;
54
55 namespace {
56 class UnqualUsingEntry {
57 const DeclContext *Nominated;
58 const DeclContext *CommonAncestor;
59
60 public:
UnqualUsingEntry(const DeclContext * Nominated,const DeclContext * CommonAncestor)61 UnqualUsingEntry(const DeclContext *Nominated,
62 const DeclContext *CommonAncestor)
63 : Nominated(Nominated), CommonAncestor(CommonAncestor) {
64 }
65
getCommonAncestor() const66 const DeclContext *getCommonAncestor() const {
67 return CommonAncestor;
68 }
69
getNominatedNamespace() const70 const DeclContext *getNominatedNamespace() const {
71 return Nominated;
72 }
73
74 // Sort by the pointer value of the common ancestor.
75 struct Comparator {
operator ()__anondc69e2da0111::UnqualUsingEntry::Comparator76 bool operator()(const UnqualUsingEntry &L, const UnqualUsingEntry &R) {
77 return L.getCommonAncestor() < R.getCommonAncestor();
78 }
79
operator ()__anondc69e2da0111::UnqualUsingEntry::Comparator80 bool operator()(const UnqualUsingEntry &E, const DeclContext *DC) {
81 return E.getCommonAncestor() < DC;
82 }
83
operator ()__anondc69e2da0111::UnqualUsingEntry::Comparator84 bool operator()(const DeclContext *DC, const UnqualUsingEntry &E) {
85 return DC < E.getCommonAncestor();
86 }
87 };
88 };
89
90 /// A collection of using directives, as used by C++ unqualified
91 /// lookup.
92 class UnqualUsingDirectiveSet {
93 typedef SmallVector<UnqualUsingEntry, 8> ListTy;
94
95 ListTy list;
96 llvm::SmallPtrSet<DeclContext*, 8> visited;
97
98 public:
UnqualUsingDirectiveSet()99 UnqualUsingDirectiveSet() {}
100
visitScopeChain(Scope * S,Scope * InnermostFileScope)101 void visitScopeChain(Scope *S, Scope *InnermostFileScope) {
102 // C++ [namespace.udir]p1:
103 // During unqualified name lookup, the names appear as if they
104 // were declared in the nearest enclosing namespace which contains
105 // both the using-directive and the nominated namespace.
106 DeclContext *InnermostFileDC = InnermostFileScope->getEntity();
107 assert(InnermostFileDC && InnermostFileDC->isFileContext());
108
109 for (; S; S = S->getParent()) {
110 // C++ [namespace.udir]p1:
111 // A using-directive shall not appear in class scope, but may
112 // appear in namespace scope or in block scope.
113 DeclContext *Ctx = S->getEntity();
114 if (Ctx && Ctx->isFileContext()) {
115 visit(Ctx, Ctx);
116 } else if (!Ctx || Ctx->isFunctionOrMethod()) {
117 for (auto *I : S->using_directives())
118 visit(I, InnermostFileDC);
119 }
120 }
121 }
122
123 // Visits a context and collect all of its using directives
124 // recursively. Treats all using directives as if they were
125 // declared in the context.
126 //
127 // A given context is only every visited once, so it is important
128 // that contexts be visited from the inside out in order to get
129 // the effective DCs right.
visit(DeclContext * DC,DeclContext * EffectiveDC)130 void visit(DeclContext *DC, DeclContext *EffectiveDC) {
131 if (!visited.insert(DC).second)
132 return;
133
134 addUsingDirectives(DC, EffectiveDC);
135 }
136
137 // Visits a using directive and collects all of its using
138 // directives recursively. Treats all using directives as if they
139 // were declared in the effective DC.
visit(UsingDirectiveDecl * UD,DeclContext * EffectiveDC)140 void visit(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
141 DeclContext *NS = UD->getNominatedNamespace();
142 if (!visited.insert(NS).second)
143 return;
144
145 addUsingDirective(UD, EffectiveDC);
146 addUsingDirectives(NS, EffectiveDC);
147 }
148
149 // Adds all the using directives in a context (and those nominated
150 // by its using directives, transitively) as if they appeared in
151 // the given effective context.
addUsingDirectives(DeclContext * DC,DeclContext * EffectiveDC)152 void addUsingDirectives(DeclContext *DC, DeclContext *EffectiveDC) {
153 SmallVector<DeclContext*,4> queue;
154 while (true) {
155 for (auto UD : DC->using_directives()) {
156 DeclContext *NS = UD->getNominatedNamespace();
157 if (visited.insert(NS).second) {
158 addUsingDirective(UD, EffectiveDC);
159 queue.push_back(NS);
160 }
161 }
162
163 if (queue.empty())
164 return;
165
166 DC = queue.pop_back_val();
167 }
168 }
169
170 // Add a using directive as if it had been declared in the given
171 // context. This helps implement C++ [namespace.udir]p3:
172 // The using-directive is transitive: if a scope contains a
173 // using-directive that nominates a second namespace that itself
174 // contains using-directives, the effect is as if the
175 // using-directives from the second namespace also appeared in
176 // the first.
addUsingDirective(UsingDirectiveDecl * UD,DeclContext * EffectiveDC)177 void addUsingDirective(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
178 // Find the common ancestor between the effective context and
179 // the nominated namespace.
180 DeclContext *Common = UD->getNominatedNamespace();
181 while (!Common->Encloses(EffectiveDC))
182 Common = Common->getParent();
183 Common = Common->getPrimaryContext();
184
185 list.push_back(UnqualUsingEntry(UD->getNominatedNamespace(), Common));
186 }
187
done()188 void done() {
189 std::sort(list.begin(), list.end(), UnqualUsingEntry::Comparator());
190 }
191
192 typedef ListTy::const_iterator const_iterator;
193
begin() const194 const_iterator begin() const { return list.begin(); }
end() const195 const_iterator end() const { return list.end(); }
196
197 std::pair<const_iterator,const_iterator>
getNamespacesFor(DeclContext * DC) const198 getNamespacesFor(DeclContext *DC) const {
199 return std::equal_range(begin(), end(), DC->getPrimaryContext(),
200 UnqualUsingEntry::Comparator());
201 }
202 };
203 }
204
205 // Retrieve the set of identifier namespaces that correspond to a
206 // specific kind of name lookup.
getIDNS(Sema::LookupNameKind NameKind,bool CPlusPlus,bool Redeclaration)207 static inline unsigned getIDNS(Sema::LookupNameKind NameKind,
208 bool CPlusPlus,
209 bool Redeclaration) {
210 unsigned IDNS = 0;
211 switch (NameKind) {
212 case Sema::LookupObjCImplicitSelfParam:
213 case Sema::LookupOrdinaryName:
214 case Sema::LookupRedeclarationWithLinkage:
215 case Sema::LookupLocalFriendName:
216 IDNS = Decl::IDNS_Ordinary;
217 if (CPlusPlus) {
218 IDNS |= Decl::IDNS_Tag | Decl::IDNS_Member | Decl::IDNS_Namespace;
219 if (Redeclaration)
220 IDNS |= Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend;
221 }
222 if (Redeclaration)
223 IDNS |= Decl::IDNS_LocalExtern;
224 break;
225
226 case Sema::LookupOperatorName:
227 // Operator lookup is its own crazy thing; it is not the same
228 // as (e.g.) looking up an operator name for redeclaration.
229 assert(!Redeclaration && "cannot do redeclaration operator lookup");
230 IDNS = Decl::IDNS_NonMemberOperator;
231 break;
232
233 case Sema::LookupTagName:
234 if (CPlusPlus) {
235 IDNS = Decl::IDNS_Type;
236
237 // When looking for a redeclaration of a tag name, we add:
238 // 1) TagFriend to find undeclared friend decls
239 // 2) Namespace because they can't "overload" with tag decls.
240 // 3) Tag because it includes class templates, which can't
241 // "overload" with tag decls.
242 if (Redeclaration)
243 IDNS |= Decl::IDNS_Tag | Decl::IDNS_TagFriend | Decl::IDNS_Namespace;
244 } else {
245 IDNS = Decl::IDNS_Tag;
246 }
247 break;
248
249 case Sema::LookupLabel:
250 IDNS = Decl::IDNS_Label;
251 break;
252
253 case Sema::LookupMemberName:
254 IDNS = Decl::IDNS_Member;
255 if (CPlusPlus)
256 IDNS |= Decl::IDNS_Tag | Decl::IDNS_Ordinary;
257 break;
258
259 case Sema::LookupNestedNameSpecifierName:
260 IDNS = Decl::IDNS_Type | Decl::IDNS_Namespace;
261 break;
262
263 case Sema::LookupNamespaceName:
264 IDNS = Decl::IDNS_Namespace;
265 break;
266
267 case Sema::LookupUsingDeclName:
268 assert(Redeclaration && "should only be used for redecl lookup");
269 IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member |
270 Decl::IDNS_Using | Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend |
271 Decl::IDNS_LocalExtern;
272 break;
273
274 case Sema::LookupObjCProtocolName:
275 IDNS = Decl::IDNS_ObjCProtocol;
276 break;
277
278 case Sema::LookupAnyName:
279 IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member
280 | Decl::IDNS_Using | Decl::IDNS_Namespace | Decl::IDNS_ObjCProtocol
281 | Decl::IDNS_Type;
282 break;
283 }
284 return IDNS;
285 }
286
configure()287 void LookupResult::configure() {
288 IDNS = getIDNS(LookupKind, getSema().getLangOpts().CPlusPlus,
289 isForRedeclaration());
290
291 // If we're looking for one of the allocation or deallocation
292 // operators, make sure that the implicitly-declared new and delete
293 // operators can be found.
294 switch (NameInfo.getName().getCXXOverloadedOperator()) {
295 case OO_New:
296 case OO_Delete:
297 case OO_Array_New:
298 case OO_Array_Delete:
299 getSema().DeclareGlobalNewDelete();
300 break;
301
302 default:
303 break;
304 }
305
306 // Compiler builtins are always visible, regardless of where they end
307 // up being declared.
308 if (IdentifierInfo *Id = NameInfo.getName().getAsIdentifierInfo()) {
309 if (unsigned BuiltinID = Id->getBuiltinID()) {
310 if (!getSema().Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
311 AllowHidden = true;
312 }
313 }
314 }
315
sanity() const316 bool LookupResult::sanity() const {
317 // This function is never called by NDEBUG builds.
318 assert(ResultKind != NotFound || Decls.size() == 0);
319 assert(ResultKind != Found || Decls.size() == 1);
320 assert(ResultKind != FoundOverloaded || Decls.size() > 1 ||
321 (Decls.size() == 1 &&
322 isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl())));
323 assert(ResultKind != FoundUnresolvedValue || sanityCheckUnresolved());
324 assert(ResultKind != Ambiguous || Decls.size() > 1 ||
325 (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects ||
326 Ambiguity == AmbiguousBaseSubobjectTypes)));
327 assert((Paths != nullptr) == (ResultKind == Ambiguous &&
328 (Ambiguity == AmbiguousBaseSubobjectTypes ||
329 Ambiguity == AmbiguousBaseSubobjects)));
330 return true;
331 }
332
333 // Necessary because CXXBasePaths is not complete in Sema.h
deletePaths(CXXBasePaths * Paths)334 void LookupResult::deletePaths(CXXBasePaths *Paths) {
335 delete Paths;
336 }
337
338 /// Get a representative context for a declaration such that two declarations
339 /// will have the same context if they were found within the same scope.
getContextForScopeMatching(Decl * D)340 static DeclContext *getContextForScopeMatching(Decl *D) {
341 // For function-local declarations, use that function as the context. This
342 // doesn't account for scopes within the function; the caller must deal with
343 // those.
344 DeclContext *DC = D->getLexicalDeclContext();
345 if (DC->isFunctionOrMethod())
346 return DC;
347
348 // Otherwise, look at the semantic context of the declaration. The
349 // declaration must have been found there.
350 return D->getDeclContext()->getRedeclContext();
351 }
352
353 /// Resolves the result kind of this lookup.
resolveKind()354 void LookupResult::resolveKind() {
355 unsigned N = Decls.size();
356
357 // Fast case: no possible ambiguity.
358 if (N == 0) {
359 assert(ResultKind == NotFound || ResultKind == NotFoundInCurrentInstantiation);
360 return;
361 }
362
363 // If there's a single decl, we need to examine it to decide what
364 // kind of lookup this is.
365 if (N == 1) {
366 NamedDecl *D = (*Decls.begin())->getUnderlyingDecl();
367 if (isa<FunctionTemplateDecl>(D))
368 ResultKind = FoundOverloaded;
369 else if (isa<UnresolvedUsingValueDecl>(D))
370 ResultKind = FoundUnresolvedValue;
371 return;
372 }
373
374 // Don't do any extra resolution if we've already resolved as ambiguous.
375 if (ResultKind == Ambiguous) return;
376
377 llvm::SmallPtrSet<NamedDecl*, 16> Unique;
378 llvm::SmallPtrSet<QualType, 16> UniqueTypes;
379
380 bool Ambiguous = false;
381 bool HasTag = false, HasFunction = false, HasNonFunction = false;
382 bool HasFunctionTemplate = false, HasUnresolved = false;
383
384 unsigned UniqueTagIndex = 0;
385
386 unsigned I = 0;
387 while (I < N) {
388 NamedDecl *D = Decls[I]->getUnderlyingDecl();
389 D = cast<NamedDecl>(D->getCanonicalDecl());
390
391 // Ignore an invalid declaration unless it's the only one left.
392 if (D->isInvalidDecl() && I < N-1) {
393 Decls[I] = Decls[--N];
394 continue;
395 }
396
397 // Redeclarations of types via typedef can occur both within a scope
398 // and, through using declarations and directives, across scopes. There is
399 // no ambiguity if they all refer to the same type, so unique based on the
400 // canonical type.
401 if (TypeDecl *TD = dyn_cast<TypeDecl>(D)) {
402 if (!TD->getDeclContext()->isRecord()) {
403 QualType T = getSema().Context.getTypeDeclType(TD);
404 if (!UniqueTypes.insert(getSema().Context.getCanonicalType(T)).second) {
405 // The type is not unique; pull something off the back and continue
406 // at this index.
407 Decls[I] = Decls[--N];
408 continue;
409 }
410 }
411 }
412
413 if (!Unique.insert(D).second) {
414 // If it's not unique, pull something off the back (and
415 // continue at this index).
416 Decls[I] = Decls[--N];
417 continue;
418 }
419
420 // Otherwise, do some decl type analysis and then continue.
421
422 if (isa<UnresolvedUsingValueDecl>(D)) {
423 HasUnresolved = true;
424 } else if (isa<TagDecl>(D)) {
425 if (HasTag)
426 Ambiguous = true;
427 UniqueTagIndex = I;
428 HasTag = true;
429 } else if (isa<FunctionTemplateDecl>(D)) {
430 HasFunction = true;
431 HasFunctionTemplate = true;
432 } else if (isa<FunctionDecl>(D)) {
433 HasFunction = true;
434 } else {
435 if (HasNonFunction)
436 Ambiguous = true;
437 HasNonFunction = true;
438 }
439 I++;
440 }
441
442 // C++ [basic.scope.hiding]p2:
443 // A class name or enumeration name can be hidden by the name of
444 // an object, function, or enumerator declared in the same
445 // scope. If a class or enumeration name and an object, function,
446 // or enumerator are declared in the same scope (in any order)
447 // with the same name, the class or enumeration name is hidden
448 // wherever the object, function, or enumerator name is visible.
449 // But it's still an error if there are distinct tag types found,
450 // even if they're not visible. (ref?)
451 if (HideTags && HasTag && !Ambiguous &&
452 (HasFunction || HasNonFunction || HasUnresolved)) {
453 if (getContextForScopeMatching(Decls[UniqueTagIndex])->Equals(
454 getContextForScopeMatching(Decls[UniqueTagIndex ? 0 : N - 1])))
455 Decls[UniqueTagIndex] = Decls[--N];
456 else
457 Ambiguous = true;
458 }
459
460 Decls.set_size(N);
461
462 if (HasNonFunction && (HasFunction || HasUnresolved))
463 Ambiguous = true;
464
465 if (Ambiguous)
466 setAmbiguous(LookupResult::AmbiguousReference);
467 else if (HasUnresolved)
468 ResultKind = LookupResult::FoundUnresolvedValue;
469 else if (N > 1 || HasFunctionTemplate)
470 ResultKind = LookupResult::FoundOverloaded;
471 else
472 ResultKind = LookupResult::Found;
473 }
474
addDeclsFromBasePaths(const CXXBasePaths & P)475 void LookupResult::addDeclsFromBasePaths(const CXXBasePaths &P) {
476 CXXBasePaths::const_paths_iterator I, E;
477 for (I = P.begin(), E = P.end(); I != E; ++I)
478 for (DeclContext::lookup_iterator DI = I->Decls.begin(),
479 DE = I->Decls.end(); DI != DE; ++DI)
480 addDecl(*DI);
481 }
482
setAmbiguousBaseSubobjects(CXXBasePaths & P)483 void LookupResult::setAmbiguousBaseSubobjects(CXXBasePaths &P) {
484 Paths = new CXXBasePaths;
485 Paths->swap(P);
486 addDeclsFromBasePaths(*Paths);
487 resolveKind();
488 setAmbiguous(AmbiguousBaseSubobjects);
489 }
490
setAmbiguousBaseSubobjectTypes(CXXBasePaths & P)491 void LookupResult::setAmbiguousBaseSubobjectTypes(CXXBasePaths &P) {
492 Paths = new CXXBasePaths;
493 Paths->swap(P);
494 addDeclsFromBasePaths(*Paths);
495 resolveKind();
496 setAmbiguous(AmbiguousBaseSubobjectTypes);
497 }
498
print(raw_ostream & Out)499 void LookupResult::print(raw_ostream &Out) {
500 Out << Decls.size() << " result(s)";
501 if (isAmbiguous()) Out << ", ambiguous";
502 if (Paths) Out << ", base paths present";
503
504 for (iterator I = begin(), E = end(); I != E; ++I) {
505 Out << "\n";
506 (*I)->print(Out, 2);
507 }
508 }
509
510 /// \brief Lookup a builtin function, when name lookup would otherwise
511 /// fail.
LookupBuiltin(Sema & S,LookupResult & R)512 static bool LookupBuiltin(Sema &S, LookupResult &R) {
513 Sema::LookupNameKind NameKind = R.getLookupKind();
514
515 // If we didn't find a use of this identifier, and if the identifier
516 // corresponds to a compiler builtin, create the decl object for the builtin
517 // now, injecting it into translation unit scope, and return it.
518 if (NameKind == Sema::LookupOrdinaryName ||
519 NameKind == Sema::LookupRedeclarationWithLinkage) {
520 IdentifierInfo *II = R.getLookupName().getAsIdentifierInfo();
521 if (II) {
522 if (S.getLangOpts().CPlusPlus11 && S.getLangOpts().GNUMode &&
523 II == S.getFloat128Identifier()) {
524 // libstdc++4.7's type_traits expects type __float128 to exist, so
525 // insert a dummy type to make that header build in gnu++11 mode.
526 R.addDecl(S.getASTContext().getFloat128StubType());
527 return true;
528 }
529
530 // If this is a builtin on this (or all) targets, create the decl.
531 if (unsigned BuiltinID = II->getBuiltinID()) {
532 // In C++, we don't have any predefined library functions like
533 // 'malloc'. Instead, we'll just error.
534 if (S.getLangOpts().CPlusPlus &&
535 S.Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
536 return false;
537
538 if (NamedDecl *D = S.LazilyCreateBuiltin((IdentifierInfo *)II,
539 BuiltinID, S.TUScope,
540 R.isForRedeclaration(),
541 R.getNameLoc())) {
542 R.addDecl(D);
543 return true;
544 }
545 }
546 }
547 }
548
549 return false;
550 }
551
552 /// \brief Determine whether we can declare a special member function within
553 /// the class at this point.
CanDeclareSpecialMemberFunction(const CXXRecordDecl * Class)554 static bool CanDeclareSpecialMemberFunction(const CXXRecordDecl *Class) {
555 // We need to have a definition for the class.
556 if (!Class->getDefinition() || Class->isDependentContext())
557 return false;
558
559 // We can't be in the middle of defining the class.
560 return !Class->isBeingDefined();
561 }
562
ForceDeclarationOfImplicitMembers(CXXRecordDecl * Class)563 void Sema::ForceDeclarationOfImplicitMembers(CXXRecordDecl *Class) {
564 if (!CanDeclareSpecialMemberFunction(Class))
565 return;
566
567 // If the default constructor has not yet been declared, do so now.
568 if (Class->needsImplicitDefaultConstructor())
569 DeclareImplicitDefaultConstructor(Class);
570
571 // If the copy constructor has not yet been declared, do so now.
572 if (Class->needsImplicitCopyConstructor())
573 DeclareImplicitCopyConstructor(Class);
574
575 // If the copy assignment operator has not yet been declared, do so now.
576 if (Class->needsImplicitCopyAssignment())
577 DeclareImplicitCopyAssignment(Class);
578
579 if (getLangOpts().CPlusPlus11) {
580 // If the move constructor has not yet been declared, do so now.
581 if (Class->needsImplicitMoveConstructor())
582 DeclareImplicitMoveConstructor(Class); // might not actually do it
583
584 // If the move assignment operator has not yet been declared, do so now.
585 if (Class->needsImplicitMoveAssignment())
586 DeclareImplicitMoveAssignment(Class); // might not actually do it
587 }
588
589 // If the destructor has not yet been declared, do so now.
590 if (Class->needsImplicitDestructor())
591 DeclareImplicitDestructor(Class);
592 }
593
594 /// \brief Determine whether this is the name of an implicitly-declared
595 /// special member function.
isImplicitlyDeclaredMemberFunctionName(DeclarationName Name)596 static bool isImplicitlyDeclaredMemberFunctionName(DeclarationName Name) {
597 switch (Name.getNameKind()) {
598 case DeclarationName::CXXConstructorName:
599 case DeclarationName::CXXDestructorName:
600 return true;
601
602 case DeclarationName::CXXOperatorName:
603 return Name.getCXXOverloadedOperator() == OO_Equal;
604
605 default:
606 break;
607 }
608
609 return false;
610 }
611
612 /// \brief If there are any implicit member functions with the given name
613 /// that need to be declared in the given declaration context, do so.
DeclareImplicitMemberFunctionsWithName(Sema & S,DeclarationName Name,const DeclContext * DC)614 static void DeclareImplicitMemberFunctionsWithName(Sema &S,
615 DeclarationName Name,
616 const DeclContext *DC) {
617 if (!DC)
618 return;
619
620 switch (Name.getNameKind()) {
621 case DeclarationName::CXXConstructorName:
622 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
623 if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) {
624 CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
625 if (Record->needsImplicitDefaultConstructor())
626 S.DeclareImplicitDefaultConstructor(Class);
627 if (Record->needsImplicitCopyConstructor())
628 S.DeclareImplicitCopyConstructor(Class);
629 if (S.getLangOpts().CPlusPlus11 &&
630 Record->needsImplicitMoveConstructor())
631 S.DeclareImplicitMoveConstructor(Class);
632 }
633 break;
634
635 case DeclarationName::CXXDestructorName:
636 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
637 if (Record->getDefinition() && Record->needsImplicitDestructor() &&
638 CanDeclareSpecialMemberFunction(Record))
639 S.DeclareImplicitDestructor(const_cast<CXXRecordDecl *>(Record));
640 break;
641
642 case DeclarationName::CXXOperatorName:
643 if (Name.getCXXOverloadedOperator() != OO_Equal)
644 break;
645
646 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) {
647 if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) {
648 CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
649 if (Record->needsImplicitCopyAssignment())
650 S.DeclareImplicitCopyAssignment(Class);
651 if (S.getLangOpts().CPlusPlus11 &&
652 Record->needsImplicitMoveAssignment())
653 S.DeclareImplicitMoveAssignment(Class);
654 }
655 }
656 break;
657
658 default:
659 break;
660 }
661 }
662
663 // Adds all qualifying matches for a name within a decl context to the
664 // given lookup result. Returns true if any matches were found.
LookupDirect(Sema & S,LookupResult & R,const DeclContext * DC)665 static bool LookupDirect(Sema &S, LookupResult &R, const DeclContext *DC) {
666 bool Found = false;
667
668 // Lazily declare C++ special member functions.
669 if (S.getLangOpts().CPlusPlus)
670 DeclareImplicitMemberFunctionsWithName(S, R.getLookupName(), DC);
671
672 // Perform lookup into this declaration context.
