1 /*
2  * Copyright (C) 2020 Collabora Ltd.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors (Collabora):
24  *      Alyssa Rosenzweig <alyssa.rosenzweig@collabora.com>
25  */
26 
27 #ifndef __BIFROST_COMPILER_H
28 #define __BIFROST_COMPILER_H
29 
30 #include "bifrost.h"
31 #include "compiler/nir/nir.h"
32 #include "panfrost/util/pan_ir.h"
33 
34 /* Bifrost opcodes are tricky -- the same op may exist on both FMA and
35  * ADD with two completely different opcodes, and opcodes can be varying
36  * length in some cases. Then we have different opcodes for int vs float
37  * and then sometimes even for different typesizes. Further, virtually
38  * every op has a number of flags which depend on the op. In constrast
39  * to Midgard where you have a strict ALU/LDST/TEX division and within
40  * ALU you have strict int/float and that's it... here it's a *lot* more
41  * involved. As such, we use something much higher level for our IR,
42  * encoding "classes" of operations, letting the opcode details get
43  * sorted out at emit time.
44  *
45  * Please keep this list alphabetized. Please use a dictionary if you
46  * don't know how to do that.
47  */
48 
49 enum bi_class {
50         BI_ADD,
51         BI_ATEST,
52         BI_BRANCH,
53         BI_CMP,
54         BI_BLEND,
55         BI_BITWISE,
56         BI_COMBINE,
57         BI_CONVERT,
58         BI_CSEL,
59         BI_DISCARD,
60         BI_FMA,
61         BI_FMOV,
62         BI_FREXP,
63         BI_IMATH,
64         BI_LOAD,
65         BI_LOAD_UNIFORM,
66         BI_LOAD_ATTR,
67         BI_LOAD_VAR,
68         BI_LOAD_VAR_ADDRESS,
69         BI_MINMAX,
70         BI_MOV,
71         BI_REDUCE_FMA,
72         BI_SELECT,
73         BI_STORE,
74         BI_STORE_VAR,
75         BI_SPECIAL, /* _FAST on supported GPUs */
76         BI_TABLE,
77         BI_TEX,
78         BI_ROUND,
79         BI_IMUL,
80         BI_NUM_CLASSES
81 };
82 
83 /* Properties of a class... */
84 extern unsigned bi_class_props[BI_NUM_CLASSES];
85 
86 /* abs/neg/outmod valid for a float op */
87 #define BI_MODS (1 << 0)
88 
89 /* Accepts a bi_cond */
90 #define BI_CONDITIONAL (1 << 1)
91 
92 /* Accepts a bifrost_roundmode */
93 #define BI_ROUNDMODE (1 << 2)
94 
95 /* Can be scheduled to FMA */
96 #define BI_SCHED_FMA (1 << 3)
97 
98 /* Can be scheduled to ADD */
99 #define BI_SCHED_ADD (1 << 4)
100 
101 /* Most ALU ops can do either, actually */
102 #define BI_SCHED_ALL (BI_SCHED_FMA | BI_SCHED_ADD)
103 
104 /* Along with setting BI_SCHED_ADD, eats up the entire cycle, so FMA must be
105  * nopped out. Used for _FAST operations. */
106 #define BI_SCHED_SLOW (1 << 5)
107 
108 /* Swizzling allowed for the 8/16-bit source */
109 #define BI_SWIZZLABLE (1 << 6)
110 
111 /* For scheduling purposes this is a high latency instruction and must be at
112  * the end of a clause. Implies ADD */
113 #define BI_SCHED_HI_LATENCY (1 << 7)
114 
115 /* Intrinsic is vectorized and acts with `vector_channels` components */
116 #define BI_VECTOR (1 << 8)
117 
118 /* Use a data register for src0/dest respectively, bypassing the usual
119  * register accessor. Mutually exclusive. */
120 #define BI_DATA_REG_SRC (1 << 9)
121 #define BI_DATA_REG_DEST (1 << 10)
122 
123 /* Quirk: cannot encode multiple abs on FMA in fp16 mode */
124 #define BI_NO_ABS_ABS_FP16_FMA (1 << 11)
125 
126 /* It can't get any worse than csel4... can it? */
127 #define BIR_SRC_COUNT 4
128 
129 /* BI_LD_VARY */
130 struct bi_load_vary {
131         enum bifrost_interp_mode interp_mode;
132         bool reuse;
133         bool flat;
134 };
135 
136 /* BI_BRANCH encoding the details of the branch itself as well as a pointer to
137  * the target. We forward declare bi_block since this is mildly circular (not
138  * strictly, but this order of the file makes more sense I think)
139  *
140  * We define our own enum of conditions since the conditions in the hardware
141  * packed in crazy ways that would make manipulation unweildly (meaning changes
142  * based on port swapping, etc), so we defer dealing with that until emit time.
