xref: /openbsd/lib/libcrypto/bn/bn_gcd.c (revision 6dd041f3)
1 /* $OpenBSD: bn_gcd.c,v 1.29 2024/04/10 14:58:06 beck Exp $ */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3  * All rights reserved.
4  *
5  * This package is an SSL implementation written
6  * by Eric Young (eay@cryptsoft.com).
7  * The implementation was written so as to conform with Netscapes SSL.
8  *
9  * This library is free for commercial and non-commercial use as long as
10  * the following conditions are aheared to.  The following conditions
11  * apply to all code found in this distribution, be it the RC4, RSA,
12  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
13  * included with this distribution is covered by the same copyright terms
14  * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15  *
16  * Copyright remains Eric Young's, and as such any Copyright notices in
17  * the code are not to be removed.
18  * If this package is used in a product, Eric Young should be given attribution
19  * as the author of the parts of the library used.
20  * This can be in the form of a textual message at program startup or
21  * in documentation (online or textual) provided with the package.
22  *
23  * Redistribution and use in source and binary forms, with or without
24  * modification, are permitted provided that the following conditions
25  * are met:
26  * 1. Redistributions of source code must retain the copyright
27  *    notice, this list of conditions and the following disclaimer.
28  * 2. Redistributions in binary form must reproduce the above copyright
29  *    notice, this list of conditions and the following disclaimer in the
30  *    documentation and/or other materials provided with the distribution.
31  * 3. All advertising materials mentioning features or use of this software
32  *    must display the following acknowledgement:
33  *    "This product includes cryptographic software written by
34  *     Eric Young (eay@cryptsoft.com)"
35  *    The word 'cryptographic' can be left out if the rouines from the library
36  *    being used are not cryptographic related :-).
37  * 4. If you include any Windows specific code (or a derivative thereof) from
38  *    the apps directory (application code) you must include an acknowledgement:
39  *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40  *
41  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
42  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51  * SUCH DAMAGE.
52  *
53  * The licence and distribution terms for any publically available version or
54  * derivative of this code cannot be changed.  i.e. this code cannot simply be
55  * copied and put under another distribution licence
56  * [including the GNU Public Licence.]
57  */
58 /* ====================================================================
59  * Copyright (c) 1998-2001 The OpenSSL Project.  All rights reserved.
60  *
61  * Redistribution and use in source and binary forms, with or without
62  * modification, are permitted provided that the following conditions
63  * are met:
64  *
65  * 1. Redistributions of source code must retain the above copyright
66  *    notice, this list of conditions and the following disclaimer.
67  *
68  * 2. Redistributions in binary form must reproduce the above copyright
69  *    notice, this list of conditions and the following disclaimer in
70  *    the documentation and/or other materials provided with the
71  *    distribution.
72  *
73  * 3. All advertising materials mentioning features or use of this
74  *    software must display the following acknowledgment:
75  *    "This product includes software developed by the OpenSSL Project
76  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
77  *
78  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
79  *    endorse or promote products derived from this software without
80  *    prior written permission. For written permission, please contact
81  *    openssl-core@openssl.org.
82  *
83  * 5. Products derived from this software may not be called "OpenSSL"
84  *    nor may "OpenSSL" appear in their names without prior written
85  *    permission of the OpenSSL Project.
86  *
87  * 6. Redistributions of any form whatsoever must retain the following
88  *    acknowledgment:
89  *    "This product includes software developed by the OpenSSL Project
90  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
91  *
92  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
93  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
94  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
95  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
96  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
97  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
98  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
99  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
100  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
101  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
103  * OF THE POSSIBILITY OF SUCH DAMAGE.
104  * ====================================================================
105  *
106  * This product includes cryptographic software written by Eric Young
107  * (eay@cryptsoft.com).  This product includes software written by Tim
108  * Hudson (tjh@cryptsoft.com).