673 DeclContext::lookup_const_result DR = DC->lookup(R.getLookupName());
674 for (DeclContext::lookup_const_iterator I = DR.begin(), E = DR.end(); I != E;
675 ++I) {
676 NamedDecl *D = *I;
677 if ((D = R.getAcceptableDecl(D))) {
678 R.addDecl(D);
679 Found = true;
680 }
681 }
682
683 if (!Found && DC->isTranslationUnit() && LookupBuiltin(S, R))
684 return true;
685
686 if (R.getLookupName().getNameKind()
687 != DeclarationName::CXXConversionFunctionName ||
688 R.getLookupName().getCXXNameType()->isDependentType() ||
689 !isa<CXXRecordDecl>(DC))
690 return Found;
691
692 // C++ [temp.mem]p6:
693 // A specialization of a conversion function template is not found by
694 // name lookup. Instead, any conversion function templates visible in the
695 // context of the use are considered. [...]
696 const CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
697 if (!Record->isCompleteDefinition())
698 return Found;
699
700 for (CXXRecordDecl::conversion_iterator U = Record->conversion_begin(),
701 UEnd = Record->conversion_end(); U != UEnd; ++U) {
702 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(*U);
703 if (!ConvTemplate)
704 continue;
705
706 // When we're performing lookup for the purposes of redeclaration, just
707 // add the conversion function template. When we deduce template
708 // arguments for specializations, we'll end up unifying the return
709 // type of the new declaration with the type of the function template.
710 if (R.isForRedeclaration()) {
711 R.addDecl(ConvTemplate);
712 Found = true;
713 continue;
714 }
715
716 // C++ [temp.mem]p6:
717 // [...] For each such operator, if argument deduction succeeds
718 // (14.9.2.3), the resulting specialization is used as if found by
719 // name lookup.
720 //
721 // When referencing a conversion function for any purpose other than
722 // a redeclaration (such that we'll be building an expression with the
723 // result), perform template argument deduction and place the
724 // specialization into the result set. We do this to avoid forcing all
725 // callers to perform special deduction for conversion functions.
726 TemplateDeductionInfo Info(R.getNameLoc());
727 FunctionDecl *Specialization = nullptr;
728
729 const FunctionProtoType *ConvProto
730 = ConvTemplate->getTemplatedDecl()->getType()->getAs<FunctionProtoType>();
731 assert(ConvProto && "Nonsensical conversion function template type");
732
733 // Compute the type of the function that we would expect the conversion
734 // function to have, if it were to match the name given.
735 // FIXME: Calling convention!
736 FunctionProtoType::ExtProtoInfo EPI = ConvProto->getExtProtoInfo();
737 EPI.ExtInfo = EPI.ExtInfo.withCallingConv(CC_C);
738 EPI.ExceptionSpec = EST_None;
739 QualType ExpectedType
740 = R.getSema().Context.getFunctionType(R.getLookupName().getCXXNameType(),
741 None, EPI);
742
743 // Perform template argument deduction against the type that we would
744 // expect the function to have.
745 if (R.getSema().DeduceTemplateArguments(ConvTemplate, nullptr, ExpectedType,
746 Specialization, Info)
747 == Sema::TDK_Success) {
748 R.addDecl(Specialization);
749 Found = true;
750 }
751 }
752
753 return Found;
754 }
755
756 // Performs C++ unqualified lookup into the given file context.
757 static bool
CppNamespaceLookup(Sema & S,LookupResult & R,ASTContext & Context,DeclContext * NS,UnqualUsingDirectiveSet & UDirs)758 CppNamespaceLookup(Sema &S, LookupResult &R, ASTContext &Context,
759 DeclContext *NS, UnqualUsingDirectiveSet &UDirs) {
760
761 assert(NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!");
762
763 // Perform direct name lookup into the LookupCtx.
764 bool Found = LookupDirect(S, R, NS);
765
766 // Perform direct name lookup into the namespaces nominated by the
767 // using directives whose common ancestor is this namespace.
768 UnqualUsingDirectiveSet::const_iterator UI, UEnd;
769 std::tie(UI, UEnd) = UDirs.getNamespacesFor(NS);
770
771 for (; UI != UEnd; ++UI)
772 if (LookupDirect(S, R, UI->getNominatedNamespace()))
773 Found = true;
774
775 R.resolveKind();
776
777 return Found;
778 }
779
isNamespaceOrTranslationUnitScope(Scope * S)780 static bool isNamespaceOrTranslationUnitScope(Scope *S) {
781 if (DeclContext *Ctx = S->getEntity())
782 return Ctx->isFileContext();
783 return false;
784 }
785
786 // Find the next outer declaration context from this scope. This
787 // routine actually returns the semantic outer context, which may
788 // differ from the lexical context (encoded directly in the Scope
789 // stack) when we are parsing a member of a class template. In this
790 // case, the second element of the pair will be true, to indicate that
791 // name lookup should continue searching in this semantic context when
792 // it leaves the current template parameter scope.
findOuterContext(Scope * S)793 static std::pair<DeclContext *, bool> findOuterContext(Scope *S) {
794 DeclContext *DC = S->getEntity();
795 DeclContext *Lexical = nullptr;
796 for (Scope *OuterS = S->getParent(); OuterS;
797 OuterS = OuterS->getParent()) {
798 if (OuterS->getEntity()) {
799 Lexical = OuterS->getEntity();
800 break;
801 }
802 }
803
804 // C++ [temp.local]p8:
805 // In the definition of a member of a class template that appears
806 // outside of the namespace containing the class template
807 // definition, the name of a template-parameter hides the name of
808 // a member of this namespace.
809 //
810 // Example:
811 //
812 // namespace N {
813 // class C { };
814 //
815 // template<class T> class B {
816 // void f(T);
817 // };
818 // }
819 //
820 // template<class C> void N::B<C>::f(C) {
821 // C b; // C is the template parameter, not N::C
822 // }
823 //
824 // In this example, the lexical context we return is the
825 // TranslationUnit, while the semantic context is the namespace N.
826 if (!Lexical || !DC || !S->getParent() ||
827 !S->getParent()->isTemplateParamScope())
828 return std::make_pair(Lexical, false);
829
830 // Find the outermost template parameter scope.
831 // For the example, this is the scope for the template parameters of
832 // template<class C>.
833 Scope *OutermostTemplateScope = S->getParent();
834 while (OutermostTemplateScope->getParent() &&
835 OutermostTemplateScope->getParent()->isTemplateParamScope())
836 OutermostTemplateScope = OutermostTemplateScope->getParent();
837
838 // Find the namespace context in which the original scope occurs. In
839 // the example, this is namespace N.
840 DeclContext *Semantic = DC;
841 while (!Semantic->isFileContext())
842 Semantic = Semantic->getParent();
843
844 // Find the declaration context just outside of the template
845 // parameter scope. This is the context in which the template is
846 // being lexically declaration (a namespace context). In the
847 // example, this is the global scope.
848 if (Lexical->isFileContext() && !Lexical->Equals(Semantic) &&
849 Lexical->Encloses(Semantic))
850 return std::make_pair(Semantic, true);
851
852 return std::make_pair(Lexical, false);
853 }
854
855 namespace {
856 /// An RAII object to specify that we want to find block scope extern
857 /// declarations.
858 struct FindLocalExternScope {
FindLocalExternScope__anondc69e2da0211::FindLocalExternScope859 FindLocalExternScope(LookupResult &R)
860 : R(R), OldFindLocalExtern(R.getIdentifierNamespace() &
861 Decl::IDNS_LocalExtern) {
862 R.setFindLocalExtern(R.getIdentifierNamespace() & Decl::IDNS_Ordinary);
863 }
restore__anondc69e2da0211::FindLocalExternScope864 void restore() {
865 R.setFindLocalExtern(OldFindLocalExtern);
866 }
~FindLocalExternScope__anondc69e2da0211::FindLocalExternScope867 ~FindLocalExternScope() {
868 restore();
869 }
870 LookupResult &R;
871 bool OldFindLocalExtern;
872 };
873 }
874
CppLookupName(LookupResult & R,Scope * S)875 bool Sema::CppLookupName(LookupResult &R, Scope *S) {
876 assert(getLangOpts().CPlusPlus && "Can perform only C++ lookup");
877
878 DeclarationName Name = R.getLookupName();
879 Sema::LookupNameKind NameKind = R.getLookupKind();
880
881 // If this is the name of an implicitly-declared special member function,
882 // go through the scope stack to implicitly declare
883 if (isImplicitlyDeclaredMemberFunctionName(Name)) {
884 for (Scope *PreS = S; PreS; PreS = PreS->getParent())
885 if (DeclContext *DC = PreS->getEntity())
886 DeclareImplicitMemberFunctionsWithName(*this, Name, DC);
887 }
888
889 // Implicitly declare member functions with the name we're looking for, if in
890 // fact we are in a scope where it matters.
891
892 Scope *Initial = S;
893 IdentifierResolver::iterator
894 I = IdResolver.begin(Name),
895 IEnd = IdResolver.end();
896
897 // First we lookup local scope.
898 // We don't consider using-directives, as per 7.3.4.p1 [namespace.udir]
899 // ...During unqualified name lookup (3.4.1), the names appear as if
900 // they were declared in the nearest enclosing namespace which contains
901 // both the using-directive and the nominated namespace.
902 // [Note: in this context, "contains" means "contains directly or
903 // indirectly".
904 //
905 // For example:
906 // namespace A { int i; }
907 // void foo() {
908 // int i;
909 // {
910 // using namespace A;
911 // ++i; // finds local 'i', A::i appears at global scope
912 // }
913 // }
914 //
915 UnqualUsingDirectiveSet UDirs;
916 bool VisitedUsingDirectives = false;
917 bool LeftStartingScope = false;
918 DeclContext *OutsideOfTemplateParamDC = nullptr;
919
920 // When performing a scope lookup, we want to find local extern decls.
921 FindLocalExternScope FindLocals(R);
922
923 for (; S && !isNamespaceOrTranslationUnitScope(S); S = S->getParent()) {
924 DeclContext *Ctx = S->getEntity();
925
926 // Check whether the IdResolver has anything in this scope.
927 bool Found = false;
928 for (; I != IEnd && S->isDeclScope(*I); ++I) {
929 if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
930 if (NameKind == LookupRedeclarationWithLinkage) {
931 // Determine whether this (or a previous) declaration is
932 // out-of-scope.
933 if (!LeftStartingScope && !Initial->isDeclScope(*I))
934 LeftStartingScope = true;
935
936 // If we found something outside of our starting scope that
937 // does not have linkage, skip it. If it's a template parameter,
938 // we still find it, so we can diagnose the invalid redeclaration.
939 if (LeftStartingScope && !((*I)->hasLinkage()) &&
940 !(*I)->isTemplateParameter()) {
941 R.setShadowed();
942 continue;
943 }
944 }
945
946 Found = true;
947 R.addDecl(ND);
948 }
949 }
950 if (Found) {
951 R.resolveKind();
952 if (S->isClassScope())
953 if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(Ctx))
954 R.setNamingClass(Record);
955 return true;
956 }
957
958 if (NameKind == LookupLocalFriendName && !S->isClassScope()) {
959 // C++11 [class.friend]p11:
960 // If a friend declaration appears in a local class and the name
961 // specified is an unqualified name, a prior declaration is
962 // looked up without considering scopes that are outside the
963 // innermost enclosing non-class scope.
964 return false;
965 }
966
967 if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC &&
968 S->getParent() && !S->getParent()->isTemplateParamScope()) {
969 // We've just searched the last template parameter scope and
970 // found nothing, so look into the contexts between the
971 // lexical and semantic declaration contexts returned by
972 // findOuterContext(). This implements the name lookup behavior
973 // of C++ [temp.local]p8.
974 Ctx = OutsideOfTemplateParamDC;
975 OutsideOfTemplateParamDC = nullptr;
976 }
977
978 if (Ctx) {
979 DeclContext *OuterCtx;
980 bool SearchAfterTemplateScope;
981 std::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S);
982 if (SearchAfterTemplateScope)
983 OutsideOfTemplateParamDC = OuterCtx;
984
985 for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
986 // We do not directly look into transparent contexts, since
987 // those entities will be found in the nearest enclosing
988 // non-transparent context.
989 if (Ctx->isTransparentContext())
990 continue;
991
992 // We do not look directly into function or method contexts,
993 // since all of the local variables and parameters of the
994 // function/method are present within the Scope.
995 if (Ctx->isFunctionOrMethod()) {
996 // If we have an Objective-C instance method, look for ivars
997 // in the corresponding interface.
998 if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
999 if (Method->isInstanceMethod() && Name.getAsIdentifierInfo())
1000 if (ObjCInterfaceDecl *Class = Method->getClassInterface()) {
1001 ObjCInterfaceDecl *ClassDeclared;
1002 if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(
1003 Name.getAsIdentifierInfo(),
1004 ClassDeclared)) {
1005 if (NamedDecl *ND = R.getAcceptableDecl(Ivar)) {
1006 R.addDecl(ND);
1007 R.resolveKind();
1008 return true;
1009 }
1010 }
1011 }
1012 }
1013
1014 continue;
1015 }
1016
1017 // If this is a file context, we need to perform unqualified name
1018 // lookup considering using directives.
1019 if (Ctx->isFileContext()) {
1020 // If we haven't handled using directives yet, do so now.
1021 if (!VisitedUsingDirectives) {
1022 // Add using directives from this context up to the top level.
1023 for (DeclContext *UCtx = Ctx; UCtx; UCtx = UCtx->getParent()) {
1024 if (UCtx->isTransparentContext())
1025 continue;
1026
1027 UDirs.visit(UCtx, UCtx);
1028 }
1029
1030 // Find the innermost file scope, so we can add using directives
1031 // from local scopes.
1032 Scope *InnermostFileScope = S;
1033 while (InnermostFileScope &&
1034 !isNamespaceOrTranslationUnitScope(InnermostFileScope))
1035 InnermostFileScope = InnermostFileScope->getParent();
1036 UDirs.visitScopeChain(Initial, InnermostFileScope);
1037
1038 UDirs.done();
1039
1040 VisitedUsingDirectives = true;
1041 }
1042
1043 if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs)) {
1044 R.resolveKind();
1045 return true;
1046 }
1047
1048 continue;
1049 }
1050
1051 // Perform qualified name lookup into this context.
1052 // FIXME: In some cases, we know that every name that could be found by
1053 // this qualified name lookup will also be on the identifier chain. For
1054 // example, inside a class without any base classes, we never need to
1055 // perform qualified lookup because all of the members are on top of the
1056 // identifier chain.
1057 if (LookupQualifiedName(R, Ctx, /*InUnqualifiedLookup=*/true))
1058 return true;
1059 }
1060 }
1061 }
1062
1063 // Stop if we ran out of scopes.
1064 // FIXME: This really, really shouldn't be happening.
1065 if (!S) return false;
1066
1067 // If we are looking for members, no need to look into global/namespace scope.
1068 if (NameKind == LookupMemberName)
1069 return false;
1070
1071 // Collect UsingDirectiveDecls in all scopes, and recursively all
1072 // nominated namespaces by those using-directives.
1073 //
1074 // FIXME: Cache this sorted list in Scope structure, and DeclContext, so we
1075 // don't build it for each lookup!
1076 if (!VisitedUsingDirectives) {
1077 UDirs.visitScopeChain(Initial, S);
1078 UDirs.done();
1079 }
1080
1081 // If we're not performing redeclaration lookup, do not look for local
1082 // extern declarations outside of a function scope.
1083 if (!R.isForRedeclaration())
1084 FindLocals.restore();
1085
1086 // Lookup namespace scope, and global scope.
1087 // Unqualified name lookup in C++ requires looking into scopes
1088 // that aren't strictly lexical, and therefore we walk through the
1089 // context as well as walking through the scopes.
1090 for (; S; S = S->getParent()) {
1091 // Check whether the IdResolver has anything in this scope.
1092 bool Found = false;
1093 for (; I != IEnd && S->isDeclScope(*I); ++I) {
1094 if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
1095 // We found something. Look for anything else in our scope
1096 // with this same name and in an acceptable identifier
1097 // namespace, so that we can construct an overload set if we
1098 // need to.
1099 Found = true;
1100 R.addDecl(ND);
1101 }
1102 }
1103
1104 if (Found && S->isTemplateParamScope()) {
1105 R.resolveKind();
1106 return true;
1107 }
1108
1109 DeclContext *Ctx = S->getEntity();
1110 if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC &&
1111 S->getParent() && !S->getParent()->isTemplateParamScope()) {
1112 // We've just searched the last template parameter scope and
1113 // found nothing, so look into the contexts between the
1114 // lexical and semantic declaration contexts returned by
1115 // findOuterContext(). This implements the name lookup behavior
1116 // of C++ [temp.local]p8.
1117 Ctx = OutsideOfTemplateParamDC;
1118 OutsideOfTemplateParamDC = nullptr;
1119 }
1120
1121 if (Ctx) {
1122 DeclContext *OuterCtx;
1123 bool SearchAfterTemplateScope;
1124 std::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S);
1125 if (SearchAfterTemplateScope)
1126 OutsideOfTemplateParamDC = OuterCtx;
1127
1128 for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
1129 // We do not directly look into transparent contexts, since
1130 // those entities will be found in the nearest enclosing
1131 // non-transparent context.
1132 if (Ctx->isTransparentContext())
1133 continue;
1134
1135 // If we have a context, and it's not a context stashed in the
1136 // template parameter scope for an out-of-line definition, also
1137 // look into that context.
1138 if (!(Found && S && S->isTemplateParamScope())) {
1139 assert(Ctx->isFileContext() &&
1140 "We should have been looking only at file context here already.");
1141
1142 // Look into context considering using-directives.
1143 if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs))
1144 Found = true;
1145 }
1146
1147 if (Found) {
1148 R.resolveKind();
1149 return true;
1150 }
1151
1152 if (R.isForRedeclaration() && !Ctx->isTransparentContext())
1153 return false;
1154 }
1155 }
1156
1157 if (R.isForRedeclaration() && Ctx && !Ctx->isTransparentContext())
1158 return false;
1159 }
1160
1161 return !R.empty();
1162 }
1163
1164 /// \brief Find the declaration that a class temploid member specialization was
1165 /// instantiated from, or the member itself if it is an explicit specialization.
getInstantiatedFrom(Decl * D,MemberSpecializationInfo * MSInfo)1166 static Decl *getInstantiatedFrom(Decl *D, MemberSpecializationInfo *MSInfo) {
1167 return MSInfo->isExplicitSpecialization() ? D : MSInfo->getInstantiatedFrom();
1168 }
1169
1170 /// \brief Find the module in which the given declaration was defined.
getDefiningModule(Decl * Entity)1171 static Module *getDefiningModule(Decl *Entity) {
1172 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Entity)) {
1173 // If this function was instantiated from a template, the defining module is
1174 // the module containing the pattern.
1175 if (FunctionDecl *Pattern = FD->getTemplateInstantiationPattern())
1176 Entity = Pattern;
1177 } else if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Entity)) {
1178 if (CXXRecordDecl *Pattern = RD->getTemplateInstantiationPattern())
1179 Entity = Pattern;
1180 } else if (EnumDecl *ED = dyn_cast<EnumDecl>(Entity)) {
1181 if (MemberSpecializationInfo *MSInfo = ED->getMemberSpecializationInfo())
1182 Entity = getInstantiatedFrom(ED, MSInfo);
1183 } else if (VarDecl *VD = dyn_cast<VarDecl>(Entity)) {
1184 // FIXME: Map from variable template specializations back to the template.
1185 if (MemberSpecializationInfo *MSInfo = VD->getMemberSpecializationInfo())
1186 Entity = getInstantiatedFrom(VD, MSInfo);
1187 }
1188
1189 // Walk up to the containing context. That might also have been instantiated
1190 // from a template.
1191 DeclContext *Context = Entity->getDeclContext();
1192 if (Context->isFileContext())
1193 return Entity->getOwningModule();
1194 return getDefiningModule(cast<Decl>(Context));
1195 }
1196
getLookupModules()1197 llvm::DenseSet<Module*> &Sema::getLookupModules() {
1198 unsigned N = ActiveTemplateInstantiations.size();
1199 for (unsigned I = ActiveTemplateInstantiationLookupModules.size();
1200 I != N; ++I) {
1201 Module *M = getDefiningModule(ActiveTemplateInstantiations[I].Entity);
1202 if (M && !LookupModulesCache.insert(M).second)
1203 M = nullptr;
1204 ActiveTemplateInstantiationLookupModules.push_back(M);
1205 }
1206 return LookupModulesCache;
1207 }
1208
1209 /// \brief Determine whether a declaration is visible to name lookup.
1210 ///
1211 /// This routine determines whether the declaration D is visible in the current
1212 /// lookup context, taking into account the current template instantiation
1213 /// stack. During template instantiation, a declaration is visible if it is
1214 /// visible from a module containing any entity on the template instantiation
1215 /// path (by instantiating a template, you allow it to see the declarations that
1216 /// your module can see, including those later on in your module).
isVisibleSlow(Sema & SemaRef,NamedDecl * D)1217 bool LookupResult::isVisibleSlow(Sema &SemaRef, NamedDecl *D) {
1218 assert(D->isHidden() && !SemaRef.ActiveTemplateInstantiations.empty() &&
1219 "should not call this: not in slow case");
1220 Module *DeclModule = D->getOwningModule();
1221 assert(DeclModule && "hidden decl not from a module");
1222
1223 // Find the extra places where we need to look.
1224 llvm::DenseSet<Module*> &LookupModules = SemaRef.getLookupModules();
1225 if (LookupModules.empty())
1226 return false;
1227
1228 // If our lookup set contains the decl's module, it's visible.
1229 if (LookupModules.count(DeclModule))
1230 return true;
1231
1232 // If the declaration isn't exported, it's not visible in any other module.
1233 if (D->isModulePrivate())
1234 return false;
1235
1236 // Check whether DeclModule is transitively exported to an import of
1237 // the lookup set.
1238 for (llvm::DenseSet<Module *>::iterator I = LookupModules.begin(),
1239 E = LookupModules.end();
1240 I != E; ++I)
1241 if ((*I)->isModuleVisible(DeclModule))
1242 return true;
1243 return false;
1244 }
1245
1246 /// \brief Retrieve the visible declaration corresponding to D, if any.
1247 ///
1248 /// This routine determines whether the declaration D is visible in the current
1249 /// module, with the current imports. If not, it checks whether any
1250 /// redeclaration of D is visible, and if so, returns that declaration.
1251 ///
1252 /// \returns D, or a visible previous declaration of D, whichever is more recent
1253 /// and visible. If no declaration of D is visible, returns null.
findAcceptableDecl(Sema & SemaRef,NamedDecl * D)1254 static NamedDecl *findAcceptableDecl(Sema &SemaRef, NamedDecl *D) {
1255 assert(!LookupResult::isVisible(SemaRef, D) && "not in slow case");
1256
1257 for (auto RD : D->redecls()) {
1258 if (auto ND = dyn_cast<NamedDecl>(RD)) {
1259 if (LookupResult::isVisible(SemaRef, ND))
1260 return ND;
1261 }
1262 }
1263
1264 return nullptr;
1265 }
1266
getAcceptableDeclSlow(NamedDecl * D) const1267 NamedDecl *LookupResult::getAcceptableDeclSlow(NamedDecl *D) const {
1268 return findAcceptableDecl(getSema(), D);
1269 }
1270
1271 /// @brief Perform unqualified name lookup starting from a given
1272 /// scope.
1273 ///
1274 /// Unqualified name lookup (C++ [basic.lookup.unqual], C99 6.2.1) is
1275 /// used to find names within the current scope. For example, 'x' in
1276 /// @code
1277 /// int x;
1278 /// int f() {
1279 /// return x; // unqualified name look finds 'x' in the global scope
1280 /// }
1281 /// @endcode
1282 ///
1283 /// Different lookup criteria can find different names. For example, a
1284 /// particular scope can have both a struct and a function of the same
1285 /// name, and each can be found by certain lookup criteria. For more
1286 /// information about lookup criteria, see the documentation for the
1287 /// class LookupCriteria.
1288 ///
1289 /// @param S The scope from which unqualified name lookup will
1290 /// begin. If the lookup criteria permits, name lookup may also search
1291 /// in the parent scopes.
1292 ///
1293 /// @param [in,out] R Specifies the lookup to perform (e.g., the name to
1294 /// look up and the lookup kind), and is updated with the results of lookup
1295 /// including zero or more declarations and possibly additional information
1296 /// used to diagnose ambiguities.