143  * Likewise, we expose NIR types instead of the crazy branch types, although
144  * the restrictions do eventually apply of course. */
145 
146 struct bi_block;
147 
148 enum bi_cond {
149         BI_COND_ALWAYS,
150         BI_COND_LT,
151         BI_COND_LE,
152         BI_COND_GE,
153         BI_COND_GT,
154         BI_COND_EQ,
155         BI_COND_NE,
156 };
157 
158 /* Opcodes within a class */
159 enum bi_minmax_op {
160         BI_MINMAX_MIN,
161         BI_MINMAX_MAX
162 };
163 
164 enum bi_bitwise_op {
165         BI_BITWISE_AND,
166         BI_BITWISE_OR,
167         BI_BITWISE_XOR
168 };
169 
170 enum bi_imath_op {
171         BI_IMATH_ADD,
172         BI_IMATH_SUB,
173 };
174 
175 enum bi_imul_op {
176         BI_IMUL_IMUL,
177 };
178 
179 enum bi_table_op {
180         /* fp32 log2() with low precision, suitable for GL or half_log2() in
181          * CL. In the first argument, takes x. Letting u be such that x =
182          * 2^{-m} u with m integer and 0.75 <= u < 1.5, returns
183          * log2(u) / (u - 1). */
184 
185         BI_TABLE_LOG2_U_OVER_U_1_LOW,
186 };
187 
188 enum bi_reduce_op {
189         /* Takes two fp32 arguments and returns x + frexp(y). Used in
190          * low-precision log2 argument reduction on newer models. */
191 
192         BI_REDUCE_ADD_FREXPM,
193 };
194 
195 enum bi_frexp_op {
196         BI_FREXPE_LOG,
197 };
198 
199 enum bi_special_op {
200         BI_SPECIAL_FRCP,
201         BI_SPECIAL_FRSQ,
202 
203         /* fp32 exp2() with low precision, suitable for half_exp2() in CL or
204          * exp2() in GL. In the first argument, it takes f2i_rte(x * 2^24). In
205          * the second, it takes x itself. */
206         BI_SPECIAL_EXP2_LOW,
207         BI_SPECIAL_IABS,
208 };
209 
210 enum bi_tex_op {
211         BI_TEX_NORMAL,
212         BI_TEX_COMPACT,
213         BI_TEX_DUAL
214 };
215 
216 struct bi_bitwise {
217         bool src_invert[2];
218         bool rshift; /* false for lshift */
219 };
220 
221 struct bi_texture {
222         /* Constant indices. Indirect would need to be in src[..] like normal,
223          * we can reserve some sentinels there for that for future. */
224         unsigned texture_index, sampler_index;
225 };
226 
227 typedef struct {
228         struct list_head link; /* Must be first */
229         enum bi_class type;
230 
231         /* Indices, see pan_ssa_index etc. Note zero is special cased
232          * to "no argument" */
233         unsigned dest;
234         unsigned src[BIR_SRC_COUNT];
235 
236         /* 32-bit word offset for destination, added to the register number in
237          * RA when lowering combines */
238         unsigned dest_offset;
239 
240         /* If one of the sources has BIR_INDEX_CONSTANT */
241         union {
242                 uint64_t u64;
243                 uint32_t u32;
244                 uint16_t u16[2];
245                 uint8_t u8[4];
246         } constant;
247 
248         /* Floating-point modifiers, type/class permitting. If not
249          * allowed for the type/class, these are ignored. */
250         enum bifrost_outmod outmod;
251         bool src_abs[BIR_SRC_COUNT];
252         bool src_neg[BIR_SRC_COUNT];
253 
254         /* Round mode (requires BI_ROUNDMODE) */
255         enum bifrost_roundmode roundmode;
256 
257         /* Destination type. Usually the type of the instruction
258          * itself, but if sources and destination have different
259          * types, the type of the destination wins (so f2i would be