109  *
110  */
111 
112 #include <openssl/err.h>
113 
114 #include "bn_local.h"
115 
116 static BIGNUM *
euclid(BIGNUM * a,BIGNUM * b)117 euclid(BIGNUM *a, BIGNUM *b)
118 {
119 	BIGNUM *t;
120 	int shifts = 0;
121 
122 	/* Loop invariant: 0 <= b <= a. */
123 	while (!BN_is_zero(b)) {
124 		if (BN_is_odd(a) && BN_is_odd(b)) {
125 			if (!BN_sub(a, a, b))
126 				goto err;
127 			if (!BN_rshift1(a, a))
128 				goto err;
129 		} else if (BN_is_odd(a) && !BN_is_odd(b)) {
130 			if (!BN_rshift1(b, b))
131 				goto err;
132 		} else if (!BN_is_odd(a) && BN_is_odd(b)) {
133 			if (!BN_rshift1(a, a))
134 				goto err;
135 		} else {
136 			if (!BN_rshift1(a, a))
137 				goto err;
138 			if (!BN_rshift1(b, b))
139 				goto err;
140 			shifts++;
141 			continue;
142 		}
143 
144 		if (BN_cmp(a, b) < 0) {
145 			t = a;
146 			a = b;
147 			b = t;
148 		}
149 	}
150 
151 	if (shifts) {
152 		if (!BN_lshift(a, a, shifts))
153 			goto err;
154 	}
155 
156 	return a;
157 
158  err:
159 	return NULL;
160 }
161 
162 int
BN_gcd(BIGNUM * r,const BIGNUM * in_a,const BIGNUM * in_b,BN_CTX * ctx)163 BN_gcd(BIGNUM *r, const BIGNUM *in_a, const BIGNUM *in_b, BN_CTX *ctx)
164 {
165 	BIGNUM *a, *b, *t;
166 	int ret = 0;
167 
168 	BN_CTX_start(ctx);
169 	if ((a = BN_CTX_get(ctx)) == NULL)
170 		goto err;
171 	if ((b = BN_CTX_get(ctx)) == NULL)
172 		goto err;
173 
174 	if (!bn_copy(a, in_a))
175 		goto err;
176 	if (!bn_copy(b, in_b))
177 		goto err;
178 	a->neg = 0;
179 	b->neg = 0;
180 
181 	if (BN_cmp(a, b) < 0) {
182 		t = a;
183 		a = b;
184 		b = t;
185 	}
186 	t = euclid(a, b);
187 	if (t == NULL)
188 		goto err;
189 
190 	if (!bn_copy(r, t))
191 		goto err;
192 	ret = 1;
193 
194  err:
195 	BN_CTX_end(ctx);
196 	return (ret);
197 }
198 LCRYPTO_ALIAS(BN_gcd);
199 
200 /*
201  * BN_gcd_no_branch is a special version of BN_mod_inverse_no_branch.
202  * that returns the GCD.
203  */
204 static BIGNUM *
BN_gcd_no_branch(BIGNUM * in,const BIGNUM * a,const BIGNUM * n,BN_CTX * ctx)205 BN_gcd_no_branch(BIGNUM *in, const BIGNUM *a, const BIGNUM *n,
206     BN_CTX *ctx)
207 {
208 	BIGNUM *A, *B, *X, *Y, *M, *D, *T, *R = NULL;
209 	BIGNUM local_A, local_B;
210 	BIGNUM *pA, *pB;
211 	BIGNUM *ret = NULL;
212 	int sign;
213 
214 	if (in == NULL)
215 		goto err;
216 	R = in;
217 
218 	BN_init(&local_A);
219 	BN_init(&local_B);
220 
221 	BN_CTX_start(ctx);
222 	if ((A = BN_CTX_get(ctx)) == NULL)
223 		goto err;
224 	if ((B = BN_CTX_get(ctx)) == NULL)
225 		goto err;
226 	if ((X = BN_CTX_get(ctx)) == NULL)
227 		goto err;
228 	if ((D = BN_CTX_get(ctx)) == NULL)
229 		goto err;
230 	if ((M = BN_CTX_get(ctx)) == NULL)
231 		goto err;
232 	if ((Y = BN_CTX_get(ctx)) == NULL)
233 		goto err;
234 	if ((T = BN_CTX_get(ctx)) == NULL)
235 		goto err;
236 
237 	if (!BN_one(X))
238 		goto err;
239 	BN_zero(Y);
240 	if (!bn_copy(B, a))
241 		goto err;
242 	if (!bn_copy(A, n))
243 		goto err;
244 	A->neg = 0;
245 
246 	if (B->neg || (BN_ucmp(B, A) >= 0)) {
247 		/*
248 		 * Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked,
249 		 * BN_div_no_branch will be called eventually.