1297 ///
1298 /// @returns \c true if lookup succeeded and false otherwise.
LookupName(LookupResult & R,Scope * S,bool AllowBuiltinCreation)1299 bool Sema::LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation) {
1300 DeclarationName Name = R.getLookupName();
1301 if (!Name) return false;
1302
1303 LookupNameKind NameKind = R.getLookupKind();
1304
1305 if (!getLangOpts().CPlusPlus) {
1306 // Unqualified name lookup in C/Objective-C is purely lexical, so
1307 // search in the declarations attached to the name.
1308 if (NameKind == Sema::LookupRedeclarationWithLinkage) {
1309 // Find the nearest non-transparent declaration scope.
1310 while (!(S->getFlags() & Scope::DeclScope) ||
1311 (S->getEntity() && S->getEntity()->isTransparentContext()))
1312 S = S->getParent();
1313 }
1314
1315 // When performing a scope lookup, we want to find local extern decls.
1316 FindLocalExternScope FindLocals(R);
1317
1318 // Scan up the scope chain looking for a decl that matches this
1319 // identifier that is in the appropriate namespace. This search
1320 // should not take long, as shadowing of names is uncommon, and
1321 // deep shadowing is extremely uncommon.
1322 bool LeftStartingScope = false;
1323
1324 for (IdentifierResolver::iterator I = IdResolver.begin(Name),
1325 IEnd = IdResolver.end();
1326 I != IEnd; ++I)
1327 if (NamedDecl *D = R.getAcceptableDecl(*I)) {
1328 if (NameKind == LookupRedeclarationWithLinkage) {
1329 // Determine whether this (or a previous) declaration is
1330 // out-of-scope.
1331 if (!LeftStartingScope && !S->isDeclScope(*I))
1332 LeftStartingScope = true;
1333
1334 // If we found something outside of our starting scope that
1335 // does not have linkage, skip it.
1336 if (LeftStartingScope && !((*I)->hasLinkage())) {
1337 R.setShadowed();
1338 continue;
1339 }
1340 }
1341 else if (NameKind == LookupObjCImplicitSelfParam &&
1342 !isa<ImplicitParamDecl>(*I))
1343 continue;
1344
1345 R.addDecl(D);
1346
1347 // Check whether there are any other declarations with the same name
1348 // and in the same scope.
1349 if (I != IEnd) {
1350 // Find the scope in which this declaration was declared (if it
1351 // actually exists in a Scope).
1352 while (S && !S->isDeclScope(D))
1353 S = S->getParent();
1354
1355 // If the scope containing the declaration is the translation unit,
1356 // then we'll need to perform our checks based on the matching
1357 // DeclContexts rather than matching scopes.
1358 if (S && isNamespaceOrTranslationUnitScope(S))
1359 S = nullptr;
1360
1361 // Compute the DeclContext, if we need it.
1362 DeclContext *DC = nullptr;
1363 if (!S)
1364 DC = (*I)->getDeclContext()->getRedeclContext();
1365
1366 IdentifierResolver::iterator LastI = I;
1367 for (++LastI; LastI != IEnd; ++LastI) {
1368 if (S) {
1369 // Match based on scope.
1370 if (!S->isDeclScope(*LastI))
1371 break;
1372 } else {
1373 // Match based on DeclContext.
1374 DeclContext *LastDC
1375 = (*LastI)->getDeclContext()->getRedeclContext();
1376 if (!LastDC->Equals(DC))
1377 break;
1378 }
1379
1380 // If the declaration is in the right namespace and visible, add it.
1381 if (NamedDecl *LastD = R.getAcceptableDecl(*LastI))
1382 R.addDecl(LastD);
1383 }
1384
1385 R.resolveKind();
1386 }
1387
1388 return true;
1389 }
1390 } else {
1391 // Perform C++ unqualified name lookup.
1392 if (CppLookupName(R, S))
1393 return true;
1394 }
1395
1396 // If we didn't find a use of this identifier, and if the identifier
1397 // corresponds to a compiler builtin, create the decl object for the builtin
1398 // now, injecting it into translation unit scope, and return it.
1399 if (AllowBuiltinCreation && LookupBuiltin(*this, R))
1400 return true;
1401
1402 // If we didn't find a use of this identifier, the ExternalSource
1403 // may be able to handle the situation.
1404 // Note: some lookup failures are expected!
1405 // See e.g. R.isForRedeclaration().
1406 return (ExternalSource && ExternalSource->LookupUnqualified(R, S));
1407 }
1408
1409 /// @brief Perform qualified name lookup in the namespaces nominated by
1410 /// using directives by the given context.
1411 ///
1412 /// C++98 [namespace.qual]p2:
1413 /// Given X::m (where X is a user-declared namespace), or given \::m
1414 /// (where X is the global namespace), let S be the set of all
1415 /// declarations of m in X and in the transitive closure of all
1416 /// namespaces nominated by using-directives in X and its used
1417 /// namespaces, except that using-directives are ignored in any
1418 /// namespace, including X, directly containing one or more
1419 /// declarations of m. No namespace is searched more than once in
1420 /// the lookup of a name. If S is the empty set, the program is
1421 /// ill-formed. Otherwise, if S has exactly one member, or if the
1422 /// context of the reference is a using-declaration
1423 /// (namespace.udecl), S is the required set of declarations of
1424 /// m. Otherwise if the use of m is not one that allows a unique
1425 /// declaration to be chosen from S, the program is ill-formed.
1426 ///
1427 /// C++98 [namespace.qual]p5:
1428 /// During the lookup of a qualified namespace member name, if the
1429 /// lookup finds more than one declaration of the member, and if one
1430 /// declaration introduces a class name or enumeration name and the
1431 /// other declarations either introduce the same object, the same
1432 /// enumerator or a set of functions, the non-type name hides the
1433 /// class or enumeration name if and only if the declarations are
1434 /// from the same namespace; otherwise (the declarations are from
1435 /// different namespaces), the program is ill-formed.
LookupQualifiedNameInUsingDirectives(Sema & S,LookupResult & R,DeclContext * StartDC)1436 static bool LookupQualifiedNameInUsingDirectives(Sema &S, LookupResult &R,
1437 DeclContext *StartDC) {
1438 assert(StartDC->isFileContext() && "start context is not a file context");
1439
1440 DeclContext::udir_range UsingDirectives = StartDC->using_directives();
1441 if (UsingDirectives.begin() == UsingDirectives.end()) return false;
1442
1443 // We have at least added all these contexts to the queue.
1444 llvm::SmallPtrSet<DeclContext*, 8> Visited;
1445 Visited.insert(StartDC);
1446
1447 // We have not yet looked into these namespaces, much less added
1448 // their "using-children" to the queue.
1449 SmallVector<NamespaceDecl*, 8> Queue;
1450
1451 // We have already looked into the initial namespace; seed the queue
1452 // with its using-children.
1453 for (auto *I : UsingDirectives) {
1454 NamespaceDecl *ND = I->getNominatedNamespace()->getOriginalNamespace();
1455 if (Visited.insert(ND).second)
1456 Queue.push_back(ND);
1457 }
1458
1459 // The easiest way to implement the restriction in [namespace.qual]p5
1460 // is to check whether any of the individual results found a tag
1461 // and, if so, to declare an ambiguity if the final result is not
1462 // a tag.
1463 bool FoundTag = false;
1464 bool FoundNonTag = false;
1465
1466 LookupResult LocalR(LookupResult::Temporary, R);
1467
1468 bool Found = false;
1469 while (!Queue.empty()) {
1470 NamespaceDecl *ND = Queue.pop_back_val();
1471
1472 // We go through some convolutions here to avoid copying results
1473 // between LookupResults.
1474 bool UseLocal = !R.empty();
1475 LookupResult &DirectR = UseLocal ? LocalR : R;
1476 bool FoundDirect = LookupDirect(S, DirectR, ND);
1477
1478 if (FoundDirect) {
1479 // First do any local hiding.
1480 DirectR.resolveKind();
1481
1482 // If the local result is a tag, remember that.
1483 if (DirectR.isSingleTagDecl())
1484 FoundTag = true;
1485 else
1486 FoundNonTag = true;
1487
1488 // Append the local results to the total results if necessary.
1489 if (UseLocal) {
1490 R.addAllDecls(LocalR);
1491 LocalR.clear();
1492 }
1493 }
1494
1495 // If we find names in this namespace, ignore its using directives.
1496 if (FoundDirect) {
1497 Found = true;
1498 continue;
1499 }
1500
1501 for (auto I : ND->using_directives()) {
1502 NamespaceDecl *Nom = I->getNominatedNamespace();
1503 if (Visited.insert(Nom).second)
1504 Queue.push_back(Nom);
1505 }
1506 }
1507
1508 if (Found) {
1509 if (FoundTag && FoundNonTag)
1510 R.setAmbiguousQualifiedTagHiding();
1511 else
1512 R.resolveKind();
1513 }
1514
1515 return Found;
1516 }
1517
1518 /// \brief Callback that looks for any member of a class with the given name.
LookupAnyMember(const CXXBaseSpecifier * Specifier,CXXBasePath & Path,void * Name)1519 static bool LookupAnyMember(const CXXBaseSpecifier *Specifier,
1520 CXXBasePath &Path,
1521 void *Name) {
1522 RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
1523
1524 DeclarationName N = DeclarationName::getFromOpaquePtr(Name);
1525 Path.Decls = BaseRecord->lookup(N);
1526 return !Path.Decls.empty();
1527 }
1528
1529 /// \brief Determine whether the given set of member declarations contains only
1530 /// static members, nested types, and enumerators.
1531 template<typename InputIterator>
HasOnlyStaticMembers(InputIterator First,InputIterator Last)1532 static bool HasOnlyStaticMembers(InputIterator First, InputIterator Last) {
1533 Decl *D = (*First)->getUnderlyingDecl();
1534 if (isa<VarDecl>(D) || isa<TypeDecl>(D) || isa<EnumConstantDecl>(D))
1535 return true;
1536
1537 if (isa<CXXMethodDecl>(D)) {
1538 // Determine whether all of the methods are static.
1539 bool AllMethodsAreStatic = true;
1540 for(; First != Last; ++First) {
1541 D = (*First)->getUnderlyingDecl();
1542
1543 if (!isa<CXXMethodDecl>(D)) {
1544 assert(isa<TagDecl>(D) && "Non-function must be a tag decl");
1545 break;
1546 }
1547
1548 if (!cast<CXXMethodDecl>(D)->isStatic()) {
1549 AllMethodsAreStatic = false;
1550 break;
1551 }
1552 }
1553
1554 if (AllMethodsAreStatic)
1555 return true;
1556 }
1557
1558 return false;
1559 }
1560
1561 /// \brief Perform qualified name lookup into a given context.
1562 ///
1563 /// Qualified name lookup (C++ [basic.lookup.qual]) is used to find
1564 /// names when the context of those names is explicit specified, e.g.,
1565 /// "std::vector" or "x->member", or as part of unqualified name lookup.
1566 ///
1567 /// Different lookup criteria can find different names. For example, a
1568 /// particular scope can have both a struct and a function of the same
1569 /// name, and each can be found by certain lookup criteria. For more
1570 /// information about lookup criteria, see the documentation for the
1571 /// class LookupCriteria.
1572 ///
1573 /// \param R captures both the lookup criteria and any lookup results found.
1574 ///
1575 /// \param LookupCtx The context in which qualified name lookup will
1576 /// search. If the lookup criteria permits, name lookup may also search
1577 /// in the parent contexts or (for C++ classes) base classes.
1578 ///
1579 /// \param InUnqualifiedLookup true if this is qualified name lookup that
1580 /// occurs as part of unqualified name lookup.
1581 ///
1582 /// \returns true if lookup succeeded, false if it failed.
LookupQualifiedName(LookupResult & R,DeclContext * LookupCtx,bool InUnqualifiedLookup)1583 bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
1584 bool InUnqualifiedLookup) {
1585 assert(LookupCtx && "Sema::LookupQualifiedName requires a lookup context");
1586
1587 if (!R.getLookupName())
1588 return false;
1589
1590 // Make sure that the declaration context is complete.
1591 assert((!isa<TagDecl>(LookupCtx) ||
1592 LookupCtx->isDependentContext() ||
1593 cast<TagDecl>(LookupCtx)->isCompleteDefinition() ||
1594 cast<TagDecl>(LookupCtx)->isBeingDefined()) &&
1595 "Declaration context must already be complete!");
1596
1597 // Perform qualified name lookup into the LookupCtx.
1598 if (LookupDirect(*this, R, LookupCtx)) {
1599 R.resolveKind();
1600 if (isa<CXXRecordDecl>(LookupCtx))
1601 R.setNamingClass(cast<CXXRecordDecl>(LookupCtx));
1602 return true;
1603 }
1604
1605 // Don't descend into implied contexts for redeclarations.
1606 // C++98 [namespace.qual]p6:
1607 // In a declaration for a namespace member in which the
1608 // declarator-id is a qualified-id, given that the qualified-id
1609 // for the namespace member has the form
1610 // nested-name-specifier unqualified-id
1611 // the unqualified-id shall name a member of the namespace
1612 // designated by the nested-name-specifier.
1613 // See also [class.mfct]p5 and [class.static.data]p2.
1614 if (R.isForRedeclaration())
1615 return false;
1616
1617 // If this is a namespace, look it up in the implied namespaces.
1618 if (LookupCtx->isFileContext())
1619 return LookupQualifiedNameInUsingDirectives(*this, R, LookupCtx);
1620
1621 // If this isn't a C++ class, we aren't allowed to look into base
1622 // classes, we're done.
1623 CXXRecordDecl *LookupRec = dyn_cast<CXXRecordDecl>(LookupCtx);
1624 if (!LookupRec || !LookupRec->getDefinition())
1625 return false;
1626
1627 // If we're performing qualified name lookup into a dependent class,
1628 // then we are actually looking into a current instantiation. If we have any
1629 // dependent base classes, then we either have to delay lookup until
1630 // template instantiation time (at which point all bases will be available)
1631 // or we have to fail.
1632 if (!InUnqualifiedLookup && LookupRec->isDependentContext() &&
1633 LookupRec->hasAnyDependentBases()) {
1634 R.setNotFoundInCurrentInstantiation();
1635 return false;
1636 }
1637
1638 // Perform lookup into our base classes.
1639 CXXBasePaths Paths;
1640 Paths.setOrigin(LookupRec);
1641
1642 // Look for this member in our base classes
1643 CXXRecordDecl::BaseMatchesCallback *BaseCallback = nullptr;
1644 switch (R.getLookupKind()) {
1645 case LookupObjCImplicitSelfParam:
1646 case LookupOrdinaryName:
1647 case LookupMemberName:
1648 case LookupRedeclarationWithLinkage:
1649 case LookupLocalFriendName:
1650 BaseCallback = &CXXRecordDecl::FindOrdinaryMember;
1651 break;
1652
1653 case LookupTagName:
1654 BaseCallback = &CXXRecordDecl::FindTagMember;
1655 break;
1656
1657 case LookupAnyName:
1658 BaseCallback = &LookupAnyMember;
1659 break;
1660
1661 case LookupUsingDeclName:
1662 // This lookup is for redeclarations only.
1663
1664 case LookupOperatorName:
1665 case LookupNamespaceName:
1666 case LookupObjCProtocolName:
1667 case LookupLabel:
1668 // These lookups will never find a member in a C++ class (or base class).
1669 return false;
1670
1671 case LookupNestedNameSpecifierName:
1672 BaseCallback = &CXXRecordDecl::FindNestedNameSpecifierMember;
1673 break;
1674 }
1675
1676 if (!LookupRec->lookupInBases(BaseCallback,
1677 R.getLookupName().getAsOpaquePtr(), Paths))
1678 return false;
1679
1680 R.setNamingClass(LookupRec);
1681
1682 // C++ [class.member.lookup]p2:
1683 // [...] If the resulting set of declarations are not all from
1684 // sub-objects of the same type, or the set has a nonstatic member
1685 // and includes members from distinct sub-objects, there is an
1686 // ambiguity and the program is ill-formed. Otherwise that set is
1687 // the result of the lookup.
1688 QualType SubobjectType;
1689 int SubobjectNumber = 0;
1690 AccessSpecifier SubobjectAccess = AS_none;
1691
1692 for (CXXBasePaths::paths_iterator Path = Paths.begin(), PathEnd = Paths.end();
1693 Path != PathEnd; ++Path) {
1694 const CXXBasePathElement &PathElement = Path->back();
1695
1696 // Pick the best (i.e. most permissive i.e. numerically lowest) access
1697 // across all paths.
1698 SubobjectAccess = std::min(SubobjectAccess, Path->Access);
1699
1700 // Determine whether we're looking at a distinct sub-object or not.
1701 if (SubobjectType.isNull()) {
1702 // This is the first subobject we've looked at. Record its type.
1703 SubobjectType = Context.getCanonicalType(PathElement.Base->getType());
1704 SubobjectNumber = PathElement.SubobjectNumber;
1705 continue;
1706 }
1707
1708 if (SubobjectType
1709 != Context.getCanonicalType(PathElement.Base->getType())) {
1710 // We found members of the given name in two subobjects of
1711 // different types. If the declaration sets aren't the same, this
1712 // lookup is ambiguous.
1713 if (HasOnlyStaticMembers(Path->Decls.begin(), Path->Decls.end())) {
1714 CXXBasePaths::paths_iterator FirstPath = Paths.begin();
1715 DeclContext::lookup_iterator FirstD = FirstPath->Decls.begin();
1716 DeclContext::lookup_iterator CurrentD = Path->Decls.begin();
1717
1718 while (FirstD != FirstPath->Decls.end() &&
1719 CurrentD != Path->Decls.end()) {
1720 if ((*FirstD)->getUnderlyingDecl()->getCanonicalDecl() !=
1721 (*CurrentD)->getUnderlyingDecl()->getCanonicalDecl())
1722 break;
1723
1724 ++FirstD;
1725 ++CurrentD;
1726 }
1727
1728 if (FirstD == FirstPath->Decls.end() &&
1729 CurrentD == Path->Decls.end())
1730 continue;
1731 }
1732
1733 R.setAmbiguousBaseSubobjectTypes(Paths);
1734 return true;
1735 }
1736
1737 if (SubobjectNumber != PathElement.SubobjectNumber) {
1738 // We have a different subobject of the same type.
1739
1740 // C++ [class.member.lookup]p5:
1741 // A static member, a nested type or an enumerator defined in
1742 // a base class T can unambiguously be found even if an object
1743 // has more than one base class subobject of type T.
1744 if (HasOnlyStaticMembers(Path->Decls.begin(), Path->Decls.end()))
1745 continue;
1746
1747 // We have found a nonstatic member name in multiple, distinct
1748 // subobjects. Name lookup is ambiguous.
1749 R.setAmbiguousBaseSubobjects(Paths);
1750 return true;
1751 }
1752 }
1753
1754 // Lookup in a base class succeeded; return these results.
1755
1756 for (auto *D : Paths.front().Decls) {
1757 AccessSpecifier AS = CXXRecordDecl::MergeAccess(SubobjectAccess,
1758 D->getAccess());
1759 R.addDecl(D, AS);
1760 }
1761 R.resolveKind();
1762 return true;
1763 }
1764
1765 /// \brief Performs qualified name lookup or special type of lookup for
1766 /// "__super::" scope specifier.
1767 ///
1768 /// This routine is a convenience overload meant to be called from contexts
1769 /// that need to perform a qualified name lookup with an optional C++ scope
1770 /// specifier that might require special kind of lookup.
1771 ///
1772 /// \param R captures both the lookup criteria and any lookup results found.
1773 ///
1774 /// \param LookupCtx The context in which qualified name lookup will
1775 /// search.
1776 ///
1777 /// \param SS An optional C++ scope-specifier.
1778 ///
1779 /// \returns true if lookup succeeded, false if it failed.
LookupQualifiedName(LookupResult & R,DeclContext * LookupCtx,CXXScopeSpec & SS)1780 bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
1781 CXXScopeSpec &SS) {
1782 auto *NNS = SS.getScopeRep();
1783 if (NNS && NNS->getKind() == NestedNameSpecifier::Super)
1784 return LookupInSuper(R, NNS->getAsRecordDecl());
1785 else
1786
1787 return LookupQualifiedName(R, LookupCtx);
1788 }
1789
1790 /// @brief Performs name lookup for a name that was parsed in the
1791 /// source code, and may contain a C++ scope specifier.
1792 ///
1793 /// This routine is a convenience routine meant to be called from
1794 /// contexts that receive a name and an optional C++ scope specifier
1795 /// (e.g., "N::M::x"). It will then perform either qualified or
1796 /// unqualified name lookup (with LookupQualifiedName or LookupName,
1797 /// respectively) on the given name and return those results. It will
1798 /// perform a special type of lookup for "__super::" scope specifier.
1799 ///
1800 /// @param S The scope from which unqualified name lookup will
1801 /// begin.
1802 ///
1803 /// @param SS An optional C++ scope-specifier, e.g., "::N::M".
1804 ///
1805 /// @param EnteringContext Indicates whether we are going to enter the
1806 /// context of the scope-specifier SS (if present).
1807 ///
1808 /// @returns True if any decls were found (but possibly ambiguous)
LookupParsedName(LookupResult & R,Scope * S,CXXScopeSpec * SS,bool AllowBuiltinCreation,bool EnteringContext)1809 bool Sema::LookupParsedName(LookupResult &R, Scope *S, CXXScopeSpec *SS,
1810 bool AllowBuiltinCreation, bool EnteringContext) {
1811 if (SS && SS->isInvalid()) {
1812 // When the scope specifier is invalid, don't even look for
1813 // anything.
1814 return false;
1815 }
1816
1817 if (SS && SS->isSet()) {
1818 NestedNameSpecifier *NNS = SS->getScopeRep();
1819 if (NNS->getKind() == NestedNameSpecifier::Super)
1820 return LookupInSuper(R, NNS->getAsRecordDecl());
1821
1822 if (DeclContext *DC = computeDeclContext(*SS, EnteringContext)) {
1823 // We have resolved the scope specifier to a particular declaration
1824 // contex, and will perform name lookup in that context.
1825 if (!DC->isDependentContext() && RequireCompleteDeclContext(*SS, DC))
1826 return false;
1827
1828 R.setContextRange(SS->getRange());
1829 return LookupQualifiedName(R, DC);
1830 }
1831
1832 // We could not resolve the scope specified to a specific declaration
1833 // context, which means that SS refers to an unknown specialization.
1834 // Name lookup can't find anything in this case.
1835 R.setNotFoundInCurrentInstantiation();
1836 R.setContextRange(SS->getRange());
1837 return false;
1838 }
1839
1840 // Perform unqualified name lookup starting in the given scope.
1841 return LookupName(R, S, AllowBuiltinCreation);
1842 }
1843
1844 /// \brief Perform qualified name lookup into all base classes of the given
1845 /// class.
1846 ///
1847 /// \param R captures both the lookup criteria and any lookup results found.
1848 ///
1849 /// \param Class The context in which qualified name lookup will
1850 /// search. Name lookup will search in all base classes merging the results.
1851 ///
1852 /// @returns True if any decls were found (but possibly ambiguous)
LookupInSuper(LookupResult & R,CXXRecordDecl * Class)1853 bool Sema::LookupInSuper(LookupResult &R, CXXRecordDecl *Class) {
1854 for (const auto &BaseSpec : Class->bases()) {
1855 CXXRecordDecl *RD = cast<CXXRecordDecl>(
1856 BaseSpec.getType()->castAs<RecordType>()->getDecl());
1857 LookupResult Result(*this, R.getLookupNameInfo(), R.getLookupKind());
1858 Result.setBaseObjectType(Context.getRecordType(Class));
1859 LookupQualifiedName(Result, RD);
1860 for (auto *Decl : Result)
1861 R.addDecl(Decl);
1862 }
1863
1864 R.resolveKind();
1865
1866 return !R.empty();
1867 }
1868
1869 /// \brief Produce a diagnostic describing the ambiguity that resulted
1870 /// from name lookup.
1871 ///
1872 /// \param Result The result of the ambiguous lookup to be diagnosed.