260          * int). Zero if there is no destination. Bitsize included */
261         nir_alu_type dest_type;
262 
263         /* Source types if required by the class */
264         nir_alu_type src_types[BIR_SRC_COUNT];
265 
266         /* If the source type is 8-bit or 16-bit such that SIMD is possible,
267          * and the class has BI_SWIZZLABLE, this is a swizzle in the usual
268          * sense. On non-SIMD instructions, it can be used for component
269          * selection, so we don't have to special case extraction. */
270         uint8_t swizzle[BIR_SRC_COUNT][NIR_MAX_VEC_COMPONENTS];
271 
272         /* For VECTOR ops, how many channels are written? */
273         unsigned vector_channels;
274 
275         /* The comparison op. BI_COND_ALWAYS may not be valid. */
276         enum bi_cond cond;
277 
278         /* A class-specific op from which the actual opcode can be derived
279          * (along with the above information) */
280 
281         union {
282                 enum bi_minmax_op minmax;
283                 enum bi_bitwise_op bitwise;
284                 enum bi_special_op special;
285                 enum bi_reduce_op reduce;
286                 enum bi_table_op table;
287                 enum bi_frexp_op frexp;
288                 enum bi_tex_op texture;
289                 enum bi_imath_op imath;
290                 enum bi_imul_op imul;
291 
292                 /* For FMA/ADD, should we add a biased exponent? */
293                 bool mscale;
294         } op;
295 
296         /* Union for class-specific information */
297         union {
298                 enum bifrost_minmax_mode minmax;
299                 struct bi_load_vary load_vary;
300                 struct bi_block *branch_target;
301 
302                 /* For BLEND -- the location 0-7 */
303                 unsigned blend_location;
304 
305                 struct bi_bitwise bitwise;
306                 struct bi_texture texture;
307         };
308 } bi_instruction;
309 
310 /* Represents the assignment of ports for a given bi_bundle */
311 
312 typedef struct {
313         /* Register to assign to each port */
314         unsigned port[4];
315 
316         /* Read ports can be disabled */
317         bool enabled[2];
318 
319         /* Should we write FMA? what about ADD? If only a single port is
320          * enabled it is in port 2, else ADD/FMA is 2/3 respectively */
321         bool write_fma, write_add;
322 
323         /* Should we read with port 3? */
324         bool read_port3;
325 
326         /* Packed uniform/constant */
327         uint8_t uniform_constant;
328 
329         /* Whether writes are actually for the last instruction */
330         bool first_instruction;
331 } bi_registers;
332 
333 /* A bi_bundle contains two paired instruction pointers. If a slot is unfilled,
334  * leave it NULL; the emitter will fill in a nop. Instructions reference
335  * registers via ports which are assigned per bundle.
336  */
337 
338 typedef struct {
339         bi_registers regs;
340         bi_instruction *fma;
341         bi_instruction *add;
342 } bi_bundle;
343 
344 struct bi_block;
345 
346 typedef struct {
347         struct list_head link;
348 
349         /* Link back up for branch calculations */
350         struct bi_block *block;
351 
352         /* A clause can have 8 instructions in bundled FMA/ADD sense, so there
353          * can be 8 bundles. */
354 
355         unsigned bundle_count;
356         bi_bundle bundles[8];
357 
358         /* For scoreboarding -- the clause ID (this is not globally unique!)