250 		 */
251 		pB = &local_B;
252 		/* BN_init() done at the top of the function. */
253 		BN_with_flags(pB, B, BN_FLG_CONSTTIME);
254 		if (!BN_nnmod(B, pB, A, ctx))
255 			goto err;
256 	}
257 	sign = -1;
258 	/* From  B = a mod |n|,  A = |n|  it follows that
259 	 *
260 	 *      0 <= B < A,
261 	 *     -sign*X*a  ==  B   (mod |n|),
262 	 *      sign*Y*a  ==  A   (mod |n|).
263 	 */
264 
265 	while (!BN_is_zero(B)) {
266 		BIGNUM *tmp;
267 
268 		/*
269 		 *      0 < B < A,
270 		 * (*) -sign*X*a  ==  B   (mod |n|),
271 		 *      sign*Y*a  ==  A   (mod |n|)
272 		 */
273 
274 		/*
275 		 * Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked,
276 		 * BN_div_no_branch will be called eventually.
277 		 */
278 		pA = &local_A;
279 		/* BN_init() done at the top of the function. */
280 		BN_with_flags(pA, A, BN_FLG_CONSTTIME);
281 
282 		/* (D, M) := (A/B, A%B) ... */
283 		if (!BN_div_ct(D, M, pA, B, ctx))
284 			goto err;
285 
286 		/* Now
287 		 *      A = D*B + M;
288 		 * thus we have
289 		 * (**)  sign*Y*a  ==  D*B + M   (mod |n|).
290 		 */
291 		tmp = A; /* keep the BIGNUM object, the value does not matter */
292 
293 		/* (A, B) := (B, A mod B) ... */
294 		A = B;
295 		B = M;
296 		/* ... so we have  0 <= B < A  again */
297 
298 		/* Since the former  M  is now  B  and the former  B  is now  A,
299 		 * (**) translates into
300 		 *       sign*Y*a  ==  D*A + B    (mod |n|),
301 		 * i.e.
302 		 *       sign*Y*a - D*A  ==  B    (mod |n|).
303 		 * Similarly, (*) translates into
304 		 *      -sign*X*a  ==  A          (mod |n|).
305 		 *
306 		 * Thus,
307 		 *   sign*Y*a + D*sign*X*a  ==  B  (mod |n|),
308 		 * i.e.
309 		 *        sign*(Y + D*X)*a  ==  B  (mod |n|).
310 		 *
311 		 * So if we set  (X, Y, sign) := (Y + D*X, X, -sign),  we arrive back at
312 		 *      -sign*X*a  ==  B   (mod |n|),
313 		 *       sign*Y*a  ==  A   (mod |n|).
314 		 * Note that  X  and  Y  stay non-negative all the time.
315 		 */
316 
317 		if (!BN_mul(tmp, D, X, ctx))
318 			goto err;
319 		if (!BN_add(tmp, tmp, Y))
320 			goto err;
321 
322 		M = Y; /* keep the BIGNUM object, the value does not matter */
323 		Y = X;
324 		X = tmp;
325 		sign = -sign;
326 	}
327 
328 	/*
329 	 * The while loop (Euclid's algorithm) ends when
330 	 *      A == gcd(a,n);
331 	 */
332 
333 	if (!bn_copy(R, A))
334 		goto err;
335 	ret = R;
336  err:
337 	if ((ret == NULL) && (in == NULL))
338 		BN_free(R);
339 	BN_CTX_end(ctx);
340 	return (ret);
341 }
342 
343 int
BN_gcd_ct(BIGNUM * r,const BIGNUM * in_a,const BIGNUM * in_b,BN_CTX * ctx)344 BN_gcd_ct(BIGNUM *r, const BIGNUM *in_a, const BIGNUM *in_b, BN_CTX *ctx)
345 {
346 	if (BN_gcd_no_branch(r, in_a, in_b, ctx) == NULL)
347 		return 0;
348 	return 1;
349 }
350 
351 /* BN_mod_inverse_no_branch is a special version of BN_mod_inverse.
352  * It does not contain branches that may leak sensitive information.