DiagnoseAmbiguousLookup(LookupResult & Result)1873 void Sema::DiagnoseAmbiguousLookup(LookupResult &Result) {
1874 assert(Result.isAmbiguous() && "Lookup result must be ambiguous");
1875
1876 DeclarationName Name = Result.getLookupName();
1877 SourceLocation NameLoc = Result.getNameLoc();
1878 SourceRange LookupRange = Result.getContextRange();
1879
1880 switch (Result.getAmbiguityKind()) {
1881 case LookupResult::AmbiguousBaseSubobjects: {
1882 CXXBasePaths *Paths = Result.getBasePaths();
1883 QualType SubobjectType = Paths->front().back().Base->getType();
1884 Diag(NameLoc, diag::err_ambiguous_member_multiple_subobjects)
1885 << Name << SubobjectType << getAmbiguousPathsDisplayString(*Paths)
1886 << LookupRange;
1887
1888 DeclContext::lookup_iterator Found = Paths->front().Decls.begin();
1889 while (isa<CXXMethodDecl>(*Found) &&
1890 cast<CXXMethodDecl>(*Found)->isStatic())
1891 ++Found;
1892
1893 Diag((*Found)->getLocation(), diag::note_ambiguous_member_found);
1894 break;
1895 }
1896
1897 case LookupResult::AmbiguousBaseSubobjectTypes: {
1898 Diag(NameLoc, diag::err_ambiguous_member_multiple_subobject_types)
1899 << Name << LookupRange;
1900
1901 CXXBasePaths *Paths = Result.getBasePaths();
1902 std::set<Decl *> DeclsPrinted;
1903 for (CXXBasePaths::paths_iterator Path = Paths->begin(),
1904 PathEnd = Paths->end();
1905 Path != PathEnd; ++Path) {
1906 Decl *D = Path->Decls.front();
1907 if (DeclsPrinted.insert(D).second)
1908 Diag(D->getLocation(), diag::note_ambiguous_member_found);
1909 }
1910 break;
1911 }
1912
1913 case LookupResult::AmbiguousTagHiding: {
1914 Diag(NameLoc, diag::err_ambiguous_tag_hiding) << Name << LookupRange;
1915
1916 llvm::SmallPtrSet<NamedDecl*,8> TagDecls;
1917
1918 for (auto *D : Result)
1919 if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
1920 TagDecls.insert(TD);
1921 Diag(TD->getLocation(), diag::note_hidden_tag);
1922 }
1923
1924 for (auto *D : Result)
1925 if (!isa<TagDecl>(D))
1926 Diag(D->getLocation(), diag::note_hiding_object);
1927
1928 // For recovery purposes, go ahead and implement the hiding.
1929 LookupResult::Filter F = Result.makeFilter();
1930 while (F.hasNext()) {
1931 if (TagDecls.count(F.next()))
1932 F.erase();
1933 }
1934 F.done();
1935 break;
1936 }
1937
1938 case LookupResult::AmbiguousReference: {
1939 Diag(NameLoc, diag::err_ambiguous_reference) << Name << LookupRange;
1940
1941 for (auto *D : Result)
1942 Diag(D->getLocation(), diag::note_ambiguous_candidate) << D;
1943 break;
1944 }
1945 }
1946 }
1947
1948 namespace {
1949 struct AssociatedLookup {
AssociatedLookup__anondc69e2da0311::AssociatedLookup1950 AssociatedLookup(Sema &S, SourceLocation InstantiationLoc,
1951 Sema::AssociatedNamespaceSet &Namespaces,
1952 Sema::AssociatedClassSet &Classes)
1953 : S(S), Namespaces(Namespaces), Classes(Classes),
1954 InstantiationLoc(InstantiationLoc) {
1955 }
1956
1957 Sema &S;
1958 Sema::AssociatedNamespaceSet &Namespaces;
1959 Sema::AssociatedClassSet &Classes;
1960 SourceLocation InstantiationLoc;
1961 };
1962 }
1963
1964 static void
1965 addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType T);
1966
CollectEnclosingNamespace(Sema::AssociatedNamespaceSet & Namespaces,DeclContext * Ctx)1967 static void CollectEnclosingNamespace(Sema::AssociatedNamespaceSet &Namespaces,
1968 DeclContext *Ctx) {
1969 // Add the associated namespace for this class.
1970
1971 // We don't use DeclContext::getEnclosingNamespaceContext() as this may
1972 // be a locally scoped record.
1973
1974 // We skip out of inline namespaces. The innermost non-inline namespace
1975 // contains all names of all its nested inline namespaces anyway, so we can
1976 // replace the entire inline namespace tree with its root.
1977 while (Ctx->isRecord() || Ctx->isTransparentContext() ||
1978 Ctx->isInlineNamespace())
1979 Ctx = Ctx->getParent();
1980
1981 if (Ctx->isFileContext())
1982 Namespaces.insert(Ctx->getPrimaryContext());
1983 }
1984
1985 // \brief Add the associated classes and namespaces for argument-dependent
1986 // lookup that involves a template argument (C++ [basic.lookup.koenig]p2).
1987 static void
addAssociatedClassesAndNamespaces(AssociatedLookup & Result,const TemplateArgument & Arg)1988 addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
1989 const TemplateArgument &Arg) {
1990 // C++ [basic.lookup.koenig]p2, last bullet:
1991 // -- [...] ;
1992 switch (Arg.getKind()) {
1993 case TemplateArgument::Null:
1994 break;
1995
1996 case TemplateArgument::Type:
1997 // [...] the namespaces and classes associated with the types of the
1998 // template arguments provided for template type parameters (excluding
1999 // template template parameters)
2000 addAssociatedClassesAndNamespaces(Result, Arg.getAsType());
2001 break;
2002
2003 case TemplateArgument::Template:
2004 case TemplateArgument::TemplateExpansion: {
2005 // [...] the namespaces in which any template template arguments are
2006 // defined; and the classes in which any member templates used as
2007 // template template arguments are defined.
2008 TemplateName Template = Arg.getAsTemplateOrTemplatePattern();
2009 if (ClassTemplateDecl *ClassTemplate
2010 = dyn_cast<ClassTemplateDecl>(Template.getAsTemplateDecl())) {
2011 DeclContext *Ctx = ClassTemplate->getDeclContext();
2012 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2013 Result.Classes.insert(EnclosingClass);
2014 // Add the associated namespace for this class.
2015 CollectEnclosingNamespace(Result.Namespaces, Ctx);
2016 }
2017 break;
2018 }
2019
2020 case TemplateArgument::Declaration:
2021 case TemplateArgument::Integral:
2022 case TemplateArgument::Expression:
2023 case TemplateArgument::NullPtr:
2024 // [Note: non-type template arguments do not contribute to the set of
2025 // associated namespaces. ]
2026 break;
2027
2028 case TemplateArgument::Pack:
2029 for (const auto &P : Arg.pack_elements())
2030 addAssociatedClassesAndNamespaces(Result, P);
2031 break;
2032 }
2033 }
2034
2035 // \brief Add the associated classes and namespaces for
2036 // argument-dependent lookup with an argument of class type
2037 // (C++ [basic.lookup.koenig]p2).
2038 static void
addAssociatedClassesAndNamespaces(AssociatedLookup & Result,CXXRecordDecl * Class)2039 addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
2040 CXXRecordDecl *Class) {
2041
2042 // Just silently ignore anything whose name is __va_list_tag.
2043 if (Class->getDeclName() == Result.S.VAListTagName)
2044 return;
2045
2046 // C++ [basic.lookup.koenig]p2:
2047 // [...]
2048 // -- If T is a class type (including unions), its associated
2049 // classes are: the class itself; the class of which it is a
2050 // member, if any; and its direct and indirect base
2051 // classes. Its associated namespaces are the namespaces in
2052 // which its associated classes are defined.
2053
2054 // Add the class of which it is a member, if any.
2055 DeclContext *Ctx = Class->getDeclContext();
2056 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2057 Result.Classes.insert(EnclosingClass);
2058 // Add the associated namespace for this class.
2059 CollectEnclosingNamespace(Result.Namespaces, Ctx);
2060
2061 // Add the class itself. If we've already seen this class, we don't
2062 // need to visit base classes.
2063 //
2064 // FIXME: That's not correct, we may have added this class only because it
2065 // was the enclosing class of another class, and in that case we won't have
2066 // added its base classes yet.
2067 if (!Result.Classes.insert(Class).second)
2068 return;
2069
2070 // -- If T is a template-id, its associated namespaces and classes are
2071 // the namespace in which the template is defined; for member
2072 // templates, the member template's class; the namespaces and classes
2073 // associated with the types of the template arguments provided for
2074 // template type parameters (excluding template template parameters); the
2075 // namespaces in which any template template arguments are defined; and
2076 // the classes in which any member templates used as template template
2077 // arguments are defined. [Note: non-type template arguments do not
2078 // contribute to the set of associated namespaces. ]
2079 if (ClassTemplateSpecializationDecl *Spec
2080 = dyn_cast<ClassTemplateSpecializationDecl>(Class)) {
2081 DeclContext *Ctx = Spec->getSpecializedTemplate()->getDeclContext();
2082 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2083 Result.Classes.insert(EnclosingClass);
2084 // Add the associated namespace for this class.
2085 CollectEnclosingNamespace(Result.Namespaces, Ctx);
2086
2087 const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
2088 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
2089 addAssociatedClassesAndNamespaces(Result, TemplateArgs[I]);
2090 }
2091
2092 // Only recurse into base classes for complete types.
2093 if (!Class->hasDefinition())
2094 return;
2095
2096 // Add direct and indirect base classes along with their associated
2097 // namespaces.
2098 SmallVector<CXXRecordDecl *, 32> Bases;
2099 Bases.push_back(Class);
2100 while (!Bases.empty()) {
2101 // Pop this class off the stack.
2102 Class = Bases.pop_back_val();
2103
2104 // Visit the base classes.
2105 for (const auto &Base : Class->bases()) {
2106 const RecordType *BaseType = Base.getType()->getAs<RecordType>();
2107 // In dependent contexts, we do ADL twice, and the first time around,
2108 // the base type might be a dependent TemplateSpecializationType, or a
2109 // TemplateTypeParmType. If that happens, simply ignore it.
2110 // FIXME: If we want to support export, we probably need to add the
2111 // namespace of the template in a TemplateSpecializationType, or even
2112 // the classes and namespaces of known non-dependent arguments.
2113 if (!BaseType)
2114 continue;
2115 CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(BaseType->getDecl());
2116 if (Result.Classes.insert(BaseDecl).second) {
2117 // Find the associated namespace for this base class.
2118 DeclContext *BaseCtx = BaseDecl->getDeclContext();
2119 CollectEnclosingNamespace(Result.Namespaces, BaseCtx);
2120
2121 // Make sure we visit the bases of this base class.
2122 if (BaseDecl->bases_begin() != BaseDecl->bases_end())
2123 Bases.push_back(BaseDecl);
2124 }
2125 }
2126 }
2127 }
2128
2129 // \brief Add the associated classes and namespaces for
2130 // argument-dependent lookup with an argument of type T
2131 // (C++ [basic.lookup.koenig]p2).
2132 static void
addAssociatedClassesAndNamespaces(AssociatedLookup & Result,QualType Ty)2133 addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType Ty) {
2134 // C++ [basic.lookup.koenig]p2:
2135 //
2136 // For each argument type T in the function call, there is a set
2137 // of zero or more associated namespaces and a set of zero or more
2138 // associated classes to be considered. The sets of namespaces and
2139 // classes is determined entirely by the types of the function
2140 // arguments (and the namespace of any template template
2141 // argument). Typedef names and using-declarations used to specify
2142 // the types do not contribute to this set. The sets of namespaces
2143 // and classes are determined in the following way:
2144
2145 SmallVector<const Type *, 16> Queue;
2146 const Type *T = Ty->getCanonicalTypeInternal().getTypePtr();
2147
2148 while (true) {
2149 switch (T->getTypeClass()) {
2150
2151 #define TYPE(Class, Base)
2152 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
2153 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
2154 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
2155 #define ABSTRACT_TYPE(Class, Base)
2156 #include "clang/AST/TypeNodes.def"
2157 // T is canonical. We can also ignore dependent types because
2158 // we don't need to do ADL at the definition point, but if we
2159 // wanted to implement template export (or if we find some other
2160 // use for associated classes and namespaces...) this would be
2161 // wrong.
2162 break;
2163
2164 // -- If T is a pointer to U or an array of U, its associated
2165 // namespaces and classes are those associated with U.
2166 case Type::Pointer:
2167 T = cast<PointerType>(T)->getPointeeType().getTypePtr();
2168 continue;
2169 case Type::ConstantArray:
2170 case Type::IncompleteArray:
2171 case Type::VariableArray:
2172 T = cast<ArrayType>(T)->getElementType().getTypePtr();
2173 continue;
2174
2175 // -- If T is a fundamental type, its associated sets of
2176 // namespaces and classes are both empty.
2177 case Type::Builtin:
2178 break;
2179
2180 // -- If T is a class type (including unions), its associated
2181 // classes are: the class itself; the class of which it is a
2182 // member, if any; and its direct and indirect base
2183 // classes. Its associated namespaces are the namespaces in
2184 // which its associated classes are defined.
2185 case Type::Record: {
2186 Result.S.RequireCompleteType(Result.InstantiationLoc, QualType(T, 0),
2187 /*no diagnostic*/ 0);
2188 CXXRecordDecl *Class
2189 = cast<CXXRecordDecl>(cast<RecordType>(T)->getDecl());
2190 addAssociatedClassesAndNamespaces(Result, Class);
2191 break;
2192 }
2193
2194 // -- If T is an enumeration type, its associated namespace is
2195 // the namespace in which it is defined. If it is class
2196 // member, its associated class is the member's class; else
2197 // it has no associated class.
2198 case Type::Enum: {
2199 EnumDecl *Enum = cast<EnumType>(T)->getDecl();
2200
2201 DeclContext *Ctx = Enum->getDeclContext();
2202 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2203 Result.Classes.insert(EnclosingClass);
2204
2205 // Add the associated namespace for this class.
2206 CollectEnclosingNamespace(Result.Namespaces, Ctx);
2207
2208 break;
2209 }
2210
2211 // -- If T is a function type, its associated namespaces and
2212 // classes are those associated with the function parameter
2213 // types and those associated with the return type.
2214 case Type::FunctionProto: {
2215 const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
2216 for (const auto &Arg : Proto->param_types())
2217 Queue.push_back(Arg.getTypePtr());
2218 // fallthrough
2219 }
2220 case Type::FunctionNoProto: {
2221 const FunctionType *FnType = cast<FunctionType>(T);
2222 T = FnType->getReturnType().getTypePtr();
2223 continue;
2224 }
2225
2226 // -- If T is a pointer to a member function of a class X, its
2227 // associated namespaces and classes are those associated
2228 // with the function parameter types and return type,
2229 // together with those associated with X.
2230 //
2231 // -- If T is a pointer to a data member of class X, its
2232 // associated namespaces and classes are those associated
2233 // with the member type together with those associated with
2234 // X.
2235 case Type::MemberPointer: {
2236 const MemberPointerType *MemberPtr = cast<MemberPointerType>(T);
2237
2238 // Queue up the class type into which this points.
2239 Queue.push_back(MemberPtr->getClass());
2240
2241 // And directly continue with the pointee type.
2242 T = MemberPtr->getPointeeType().getTypePtr();
2243 continue;
2244 }
2245
2246 // As an extension, treat this like a normal pointer.
2247 case Type::BlockPointer:
2248 T = cast<BlockPointerType>(T)->getPointeeType().getTypePtr();
2249 continue;
2250
2251 // References aren't covered by the standard, but that's such an
2252 // obvious defect that we cover them anyway.
2253 case Type::LValueReference:
2254 case Type::RValueReference:
2255 T = cast<ReferenceType>(T)->getPointeeType().getTypePtr();
2256 continue;
2257
2258 // These are fundamental types.
2259 case Type::Vector:
2260 case Type::ExtVector:
2261 case Type::Complex:
2262 break;
2263
2264 // Non-deduced auto types only get here for error cases.
2265 case Type::Auto:
2266 break;
2267
2268 // If T is an Objective-C object or interface type, or a pointer to an
2269 // object or interface type, the associated namespace is the global
2270 // namespace.
2271 case Type::ObjCObject:
2272 case Type::ObjCInterface:
2273 case Type::ObjCObjectPointer:
2274 Result.Namespaces.insert(Result.S.Context.getTranslationUnitDecl());
2275 break;
2276
2277 // Atomic types are just wrappers; use the associations of the
2278 // contained type.
2279 case Type::Atomic:
2280 T = cast<AtomicType>(T)->getValueType().getTypePtr();
2281 continue;
2282 }
2283
2284 if (Queue.empty())
2285 break;
2286 T = Queue.pop_back_val();
2287 }
2288 }
2289
2290 /// \brief Find the associated classes and namespaces for
2291 /// argument-dependent lookup for a call with the given set of
2292 /// arguments.
2293 ///
2294 /// This routine computes the sets of associated classes and associated
2295 /// namespaces searched by argument-dependent lookup
2296 /// (C++ [basic.lookup.argdep]) for a given set of arguments.
FindAssociatedClassesAndNamespaces(SourceLocation InstantiationLoc,ArrayRef<Expr * > Args,AssociatedNamespaceSet & AssociatedNamespaces,AssociatedClassSet & AssociatedClasses)2297 void Sema::FindAssociatedClassesAndNamespaces(
2298 SourceLocation InstantiationLoc, ArrayRef<Expr *> Args,
2299 AssociatedNamespaceSet &AssociatedNamespaces,
2300 AssociatedClassSet &AssociatedClasses) {
2301 AssociatedNamespaces.clear();
2302 AssociatedClasses.clear();
2303
2304 AssociatedLookup Result(*this, InstantiationLoc,
2305 AssociatedNamespaces, AssociatedClasses);
2306
2307 // C++ [basic.lookup.koenig]p2:
2308 // For each argument type T in the function call, there is a set
2309 // of zero or more associated namespaces and a set of zero or more
2310 // associated classes to be considered. The sets of namespaces and
2311 // classes is determined entirely by the types of the function
2312 // arguments (and the namespace of any template template
2313 // argument).
2314 for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
2315 Expr *Arg = Args[ArgIdx];
2316
2317 if (Arg->getType() != Context.OverloadTy) {
2318 addAssociatedClassesAndNamespaces(Result, Arg->getType());
2319 continue;
2320 }
2321
2322 // [...] In addition, if the argument is the name or address of a
2323 // set of overloaded functions and/or function templates, its
2324 // associated classes and namespaces are the union of those
2325 // associated with each of the members of the set: the namespace
2326 // in which the function or function template is defined and the
2327 // classes and namespaces associated with its (non-dependent)
2328 // parameter types and return type.
2329 Arg = Arg->IgnoreParens();
2330 if (UnaryOperator *unaryOp = dyn_cast<UnaryOperator>(Arg))
2331 if (unaryOp->getOpcode() == UO_AddrOf)
2332 Arg = unaryOp->getSubExpr();
2333
2334 UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(Arg);
2335 if (!ULE) continue;
2336
2337 for (const auto *D : ULE->decls()) {
2338 // Look through any using declarations to find the underlying function.
2339 const FunctionDecl *FDecl = D->getUnderlyingDecl()->getAsFunction();
2340
2341 // Add the classes and namespaces associated with the parameter
2342 // types and return type of this function.
2343 addAssociatedClassesAndNamespaces(Result, FDecl->getType());
2344 }
2345 }
2346 }
2347
LookupSingleName(Scope * S,DeclarationName Name,SourceLocation Loc,LookupNameKind NameKind,RedeclarationKind Redecl)2348 NamedDecl *Sema::LookupSingleName(Scope *S, DeclarationName Name,
2349 SourceLocation Loc,
2350 LookupNameKind NameKind,
2351 RedeclarationKind Redecl) {
2352 LookupResult R(*this, Name, Loc, NameKind, Redecl);
2353 LookupName(R, S);
2354 return R.getAsSingle<NamedDecl>();
2355 }
2356
2357 /// \brief Find the protocol with the given name, if any.
LookupProtocol(IdentifierInfo * II,SourceLocation IdLoc,RedeclarationKind Redecl)2358 ObjCProtocolDecl *Sema::LookupProtocol(IdentifierInfo *II,
2359 SourceLocation IdLoc,
2360 RedeclarationKind Redecl) {
2361 Decl *D = LookupSingleName(TUScope, II, IdLoc,
2362 LookupObjCProtocolName, Redecl);
2363 return cast_or_null<ObjCProtocolDecl>(D);
2364 }
2365
LookupOverloadedOperatorName(OverloadedOperatorKind Op,Scope * S,QualType T1,QualType T2,UnresolvedSetImpl & Functions)2366 void Sema::LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S,
2367 QualType T1, QualType T2,
2368 UnresolvedSetImpl &Functions) {
2369 // C++ [over.match.oper]p3:
2370 // -- The set of non-member candidates is the result of the
2371 // unqualified lookup of operator@ in the context of the
2372 // expression according to the usual rules for name lookup in
2373 // unqualified function calls (3.4.2) except that all member
2374 // functions are ignored.
2375 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
2376 LookupResult Operators(*this, OpName, SourceLocation(), LookupOperatorName);
2377 LookupName(Operators, S);
2378
2379 assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous");
2380 Functions.append(Operators.begin(), Operators.end());
2381 }
2382
LookupSpecialMember(CXXRecordDecl * RD,CXXSpecialMember SM,bool ConstArg,bool VolatileArg,bool RValueThis,bool ConstThis,bool VolatileThis)2383 Sema::SpecialMemberOverloadResult *Sema::LookupSpecialMember(CXXRecordDecl *RD,
2384 CXXSpecialMember SM,
2385 bool ConstArg,
2386 bool VolatileArg,
2387 bool RValueThis,
2388 bool ConstThis,
2389 bool VolatileThis) {
2390 assert(CanDeclareSpecialMemberFunction(RD) &&
2391 "doing special member lookup into record that isn't fully complete");
2392 RD = RD->getDefinition();
2393 if (RValueThis || ConstThis || VolatileThis)
2394 assert((SM == CXXCopyAssignment || SM == CXXMoveAssignment) &&
2395 "constructors and destructors always have unqualified lvalue this");
2396 if (ConstArg || VolatileArg)
2397 assert((SM != CXXDefaultConstructor && SM != CXXDestructor) &&
2398 "parameter-less special members can't have qualified arguments");
2399
2400 llvm::FoldingSetNodeID ID;
2401 ID.AddPointer(RD);
2402 ID.AddInteger(SM);
2403 ID.AddInteger(ConstArg);
2404 ID.AddInteger(VolatileArg);
2405 ID.AddInteger(RValueThis);
2406 ID.AddInteger(ConstThis);
2407 ID.AddInteger(VolatileThis);
2408
2409 void *InsertPoint;
2410 SpecialMemberOverloadResult *Result =
2411 SpecialMemberCache.FindNodeOrInsertPos(ID, InsertPoint);
2412
2413 // This was already cached
2414 if (Result)
2415 return Result;
2416
2417 Result = BumpAlloc.Allocate<SpecialMemberOverloadResult>();
2418 Result = new (Result) SpecialMemberOverloadResult(ID);
2419 SpecialMemberCache.InsertNode(Result, InsertPoint);
2420
2421 if (SM == CXXDestructor) {
2422 if (RD->needsImplicitDestructor())
2423 DeclareImplicitDestructor(RD);
2424 CXXDestructorDecl *DD = RD->getDestructor();
2425 assert(DD && "record without a destructor");
2426 Result->setMethod(DD);
2427 Result->setKind(DD->isDeleted() ?
2428 SpecialMemberOverloadResult::NoMemberOrDeleted :
2429 SpecialMemberOverloadResult::Success);
2430 return Result;
2431 }
2432
2433 // Prepare for overload resolution. Here we construct a synthetic argument
2434 // if necessary and make sure that implicit functions are declared.
2435 CanQualType CanTy = Context.getCanonicalType(Context.getTagDeclType(RD));
2436 DeclarationName Name;
2437 Expr *Arg = nullptr;
2438 unsigned NumArgs;
2439
2440 QualType ArgType = CanTy;
2441 ExprValueKind VK = VK_LValue;
2442
2443 if (SM == CXXDefaultConstructor) {
2444 Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
2445 NumArgs = 0;
2446 if (RD->needsImplicitDefaultConstructor())
2447 DeclareImplicitDefaultConstructor(RD);
2448 } else {
2449 if (SM == CXXCopyConstructor || SM == CXXMoveConstructor) {
2450 Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
2451 if (RD->needsImplicitCopyConstructor())
2452 DeclareImplicitCopyConstructor(RD);
2453 if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveConstructor())
2454 DeclareImplicitMoveConstructor(RD);
2455 } else {
2456 Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
2457 if (RD->needsImplicitCopyAssignment())
2458 DeclareImplicitCopyAssignment(RD);
2459 if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveAssignment())
2460 DeclareImplicitMoveAssignment(RD);
2461 }
2462
2463 if (ConstArg)
2464 ArgType.addConst();
2465 if (VolatileArg)
2466 ArgType.addVolatile();
2467
2468 // This isn't /really/ specified by the standard, but it's implied
2469 // we should be working from an RValue in the case of move to ensure
2470 // that we prefer to bind to rvalue references, and an LValue in the
2471 // case of copy to ensure we don't bind to rvalue references.