359          * and its dependencies in terms of other clauses, computed during
360          * scheduling and used when emitting code. Dependencies expressed as a
361          * bitfield matching the hardware, except shifted by a clause (the
362          * shift back to the ISA's off-by-one encoding is worked out when
363          * emitting clauses) */
364         unsigned scoreboard_id;
365         uint8_t dependencies;
366 
367         /* Back-to-back corresponds directly to the back-to-back bit. Branch
368          * conditional corresponds to the branch conditional bit except that in
369          * the emitted code it's always set if back-to-bit is, whereas we use
370          * the actual value (without back-to-back so to speak) internally */
371         bool back_to_back;
372         bool branch_conditional;
373 
374         /* Assigned data register */
375         unsigned data_register;
376 
377         /* Corresponds to the usual bit but shifted by a clause */
378         bool data_register_write_barrier;
379 
380         /* Constants read by this clause. ISA limit. Must satisfy:
381          *
382          *      constant_count + bundle_count <= 13
383          *
384          * Also implicitly constant_count <= bundle_count since a bundle only
385          * reads a single constant.
386          */
387         uint64_t constants[8];
388         unsigned constant_count;
389 
390         /* Branches encode a constant offset relative to the program counter
391          * with some magic flags. By convention, if there is a branch, its
392          * constant will be last. Set this flag to indicate this is required.
393          */
394         bool branch_constant;
395 
396         /* What type of high latency instruction is here, basically */
397         unsigned clause_type;
398 } bi_clause;
399 
400 typedef struct bi_block {
401         pan_block base; /* must be first */
402 
403         /* If true, uses clauses; if false, uses instructions */
404         bool scheduled;
405         struct list_head clauses; /* list of bi_clause */
406 } bi_block;
407 
408 typedef struct {
409        nir_shader *nir;
410        gl_shader_stage stage;
411        struct list_head blocks; /* list of bi_block */
412        struct panfrost_sysvals sysvals;
413        uint32_t quirks;
414 
415        /* During NIR->BIR */
416        nir_function_impl *impl;
417        bi_block *current_block;
418        bi_block *after_block;
419        bi_block *break_block;
420        bi_block *continue_block;
421        bool emitted_atest;
422        nir_alu_type *blend_types;
423 
424        /* For creating temporaries */
425        unsigned temp_alloc;
426 
427        /* Analysis results */
428        bool has_liveness;
429 
430        /* Stats for shader-db */
431        unsigned instruction_count;
432        unsigned loop_count;
433 } bi_context;
434 
435 static inline bi_instruction *
bi_emit(bi_context * ctx,bi_instruction ins)436 bi_emit(bi_context *ctx, bi_instruction ins)
437 {
438         bi_instruction *u = rzalloc(ctx, bi_instruction);
439         memcpy(u, &ins, sizeof(ins));
440         list_addtail(&u->link, &ctx->current_block->base.instructions);
441         return u;
442 }
443 
444 static inline bi_instruction *
bi_emit_before(bi_context * ctx,bi_instruction * tag,bi_instruction ins)445 bi_emit_before(bi_context *ctx, bi_instruction *tag, bi_instruction ins)
446 {
447         bi_instruction *u = rzalloc(ctx, bi_instruction);
448         memcpy(u, &ins, sizeof(ins));
449         list_addtail(&u->link, &tag->link);
450         return u;
451 }
452 
453 static inline void
bi_remove_instruction(bi_instruction * ins)454 bi_remove_instruction(bi_instruction *ins)
455 {
456         list_del(&ins->link);
457 }
458 
459 /* If high bits are set, instead of SSA/registers, we have specials indexed by
460  * the low bits if necessary.