353  */
354 static BIGNUM *
BN_mod_inverse_no_branch(BIGNUM * in,const BIGNUM * a,const BIGNUM * n,BN_CTX * ctx)355 BN_mod_inverse_no_branch(BIGNUM *in, const BIGNUM *a, const BIGNUM *n,
356     BN_CTX *ctx)
357 {
358 	BIGNUM *A, *B, *X, *Y, *M, *D, *T, *R = NULL;
359 	BIGNUM local_A, local_B;
360 	BIGNUM *pA, *pB;
361 	BIGNUM *ret = NULL;
362 	int sign;
363 
364 	BN_init(&local_A);
365 	BN_init(&local_B);
366 
367 	BN_CTX_start(ctx);
368 	if ((A = BN_CTX_get(ctx)) == NULL)
369 		goto err;
370 	if ((B = BN_CTX_get(ctx)) == NULL)
371 		goto err;
372 	if ((X = BN_CTX_get(ctx)) == NULL)
373 		goto err;
374 	if ((D = BN_CTX_get(ctx)) == NULL)
375 		goto err;
376 	if ((M = BN_CTX_get(ctx)) == NULL)
377 		goto err;
378 	if ((Y = BN_CTX_get(ctx)) == NULL)
379 		goto err;
380 	if ((T = BN_CTX_get(ctx)) == NULL)
381 		goto err;
382 
383 	if (in == NULL)
384 		R = BN_new();
385 	else
386 		R = in;
387 	if (R == NULL)
388 		goto err;
389 
390 	if (!BN_one(X))
391 		goto err;
392 	BN_zero(Y);
393 	if (!bn_copy(B, a))
394 		goto err;
395 	if (!bn_copy(A, n))
396 		goto err;
397 	A->neg = 0;
398 
399 	if (B->neg || (BN_ucmp(B, A) >= 0)) {
400 		/*
401 		 * Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked,
402 		 * BN_div_no_branch will be called eventually.
403 		 */
404 		pB = &local_B;
405 		/* BN_init() done at the top of the function. */
406 		BN_with_flags(pB, B, BN_FLG_CONSTTIME);
407 		if (!BN_nnmod(B, pB, A, ctx))
408 			goto err;
409 	}
410 	sign = -1;
411 	/* From  B = a mod |n|,  A = |n|  it follows that
412 	 *
413 	 *      0 <= B < A,
414 	 *     -sign*X*a  ==  B   (mod |n|),
415 	 *      sign*Y*a  ==  A   (mod |n|).
416 	 */
417 
418 	while (!BN_is_zero(B)) {
419 		BIGNUM *tmp;
420 
421 		/*
422 		 *      0 < B < A,
423 		 * (*) -sign*X*a  ==  B   (mod |n|),
424 		 *      sign*Y*a  ==  A   (mod |n|)
425 		 */
426 
427 		/*
428 		 * Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked,
429 		 * BN_div_no_branch will be called eventually.
430 		 */
431 		pA = &local_A;
432 		/* BN_init() done at the top of the function. */
433 		BN_with_flags(pA, A, BN_FLG_CONSTTIME);
434 
435 		/* (D, M) := (A/B, A%B) ... */
436 		if (!BN_div_ct(D, M, pA, B, ctx))
437 			goto err;
438 
439 		/* Now
440 		 *      A = D*B + M;
441 		 * thus we have
442 		 * (**)  sign*Y*a  ==  D*B + M   (mod |n|).
443 		 */
444 		tmp = A; /* keep the BIGNUM object, the value does not matter */
445 
446 		/* (A, B) := (B, A mod B) ... */
447 		A = B;
448 		B = M;
449 		/* ... so we have  0 <= B < A  again */
450 
451 		/* Since the former  M  is now  B  and the former  B  is now  A,
452 		 * (**) translates into
453 		 *       sign*Y*a  ==  D*A + B    (mod |n|),
454 		 * i.e.
455 		 *       sign*Y*a - D*A  ==  B    (mod |n|).
456 		 * Similarly, (*) translates into
457 		 *      -sign*X*a  ==  A          (mod |n|).
458 		 *
459 		 * Thus,
460 		 *   sign*Y*a + D*sign*X*a  ==  B  (mod |n|),
461 		 * i.e.
462 		 *        sign*(Y + D*X)*a  ==  B  (mod |n|).
463 		 *
464 		 * So if we set  (X, Y, sign) := (Y + D*X, X, -sign),  we arrive back at
465 		 *      -sign*X*a  ==  B   (mod |n|),
466 		 *       sign*Y*a  ==  A   (mod |n|).
467 		 * Note that  X  and  Y  stay non-negative all the time.