2472 // Possibly an XValue is actually correct in the case of move, but
2473 // there is no semantic difference for class types in this restricted
2474 // case.
2475 if (SM == CXXCopyConstructor || SM == CXXCopyAssignment)
2476 VK = VK_LValue;
2477 else
2478 VK = VK_RValue;
2479 }
2480
2481 OpaqueValueExpr FakeArg(SourceLocation(), ArgType, VK);
2482
2483 if (SM != CXXDefaultConstructor) {
2484 NumArgs = 1;
2485 Arg = &FakeArg;
2486 }
2487
2488 // Create the object argument
2489 QualType ThisTy = CanTy;
2490 if (ConstThis)
2491 ThisTy.addConst();
2492 if (VolatileThis)
2493 ThisTy.addVolatile();
2494 Expr::Classification Classification =
2495 OpaqueValueExpr(SourceLocation(), ThisTy,
2496 RValueThis ? VK_RValue : VK_LValue).Classify(Context);
2497
2498 // Now we perform lookup on the name we computed earlier and do overload
2499 // resolution. Lookup is only performed directly into the class since there
2500 // will always be a (possibly implicit) declaration to shadow any others.
2501 OverloadCandidateSet OCS(RD->getLocation(), OverloadCandidateSet::CSK_Normal);
2502 DeclContext::lookup_result R = RD->lookup(Name);
2503
2504 if (R.empty()) {
2505 // We might have no default constructor because we have a lambda's closure
2506 // type, rather than because there's some other declared constructor.
2507 // Every class has a copy/move constructor, copy/move assignment, and
2508 // destructor.
2509 assert(SM == CXXDefaultConstructor &&
2510 "lookup for a constructor or assignment operator was empty");
2511 Result->setMethod(nullptr);
2512 Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
2513 return Result;
2514 }
2515
2516 // Copy the candidates as our processing of them may load new declarations
2517 // from an external source and invalidate lookup_result.
2518 SmallVector<NamedDecl *, 8> Candidates(R.begin(), R.end());
2519
2520 for (auto *Cand : Candidates) {
2521 if (Cand->isInvalidDecl())
2522 continue;
2523
2524 if (UsingShadowDecl *U = dyn_cast<UsingShadowDecl>(Cand)) {
2525 // FIXME: [namespace.udecl]p15 says that we should only consider a
2526 // using declaration here if it does not match a declaration in the
2527 // derived class. We do not implement this correctly in other cases
2528 // either.
2529 Cand = U->getTargetDecl();
2530
2531 if (Cand->isInvalidDecl())
2532 continue;
2533 }
2534
2535 if (CXXMethodDecl *M = dyn_cast<CXXMethodDecl>(Cand)) {
2536 if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
2537 AddMethodCandidate(M, DeclAccessPair::make(M, AS_public), RD, ThisTy,
2538 Classification, llvm::makeArrayRef(&Arg, NumArgs),
2539 OCS, true);
2540 else
2541 AddOverloadCandidate(M, DeclAccessPair::make(M, AS_public),
2542 llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
2543 } else if (FunctionTemplateDecl *Tmpl =
2544 dyn_cast<FunctionTemplateDecl>(Cand)) {
2545 if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
2546 AddMethodTemplateCandidate(Tmpl, DeclAccessPair::make(Tmpl, AS_public),
2547 RD, nullptr, ThisTy, Classification,
2548 llvm::makeArrayRef(&Arg, NumArgs),
2549 OCS, true);
2550 else
2551 AddTemplateOverloadCandidate(Tmpl, DeclAccessPair::make(Tmpl, AS_public),
2552 nullptr, llvm::makeArrayRef(&Arg, NumArgs),
2553 OCS, true);
2554 } else {
2555 assert(isa<UsingDecl>(Cand) && "illegal Kind of operator = Decl");
2556 }
2557 }
2558
2559 OverloadCandidateSet::iterator Best;
2560 switch (OCS.BestViableFunction(*this, SourceLocation(), Best)) {
2561 case OR_Success:
2562 Result->setMethod(cast<CXXMethodDecl>(Best->Function));
2563 Result->setKind(SpecialMemberOverloadResult::Success);
2564 break;
2565
2566 case OR_Deleted:
2567 Result->setMethod(cast<CXXMethodDecl>(Best->Function));
2568 Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
2569 break;
2570
2571 case OR_Ambiguous:
2572 Result->setMethod(nullptr);
2573 Result->setKind(SpecialMemberOverloadResult::Ambiguous);
2574 break;
2575
2576 case OR_No_Viable_Function:
2577 Result->setMethod(nullptr);
2578 Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
2579 break;
2580 }
2581
2582 return Result;
2583 }
2584
2585 /// \brief Look up the default constructor for the given class.
LookupDefaultConstructor(CXXRecordDecl * Class)2586 CXXConstructorDecl *Sema::LookupDefaultConstructor(CXXRecordDecl *Class) {
2587 SpecialMemberOverloadResult *Result =
2588 LookupSpecialMember(Class, CXXDefaultConstructor, false, false, false,
2589 false, false);
2590
2591 return cast_or_null<CXXConstructorDecl>(Result->getMethod());
2592 }
2593
2594 /// \brief Look up the copying constructor for the given class.
LookupCopyingConstructor(CXXRecordDecl * Class,unsigned Quals)2595 CXXConstructorDecl *Sema::LookupCopyingConstructor(CXXRecordDecl *Class,
2596 unsigned Quals) {
2597 assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
2598 "non-const, non-volatile qualifiers for copy ctor arg");
2599 SpecialMemberOverloadResult *Result =
2600 LookupSpecialMember(Class, CXXCopyConstructor, Quals & Qualifiers::Const,
2601 Quals & Qualifiers::Volatile, false, false, false);
2602
2603 return cast_or_null<CXXConstructorDecl>(Result->getMethod());
2604 }
2605
2606 /// \brief Look up the moving constructor for the given class.
LookupMovingConstructor(CXXRecordDecl * Class,unsigned Quals)2607 CXXConstructorDecl *Sema::LookupMovingConstructor(CXXRecordDecl *Class,
2608 unsigned Quals) {
2609 SpecialMemberOverloadResult *Result =
2610 LookupSpecialMember(Class, CXXMoveConstructor, Quals & Qualifiers::Const,
2611 Quals & Qualifiers::Volatile, false, false, false);
2612
2613 return cast_or_null<CXXConstructorDecl>(Result->getMethod());
2614 }
2615
2616 /// \brief Look up the constructors for the given class.
LookupConstructors(CXXRecordDecl * Class)2617 DeclContext::lookup_result Sema::LookupConstructors(CXXRecordDecl *Class) {
2618 // If the implicit constructors have not yet been declared, do so now.
2619 if (CanDeclareSpecialMemberFunction(Class)) {
2620 if (Class->needsImplicitDefaultConstructor())
2621 DeclareImplicitDefaultConstructor(Class);
2622 if (Class->needsImplicitCopyConstructor())
2623 DeclareImplicitCopyConstructor(Class);
2624 if (getLangOpts().CPlusPlus11 && Class->needsImplicitMoveConstructor())
2625 DeclareImplicitMoveConstructor(Class);
2626 }
2627
2628 CanQualType T = Context.getCanonicalType(Context.getTypeDeclType(Class));
2629 DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(T);
2630 return Class->lookup(Name);
2631 }
2632
2633 /// \brief Look up the copying assignment operator for the given class.
LookupCopyingAssignment(CXXRecordDecl * Class,unsigned Quals,bool RValueThis,unsigned ThisQuals)2634 CXXMethodDecl *Sema::LookupCopyingAssignment(CXXRecordDecl *Class,
2635 unsigned Quals, bool RValueThis,
2636 unsigned ThisQuals) {
2637 assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
2638 "non-const, non-volatile qualifiers for copy assignment arg");
2639 assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
2640 "non-const, non-volatile qualifiers for copy assignment this");
2641 SpecialMemberOverloadResult *Result =
2642 LookupSpecialMember(Class, CXXCopyAssignment, Quals & Qualifiers::Const,
2643 Quals & Qualifiers::Volatile, RValueThis,
2644 ThisQuals & Qualifiers::Const,
2645 ThisQuals & Qualifiers::Volatile);
2646
2647 return Result->getMethod();
2648 }
2649
2650 /// \brief Look up the moving assignment operator for the given class.
LookupMovingAssignment(CXXRecordDecl * Class,unsigned Quals,bool RValueThis,unsigned ThisQuals)2651 CXXMethodDecl *Sema::LookupMovingAssignment(CXXRecordDecl *Class,
2652 unsigned Quals,
2653 bool RValueThis,
2654 unsigned ThisQuals) {
2655 assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
2656 "non-const, non-volatile qualifiers for copy assignment this");
2657 SpecialMemberOverloadResult *Result =
2658 LookupSpecialMember(Class, CXXMoveAssignment, Quals & Qualifiers::Const,
2659 Quals & Qualifiers::Volatile, RValueThis,
2660 ThisQuals & Qualifiers::Const,
2661 ThisQuals & Qualifiers::Volatile);
2662
2663 return Result->getMethod();
2664 }
2665
2666 /// \brief Look for the destructor of the given class.
2667 ///
2668 /// During semantic analysis, this routine should be used in lieu of
2669 /// CXXRecordDecl::getDestructor().
2670 ///
2671 /// \returns The destructor for this class.
LookupDestructor(CXXRecordDecl * Class)2672 CXXDestructorDecl *Sema::LookupDestructor(CXXRecordDecl *Class) {
2673 return cast<CXXDestructorDecl>(LookupSpecialMember(Class, CXXDestructor,
2674 false, false, false,
2675 false, false)->getMethod());
2676 }
2677
2678 /// LookupLiteralOperator - Determine which literal operator should be used for
2679 /// a user-defined literal, per C++11 [lex.ext].
2680 ///
2681 /// Normal overload resolution is not used to select which literal operator to
2682 /// call for a user-defined literal. Look up the provided literal operator name,
2683 /// and filter the results to the appropriate set for the given argument types.
2684 Sema::LiteralOperatorLookupResult
LookupLiteralOperator(Scope * S,LookupResult & R,ArrayRef<QualType> ArgTys,bool AllowRaw,bool AllowTemplate,bool AllowStringTemplate)2685 Sema::LookupLiteralOperator(Scope *S, LookupResult &R,
2686 ArrayRef<QualType> ArgTys,
2687 bool AllowRaw, bool AllowTemplate,
2688 bool AllowStringTemplate) {
2689 LookupName(R, S);
2690 assert(R.getResultKind() != LookupResult::Ambiguous &&
2691 "literal operator lookup can't be ambiguous");
2692
2693 // Filter the lookup results appropriately.
2694 LookupResult::Filter F = R.makeFilter();
2695
2696 bool FoundRaw = false;
2697 bool FoundTemplate = false;
2698 bool FoundStringTemplate = false;
2699 bool FoundExactMatch = false;
2700
2701 while (F.hasNext()) {
2702 Decl *D = F.next();
2703 if (UsingShadowDecl *USD = dyn_cast<UsingShadowDecl>(D))
2704 D = USD->getTargetDecl();
2705
2706 // If the declaration we found is invalid, skip it.
2707 if (D->isInvalidDecl()) {
2708 F.erase();
2709 continue;
2710 }
2711
2712 bool IsRaw = false;
2713 bool IsTemplate = false;
2714 bool IsStringTemplate = false;
2715 bool IsExactMatch = false;
2716
2717 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2718 if (FD->getNumParams() == 1 &&
2719 FD->getParamDecl(0)->getType()->getAs<PointerType>())
2720 IsRaw = true;
2721 else if (FD->getNumParams() == ArgTys.size()) {
2722 IsExactMatch = true;
2723 for (unsigned ArgIdx = 0; ArgIdx != ArgTys.size(); ++ArgIdx) {
2724 QualType ParamTy = FD->getParamDecl(ArgIdx)->getType();
2725 if (!Context.hasSameUnqualifiedType(ArgTys[ArgIdx], ParamTy)) {
2726 IsExactMatch = false;
2727 break;
2728 }
2729 }
2730 }
2731 }
2732 if (FunctionTemplateDecl *FD = dyn_cast<FunctionTemplateDecl>(D)) {
2733 TemplateParameterList *Params = FD->getTemplateParameters();
2734 if (Params->size() == 1)
2735 IsTemplate = true;
2736 else
2737 IsStringTemplate = true;
2738 }
2739
2740 if (IsExactMatch) {
2741 FoundExactMatch = true;
2742 AllowRaw = false;
2743 AllowTemplate = false;
2744 AllowStringTemplate = false;
2745 if (FoundRaw || FoundTemplate || FoundStringTemplate) {
2746 // Go through again and remove the raw and template decls we've
2747 // already found.
2748 F.restart();
2749 FoundRaw = FoundTemplate = FoundStringTemplate = false;
2750 }
2751 } else if (AllowRaw && IsRaw) {
2752 FoundRaw = true;
2753 } else if (AllowTemplate && IsTemplate) {
2754 FoundTemplate = true;
2755 } else if (AllowStringTemplate && IsStringTemplate) {
2756 FoundStringTemplate = true;
2757 } else {
2758 F.erase();
2759 }
2760 }
2761
2762 F.done();
2763
2764 // C++11 [lex.ext]p3, p4: If S contains a literal operator with a matching
2765 // parameter type, that is used in preference to a raw literal operator
2766 // or literal operator template.
2767 if (FoundExactMatch)
2768 return LOLR_Cooked;
2769
2770 // C++11 [lex.ext]p3, p4: S shall contain a raw literal operator or a literal
2771 // operator template, but not both.
2772 if (FoundRaw && FoundTemplate) {
2773 Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call) << R.getLookupName();
2774 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
2775 NoteOverloadCandidate((*I)->getUnderlyingDecl()->getAsFunction());
2776 return LOLR_Error;
2777 }
2778
2779 if (FoundRaw)
2780 return LOLR_Raw;
2781
2782 if (FoundTemplate)
2783 return LOLR_Template;
2784
2785 if (FoundStringTemplate)
2786 return LOLR_StringTemplate;
2787
2788 // Didn't find anything we could use.
2789 Diag(R.getNameLoc(), diag::err_ovl_no_viable_literal_operator)
2790 << R.getLookupName() << (int)ArgTys.size() << ArgTys[0]
2791 << (ArgTys.size() == 2 ? ArgTys[1] : QualType()) << AllowRaw
2792 << (AllowTemplate || AllowStringTemplate);
2793 return LOLR_Error;
2794 }
2795
insert(NamedDecl * New)2796 void ADLResult::insert(NamedDecl *New) {
2797 NamedDecl *&Old = Decls[cast<NamedDecl>(New->getCanonicalDecl())];
2798
2799 // If we haven't yet seen a decl for this key, or the last decl
2800 // was exactly this one, we're done.
2801 if (Old == nullptr || Old == New) {
2802 Old = New;
2803 return;
2804 }
2805
2806 // Otherwise, decide which is a more recent redeclaration.
2807 FunctionDecl *OldFD = Old->getAsFunction();
2808 FunctionDecl *NewFD = New->getAsFunction();
2809
2810 FunctionDecl *Cursor = NewFD;
2811 while (true) {
2812 Cursor = Cursor->getPreviousDecl();
2813
2814 // If we got to the end without finding OldFD, OldFD is the newer
2815 // declaration; leave things as they are.
2816 if (!Cursor) return;
2817
2818 // If we do find OldFD, then NewFD is newer.
2819 if (Cursor == OldFD) break;
2820
2821 // Otherwise, keep looking.
2822 }
2823
2824 Old = New;
2825 }
2826
ArgumentDependentLookup(DeclarationName Name,SourceLocation Loc,ArrayRef<Expr * > Args,ADLResult & Result)2827 void Sema::ArgumentDependentLookup(DeclarationName Name, SourceLocation Loc,
2828 ArrayRef<Expr *> Args, ADLResult &Result) {
2829 // Find all of the associated namespaces and classes based on the
2830 // arguments we have.
2831 AssociatedNamespaceSet AssociatedNamespaces;
2832 AssociatedClassSet AssociatedClasses;
2833 FindAssociatedClassesAndNamespaces(Loc, Args,
2834 AssociatedNamespaces,
2835 AssociatedClasses);
2836
2837 // C++ [basic.lookup.argdep]p3:
2838 // Let X be the lookup set produced by unqualified lookup (3.4.1)
2839 // and let Y be the lookup set produced by argument dependent
2840 // lookup (defined as follows). If X contains [...] then Y is
2841 // empty. Otherwise Y is the set of declarations found in the
2842 // namespaces associated with the argument types as described
2843 // below. The set of declarations found by the lookup of the name
2844 // is the union of X and Y.
2845 //
2846 // Here, we compute Y and add its members to the overloaded
2847 // candidate set.
2848 for (auto *NS : AssociatedNamespaces) {
2849 // When considering an associated namespace, the lookup is the
2850 // same as the lookup performed when the associated namespace is
2851 // used as a qualifier (3.4.3.2) except that:
2852 //
2853 // -- Any using-directives in the associated namespace are
2854 // ignored.
2855 //
2856 // -- Any namespace-scope friend functions declared in
2857 // associated classes are visible within their respective
2858 // namespaces even if they are not visible during an ordinary
2859 // lookup (11.4).
2860 DeclContext::lookup_result R = NS->lookup(Name);
2861 for (auto *D : R) {
2862 // If the only declaration here is an ordinary friend, consider
2863 // it only if it was declared in an associated classes.
2864 if ((D->getIdentifierNamespace() & Decl::IDNS_Ordinary) == 0) {
2865 // If it's neither ordinarily visible nor a friend, we can't find it.
2866 if ((D->getIdentifierNamespace() & Decl::IDNS_OrdinaryFriend) == 0)
2867 continue;
2868
2869 bool DeclaredInAssociatedClass = false;
2870 for (Decl *DI = D; DI; DI = DI->getPreviousDecl()) {
2871 DeclContext *LexDC = DI->getLexicalDeclContext();
2872 if (isa<CXXRecordDecl>(LexDC) &&
2873 AssociatedClasses.count(cast<CXXRecordDecl>(LexDC))) {
2874 DeclaredInAssociatedClass = true;
2875 break;
2876 }
2877 }
2878 if (!DeclaredInAssociatedClass)
2879 continue;
2880 }
2881
2882 if (isa<UsingShadowDecl>(D))
2883 D = cast<UsingShadowDecl>(D)->getTargetDecl();
2884
2885 if (!isa<FunctionDecl>(D) && !isa<FunctionTemplateDecl>(D))
2886 continue;
2887
2888 Result.insert(D);
2889 }
2890 }
2891 }
2892
2893 //----------------------------------------------------------------------------
2894 // Search for all visible declarations.
2895 //----------------------------------------------------------------------------
~VisibleDeclConsumer()2896 VisibleDeclConsumer::~VisibleDeclConsumer() { }
2897
includeHiddenDecls() const2898 bool VisibleDeclConsumer::includeHiddenDecls() const { return false; }
2899
2900 namespace {
2901
2902 class ShadowContextRAII;
2903
2904 class VisibleDeclsRecord {
2905 public:
2906 /// \brief An entry in the shadow map, which is optimized to store a
2907 /// single declaration (the common case) but can also store a list
2908 /// of declarations.
2909 typedef llvm::TinyPtrVector<NamedDecl*> ShadowMapEntry;
2910
2911 private:
2912 /// \brief A mapping from declaration names to the declarations that have
2913 /// this name within a particular scope.
2914 typedef llvm::DenseMap<DeclarationName, ShadowMapEntry> ShadowMap;
2915
2916 /// \brief A list of shadow maps, which is used to model name hiding.
2917 std::list<ShadowMap> ShadowMaps;
2918
2919 /// \brief The declaration contexts we have already visited.
2920 llvm::SmallPtrSet<DeclContext *, 8> VisitedContexts;
2921
2922 friend class ShadowContextRAII;
2923
2924 public:
2925 /// \brief Determine whether we have already visited this context
2926 /// (and, if not, note that we are going to visit that context now).
visitedContext(DeclContext * Ctx)2927 bool visitedContext(DeclContext *Ctx) {
2928 return !VisitedContexts.insert(Ctx).second;
2929 }
2930
alreadyVisitedContext(DeclContext * Ctx)2931 bool alreadyVisitedContext(DeclContext *Ctx) {
2932 return VisitedContexts.count(Ctx);
2933 }
2934
2935 /// \brief Determine whether the given declaration is hidden in the
2936 /// current scope.
2937 ///
2938 /// \returns the declaration that hides the given declaration, or
2939 /// NULL if no such declaration exists.
2940 NamedDecl *checkHidden(NamedDecl *ND);
2941
2942 /// \brief Add a declaration to the current shadow map.
add(NamedDecl * ND)2943 void add(NamedDecl *ND) {
2944 ShadowMaps.back()[ND->getDeclName()].push_back(ND);
2945 }
2946 };
2947
2948 /// \brief RAII object that records when we've entered a shadow context.
2949 class ShadowContextRAII {
2950 VisibleDeclsRecord &Visible;
2951
2952 typedef VisibleDeclsRecord::ShadowMap ShadowMap;
2953
2954 public:
ShadowContextRAII(VisibleDeclsRecord & Visible)2955 ShadowContextRAII(VisibleDeclsRecord &Visible) : Visible(Visible) {
2956 Visible.ShadowMaps.push_back(ShadowMap());
2957 }
2958
~ShadowContextRAII()2959 ~ShadowContextRAII() {
2960 Visible.ShadowMaps.pop_back();
2961 }
2962 };
2963
2964 } // end anonymous namespace
2965
checkHidden(NamedDecl * ND)2966 NamedDecl *VisibleDeclsRecord::checkHidden(NamedDecl *ND) {
2967 // Look through using declarations.
2968 ND = ND->getUnderlyingDecl();
2969
2970 unsigned IDNS = ND->getIdentifierNamespace();
2971 std::list<ShadowMap>::reverse_iterator SM = ShadowMaps.rbegin();
2972 for (std::list<ShadowMap>::reverse_iterator SMEnd = ShadowMaps.rend();
2973 SM != SMEnd; ++SM) {
2974 ShadowMap::iterator Pos = SM->find(ND->getDeclName());
2975 if (Pos == SM->end())
2976 continue;
2977
2978 for (auto *D : Pos->second) {
2979 // A tag declaration does not hide a non-tag declaration.
2980 if (D->hasTagIdentifierNamespace() &&
2981 (IDNS & (Decl::IDNS_Member | Decl::IDNS_Ordinary |
2982 Decl::IDNS_ObjCProtocol)))
2983 continue;
2984
2985 // Protocols are in distinct namespaces from everything else.
2986 if (((D->getIdentifierNamespace() & Decl::IDNS_ObjCProtocol)
2987 || (IDNS & Decl::IDNS_ObjCProtocol)) &&
2988 D->getIdentifierNamespace() != IDNS)
2989 continue;
2990
2991 // Functions and function templates in the same scope overload
2992 // rather than hide. FIXME: Look for hiding based on function
2993 // signatures!
2994 if (D->getUnderlyingDecl()->isFunctionOrFunctionTemplate() &&
2995 ND->getUnderlyingDecl()->isFunctionOrFunctionTemplate() &&
2996 SM == ShadowMaps.rbegin())
2997 continue;
2998
2999 // We've found a declaration that hides this one.
3000 return D;
3001 }
3002 }
3003
3004 return nullptr;
3005 }
3006
LookupVisibleDecls(DeclContext * Ctx,LookupResult & Result,bool QualifiedNameLookup,bool InBaseClass,VisibleDeclConsumer & Consumer,VisibleDeclsRecord & Visited)3007 static void LookupVisibleDecls(DeclContext *Ctx, LookupResult &Result,
3008 bool QualifiedNameLookup,
3009 bool InBaseClass,
3010 VisibleDeclConsumer &Consumer,
3011 VisibleDeclsRecord &Visited) {
3012 if (!Ctx)
3013 return;
3014
3015 // Make sure we don't visit the same context twice.