461  *
462  *  Fixed register: do not allocate register, do not collect $200.
463  *  Uniform: access a uniform register given by low bits.
464  *  Constant: access the specified constant (specifies a bit offset / shift)
465  *  Zero: special cased to avoid wasting a constant
466  *  Passthrough: a bifrost_packed_src to passthrough T/T0/T1
467  */
468 
469 #define BIR_INDEX_REGISTER (1 << 31)
470 #define BIR_INDEX_UNIFORM  (1 << 30)
471 #define BIR_INDEX_CONSTANT (1 << 29)
472 #define BIR_INDEX_ZERO     (1 << 28)
473 #define BIR_INDEX_PASS     (1 << 27)
474 
475 /* Keep me synced please so we can check src & BIR_SPECIAL */
476 
477 #define BIR_SPECIAL        ((BIR_INDEX_REGISTER | BIR_INDEX_UNIFORM) | \
478         (BIR_INDEX_CONSTANT | BIR_INDEX_ZERO | BIR_INDEX_PASS))
479 
480 static inline unsigned
bi_max_temp(bi_context * ctx)481 bi_max_temp(bi_context *ctx)
482 {
483         unsigned alloc = MAX2(ctx->impl->reg_alloc, ctx->impl->ssa_alloc);
484         return ((alloc + 2 + ctx->temp_alloc) << 1);
485 }
486 
487 static inline unsigned
bi_make_temp(bi_context * ctx)488 bi_make_temp(bi_context *ctx)
489 {
490         return (ctx->impl->ssa_alloc + 1 + ctx->temp_alloc++) << 1;
491 }
492 
493 static inline unsigned
bi_make_temp_reg(bi_context * ctx)494 bi_make_temp_reg(bi_context *ctx)
495 {
496         return ((ctx->impl->reg_alloc + ctx->temp_alloc++) << 1) | PAN_IS_REG;
497 }
498 
499 /* Iterators for Bifrost IR */
500 
501 #define bi_foreach_block(ctx, v) \
502         list_for_each_entry(pan_block, v, &ctx->blocks, link)
503 
504 #define bi_foreach_block_from(ctx, from, v) \
505         list_for_each_entry_from(pan_block, v, from, &ctx->blocks, link)
506 
507 #define bi_foreach_block_from_rev(ctx, from, v) \
508         list_for_each_entry_from_rev(pan_block, v, from, &ctx->blocks, link)
509 
510 #define bi_foreach_instr_in_block(block, v) \
511         list_for_each_entry(bi_instruction, v, &(block)->base.instructions, link)
512 
513 #define bi_foreach_instr_in_block_rev(block, v) \
514         list_for_each_entry_rev(bi_instruction, v, &(block)->base.instructions, link)
515 
516 #define bi_foreach_instr_in_block_safe(block, v) \
517         list_for_each_entry_safe(bi_instruction, v, &(block)->base.instructions, link)
518 
519 #define bi_foreach_instr_in_block_safe_rev(block, v) \
520         list_for_each_entry_safe_rev(bi_instruction, v, &(block)->base.instructions, link)
521 
522 #define bi_foreach_instr_in_block_from(block, v, from) \
523         list_for_each_entry_from(bi_instruction, v, from, &(block)->base.instructions, link)
524 
525 #define bi_foreach_instr_in_block_from_rev(block, v, from) \
526         list_for_each_entry_from_rev(bi_instruction, v, from, &(block)->base.instructions, link)
527 
528 #define bi_foreach_clause_in_block(block, v) \
529         list_for_each_entry(bi_clause, v, &(block)->clauses, link)
530 
531 #define bi_foreach_clause_in_block_from(block, v, from) \
532         list_for_each_entry_from(bi_clause, v, from, &(block)->clauses, link)
533 
534 #define bi_foreach_clause_in_block_from_rev(block, v, from) \
535         list_for_each_entry_from_rev(bi_clause, v, from, &(block)->clauses, link)
536 
537 #define bi_foreach_instr_global(ctx, v) \