468 		 */
469 
470 		if (!BN_mul(tmp, D, X, ctx))
471 			goto err;
472 		if (!BN_add(tmp, tmp, Y))
473 			goto err;
474 
475 		M = Y; /* keep the BIGNUM object, the value does not matter */
476 		Y = X;
477 		X = tmp;
478 		sign = -sign;
479 	}
480 
481 	/*
482 	 * The while loop (Euclid's algorithm) ends when
483 	 *      A == gcd(a,n);
484 	 * we have
485 	 *       sign*Y*a  ==  A  (mod |n|),
486 	 * where  Y  is non-negative.
487 	 */
488 
489 	if (sign < 0) {
490 		if (!BN_sub(Y, n, Y))
491 			goto err;
492 	}
493 	/* Now  Y*a  ==  A  (mod |n|).  */
494 
495 	if (!BN_is_one(A)) {
496 		BNerror(BN_R_NO_INVERSE);
497 		goto err;
498 	}
499 
500 	if (!BN_nnmod(Y, Y, n, ctx))
501 		goto err;
502 	if (!bn_copy(R, Y))
503 		goto err;
504 
505 	ret = R;
506 
507  err:
508 	if ((ret == NULL) && (in == NULL))
509 		BN_free(R);
510 	BN_CTX_end(ctx);
511 	return (ret);
512 }
513 
514 /* solves ax == 1 (mod n) */
515 static BIGNUM *
BN_mod_inverse_internal(BIGNUM * in,const BIGNUM * a,const BIGNUM * n,BN_CTX * ctx,int ct)516 BN_mod_inverse_internal(BIGNUM *in, const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx,
517     int ct)
518 {
519 	BIGNUM *A, *B, *X, *Y, *M, *D, *T, *R = NULL;
520 	BIGNUM *ret = NULL;
521 	int sign;
522 
523 	if (ct)
524 		return BN_mod_inverse_no_branch(in, a, n, ctx);
525 
526 	BN_CTX_start(ctx);
527 	if ((A = BN_CTX_get(ctx)) == NULL)
528 		goto err;
529 	if ((B = BN_CTX_get(ctx)) == NULL)
530 		goto err;
531 	if ((X = BN_CTX_get(ctx)) == NULL)
532 		goto err;
533 	if ((D = BN_CTX_get(ctx)) == NULL)
534 		goto err;
535 	if ((M = BN_CTX_get(ctx)) == NULL)
536 		goto err;
537 	if ((Y = BN_CTX_get(ctx)) == NULL)
538 		goto err;
539 	if ((T = BN_CTX_get(ctx)) == NULL)
540 		goto err;
541 
542 	if (in == NULL)
543 		R = BN_new();
544 	else
545 		R = in;
546 	if (R == NULL)
547 		goto err;
548 
549 	if (!BN_one(X))
550 		goto err;
551 	BN_zero(Y);
552 	if (!bn_copy(B, a))
553 		goto err;
554 	if (!bn_copy(A, n))
555 		goto err;
556 	A->neg = 0;
557 	if (B->neg || (BN_ucmp(B, A) >= 0)) {
558 		if (!BN_nnmod(B, B, A, ctx))
559 			goto err;
560 	}
561 	sign = -1;
562 	/* From  B = a mod |n|,  A = |n|  it follows that
563 	 *
564 	 *      0 <= B < A,
565 	 *     -sign*X*a  ==  B   (mod |n|),
566 	 *      sign*Y*a  ==  A   (mod |n|).
567 	 */
568 
569 	if (BN_is_odd(n) && (BN_num_bits(n) <= (BN_BITS <= 32 ? 450 : 2048))) {
570 		/* Binary inversion algorithm; requires odd modulus.
571 		 * This is faster than the general algorithm if the modulus
572 		 * is sufficiently small (about 400 .. 500 bits on 32-bit
573 		 * systems, but much more on 64-bit systems) */
574 		int shift;
575 
576 		while (!BN_is_zero(B)) {
577 			/*
578 			 *      0 < B < |n|,
579 			 *      0 < A <= |n|,
580 			 * (1) -sign*X*a  ==  B   (mod |n|),
581 			 * (2)  sign*Y*a  ==  A   (mod |n|)
582 			 */
583 
584 			/* Now divide  B  by the maximum possible power of two in the integers,
585 			 * and divide  X  by the same value mod |n|.
