xref: /openbsd/lib/libcrypto/bn/bn_kron.c (revision ca1d80d6)
1 /* $OpenBSD: bn_kron.c,v 1.15 2023/07/08 12:21:58 beck Exp $ */
2 /* ====================================================================
3  * Copyright (c) 1998-2000 The OpenSSL Project.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  *
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  *
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in
14  *    the documentation and/or other materials provided with the
15  *    distribution.
16  *
17  * 3. All advertising materials mentioning features or use of this
18  *    software must display the following acknowledgment:
19  *    "This product includes software developed by the OpenSSL Project
20  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
21  *
22  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23  *    endorse or promote products derived from this software without
24  *    prior written permission. For written permission, please contact
25  *    openssl-core@openssl.org.
26  *
27  * 5. Products derived from this software may not be called "OpenSSL"
28  *    nor may "OpenSSL" appear in their names without prior written
29  *    permission of the OpenSSL Project.
30  *
31  * 6. Redistributions of any form whatsoever must retain the following
32  *    acknowledgment:
33  *    "This product includes software developed by the OpenSSL Project
34  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
35  *
36  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
37  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
40  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47  * OF THE POSSIBILITY OF SUCH DAMAGE.
48  * ====================================================================
49  *
50  * This product includes cryptographic software written by Eric Young
51  * (eay@cryptsoft.com).  This product includes software written by Tim
52  * Hudson (tjh@cryptsoft.com).
53  *
54  */
55 
56 #include "bn_local.h"
57 
58 /*
59  * Kronecker symbol, implemented according to Henri Cohen, "A Course in
60  * Computational Algebraic Number Theory", Algorithm 1.4.10.
61  *
62  * Returns -1, 0, or 1 on success and -2 on error.
63  */
64 
65 int
BN_kronecker(const BIGNUM * A,const BIGNUM * B,BN_CTX * ctx)66 BN_kronecker(const BIGNUM *A, const BIGNUM *B, BN_CTX *ctx)
67 {
68 	/* tab[BN_lsw(n) & 7] = (-1)^((n^2 - 1)) / 8) for odd values of n. */
69 	static const int tab[8] = {0, 1, 0, -1, 0, -1, 0, 1};
70 	BIGNUM *a, *b, *tmp;
71 	int k, v;
72 	int ret = -2;
73 
74 	BN_CTX_start(ctx);
75 
76 	if ((a = BN_CTX_get(ctx)) == NULL)
77 		goto end;
78 	if ((b = BN_CTX_get(ctx)) == NULL)
79 		goto end;
80 
81 	if (!bn_copy(a, A))
82 		goto end;
83 	if (!bn_copy(b, B))
84 		goto end;
85 
86 	/*
87 	 * Cohen's step 1:
88 	 */
89 
90 	/* If b is zero, output 1 if |a| is 1, otherwise output 0. */
91 	if (BN_is_zero(b)) {
92 		ret = BN_abs_is_word(a, 1);
93 		goto end;
94 	}
95 
96 	/*
97 	 * Cohen's step 2:
98 	 */
99 
100 	/* If both are even, they have a factor in common, so output 0. */
101 	if (!BN_is_odd(a) && !BN_is_odd(b)) {
102 		ret = 0;
103 		goto end;
104 	}
105 
106 	/* Factorize b = 2^v * u with odd u and replace b with u. */
107 	v = 0;
108 	while (!BN_is_bit_set(b, v))
109 		v++;
110 	if (!BN_rshift(b, b, v))
111 		goto end;
112 
113 	/* If v is even set k = 1, otherwise set it to (-1)^((a^2 - 1) / 8). */
114 	k = 1;
115 	if (v % 2 != 0)
116 		k = tab[BN_lsw(a) & 7];
117 
118 	/*
119 	 * If b is negative, replace it with -b and if a is also negative
120 	 * replace k with -k.
121 	 */
122 	if (BN_is_negative(b)) {
123 		BN_set_negative(b, 0);
124 
125 		if (BN_is_negative(a))
126 			k = -k;
127 	}
128 
129 	/*
130 	 * Now b is positive and odd, so compute the Jacobi symbol (a/b)
131 	 * and multiply it by k.
132 	 */
133 
134 	while (1) {
135 		/*
136 		 * Cohen's step 3:
137 		 */
138 
139 		/* b is positive and odd. */
140 
141 		/* If a is zero output k if b is one, otherwise output 0. */
142 		if (BN_is_zero(a)) {
143 			ret = BN_is_one(b) ? k : 0;
144 			goto end;
145 		}
146 
147 		/* Factorize a = 2^v * u with odd u and replace a with u. */
148 		v = 0;
149 		while (!BN_is_bit_set(a, v))
150 			v++;
151 		if (!BN_rshift(a, a, v))
152 			goto end;
153 
154 		/* If v is odd, multiply k with (-1)^((b^2 - 1) / 8). */
155 		if (v % 2 != 0)
156 			k *= tab[BN_lsw(b) & 7];
157 
158 		/*
159 		 * Cohen's step 4:
160 		 */
161 
162 		/*
163 		 * Apply the reciprocity law: multiply k by (-1)^((a-1)(b-1)/4).
164 		 *
165 		 * This expression is -1 if and only if a and b are 3 (mod 4).
166 		 * In turn, this is the case if and only if their two's
167 		 * complement representations have the second bit set.
168 		 * a could be negative in the first iteration, b is positive.
169 		 */
170 		if ((BN_is_negative(a) ? ~BN_lsw(a) : BN_lsw(a)) & BN_lsw(b) & 2)
171 			k = -k;
172 
173 		/*
174 		 * (a, b) := (b mod |a|, |a|)
175 		 *
176 		 * Once this is done, we know that 0 < a < b at the start of the
177 		 * loop. Since b is strictly decreasing, the loop terminates.
178 		 */
179 
180 		if (!BN_nnmod(b, b, a, ctx))
181 			goto end;
182 
183 		tmp = a;
184 		a = b;
185 		b = tmp;
186 
187 		BN_set_negative(b, 0);
188 	}
189 
190  end:
191 	BN_CTX_end(ctx);
192 
193 	return ret;
194 }
195 LCRYPTO_ALIAS(BN_kronecker);
196