538         bi_foreach_block(ctx, v_block) \
539                 bi_foreach_instr_in_block((bi_block *) v_block, v)
540 
541 #define bi_foreach_instr_global_safe(ctx, v) \
542         bi_foreach_block(ctx, v_block) \
543                 bi_foreach_instr_in_block_safe((bi_block *) v_block, v)
544 
545 /* Based on set_foreach, expanded with automatic type casts */
546 
547 #define bi_foreach_predecessor(blk, v) \
548         struct set_entry *_entry_##v; \
549         bi_block *v; \
550         for (_entry_##v = _mesa_set_next_entry(blk->base.predecessors, NULL), \
551                 v = (bi_block *) (_entry_##v ? _entry_##v->key : NULL);  \
552                 _entry_##v != NULL; \
553                 _entry_##v = _mesa_set_next_entry(blk->base.predecessors, _entry_##v), \
554                 v = (bi_block *) (_entry_##v ? _entry_##v->key : NULL))
555 
556 #define bi_foreach_src(ins, v) \
557         for (unsigned v = 0; v < ARRAY_SIZE(ins->src); ++v)
558 
559 static inline bi_instruction *
bi_prev_op(bi_instruction * ins)560 bi_prev_op(bi_instruction *ins)
561 {
562         return list_last_entry(&(ins->link), bi_instruction, link);
563 }
564 
565 static inline bi_instruction *
bi_next_op(bi_instruction * ins)566 bi_next_op(bi_instruction *ins)
567 {
568         return list_first_entry(&(ins->link), bi_instruction, link);
569 }
570 
571 static inline pan_block *
pan_next_block(pan_block * block)572 pan_next_block(pan_block *block)
573 {
574         return list_first_entry(&(block->link), pan_block, link);
575 }
576 
577 /* Special functions */
578 
579 void bi_emit_fexp2(bi_context *ctx, nir_alu_instr *instr);
580 void bi_emit_flog2(bi_context *ctx, nir_alu_instr *instr);
581 
582 /* BIR manipulation */
583 
584 bool bi_has_outmod(bi_instruction *ins);
585 bool bi_has_source_mods(bi_instruction *ins);
586 bool bi_is_src_swizzled(bi_instruction *ins, unsigned s);
587 bool bi_has_arg(bi_instruction *ins, unsigned arg);
588 uint16_t bi_from_bytemask(uint16_t bytemask, unsigned bytes);
589 unsigned bi_get_component_count(bi_instruction *ins, signed s);
590 uint16_t bi_bytemask_of_read_components(bi_instruction *ins, unsigned node);
591 uint64_t bi_get_immediate(bi_instruction *ins, unsigned index);
592 bool bi_writes_component(bi_instruction *ins, unsigned comp);
593 unsigned bi_writemask(bi_instruction *ins);
594 
595 /* BIR passes */
596 
597 void bi_lower_combine(bi_context *ctx, bi_block *block);
598 bool bi_opt_dead_code_eliminate(bi_context *ctx, bi_block *block);
599 void bi_schedule(bi_context *ctx);
600 void bi_register_allocate(bi_context *ctx);
601 
602 /* Liveness */
603 
604 void bi_compute_liveness(bi_context *ctx);
605 void bi_liveness_ins_update(uint16_t *live, bi_instruction *ins, unsigned max);
606 void bi_invalidate_liveness(bi_context *ctx);
607 bool bi_is_live_after(bi_context *ctx, bi_block *block, bi_instruction *start, int src);
608 
609 /* Layout */
610 
611 bool bi_can_insert_bundle(bi_clause *clause, bool constant);
612 unsigned bi_clause_quadwords(bi_clause *clause);
613 signed bi_block_offset(bi_context *ctx, bi_clause *start, bi_block *target);
614 
615 /* Code emit */
616 
617 void bi_pack(bi_context *ctx, struct util_dynarray *emission);
618 
619 #endif
620