586 			 * When we're done, (1) still holds. */
587 			shift = 0;
588 			while (!BN_is_bit_set(B, shift)) /* note that 0 < B */
589 			{
590 				shift++;
591 
592 				if (BN_is_odd(X)) {
593 					if (!BN_uadd(X, X, n))
594 						goto err;
595 				}
596 				/* now X is even, so we can easily divide it by two */
597 				if (!BN_rshift1(X, X))
598 					goto err;
599 			}
600 			if (shift > 0) {
601 				if (!BN_rshift(B, B, shift))
602 					goto err;
603 			}
604 
605 			/* Same for  A  and  Y.  Afterwards, (2) still holds. */
606 			shift = 0;
607 			while (!BN_is_bit_set(A, shift)) /* note that 0 < A */
608 			{
609 				shift++;
610 
611 				if (BN_is_odd(Y)) {
612 					if (!BN_uadd(Y, Y, n))
613 						goto err;
614 				}
615 				/* now Y is even */
616 				if (!BN_rshift1(Y, Y))
617 					goto err;
618 			}
619 			if (shift > 0) {
620 				if (!BN_rshift(A, A, shift))
621 					goto err;
622 			}
623 
624 			/* We still have (1) and (2).
625 			 * Both  A  and  B  are odd.
626 			 * The following computations ensure that
627 			 *
628 			 *     0 <= B < |n|,
629 			 *      0 < A < |n|,
630 			 * (1) -sign*X*a  ==  B   (mod |n|),
631 			 * (2)  sign*Y*a  ==  A   (mod |n|),
632 			 *
633 			 * and that either  A  or  B  is even in the next iteration.
634 			 */
635 			if (BN_ucmp(B, A) >= 0) {
636 				/* -sign*(X + Y)*a == B - A  (mod |n|) */
637 				if (!BN_uadd(X, X, Y))
638 					goto err;
639 				/* NB: we could use BN_mod_add_quick(X, X, Y, n), but that
640 				 * actually makes the algorithm slower */
641 				if (!BN_usub(B, B, A))
642 					goto err;
643 			} else {
644 				/*  sign*(X + Y)*a == A - B  (mod |n|) */
645 				if (!BN_uadd(Y, Y, X))
646 					goto err;
647 				/* as above, BN_mod_add_quick(Y, Y, X, n) would slow things down */
648 				if (!BN_usub(A, A, B))
649 					goto err;
650 			}
651 		}
652 	} else {
653 		/* general inversion algorithm */
654 
655 		while (!BN_is_zero(B)) {
656 			BIGNUM *tmp;
657 
658 			/*
659 			 *      0 < B < A,
660 			 * (*) -sign*X*a  ==  B   (mod |n|),
661 			 *      sign*Y*a  ==  A   (mod |n|)
662 			 */
663 
664 			/* (D, M) := (A/B, A%B) ... */
665 			if (BN_num_bits(A) == BN_num_bits(B)) {
666 				if (!BN_one(D))
667 					goto err;
668 				if (!BN_sub(M, A, B))
669 					goto err;
670 			} else if (BN_num_bits(A) == BN_num_bits(B) + 1) {
671 				/* A/B is 1, 2, or 3 */
672 				if (!BN_lshift1(T, B))
673 					goto err;
674 				if (BN_ucmp(A, T) < 0) {
675 					/* A < 2*B, so D=1 */
676 					if (!BN_one(D))
677 						goto err;
678 					if (!BN_sub(M, A, B))
679 						goto err;
680 				} else {
681 					/* A >= 2*B, so D=2 or D=3 */
682 					if (!BN_sub(M, A, T))
683 						goto err;
684 					if (!BN_add(D,T,B)) goto err; /* use D (:= 3*B) as temp */
685 						if (BN_ucmp(A, D) < 0) {
686 						/* A < 3*B, so D=2 */
687 						if (!BN_set_word(D, 2))
688 							goto err;
689 						/* M (= A - 2*B) already has the correct value */
690 					} else {
691 						/* only D=3 remains */
692 						if (!BN_set_word(D, 3))
693 							goto err;
694 						/* currently  M = A - 2*B,  but we need  M = A - 3*B */
695 						if (!BN_sub(M, M, B))
696 							goto err;
697 					}
698 				}
699 			} else {
700 				if (!BN_div_nonct(D, M, A, B, ctx))
701 					goto err;
702 			}
703 
704 			/* Now
705 			 *      A = D*B + M;
706 			 * thus we have
707 			 * (**)  sign*Y*a  ==  D*B + M   (mod |n|).