3016 if (Visited.visitedContext(Ctx->getPrimaryContext()))
3017 return;
3018
3019 if (CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(Ctx))
3020 Result.getSema().ForceDeclarationOfImplicitMembers(Class);
3021
3022 // Enumerate all of the results in this context.
3023 for (const auto &R : Ctx->lookups()) {
3024 for (auto *I : R) {
3025 if (NamedDecl *ND = dyn_cast<NamedDecl>(I)) {
3026 if ((ND = Result.getAcceptableDecl(ND))) {
3027 Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass);
3028 Visited.add(ND);
3029 }
3030 }
3031 }
3032 }
3033
3034 // Traverse using directives for qualified name lookup.
3035 if (QualifiedNameLookup) {
3036 ShadowContextRAII Shadow(Visited);
3037 for (auto I : Ctx->using_directives()) {
3038 LookupVisibleDecls(I->getNominatedNamespace(), Result,
3039 QualifiedNameLookup, InBaseClass, Consumer, Visited);
3040 }
3041 }
3042
3043 // Traverse the contexts of inherited C++ classes.
3044 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) {
3045 if (!Record->hasDefinition())
3046 return;
3047
3048 for (const auto &B : Record->bases()) {
3049 QualType BaseType = B.getType();
3050
3051 // Don't look into dependent bases, because name lookup can't look
3052 // there anyway.
3053 if (BaseType->isDependentType())
3054 continue;
3055
3056 const RecordType *Record = BaseType->getAs<RecordType>();
3057 if (!Record)
3058 continue;
3059
3060 // FIXME: It would be nice to be able to determine whether referencing
3061 // a particular member would be ambiguous. For example, given
3062 //
3063 // struct A { int member; };
3064 // struct B { int member; };
3065 // struct C : A, B { };
3066 //
3067 // void f(C *c) { c->### }
3068 //
3069 // accessing 'member' would result in an ambiguity. However, we
3070 // could be smart enough to qualify the member with the base
3071 // class, e.g.,
3072 //
3073 // c->B::member
3074 //
3075 // or
3076 //
3077 // c->A::member
3078
3079 // Find results in this base class (and its bases).
3080 ShadowContextRAII Shadow(Visited);
3081 LookupVisibleDecls(Record->getDecl(), Result, QualifiedNameLookup,
3082 true, Consumer, Visited);
3083 }
3084 }
3085
3086 // Traverse the contexts of Objective-C classes.
3087 if (ObjCInterfaceDecl *IFace = dyn_cast<ObjCInterfaceDecl>(Ctx)) {
3088 // Traverse categories.
3089 for (auto *Cat : IFace->visible_categories()) {
3090 ShadowContextRAII Shadow(Visited);
3091 LookupVisibleDecls(Cat, Result, QualifiedNameLookup, false,
3092 Consumer, Visited);
3093 }
3094
3095 // Traverse protocols.
3096 for (auto *I : IFace->all_referenced_protocols()) {
3097 ShadowContextRAII Shadow(Visited);
3098 LookupVisibleDecls(I, Result, QualifiedNameLookup, false, Consumer,
3099 Visited);
3100 }
3101
3102 // Traverse the superclass.
3103 if (IFace->getSuperClass()) {
3104 ShadowContextRAII Shadow(Visited);
3105 LookupVisibleDecls(IFace->getSuperClass(), Result, QualifiedNameLookup,
3106 true, Consumer, Visited);
3107 }
3108
3109 // If there is an implementation, traverse it. We do this to find
3110 // synthesized ivars.
3111 if (IFace->getImplementation()) {
3112 ShadowContextRAII Shadow(Visited);
3113 LookupVisibleDecls(IFace->getImplementation(), Result,
3114 QualifiedNameLookup, InBaseClass, Consumer, Visited);
3115 }
3116 } else if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(Ctx)) {
3117 for (auto *I : Protocol->protocols()) {
3118 ShadowContextRAII Shadow(Visited);
3119 LookupVisibleDecls(I, Result, QualifiedNameLookup, false, Consumer,
3120 Visited);
3121 }
3122 } else if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(Ctx)) {
3123 for (auto *I : Category->protocols()) {
3124 ShadowContextRAII Shadow(Visited);
3125 LookupVisibleDecls(I, Result, QualifiedNameLookup, false, Consumer,
3126 Visited);
3127 }
3128
3129 // If there is an implementation, traverse it.
3130 if (Category->getImplementation()) {
3131 ShadowContextRAII Shadow(Visited);
3132 LookupVisibleDecls(Category->getImplementation(), Result,
3133 QualifiedNameLookup, true, Consumer, Visited);
3134 }
3135 }
3136 }
3137
LookupVisibleDecls(Scope * S,LookupResult & Result,UnqualUsingDirectiveSet & UDirs,VisibleDeclConsumer & Consumer,VisibleDeclsRecord & Visited)3138 static void LookupVisibleDecls(Scope *S, LookupResult &Result,
3139 UnqualUsingDirectiveSet &UDirs,
3140 VisibleDeclConsumer &Consumer,
3141 VisibleDeclsRecord &Visited) {
3142 if (!S)
3143 return;
3144
3145 if (!S->getEntity() ||
3146 (!S->getParent() &&
3147 !Visited.alreadyVisitedContext(S->getEntity())) ||
3148 (S->getEntity())->isFunctionOrMethod()) {
3149 FindLocalExternScope FindLocals(Result);
3150 // Walk through the declarations in this Scope.
3151 for (auto *D : S->decls()) {
3152 if (NamedDecl *ND = dyn_cast<NamedDecl>(D))
3153 if ((ND = Result.getAcceptableDecl(ND))) {
3154 Consumer.FoundDecl(ND, Visited.checkHidden(ND), nullptr, false);
3155 Visited.add(ND);
3156 }
3157 }
3158 }
3159
3160 // FIXME: C++ [temp.local]p8
3161 DeclContext *Entity = nullptr;
3162 if (S->getEntity()) {
3163 // Look into this scope's declaration context, along with any of its
3164 // parent lookup contexts (e.g., enclosing classes), up to the point
3165 // where we hit the context stored in the next outer scope.
3166 Entity = S->getEntity();
3167 DeclContext *OuterCtx = findOuterContext(S).first; // FIXME
3168
3169 for (DeclContext *Ctx = Entity; Ctx && !Ctx->Equals(OuterCtx);
3170 Ctx = Ctx->getLookupParent()) {
3171 if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
3172 if (Method->isInstanceMethod()) {
3173 // For instance methods, look for ivars in the method's interface.
3174 LookupResult IvarResult(Result.getSema(), Result.getLookupName(),
3175 Result.getNameLoc(), Sema::LookupMemberName);
3176 if (ObjCInterfaceDecl *IFace = Method->getClassInterface()) {
3177 LookupVisibleDecls(IFace, IvarResult, /*QualifiedNameLookup=*/false,
3178 /*InBaseClass=*/false, Consumer, Visited);
3179 }
3180 }
3181
3182 // We've already performed all of the name lookup that we need
3183 // to for Objective-C methods; the next context will be the
3184 // outer scope.
3185 break;
3186 }
3187
3188 if (Ctx->isFunctionOrMethod())
3189 continue;
3190
3191 LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/false,
3192 /*InBaseClass=*/false, Consumer, Visited);
3193 }
3194 } else if (!S->getParent()) {
3195 // Look into the translation unit scope. We walk through the translation
3196 // unit's declaration context, because the Scope itself won't have all of
3197 // the declarations if we loaded a precompiled header.
3198 // FIXME: We would like the translation unit's Scope object to point to the
3199 // translation unit, so we don't need this special "if" branch. However,
3200 // doing so would force the normal C++ name-lookup code to look into the
3201 // translation unit decl when the IdentifierInfo chains would suffice.
3202 // Once we fix that problem (which is part of a more general "don't look
3203 // in DeclContexts unless we have to" optimization), we can eliminate this.
3204 Entity = Result.getSema().Context.getTranslationUnitDecl();
3205 LookupVisibleDecls(Entity, Result, /*QualifiedNameLookup=*/false,
3206 /*InBaseClass=*/false, Consumer, Visited);
3207 }
3208
3209 if (Entity) {
3210 // Lookup visible declarations in any namespaces found by using
3211 // directives.
3212 UnqualUsingDirectiveSet::const_iterator UI, UEnd;
3213 std::tie(UI, UEnd) = UDirs.getNamespacesFor(Entity);
3214 for (; UI != UEnd; ++UI)
3215 LookupVisibleDecls(const_cast<DeclContext *>(UI->getNominatedNamespace()),
3216 Result, /*QualifiedNameLookup=*/false,
3217 /*InBaseClass=*/false, Consumer, Visited);
3218 }
3219
3220 // Lookup names in the parent scope.
3221 ShadowContextRAII Shadow(Visited);
3222 LookupVisibleDecls(S->getParent(), Result, UDirs, Consumer, Visited);
3223 }
3224
LookupVisibleDecls(Scope * S,LookupNameKind Kind,VisibleDeclConsumer & Consumer,bool IncludeGlobalScope)3225 void Sema::LookupVisibleDecls(Scope *S, LookupNameKind Kind,
3226 VisibleDeclConsumer &Consumer,
3227 bool IncludeGlobalScope) {
3228 // Determine the set of using directives available during
3229 // unqualified name lookup.
3230 Scope *Initial = S;
3231 UnqualUsingDirectiveSet UDirs;
3232 if (getLangOpts().CPlusPlus) {
3233 // Find the first namespace or translation-unit scope.
3234 while (S && !isNamespaceOrTranslationUnitScope(S))
3235 S = S->getParent();
3236
3237 UDirs.visitScopeChain(Initial, S);
3238 }
3239 UDirs.done();
3240
3241 // Look for visible declarations.
3242 LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind);
3243 Result.setAllowHidden(Consumer.includeHiddenDecls());
3244 VisibleDeclsRecord Visited;
3245 if (!IncludeGlobalScope)
3246 Visited.visitedContext(Context.getTranslationUnitDecl());
3247 ShadowContextRAII Shadow(Visited);
3248 ::LookupVisibleDecls(Initial, Result, UDirs, Consumer, Visited);
3249 }
3250
LookupVisibleDecls(DeclContext * Ctx,LookupNameKind Kind,VisibleDeclConsumer & Consumer,bool IncludeGlobalScope)3251 void Sema::LookupVisibleDecls(DeclContext *Ctx, LookupNameKind Kind,
3252 VisibleDeclConsumer &Consumer,
3253 bool IncludeGlobalScope) {
3254 LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind);
3255 Result.setAllowHidden(Consumer.includeHiddenDecls());
3256 VisibleDeclsRecord Visited;
3257 if (!IncludeGlobalScope)
3258 Visited.visitedContext(Context.getTranslationUnitDecl());
3259 ShadowContextRAII Shadow(Visited);
3260 ::LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/true,
3261 /*InBaseClass=*/false, Consumer, Visited);
3262 }
3263
3264 /// LookupOrCreateLabel - Do a name lookup of a label with the specified name.
3265 /// If GnuLabelLoc is a valid source location, then this is a definition
3266 /// of an __label__ label name, otherwise it is a normal label definition
3267 /// or use.
LookupOrCreateLabel(IdentifierInfo * II,SourceLocation Loc,SourceLocation GnuLabelLoc)3268 LabelDecl *Sema::LookupOrCreateLabel(IdentifierInfo *II, SourceLocation Loc,
3269 SourceLocation GnuLabelLoc) {
3270 // Do a lookup to see if we have a label with this name already.
3271 NamedDecl *Res = nullptr;
3272
3273 if (GnuLabelLoc.isValid()) {
3274 // Local label definitions always shadow existing labels.
3275 Res = LabelDecl::Create(Context, CurContext, Loc, II, GnuLabelLoc);
3276 Scope *S = CurScope;
3277 PushOnScopeChains(Res, S, true);
3278 return cast<LabelDecl>(Res);
3279 }
3280
3281 // Not a GNU local label.
3282 Res = LookupSingleName(CurScope, II, Loc, LookupLabel, NotForRedeclaration);
3283 // If we found a label, check to see if it is in the same context as us.
3284 // When in a Block, we don't want to reuse a label in an enclosing function.
3285 if (Res && Res->getDeclContext() != CurContext)
3286 Res = nullptr;
3287 if (!Res) {
3288 // If not forward referenced or defined already, create the backing decl.
3289 Res = LabelDecl::Create(Context, CurContext, Loc, II);
3290 Scope *S = CurScope->getFnParent();
3291 assert(S && "Not in a function?");
3292 PushOnScopeChains(Res, S, true);
3293 }
3294 return cast<LabelDecl>(Res);
3295 }
3296
3297 //===----------------------------------------------------------------------===//
3298 // Typo correction
3299 //===----------------------------------------------------------------------===//
3300
isCandidateViable(CorrectionCandidateCallback & CCC,TypoCorrection & Candidate)3301 static bool isCandidateViable(CorrectionCandidateCallback &CCC,
3302 TypoCorrection &Candidate) {
3303 Candidate.setCallbackDistance(CCC.RankCandidate(Candidate));
3304 return Candidate.getEditDistance(false) != TypoCorrection::InvalidDistance;
3305 }
3306
3307 static void LookupPotentialTypoResult(Sema &SemaRef,
3308 LookupResult &Res,
3309 IdentifierInfo *Name,
3310 Scope *S, CXXScopeSpec *SS,
3311 DeclContext *MemberContext,
3312 bool EnteringContext,
3313 bool isObjCIvarLookup,
3314 bool FindHidden);
3315
3316 /// \brief Check whether the declarations found for a typo correction are
3317 /// visible, and if none of them are, convert the correction to an 'import
3318 /// a module' correction.
checkCorrectionVisibility(Sema & SemaRef,TypoCorrection & TC)3319 static void checkCorrectionVisibility(Sema &SemaRef, TypoCorrection &TC) {
3320 if (TC.begin() == TC.end())
3321 return;
3322
3323 TypoCorrection::decl_iterator DI = TC.begin(), DE = TC.end();
3324
3325 for (/**/; DI != DE; ++DI)
3326 if (!LookupResult::isVisible(SemaRef, *DI))
3327 break;
3328 // Nothing to do if all decls are visible.
3329 if (DI == DE)
3330 return;
3331
3332 llvm::SmallVector<NamedDecl*, 4> NewDecls(TC.begin(), DI);
3333 bool AnyVisibleDecls = !NewDecls.empty();
3334
3335 for (/**/; DI != DE; ++DI) {
3336 NamedDecl *VisibleDecl = *DI;
3337 if (!LookupResult::isVisible(SemaRef, *DI))
3338 VisibleDecl = findAcceptableDecl(SemaRef, *DI);
3339
3340 if (VisibleDecl) {
3341 if (!AnyVisibleDecls) {
3342 // Found a visible decl, discard all hidden ones.
3343 AnyVisibleDecls = true;
3344 NewDecls.clear();
3345 }
3346 NewDecls.push_back(VisibleDecl);
3347 } else if (!AnyVisibleDecls && !(*DI)->isModulePrivate())
3348 NewDecls.push_back(*DI);
3349 }
3350
3351 if (NewDecls.empty())
3352 TC = TypoCorrection();
3353 else {
3354 TC.setCorrectionDecls(NewDecls);
3355 TC.setRequiresImport(!AnyVisibleDecls);
3356 }
3357 }
3358
3359 // Fill the supplied vector with the IdentifierInfo pointers for each piece of
3360 // the given NestedNameSpecifier (i.e. given a NestedNameSpecifier "foo::bar::",
3361 // fill the vector with the IdentifierInfo pointers for "foo" and "bar").
getNestedNameSpecifierIdentifiers(NestedNameSpecifier * NNS,SmallVectorImpl<const IdentifierInfo * > & Identifiers)3362 static void getNestedNameSpecifierIdentifiers(
3363 NestedNameSpecifier *NNS,
3364 SmallVectorImpl<const IdentifierInfo*> &Identifiers) {
3365 if (NestedNameSpecifier *Prefix = NNS->getPrefix())
3366 getNestedNameSpecifierIdentifiers(Prefix, Identifiers);
3367 else
3368 Identifiers.clear();
3369
3370 const IdentifierInfo *II = nullptr;
3371
3372 switch (NNS->getKind()) {
3373 case NestedNameSpecifier::Identifier:
3374 II = NNS->getAsIdentifier();
3375 break;
3376
3377 case NestedNameSpecifier::Namespace:
3378 if (NNS->getAsNamespace()->isAnonymousNamespace())
3379 return;
3380 II = NNS->getAsNamespace()->getIdentifier();
3381 break;
3382
3383 case NestedNameSpecifier::NamespaceAlias:
3384 II = NNS->getAsNamespaceAlias()->getIdentifier();
3385 break;
3386
3387 case NestedNameSpecifier::TypeSpecWithTemplate:
3388 case NestedNameSpecifier::TypeSpec:
3389 II = QualType(NNS->getAsType(), 0).getBaseTypeIdentifier();
3390 break;
3391
3392 case NestedNameSpecifier::Global:
3393 case NestedNameSpecifier::Super:
3394 return;
3395 }
3396
3397 if (II)
3398 Identifiers.push_back(II);
3399 }
3400
FoundDecl(NamedDecl * ND,NamedDecl * Hiding,DeclContext * Ctx,bool InBaseClass)3401 void TypoCorrectionConsumer::FoundDecl(NamedDecl *ND, NamedDecl *Hiding,
3402 DeclContext *Ctx, bool InBaseClass) {
3403 // Don't consider hidden names for typo correction.
3404 if (Hiding)
3405 return;
3406
3407 // Only consider entities with identifiers for names, ignoring
3408 // special names (constructors, overloaded operators, selectors,
3409 // etc.).
3410 IdentifierInfo *Name = ND->getIdentifier();
3411 if (!Name)
3412 return;
3413
3414 // Only consider visible declarations and declarations from modules with
3415 // names that exactly match.
3416 if (!LookupResult::isVisible(SemaRef, ND) && Name != Typo &&
3417 !findAcceptableDecl(SemaRef, ND))
3418 return;
3419
3420 FoundName(Name->getName());
3421 }
3422
FoundName(StringRef Name)3423 void TypoCorrectionConsumer::FoundName(StringRef Name) {
3424 // Compute the edit distance between the typo and the name of this
3425 // entity, and add the identifier to the list of results.
3426 addName(Name, nullptr);
3427 }
3428
addKeywordResult(StringRef Keyword)3429 void TypoCorrectionConsumer::addKeywordResult(StringRef Keyword) {
3430 // Compute the edit distance between the typo and this keyword,
3431 // and add the keyword to the list of results.
3432 addName(Keyword, nullptr, nullptr, true);
3433 }
3434
addName(StringRef Name,NamedDecl * ND,NestedNameSpecifier * NNS,bool isKeyword)3435 void TypoCorrectionConsumer::addName(StringRef Name, NamedDecl *ND,
3436 NestedNameSpecifier *NNS, bool isKeyword) {
3437 // Use a simple length-based heuristic to determine the minimum possible
3438 // edit distance. If the minimum isn't good enough, bail out early.
3439 StringRef TypoStr = Typo->getName();
3440 unsigned MinED = abs((int)Name.size() - (int)TypoStr.size());
3441 if (MinED && TypoStr.size() / MinED < 3)
3442 return;
3443
3444 // Compute an upper bound on the allowable edit distance, so that the
3445 // edit-distance algorithm can short-circuit.
3446 unsigned UpperBound = (TypoStr.size() + 2) / 3 + 1;
3447 unsigned ED = TypoStr.edit_distance(Name, true, UpperBound);
3448 if (ED >= UpperBound) return;
3449
3450 TypoCorrection TC(&SemaRef.Context.Idents.get(Name), ND, NNS, ED);
3451 if (isKeyword) TC.makeKeyword();
3452 TC.setCorrectionRange(nullptr, Result.getLookupNameInfo());
3453 addCorrection(TC);
3454 }
3455
3456 static const unsigned MaxTypoDistanceResultSets = 5;
3457
addCorrection(TypoCorrection Correction)3458 void TypoCorrectionConsumer::addCorrection(TypoCorrection Correction) {
3459 StringRef TypoStr = Typo->getName();
3460 StringRef Name = Correction.getCorrectionAsIdentifierInfo()->getName();
3461
3462 // For very short typos, ignore potential corrections that have a different
3463 // base identifier from the typo or which have a normalized edit distance
3464 // longer than the typo itself.
3465 if (TypoStr.size() < 3 &&
3466 (Name != TypoStr || Correction.getEditDistance(true) > TypoStr.size()))
3467 return;
3468
3469 // If the correction is resolved but is not viable, ignore it.
3470 if (Correction.isResolved()) {
3471 checkCorrectionVisibility(SemaRef, Correction);
3472 if (!Correction || !isCandidateViable(*CorrectionValidator, Correction))
3473 return;
3474 }
3475
3476 TypoResultList &CList =
3477 CorrectionResults[Correction.getEditDistance(false)][Name];
3478
3479 if (!CList.empty() && !CList.back().isResolved())
3480 CList.pop_back();
3481 if (NamedDecl *NewND = Correction.getCorrectionDecl()) {
3482 std::string CorrectionStr = Correction.getAsString(SemaRef.getLangOpts());
3483 for (TypoResultList::iterator RI = CList.begin(), RIEnd = CList.end();
3484 RI != RIEnd; ++RI) {
3485 // If the Correction refers to a decl already in the result list,
3486 // replace the existing result if the string representation of Correction
3487 // comes before the current result alphabetically, then stop as there is
3488 // nothing more to be done to add Correction to the candidate set.
3489 if (RI->getCorrectionDecl() == NewND) {
3490 if (CorrectionStr < RI->getAsString(SemaRef.getLangOpts()))
3491 *RI = Correction;
3492 return;
3493 }
3494 }
3495 }
3496 if (CList.empty() || Correction.isResolved())
3497 CList.push_back(Correction);
3498
3499 while (CorrectionResults.size() > MaxTypoDistanceResultSets)
3500 CorrectionResults.erase(std::prev(CorrectionResults.end()));
3501 }
3502
addNamespaces(const llvm::MapVector<NamespaceDecl *,bool> & KnownNamespaces)3503 void TypoCorrectionConsumer::addNamespaces(
3504 const llvm::MapVector<NamespaceDecl *, bool> &KnownNamespaces) {
3505 SearchNamespaces = true;
3506
3507 for (auto KNPair : KnownNamespaces)
3508 Namespaces.addNameSpecifier(KNPair.first);
3509
3510 bool SSIsTemplate = false;
3511 if (NestedNameSpecifier *NNS =
3512 (SS && SS->isValid()) ? SS->getScopeRep() : nullptr) {
3513 if (const Type *T = NNS->getAsType())
3514 SSIsTemplate = T->getTypeClass() == Type::TemplateSpecialization;
3515 }
3516 for (const auto *TI : SemaRef.getASTContext().types()) {
3517 if (CXXRecordDecl *CD = TI->getAsCXXRecordDecl()) {
3518 CD = CD->getCanonicalDecl();
3519 if (!CD->isDependentType() && !CD->isAnonymousStructOrUnion() &&
3520 !CD->isUnion() && CD->getIdentifier() &&
3521 (SSIsTemplate || !isa<ClassTemplateSpecializationDecl>(CD)) &&
3522 (CD->isBeingDefined() || CD->isCompleteDefinition()))
3523 Namespaces.addNameSpecifier(CD);
3524 }
3525 }
3526 }
3527
getNextCorrection()3528 const TypoCorrection &TypoCorrectionConsumer::getNextCorrection() {
3529 if (++CurrentTCIndex < ValidatedCorrections.size())
3530 return ValidatedCorrections[CurrentTCIndex];
3531
3532 CurrentTCIndex = ValidatedCorrections.size();
3533 while (!CorrectionResults.empty()) {
3534 auto DI = CorrectionResults.begin();
3535 if (DI->second.empty()) {
3536 CorrectionResults.erase(DI);
3537 continue;
3538 }
3539
3540 auto RI = DI->second.begin();
3541 if (RI->second.empty()) {
3542 DI->second.erase(RI);
3543 performQualifiedLookups();
3544 continue;
3545 }
3546
3547 TypoCorrection TC = RI->second.pop_back_val();
3548 if (TC.isResolved() || TC.requiresImport() || resolveCorrection(TC)) {
3549 ValidatedCorrections.push_back(TC);
3550 return ValidatedCorrections[CurrentTCIndex];
3551 }
3552 }
3553 return ValidatedCorrections[0]; // The empty correction.