708 			 */
709 			tmp = A; /* keep the BIGNUM object, the value does not matter */
710 
711 			/* (A, B) := (B, A mod B) ... */
712 			A = B;
713 			B = M;
714 			/* ... so we have  0 <= B < A  again */
715 
716 			/* Since the former  M  is now  B  and the former  B  is now  A,
717 			 * (**) translates into
718 			 *       sign*Y*a  ==  D*A + B    (mod |n|),
719 			 * i.e.
720 			 *       sign*Y*a - D*A  ==  B    (mod |n|).
721 			 * Similarly, (*) translates into
722 			 *      -sign*X*a  ==  A          (mod |n|).
723 			 *
724 			 * Thus,
725 			 *   sign*Y*a + D*sign*X*a  ==  B  (mod |n|),
726 			 * i.e.
727 			 *        sign*(Y + D*X)*a  ==  B  (mod |n|).
728 			 *
729 			 * So if we set  (X, Y, sign) := (Y + D*X, X, -sign),  we arrive back at
730 			 *      -sign*X*a  ==  B   (mod |n|),
731 			 *       sign*Y*a  ==  A   (mod |n|).
732 			 * Note that  X  and  Y  stay non-negative all the time.
733 			 */
734 
735 			/* most of the time D is very small, so we can optimize tmp := D*X+Y */
736 			if (BN_is_one(D)) {
737 				if (!BN_add(tmp, X, Y))
738 					goto err;
739 			} else {
740 				if (BN_is_word(D, 2)) {
741 					if (!BN_lshift1(tmp, X))
742 						goto err;
743 				} else if (BN_is_word(D, 4)) {
744 					if (!BN_lshift(tmp, X, 2))
745 						goto err;
746 				} else if (D->top == 1) {
747 					if (!bn_copy(tmp, X))
748 						goto err;
749 					if (!BN_mul_word(tmp, D->d[0]))
750 						goto err;
751 				} else {
752 					if (!BN_mul(tmp, D,X, ctx))
753 						goto err;
754 				}
755 				if (!BN_add(tmp, tmp, Y))
756 					goto err;
757 			}
758 
759 			M = Y; /* keep the BIGNUM object, the value does not matter */
760 			Y = X;
761 			X = tmp;
762 			sign = -sign;
763 		}
764 	}
765 
766 	/*
767 	 * The while loop (Euclid's algorithm) ends when
768 	 *      A == gcd(a,n);
769 	 * we have
770 	 *       sign*Y*a  ==  A  (mod |n|),
771 	 * where  Y  is non-negative.
772 	 */
773 
774 	if (sign < 0) {
775 		if (!BN_sub(Y, n, Y))
776 			goto err;
777 	}
778 	/* Now  Y*a  ==  A  (mod |n|).  */
779 
780 	if (!BN_is_one(A)) {
781 		BNerror(BN_R_NO_INVERSE);
782 		goto err;
783 	}
784 
785 	if (!BN_nnmod(Y, Y, n, ctx))
786 		goto err;
787 	if (!bn_copy(R, Y))
788 		goto err;
789 
790 	ret = R;
791 
792  err:
793 	if ((ret == NULL) && (in == NULL))
794 		BN_free(R);
795 	BN_CTX_end(ctx);
796 	return (ret);
797 }
798 
799 BIGNUM *
BN_mod_inverse(BIGNUM * in,const BIGNUM * a,const BIGNUM * n,BN_CTX * ctx)800 BN_mod_inverse(BIGNUM *in, const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx)
801 {
802 	int ct = ((BN_get_flags(a, BN_FLG_CONSTTIME) != 0) ||
803 	    (BN_get_flags(n, BN_FLG_CONSTTIME) != 0));
804 	return BN_mod_inverse_internal(in, a, n, ctx, ct);
805 }
806 LCRYPTO_ALIAS(BN_mod_inverse);
807 
808 BIGNUM *
BN_mod_inverse_nonct(BIGNUM * in,const BIGNUM * a,const BIGNUM * n,BN_CTX * ctx)809 BN_mod_inverse_nonct(BIGNUM *in, const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx)
810 {
811 	return BN_mod_inverse_internal(in, a, n, ctx, 0);
812 }
813 
814 BIGNUM *
BN_mod_inverse_ct(BIGNUM * in,const BIGNUM * a,const BIGNUM * n,BN_CTX * ctx)815 BN_mod_inverse_ct(BIGNUM *in, const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx)
816 {
817 	return BN_mod_inverse_internal(in, a, n, ctx, 1);
818 }
819