3554 }
3555
resolveCorrection(TypoCorrection & Candidate)3556 bool TypoCorrectionConsumer::resolveCorrection(TypoCorrection &Candidate) {
3557 IdentifierInfo *Name = Candidate.getCorrectionAsIdentifierInfo();
3558 DeclContext *TempMemberContext = MemberContext;
3559 CXXScopeSpec *TempSS = SS.get();
3560 retry_lookup:
3561 LookupPotentialTypoResult(SemaRef, Result, Name, S, TempSS, TempMemberContext,
3562 EnteringContext,
3563 CorrectionValidator->IsObjCIvarLookup,
3564 Name == Typo && !Candidate.WillReplaceSpecifier());
3565 switch (Result.getResultKind()) {
3566 case LookupResult::NotFound:
3567 case LookupResult::NotFoundInCurrentInstantiation:
3568 case LookupResult::FoundUnresolvedValue:
3569 if (TempSS) {
3570 // Immediately retry the lookup without the given CXXScopeSpec
3571 TempSS = nullptr;
3572 Candidate.WillReplaceSpecifier(true);
3573 goto retry_lookup;
3574 }
3575 if (TempMemberContext) {
3576 if (SS && !TempSS)
3577 TempSS = SS.get();
3578 TempMemberContext = nullptr;
3579 goto retry_lookup;
3580 }
3581 if (SearchNamespaces)
3582 QualifiedResults.push_back(Candidate);
3583 break;
3584
3585 case LookupResult::Ambiguous:
3586 // We don't deal with ambiguities.
3587 break;
3588
3589 case LookupResult::Found:
3590 case LookupResult::FoundOverloaded:
3591 // Store all of the Decls for overloaded symbols
3592 for (auto *TRD : Result)
3593 Candidate.addCorrectionDecl(TRD);
3594 checkCorrectionVisibility(SemaRef, Candidate);
3595 if (!isCandidateViable(*CorrectionValidator, Candidate)) {
3596 if (SearchNamespaces)
3597 QualifiedResults.push_back(Candidate);
3598 break;
3599 }
3600 Candidate.setCorrectionRange(SS.get(), Result.getLookupNameInfo());
3601 return true;
3602 }
3603 return false;
3604 }
3605
performQualifiedLookups()3606 void TypoCorrectionConsumer::performQualifiedLookups() {
3607 unsigned TypoLen = Typo->getName().size();
3608 for (auto QR : QualifiedResults) {
3609 for (auto NSI : Namespaces) {
3610 DeclContext *Ctx = NSI.DeclCtx;
3611 const Type *NSType = NSI.NameSpecifier->getAsType();
3612
3613 // If the current NestedNameSpecifier refers to a class and the
3614 // current correction candidate is the name of that class, then skip
3615 // it as it is unlikely a qualified version of the class' constructor
3616 // is an appropriate correction.
3617 if (CXXRecordDecl *NSDecl = NSType ? NSType->getAsCXXRecordDecl() : 0) {
3618 if (NSDecl->getIdentifier() == QR.getCorrectionAsIdentifierInfo())
3619 continue;
3620 }
3621
3622 TypoCorrection TC(QR);
3623 TC.ClearCorrectionDecls();
3624 TC.setCorrectionSpecifier(NSI.NameSpecifier);
3625 TC.setQualifierDistance(NSI.EditDistance);
3626 TC.setCallbackDistance(0); // Reset the callback distance
3627
3628 // If the current correction candidate and namespace combination are
3629 // too far away from the original typo based on the normalized edit
3630 // distance, then skip performing a qualified name lookup.
3631 unsigned TmpED = TC.getEditDistance(true);
3632 if (QR.getCorrectionAsIdentifierInfo() != Typo && TmpED &&
3633 TypoLen / TmpED < 3)
3634 continue;
3635
3636 Result.clear();
3637 Result.setLookupName(QR.getCorrectionAsIdentifierInfo());
3638 if (!SemaRef.LookupQualifiedName(Result, Ctx))
3639 continue;
3640
3641 // Any corrections added below will be validated in subsequent
3642 // iterations of the main while() loop over the Consumer's contents.
3643 switch (Result.getResultKind()) {
3644 case LookupResult::Found:
3645 case LookupResult::FoundOverloaded: {
3646 if (SS && SS->isValid()) {
3647 std::string NewQualified = TC.getAsString(SemaRef.getLangOpts());
3648 std::string OldQualified;
3649 llvm::raw_string_ostream OldOStream(OldQualified);
3650 SS->getScopeRep()->print(OldOStream, SemaRef.getPrintingPolicy());
3651 OldOStream << Typo->getName();
3652 // If correction candidate would be an identical written qualified
3653 // identifer, then the existing CXXScopeSpec probably included a
3654 // typedef that didn't get accounted for properly.
3655 if (OldOStream.str() == NewQualified)
3656 break;
3657 }
3658 for (LookupResult::iterator TRD = Result.begin(), TRDEnd = Result.end();
3659 TRD != TRDEnd; ++TRD) {
3660 if (SemaRef.CheckMemberAccess(TC.getCorrectionRange().getBegin(),
3661 NSType ? NSType->getAsCXXRecordDecl()
3662 : nullptr,
3663 TRD.getPair()) == Sema::AR_accessible)
3664 TC.addCorrectionDecl(*TRD);
3665 }
3666 if (TC.isResolved()) {
3667 TC.setCorrectionRange(SS.get(), Result.getLookupNameInfo());
3668 addCorrection(TC);
3669 }
3670 break;
3671 }
3672 case LookupResult::NotFound:
3673 case LookupResult::NotFoundInCurrentInstantiation:
3674 case LookupResult::Ambiguous:
3675 case LookupResult::FoundUnresolvedValue:
3676 break;
3677 }
3678 }
3679 }
3680 QualifiedResults.clear();
3681 }
3682
NamespaceSpecifierSet(ASTContext & Context,DeclContext * CurContext,CXXScopeSpec * CurScopeSpec)3683 TypoCorrectionConsumer::NamespaceSpecifierSet::NamespaceSpecifierSet(
3684 ASTContext &Context, DeclContext *CurContext, CXXScopeSpec *CurScopeSpec)
3685 : Context(Context), CurContextChain(buildContextChain(CurContext)),
3686 isSorted(false) {
3687 if (NestedNameSpecifier *NNS =
3688 CurScopeSpec ? CurScopeSpec->getScopeRep() : nullptr) {
3689 llvm::raw_string_ostream SpecifierOStream(CurNameSpecifier);
3690 NNS->print(SpecifierOStream, Context.getPrintingPolicy());
3691
3692 getNestedNameSpecifierIdentifiers(NNS, CurNameSpecifierIdentifiers);
3693 }
3694 // Build the list of identifiers that would be used for an absolute
3695 // (from the global context) NestedNameSpecifier referring to the current
3696 // context.
3697 for (DeclContextList::reverse_iterator C = CurContextChain.rbegin(),
3698 CEnd = CurContextChain.rend();
3699 C != CEnd; ++C) {
3700 if (NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(*C))
3701 CurContextIdentifiers.push_back(ND->getIdentifier());
3702 }
3703
3704 // Add the global context as a NestedNameSpecifier
3705 Distances.insert(1);
3706 SpecifierInfo SI = {cast<DeclContext>(Context.getTranslationUnitDecl()),
3707 NestedNameSpecifier::GlobalSpecifier(Context), 1};
3708 DistanceMap[1].push_back(SI);
3709 }
3710
buildContextChain(DeclContext * Start)3711 auto TypoCorrectionConsumer::NamespaceSpecifierSet::buildContextChain(
3712 DeclContext *Start) -> DeclContextList {
3713 assert(Start && "Building a context chain from a null context");
3714 DeclContextList Chain;
3715 for (DeclContext *DC = Start->getPrimaryContext(); DC != nullptr;
3716 DC = DC->getLookupParent()) {
3717 NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(DC);
3718 if (!DC->isInlineNamespace() && !DC->isTransparentContext() &&
3719 !(ND && ND->isAnonymousNamespace()))
3720 Chain.push_back(DC->getPrimaryContext());
3721 }
3722 return Chain;
3723 }
3724
sortNamespaces()3725 void TypoCorrectionConsumer::NamespaceSpecifierSet::sortNamespaces() {
3726 SmallVector<unsigned, 4> sortedDistances;
3727 sortedDistances.append(Distances.begin(), Distances.end());
3728
3729 if (sortedDistances.size() > 1)
3730 std::sort(sortedDistances.begin(), sortedDistances.end());
3731
3732 Specifiers.clear();
3733 for (auto D : sortedDistances) {
3734 SpecifierInfoList &SpecList = DistanceMap[D];
3735 Specifiers.append(SpecList.begin(), SpecList.end());
3736 }
3737
3738 isSorted = true;
3739 }
3740
3741 unsigned
buildNestedNameSpecifier(DeclContextList & DeclChain,NestedNameSpecifier * & NNS)3742 TypoCorrectionConsumer::NamespaceSpecifierSet::buildNestedNameSpecifier(
3743 DeclContextList &DeclChain, NestedNameSpecifier *&NNS) {
3744 unsigned NumSpecifiers = 0;
3745 for (DeclContextList::reverse_iterator C = DeclChain.rbegin(),
3746 CEnd = DeclChain.rend();
3747 C != CEnd; ++C) {
3748 if (NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(*C)) {
3749 NNS = NestedNameSpecifier::Create(Context, NNS, ND);
3750 ++NumSpecifiers;
3751 } else if (RecordDecl *RD = dyn_cast_or_null<RecordDecl>(*C)) {
3752 NNS = NestedNameSpecifier::Create(Context, NNS, RD->isTemplateDecl(),
3753 RD->getTypeForDecl());
3754 ++NumSpecifiers;
3755 }
3756 }
3757 return NumSpecifiers;
3758 }
3759
addNameSpecifier(DeclContext * Ctx)3760 void TypoCorrectionConsumer::NamespaceSpecifierSet::addNameSpecifier(
3761 DeclContext *Ctx) {
3762 NestedNameSpecifier *NNS = nullptr;
3763 unsigned NumSpecifiers = 0;
3764 DeclContextList NamespaceDeclChain(buildContextChain(Ctx));
3765 DeclContextList FullNamespaceDeclChain(NamespaceDeclChain);
3766
3767 // Eliminate common elements from the two DeclContext chains.
3768 for (DeclContextList::reverse_iterator C = CurContextChain.rbegin(),
3769 CEnd = CurContextChain.rend();
3770 C != CEnd && !NamespaceDeclChain.empty() &&
3771 NamespaceDeclChain.back() == *C; ++C) {
3772 NamespaceDeclChain.pop_back();
3773 }
3774
3775 // Build the NestedNameSpecifier from what is left of the NamespaceDeclChain
3776 NumSpecifiers = buildNestedNameSpecifier(NamespaceDeclChain, NNS);
3777
3778 // Add an explicit leading '::' specifier if needed.
3779 if (NamespaceDeclChain.empty()) {
3780 // Rebuild the NestedNameSpecifier as a globally-qualified specifier.
3781 NNS = NestedNameSpecifier::GlobalSpecifier(Context);
3782 NumSpecifiers =
3783 buildNestedNameSpecifier(FullNamespaceDeclChain, NNS);
3784 } else if (NamedDecl *ND =
3785 dyn_cast_or_null<NamedDecl>(NamespaceDeclChain.back())) {
3786 IdentifierInfo *Name = ND->getIdentifier();
3787 bool SameNameSpecifier = false;
3788 if (std::find(CurNameSpecifierIdentifiers.begin(),
3789 CurNameSpecifierIdentifiers.end(),
3790 Name) != CurNameSpecifierIdentifiers.end()) {
3791 std::string NewNameSpecifier;
3792 llvm::raw_string_ostream SpecifierOStream(NewNameSpecifier);
3793 SmallVector<const IdentifierInfo *, 4> NewNameSpecifierIdentifiers;
3794 getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers);
3795 NNS->print(SpecifierOStream, Context.getPrintingPolicy());
3796 SpecifierOStream.flush();
3797 SameNameSpecifier = NewNameSpecifier == CurNameSpecifier;
3798 }
3799 if (SameNameSpecifier ||
3800 std::find(CurContextIdentifiers.begin(), CurContextIdentifiers.end(),
3801 Name) != CurContextIdentifiers.end()) {
3802 // Rebuild the NestedNameSpecifier as a globally-qualified specifier.
3803 NNS = NestedNameSpecifier::GlobalSpecifier(Context);
3804 NumSpecifiers =
3805 buildNestedNameSpecifier(FullNamespaceDeclChain, NNS);
3806 }
3807 }
3808
3809 // If the built NestedNameSpecifier would be replacing an existing
3810 // NestedNameSpecifier, use the number of component identifiers that
3811 // would need to be changed as the edit distance instead of the number
3812 // of components in the built NestedNameSpecifier.
3813 if (NNS && !CurNameSpecifierIdentifiers.empty()) {
3814 SmallVector<const IdentifierInfo*, 4> NewNameSpecifierIdentifiers;
3815 getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers);
3816 NumSpecifiers = llvm::ComputeEditDistance(
3817 llvm::makeArrayRef(CurNameSpecifierIdentifiers),
3818 llvm::makeArrayRef(NewNameSpecifierIdentifiers));
3819 }
3820
3821 isSorted = false;
3822 Distances.insert(NumSpecifiers);
3823 SpecifierInfo SI = {Ctx, NNS, NumSpecifiers};
3824 DistanceMap[NumSpecifiers].push_back(SI);
3825 }
3826
3827 /// \brief Perform name lookup for a possible result for typo correction.
LookupPotentialTypoResult(Sema & SemaRef,LookupResult & Res,IdentifierInfo * Name,Scope * S,CXXScopeSpec * SS,DeclContext * MemberContext,bool EnteringContext,bool isObjCIvarLookup,bool FindHidden)3828 static void LookupPotentialTypoResult(Sema &SemaRef,
3829 LookupResult &Res,
3830 IdentifierInfo *Name,
3831 Scope *S, CXXScopeSpec *SS,
3832 DeclContext *MemberContext,
3833 bool EnteringContext,
3834 bool isObjCIvarLookup,
3835 bool FindHidden) {
3836 Res.suppressDiagnostics();
3837 Res.clear();
3838 Res.setLookupName(Name);
3839 Res.setAllowHidden(FindHidden);
3840 if (MemberContext) {
3841 if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(MemberContext)) {
3842 if (isObjCIvarLookup) {
3843 if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(Name)) {
3844 Res.addDecl(Ivar);
3845 Res.resolveKind();
3846 return;
3847 }
3848 }
3849
3850 if (ObjCPropertyDecl *Prop = Class->FindPropertyDeclaration(Name)) {
3851 Res.addDecl(Prop);
3852 Res.resolveKind();
3853 return;
3854 }
3855 }
3856
3857 SemaRef.LookupQualifiedName(Res, MemberContext);
3858 return;
3859 }
3860
3861 SemaRef.LookupParsedName(Res, S, SS, /*AllowBuiltinCreation=*/false,
3862 EnteringContext);
3863
3864 // Fake ivar lookup; this should really be part of
3865 // LookupParsedName.
3866 if (ObjCMethodDecl *Method = SemaRef.getCurMethodDecl()) {
3867 if (Method->isInstanceMethod() && Method->getClassInterface() &&
3868 (Res.empty() ||
3869 (Res.isSingleResult() &&
3870 Res.getFoundDecl()->isDefinedOutsideFunctionOrMethod()))) {
3871 if (ObjCIvarDecl *IV
3872 = Method->getClassInterface()->lookupInstanceVariable(Name)) {
3873 Res.addDecl(IV);
3874 Res.resolveKind();
3875 }
3876 }
3877 }
3878 }
3879
3880 /// \brief Add keywords to the consumer as possible typo corrections.
AddKeywordsToConsumer(Sema & SemaRef,TypoCorrectionConsumer & Consumer,Scope * S,CorrectionCandidateCallback & CCC,bool AfterNestedNameSpecifier)3881 static void AddKeywordsToConsumer(Sema &SemaRef,
3882 TypoCorrectionConsumer &Consumer,
3883 Scope *S, CorrectionCandidateCallback &CCC,
3884 bool AfterNestedNameSpecifier) {
3885 if (AfterNestedNameSpecifier) {
3886 // For 'X::', we know exactly which keywords can appear next.
3887 Consumer.addKeywordResult("template");
3888 if (CCC.WantExpressionKeywords)
3889 Consumer.addKeywordResult("operator");
3890 return;
3891 }
3892
3893 if (CCC.WantObjCSuper)
3894 Consumer.addKeywordResult("super");
3895
3896 if (CCC.WantTypeSpecifiers) {
3897 // Add type-specifier keywords to the set of results.
3898 static const char *const CTypeSpecs[] = {
3899 "char", "const", "double", "enum", "float", "int", "long", "short",
3900 "signed", "struct", "union", "unsigned", "void", "volatile",
3901 "_Complex", "_Imaginary",
3902 // storage-specifiers as well
3903 "extern", "inline", "static", "typedef"
3904 };
3905
3906 const unsigned NumCTypeSpecs = llvm::array_lengthof(CTypeSpecs);
3907 for (unsigned I = 0; I != NumCTypeSpecs; ++I)
3908 Consumer.addKeywordResult(CTypeSpecs[I]);
3909
3910 if (SemaRef.getLangOpts().C99)
3911 Consumer.addKeywordResult("restrict");
3912 if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus)
3913 Consumer.addKeywordResult("bool");
3914 else if (SemaRef.getLangOpts().C99)
3915 Consumer.addKeywordResult("_Bool");
3916
3917 if (SemaRef.getLangOpts().CPlusPlus) {
3918 Consumer.addKeywordResult("class");
3919 Consumer.addKeywordResult("typename");
3920 Consumer.addKeywordResult("wchar_t");
3921
3922 if (SemaRef.getLangOpts().CPlusPlus11) {
3923 Consumer.addKeywordResult("char16_t");
3924 Consumer.addKeywordResult("char32_t");
3925 Consumer.addKeywordResult("constexpr");
3926 Consumer.addKeywordResult("decltype");
3927 Consumer.addKeywordResult("thread_local");
3928 }
3929 }
3930
3931 if (SemaRef.getLangOpts().GNUMode)
3932 Consumer.addKeywordResult("typeof");
3933 } else if (CCC.WantFunctionLikeCasts) {
3934 static const char *const CastableTypeSpecs[] = {
3935 "char", "double", "float", "int", "long", "short",
3936 "signed", "unsigned", "void"
3937 };
3938 for (auto *kw : CastableTypeSpecs)
3939 Consumer.addKeywordResult(kw);
3940 }
3941
3942 if (CCC.WantCXXNamedCasts && SemaRef.getLangOpts().CPlusPlus) {
3943 Consumer.addKeywordResult("const_cast");
3944 Consumer.addKeywordResult("dynamic_cast");
3945 Consumer.addKeywordResult("reinterpret_cast");
3946 Consumer.addKeywordResult("static_cast");
3947 }
3948
3949 if (CCC.WantExpressionKeywords) {
3950 Consumer.addKeywordResult("sizeof");
3951 if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus) {
3952 Consumer.addKeywordResult("false");
3953 Consumer.addKeywordResult("true");
3954 }
3955
3956 if (SemaRef.getLangOpts().CPlusPlus) {
3957 static const char *const CXXExprs[] = {
3958 "delete", "new", "operator", "throw", "typeid"
3959 };
3960 const unsigned NumCXXExprs = llvm::array_lengthof(CXXExprs);
3961 for (unsigned I = 0; I != NumCXXExprs; ++I)
3962 Consumer.addKeywordResult(CXXExprs[I]);
3963
3964 if (isa<CXXMethodDecl>(SemaRef.CurContext) &&
3965 cast<CXXMethodDecl>(SemaRef.CurContext)->isInstance())
3966 Consumer.addKeywordResult("this");
3967
3968 if (SemaRef.getLangOpts().CPlusPlus11) {
3969 Consumer.addKeywordResult("alignof");
3970 Consumer.addKeywordResult("nullptr");
3971 }
3972 }
3973
3974 if (SemaRef.getLangOpts().C11) {
3975 // FIXME: We should not suggest _Alignof if the alignof macro
3976 // is present.
3977 Consumer.addKeywordResult("_Alignof");
3978 }
3979 }
3980
3981 if (CCC.WantRemainingKeywords) {
3982 if (SemaRef.getCurFunctionOrMethodDecl() || SemaRef.getCurBlock()) {
3983 // Statements.
3984 static const char *const CStmts[] = {
3985 "do", "else", "for", "goto", "if", "return", "switch", "while" };
3986 const unsigned NumCStmts = llvm::array_lengthof(CStmts);
3987 for (unsigned I = 0; I != NumCStmts; ++I)
3988 Consumer.addKeywordResult(CStmts[I]);
3989
3990 if (SemaRef.getLangOpts().CPlusPlus) {
3991 Consumer.addKeywordResult("catch");
3992 Consumer.addKeywordResult("try");
3993 }
3994
3995 if (S && S->getBreakParent())
3996 Consumer.addKeywordResult("break");
3997
3998 if (S && S->getContinueParent())
3999 Consumer.addKeywordResult("continue");
4000
4001 if (!SemaRef.getCurFunction()->SwitchStack.empty()) {
4002 Consumer.addKeywordResult("case");
4003 Consumer.addKeywordResult("default");
4004 }
4005 } else {
4006 if (SemaRef.getLangOpts().CPlusPlus) {
4007 Consumer.addKeywordResult("namespace");
4008 Consumer.addKeywordResult("template");
4009 }
4010
4011 if (S && S->isClassScope()) {
4012 Consumer.addKeywordResult("explicit");
4013 Consumer.addKeywordResult("friend");
4014 Consumer.addKeywordResult("mutable");
4015 Consumer.addKeywordResult("private");
4016 Consumer.addKeywordResult("protected");
4017 Consumer.addKeywordResult("public");
4018 Consumer.addKeywordResult("virtual");
4019 }
4020 }
4021
4022 if (SemaRef.getLangOpts().CPlusPlus) {
4023 Consumer.addKeywordResult("using");
4024
4025 if (SemaRef.getLangOpts().CPlusPlus11)
4026 Consumer.addKeywordResult("static_assert");
4027 }
4028 }
4029 }
4030
makeTypoCorrectionConsumer(const DeclarationNameInfo & TypoName,Sema::LookupNameKind LookupKind,Scope * S,CXXScopeSpec * SS,std::unique_ptr<CorrectionCandidateCallback> CCC,DeclContext * MemberContext,bool EnteringContext,const ObjCObjectPointerType * OPT,bool ErrorRecovery)4031 std::unique_ptr<TypoCorrectionConsumer> Sema::makeTypoCorrectionConsumer(
4032 const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind,
4033 Scope *S, CXXScopeSpec *SS,
4034 std::unique_ptr<CorrectionCandidateCallback> CCC,
4035 DeclContext *MemberContext, bool EnteringContext,
4036 const ObjCObjectPointerType *OPT, bool ErrorRecovery) {
4037
4038 if (Diags.hasFatalErrorOccurred() || !getLangOpts().SpellChecking ||
4039 DisableTypoCorrection)
4040 return nullptr;
4041
4042 // In Microsoft mode, don't perform typo correction in a template member
4043 // function dependent context because it interferes with the "lookup into
4044 // dependent bases of class templates" feature.
4045 if (getLangOpts().MSVCCompat && CurContext->isDependentContext() &&
4046 isa<CXXMethodDecl>(CurContext))
4047 return nullptr;
4048
4049 // We only attempt to correct typos for identifiers.
4050 IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
4051 if (!Typo)
4052 return nullptr;
4053
4054 // If the scope specifier itself was invalid, don't try to correct
4055 // typos.
4056 if (SS && SS->isInvalid())
4057 return nullptr;
4058
4059 // Never try to correct typos during template deduction or
4060 // instantiation.
4061 if (!ActiveTemplateInstantiations.empty())
4062 return nullptr;
4063
4064 // Don't try to correct 'super'.
4065 if (S && S->isInObjcMethodScope() && Typo == getSuperIdentifier())
4066 return nullptr;
4067
4068 // Abort if typo correction already failed for this specific typo.
4069 IdentifierSourceLocations::iterator locs = TypoCorrectionFailures.find(Typo);
4070 if (locs != TypoCorrectionFailures.end() &&
4071 locs->second.count(TypoName.getLoc()))
4072 return nullptr;
4073
4074 // Don't try to correct the identifier "vector" when in AltiVec mode.
4075 // TODO: Figure out why typo correction misbehaves in this case, fix it, and
4076 // remove this workaround.
4077 if (getLangOpts().AltiVec && Typo->isStr("vector"))
4078 return nullptr;
4079
4080 // Provide a stop gap for files that are just seriously broken. Trying
4081 // to correct all typos can turn into a HUGE performance penalty, causing
4082 // some files to take minutes to get rejected by the parser.
4083 unsigned Limit = getDiagnostics().getDiagnosticOptions().SpellCheckingLimit;
4084 if (Limit && TyposCorrected >= Limit)
4085 return nullptr;
4086 ++TyposCorrected;
4087
4088 // If we're handling a missing symbol error, using modules, and the
4089 // special search all modules option is used, look for a missing import.
4090 if (ErrorRecovery && getLangOpts().Modules &&
4091 getLangOpts().ModulesSearchAll) {
4092 // The following has the side effect of loading the missing module.
4093 getModuleLoader().lookupMissingImports(Typo->getName(),
4094 TypoName.getLocStart());
4095 }
4096
4097 CorrectionCandidateCallback &CCCRef = *CCC;
4098 auto Consumer = llvm::make_unique<TypoCorrectionConsumer>(
4099 *this, TypoName, LookupKind, S, SS, std::move(CCC), MemberContext,
4100 EnteringContext);
4101
4102 // Perform name lookup to find visible, similarly-named entities.
4103 bool IsUnqualifiedLookup = false;
4104 DeclContext *QualifiedDC = MemberContext;
4105 if (MemberContext) {
4106 LookupVisibleDecls(MemberContext, LookupKind, *Consumer);
4107
4108 // Look in qualified interfaces.
4109 if (OPT) {
4110 for (auto *I : OPT->quals())
4111 LookupVisibleDecls(I, LookupKind, *Consumer);
4112 }
4113 } else if (SS && SS->isSet()) {
4114 QualifiedDC = computeDeclContext(*SS, EnteringContext);
4115 if (!QualifiedDC)
4116 return nullptr;
4117
4118 LookupVisibleDecls(QualifiedDC, LookupKind, *Consumer);
4119 } else {
4120 IsUnqualifiedLookup = true;
4121 }
4122
4123 // Determine whether we are going to search in the various namespaces for
4124 // corrections.
4125 bool SearchNamespaces
4126 = getLangOpts().CPlusPlus &&
4127 (IsUnqualifiedLookup || (SS && SS->isSet()));
4128
4129 if (IsUnqualifiedLookup || SearchNamespaces) {
4130 // For unqualified lookup, look through all of the names that we have
4131 // seen in this translation unit.
4132 // FIXME: Re-add the ability to skip very unlikely potential corrections.
4133 for (const auto &I : Context.Idents)
4134 Consumer->FoundName(I.getKey());
4135
4136 // Walk through identifiers in external identifier sources.
4137 // FIXME: Re-add the ability to skip very unlikely potential corrections.
4138 if (IdentifierInfoLookup *External
4139 = Context.Idents.getExternalIdentifierLookup()) {
4140 std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers());
4141 do {
4142 StringRef Name = Iter->Next();
4143 if (Name.empty())
4144 break;
4145
4146 Consumer->FoundName(Name);
4147 } while (true);
4148 }
4149 }
4150
4151 AddKeywordsToConsumer(*this, *Consumer, S, CCCRef, SS && SS->isNotEmpty());
4152
4153 // Build the NestedNameSpecifiers for the KnownNamespaces, if we're going
4154 // to search those namespaces.
4155 if (SearchNamespaces) {
4156 // Load any externally-known namespaces.
4157 if (ExternalSource && !LoadedExternalKnownNamespaces) {
4158 SmallVector<NamespaceDecl *, 4> ExternalKnownNamespaces;
4159 LoadedExternalKnownNamespaces = true;
4160 ExternalSource->ReadKnownNamespaces(ExternalKnownNamespaces);
4161 for (auto *N : ExternalKnownNamespaces)
4162 KnownNamespaces[N] = true;
4163 }
4164
4165 Consumer->addNamespaces(KnownNamespaces);
4166 }
4167
4168 return Consumer;
4169 }
4170
4171 /// \brief Try to "correct" a typo in the source code by finding
4172 /// visible declarations whose names are similar to the name that was
4173 /// present in the source code.
4174 ///
4175 /// \param TypoName the \c DeclarationNameInfo structure that contains
4176 /// the name that was present in the source code along with its location.
4177 ///
4178 /// \param LookupKind the name-lookup criteria used to search for the name.
4179 ///
4180 /// \param S the scope in which name lookup occurs.
4181 ///
4182 /// \param SS the nested-name-specifier that precedes the name we're
4183 /// looking for, if present.
4184 ///
4185 /// \param CCC A CorrectionCandidateCallback object that provides further
4186 /// validation of typo correction candidates. It also provides flags for
4187 /// determining the set of keywords permitted.
4188 ///
4189 /// \param MemberContext if non-NULL, the context in which to look for
4190 /// a member access expression.
4191 ///
4192 /// \param EnteringContext whether we're entering the context described by
4193 /// the nested-name-specifier SS.
4194 ///
4195 /// \param OPT when non-NULL, the search for visible declarations will
4196 /// also walk the protocols in the qualified interfaces of \p OPT.
4197 ///
4198 /// \returns a \c TypoCorrection containing the corrected name if the typo
4199 /// along with information such as the \c NamedDecl where the corrected name
4200 /// was declared, and any additional \c NestedNameSpecifier needed to access
4201 /// it (C++ only). The \c TypoCorrection is empty if there is no correction.
CorrectTypo(const DeclarationNameInfo & TypoName,Sema::LookupNameKind LookupKind,Scope * S,CXXScopeSpec * SS,std::unique_ptr<CorrectionCandidateCallback> CCC,CorrectTypoKind Mode,DeclContext * MemberContext,bool EnteringContext,const ObjCObjectPointerType * OPT,bool RecordFailure)4202 TypoCorrection Sema::CorrectTypo(const DeclarationNameInfo &TypoName,
4203 Sema::LookupNameKind LookupKind,
4204 Scope *S, CXXScopeSpec *SS,
4205 std::unique_ptr<CorrectionCandidateCallback> CCC,
4206 CorrectTypoKind Mode,
4207 DeclContext *MemberContext,
4208 bool EnteringContext,
4209 const ObjCObjectPointerType *OPT,
4210 bool RecordFailure) {
4211 assert(CCC && "CorrectTypo requires a CorrectionCandidateCallback");
4212
4213 // Always let the ExternalSource have the first chance at correction, even
4214 // if we would otherwise have given up.
4215 if (ExternalSource) {
4216 if (TypoCorrection Correction = ExternalSource->CorrectTypo(
4217 TypoName, LookupKind, S, SS, *CCC, MemberContext, EnteringContext, OPT))
4218 return Correction;
4219 }
4220
4221 // Ugly hack equivalent to CTC == CTC_ObjCMessageReceiver;
4222 // WantObjCSuper is only true for CTC_ObjCMessageReceiver and for
4223 // some instances of CTC_Unknown, while WantRemainingKeywords is true
4224 // for CTC_Unknown but not for CTC_ObjCMessageReceiver.
4225 bool ObjCMessageReceiver = CCC->WantObjCSuper && !CCC->WantRemainingKeywords;
4226
4227 IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
4228 auto Consumer = makeTypoCorrectionConsumer(
4229 TypoName, LookupKind, S, SS, std::move(CCC), MemberContext,
4230 EnteringContext, OPT, Mode == CTK_ErrorRecovery);
4231
4232 if (!Consumer)
4233 return TypoCorrection();
4234
4235 // If we haven't found anything, we're done.
4236 if (Consumer->empty())
4237 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4238
4239 // Make sure the best edit distance (prior to adding any namespace qualifiers)
4240 // is not more that about a third of the length of the typo's identifier.
4241 unsigned ED = Consumer->getBestEditDistance(true);
4242 unsigned TypoLen = Typo->getName().size();
4243 if (ED > 0 && TypoLen / ED < 3)
4244 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4245
4246 TypoCorrection BestTC = Consumer->getNextCorrection();
4247 TypoCorrection SecondBestTC = Consumer->getNextCorrection();
4248 if (!BestTC)
4249 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4250
4251 ED = BestTC.getEditDistance();
4252
4253 if (TypoLen >= 3 && ED > 0 && TypoLen / ED < 3) {
4254 // If this was an unqualified lookup and we believe the callback
4255 // object wouldn't have filtered out possible corrections, note
4256 // that no correction was found.
4257 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4258 }
4259
4260 // If only a single name remains, return that result.
4261 if (!SecondBestTC ||
4262 SecondBestTC.getEditDistance(false) > BestTC.getEditDistance(false)) {
4263 const TypoCorrection &Result = BestTC;
4264
4265 // Don't correct to a keyword that's the same as the typo; the keyword
4266 // wasn't actually in scope.
4267 if (ED == 0 && Result.isKeyword())
4268 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4269
4270 TypoCorrection TC = Result;
4271 TC.setCorrectionRange(SS, TypoName);
4272 checkCorrectionVisibility(*this, TC);
4273 return TC;
4274 } else if (SecondBestTC && ObjCMessageReceiver) {
4275 // Prefer 'super' when we're completing in a message-receiver
4276 // context.
4277
4278 if (BestTC.getCorrection().getAsString() != "super") {
4279 if (SecondBestTC.getCorrection().getAsString() == "super")
4280 BestTC = SecondBestTC;
4281 else if ((*Consumer)["super"].front().isKeyword())
4282 BestTC = (*Consumer)["super"].front();
4283 }
4284 // Don't correct to a keyword that's the same as the typo; the keyword
4285 // wasn't actually in scope.
4286 if (BestTC.getEditDistance() == 0 ||
4287 BestTC.getCorrection().getAsString() != "super")
4288 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4289
4290 BestTC.setCorrectionRange(SS, TypoName);
4291 return BestTC;
4292 }
4293
4294 // Record the failure's location if needed and return an empty correction. If
4295 // this was an unqualified lookup and we believe the callback object did not
4296 // filter out possible corrections, also cache the failure for the typo.
4297 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4298 }
4299
4300 /// \brief Try to "correct" a typo in the source code by finding
4301 /// visible declarations whose names are similar to the name that was
4302 /// present in the source code.
4303 ///
4304 /// \param TypoName the \c DeclarationNameInfo structure that contains
4305 /// the name that was present in the source code along with its location.
4306 ///
4307 /// \param LookupKind the name-lookup criteria used to search for the name.
4308 ///
4309 /// \param S the scope in which name lookup occurs.
4310 ///
4311 /// \param SS the nested-name-specifier that precedes the name we're
4312 /// looking for, if present.
4313 ///
4314 /// \param CCC A CorrectionCandidateCallback object that provides further
4315 /// validation of typo correction candidates. It also provides flags for
4316 /// determining the set of keywords permitted.
4317 ///
4318 /// \param TDG A TypoDiagnosticGenerator functor that will be used to print
4319 /// diagnostics when the actual typo correction is attempted.
4320 ///
4321 /// \param TRC A TypoRecoveryCallback functor that will be used to build an
4322 /// Expr from a typo correction candidate.
4323 ///
4324 /// \param MemberContext if non-NULL, the context in which to look for
4325 /// a member access expression.
4326 ///
4327 /// \param EnteringContext whether we're entering the context described by
4328 /// the nested-name-specifier SS.
4329 ///
4330 /// \param OPT when non-NULL, the search for visible declarations will
4331 /// also walk the protocols in the qualified interfaces of \p OPT.
4332 ///
4333 /// \returns a new \c TypoExpr that will later be replaced in the AST with an
4334 /// Expr representing the result of performing typo correction, or nullptr if
4335 /// typo correction is not possible. If nullptr is returned, no diagnostics will
4336 /// be emitted and it is the responsibility of the caller to emit any that are
4337 /// needed.
CorrectTypoDelayed(const DeclarationNameInfo & TypoName,Sema::LookupNameKind LookupKind,Scope * S,CXXScopeSpec * SS,std::unique_ptr<CorrectionCandidateCallback> CCC,TypoDiagnosticGenerator TDG,TypoRecoveryCallback TRC,CorrectTypoKind Mode,DeclContext * MemberContext,bool EnteringContext,const ObjCObjectPointerType * OPT)4338 TypoExpr *Sema::CorrectTypoDelayed(
4339 const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind,
4340 Scope *S, CXXScopeSpec *SS,
4341 std::unique_ptr<CorrectionCandidateCallback> CCC,
4342 TypoDiagnosticGenerator TDG, TypoRecoveryCallback TRC, CorrectTypoKind Mode,
4343 DeclContext *MemberContext, bool EnteringContext,
4344 const ObjCObjectPointerType *OPT) {
4345 assert(CCC && "CorrectTypoDelayed requires a CorrectionCandidateCallback");
4346
4347 TypoCorrection Empty;
4348 auto Consumer = makeTypoCorrectionConsumer(
4349 TypoName, LookupKind, S, SS, std::move(CCC), MemberContext,
4350 EnteringContext, OPT,
4351 /*SearchModules=*/(Mode == CTK_ErrorRecovery) && getLangOpts().Modules &&
4352 getLangOpts().ModulesSearchAll);
4353
4354 if (!Consumer || Consumer->empty())
4355 return nullptr;
4356
4357 // Make sure the best edit distance (prior to adding any namespace qualifiers)
4358 // is not more that about a third of the length of the typo's identifier.
4359 unsigned ED = Consumer->getBestEditDistance(true);
4360 IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
4361 if (ED > 0 && Typo->getName().size() / ED < 3)
4362 return nullptr;
4363
4364 ExprEvalContexts.back().NumTypos++;
4365 return createDelayedTypo(std::move(Consumer), std::move(TDG), std::move(TRC));
4366 }
4367
addCorrectionDecl(NamedDecl * CDecl)4368 void TypoCorrection::addCorrectionDecl(NamedDecl *CDecl) {
4369 if (!CDecl) return;
4370
4371 if (isKeyword())
4372 CorrectionDecls.clear();
4373
4374 CorrectionDecls.push_back(CDecl->getUnderlyingDecl());
4375
4376 if (!CorrectionName)
4377 CorrectionName = CDecl->getDeclName();
4378 }
4379
getAsString(const LangOptions & LO) const4380 std::string TypoCorrection::getAsString(const LangOptions &LO) const {
4381 if (CorrectionNameSpec) {
4382 std::string tmpBuffer;
4383 llvm::raw_string_ostream PrefixOStream(tmpBuffer);
4384 CorrectionNameSpec->print(PrefixOStream, PrintingPolicy(LO));
4385 PrefixOStream << CorrectionName;
4386 return PrefixOStream.str();
4387 }
4388
4389 return CorrectionName.getAsString();
4390 }
4391
ValidateCandidate(const TypoCorrection & candidate)4392 bool CorrectionCandidateCallback::ValidateCandidate(
4393 const TypoCorrection &candidate) {
4394 if (!candidate.isResolved())
4395 return true;
4396
4397 if (candidate.isKeyword())
4398 return WantTypeSpecifiers || WantExpressionKeywords || WantCXXNamedCasts ||
4399 WantRemainingKeywords || WantObjCSuper;
4400
4401 bool HasNonType = false;
4402 bool HasStaticMethod = false;
4403 bool HasNonStaticMethod = false;
4404 for (Decl *D : candidate) {
4405 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(D))
4406 D = FTD->getTemplatedDecl();
4407 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
4408 if (Method->isStatic())
4409 HasStaticMethod = true;
4410 else
4411 HasNonStaticMethod = true;
4412 }
4413 if (!isa<TypeDecl>(D))
4414 HasNonType = true;
4415 }
4416
4417 if (IsAddressOfOperand && HasNonStaticMethod && !HasStaticMethod &&
4418 !candidate.getCorrectionSpecifier())
4419 return false;
4420
4421 return WantTypeSpecifiers || HasNonType;
4422 }
4423
FunctionCallFilterCCC(Sema & SemaRef,unsigned NumArgs,bool HasExplicitTemplateArgs,MemberExpr * ME)4424 FunctionCallFilterCCC::FunctionCallFilterCCC(Sema &SemaRef, unsigned NumArgs,
4425 bool HasExplicitTemplateArgs,
4426 MemberExpr *ME)
4427 : NumArgs(NumArgs), HasExplicitTemplateArgs(HasExplicitTemplateArgs),
4428 CurContext(SemaRef.CurContext), MemberFn(ME) {
4429 WantTypeSpecifiers = false;
4430 WantFunctionLikeCasts = SemaRef.getLangOpts().CPlusPlus && NumArgs == 1;
4431 WantRemainingKeywords = false;
4432 }
4433
ValidateCandidate(const TypoCorrection & candidate)4434 bool FunctionCallFilterCCC::ValidateCandidate(const TypoCorrection &candidate) {
4435 if (!candidate.getCorrectionDecl())
4436 return candidate.isKeyword();
4437
4438 for (auto *C : candidate) {
4439 FunctionDecl *FD = nullptr;
4440 NamedDecl *ND = C->getUnderlyingDecl();
4441 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
4442 FD = FTD->getTemplatedDecl();
4443 if (!HasExplicitTemplateArgs && !FD) {
4444 if (!(FD = dyn_cast<FunctionDecl>(ND)) && isa<ValueDecl>(ND)) {
4445 // If the Decl is neither a function nor a template function,
4446 // determine if it is a pointer or reference to a function. If so,
4447 // check against the number of arguments expected for the pointee.
4448 QualType ValType = cast<ValueDecl>(ND)->getType();
4449 if (ValType->isAnyPointerType() || ValType->isReferenceType())
4450 ValType = ValType->getPointeeType();
4451 if (const FunctionProtoType *FPT = ValType->getAs<FunctionProtoType>())
4452 if (FPT->getNumParams() == NumArgs)
4453 return true;
4454 }
4455 }
4456
4457 // Skip the current candidate if it is not a FunctionDecl or does not accept
4458 // the current number of arguments.
4459 if (!FD || !(FD->getNumParams() >= NumArgs &&
4460 FD->getMinRequiredArguments() <= NumArgs))
4461 continue;
4462
4463 // If the current candidate is a non-static C++ method, skip the candidate
4464 // unless the method being corrected--or the current DeclContext, if the
4465 // function being corrected is not a method--is a method in the same class
4466 // or a descendent class of the candidate's parent class.
4467 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
4468 if (MemberFn || !MD->isStatic()) {
4469 CXXMethodDecl *CurMD =
4470 MemberFn
4471 ? dyn_cast_or_null<CXXMethodDecl>(MemberFn->getMemberDecl())
4472 : dyn_cast_or_null<CXXMethodDecl>(CurContext);
4473 CXXRecordDecl *CurRD =
4474 CurMD ? CurMD->getParent()->getCanonicalDecl() : nullptr;
4475 CXXRecordDecl *RD = MD->getParent()->getCanonicalDecl();
4476 if (!CurRD || (CurRD != RD && !CurRD->isDerivedFrom(RD)))
4477 continue;
4478 }
4479 }
4480 return true;
4481 }
4482 return false;
4483 }
4484
diagnoseTypo(const TypoCorrection & Correction,const PartialDiagnostic & TypoDiag,bool ErrorRecovery)4485 void Sema::diagnoseTypo(const TypoCorrection &Correction,
4486 const PartialDiagnostic &TypoDiag,
4487 bool ErrorRecovery) {
4488 diagnoseTypo(Correction, TypoDiag, PDiag(diag::note_previous_decl),
4489 ErrorRecovery);
4490 }
4491
4492 /// Find which declaration we should import to provide the definition of
4493 /// the given declaration.
getDefinitionToImport(const NamedDecl * D)4494 static const NamedDecl *getDefinitionToImport(const NamedDecl *D) {
4495 if (const VarDecl *VD = dyn_cast<VarDecl>(D))
4496 return VD->getDefinition();
4497 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
4498 return FD->isDefined(FD) ? FD : nullptr;
4499 if (const TagDecl *TD = dyn_cast<TagDecl>(D))
4500 return TD->getDefinition();
4501 if (const ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(D))
4502 return ID->getDefinition();
4503 if (const ObjCProtocolDecl *PD = dyn_cast<ObjCProtocolDecl>(D))
4504 return PD->getDefinition();
4505 if (const TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
4506 return getDefinitionToImport(TD->getTemplatedDecl());
4507 return nullptr;
4508 }
4509
4510 /// \brief Diagnose a successfully-corrected typo. Separated from the correction
4511 /// itself to allow external validation of the result, etc.
4512 ///
4513 /// \param Correction The result of performing typo correction.
4514 /// \param TypoDiag The diagnostic to produce. This will have the corrected
4515 /// string added to it (and usually also a fixit).
4516 /// \param PrevNote A note to use when indicating the location of the entity to
4517 /// which we are correcting. Will have the correction string added to it.
4518 /// \param ErrorRecovery If \c true (the default), the caller is going to
4519 /// recover from the typo as if the corrected string had been typed.
4520 /// In this case, \c PDiag must be an error, and we will attach a fixit
4521 /// to it.
diagnoseTypo(const TypoCorrection & Correction,const PartialDiagnostic & TypoDiag,const PartialDiagnostic & PrevNote,bool ErrorRecovery)4522 void Sema::diagnoseTypo(const TypoCorrection &Correction,
4523 const PartialDiagnostic &TypoDiag,
4524 const PartialDiagnostic &PrevNote,
4525 bool ErrorRecovery) {
4526 std::string CorrectedStr = Correction.getAsString(getLangOpts());
4527 std::string CorrectedQuotedStr = Correction.getQuoted(getLangOpts());
4528 FixItHint FixTypo = FixItHint::CreateReplacement(
4529 Correction.getCorrectionRange(), CorrectedStr);
4530
4531 // Maybe we're just missing a module import.
4532 if (Correction.requiresImport()) {
4533 NamedDecl *Decl = Correction.getCorrectionDecl();
4534 assert(Decl && "import required but no declaration to import");
4535
4536 // Suggest importing a module providing the definition of this entity, if
4537 // possible.
4538 const NamedDecl *Def = getDefinitionToImport(Decl);
4539 if (!Def)
4540 Def = Decl;
4541 Module *Owner = Def->getOwningModule();
4542 assert(Owner && "definition of hidden declaration is not in a module");
4543
4544 Diag(Correction.getCorrectionRange().getBegin(),
4545 diag::err_module_private_declaration)
4546 << Def << Owner->getFullModuleName();
4547 Diag(Def->getLocation(), diag::note_previous_declaration);
4548
4549 // Recover by implicitly importing this module.
4550 if (ErrorRecovery)
4551 createImplicitModuleImportForErrorRecovery(
4552 Correction.getCorrectionRange().getBegin(), Owner);
4553 return;
4554 }
4555
4556 Diag(Correction.getCorrectionRange().getBegin(), TypoDiag)
4557 << CorrectedQuotedStr << (ErrorRecovery ? FixTypo : FixItHint());
4558
4559 NamedDecl *ChosenDecl =
4560 Correction.isKeyword() ? nullptr : Correction.getCorrectionDecl();
4561 if (PrevNote.getDiagID() && ChosenDecl)
4562 Diag(ChosenDecl->getLocation(), PrevNote)
4563 << CorrectedQuotedStr << (ErrorRecovery ? FixItHint() : FixTypo);
4564 }
4565
createDelayedTypo(std::unique_ptr<TypoCorrectionConsumer> TCC,TypoDiagnosticGenerator TDG,TypoRecoveryCallback TRC)4566 TypoExpr *Sema::createDelayedTypo(std::unique_ptr<TypoCorrectionConsumer> TCC,
4567 TypoDiagnosticGenerator TDG,
4568 TypoRecoveryCallback TRC) {
4569 assert(TCC && "createDelayedTypo requires a valid TypoCorrectionConsumer");
4570 auto TE = new (Context) TypoExpr(Context.DependentTy);
4571 auto &State = DelayedTypos[TE];
4572 State.Consumer = std::move(TCC);
4573 State.DiagHandler = std::move(TDG);
4574 State.RecoveryHandler = std::move(TRC);
4575 return TE;
4576 }
4577
getTypoExprState(TypoExpr * TE) const4578 const Sema::TypoExprState &Sema::getTypoExprState(TypoExpr *TE) const {
4579 auto Entry = DelayedTypos.find(TE);
4580 assert(Entry != DelayedTypos.end() &&
4581 "Failed to get the state for a TypoExpr!");
4582 return Entry->second;
4583 }
4584
clearDelayedTypo(TypoExpr * TE)4585 void Sema::clearDelayedTypo(TypoExpr *TE) {
4586 DelayedTypos.erase(TE);
4587 }
4588