1 //===- ThreadSafetyTIL.h ----------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines a simple Typed Intermediate Language, or TIL, that is used
10 // by the thread safety analysis (See ThreadSafety.cpp). The TIL is intended
11 // to be largely independent of clang, in the hope that the analysis can be
12 // reused for other non-C++ languages. All dependencies on clang/llvm should
13 // go in ThreadSafetyUtil.h.
14 //
15 // Thread safety analysis works by comparing mutex expressions, e.g.
16 //
17 // class A { Mutex mu; int dat GUARDED_BY(this->mu); }
18 // class B { A a; }
19 //
20 // void foo(B* b) {
21 // (*b).a.mu.lock(); // locks (*b).a.mu
22 // b->a.dat = 0; // substitute &b->a for 'this';
23 // // requires lock on (&b->a)->mu
24 // (b->a.mu).unlock(); // unlocks (b->a.mu)
25 // }
26 //
27 // As illustrated by the above example, clang Exprs are not well-suited to
28 // represent mutex expressions directly, since there is no easy way to compare
29 // Exprs for equivalence. The thread safety analysis thus lowers clang Exprs
30 // into a simple intermediate language (IL). The IL supports:
31 //
32 // (1) comparisons for semantic equality of expressions
33 // (2) SSA renaming of variables
34 // (3) wildcards and pattern matching over expressions
35 // (4) hash-based expression lookup
36 //
37 // The TIL is currently very experimental, is intended only for use within
38 // the thread safety analysis, and is subject to change without notice.
39 // After the API stabilizes and matures, it may be appropriate to make this
40 // more generally available to other analyses.
41 //
42 // UNDER CONSTRUCTION. USE AT YOUR OWN RISK.
43 //
44 //===----------------------------------------------------------------------===//
45
46 #ifndef LLVM_CLANG_ANALYSIS_ANALYSES_THREADSAFETYTIL_H
47 #define LLVM_CLANG_ANALYSIS_ANALYSES_THREADSAFETYTIL_H
48
49 #include "clang/AST/Decl.h"
50 #include "clang/Analysis/Analyses/ThreadSafetyUtil.h"
51 #include "clang/Basic/LLVM.h"
52 #include "llvm/ADT/ArrayRef.h"
53 #include "llvm/ADT/StringRef.h"
54 #include "llvm/Support/Casting.h"
55 #include "llvm/Support/raw_ostream.h"
56 #include <algorithm>
57 #include <cassert>
58 #include <cstddef>
59 #include <cstdint>
60 #include <iterator>
61 #include <optional>
62 #include <string>
63 #include <utility>
64
65 namespace clang {
66
67 class CallExpr;
68 class Expr;
69 class Stmt;
70
71 namespace threadSafety {
72 namespace til {
73
74 class BasicBlock;
75
76 /// Enum for the different distinct classes of SExpr
77 enum TIL_Opcode : unsigned char {
78 #define TIL_OPCODE_DEF(X) COP_##X,
79 #include "ThreadSafetyOps.def"
80 #undef TIL_OPCODE_DEF
81 };
82
83 /// Opcode for unary arithmetic operations.
84 enum TIL_UnaryOpcode : unsigned char {
85 UOP_Minus, // -
86 UOP_BitNot, // ~
87 UOP_LogicNot // !
88 };
89
90 /// Opcode for binary arithmetic operations.
91 enum TIL_BinaryOpcode : unsigned char {
92 BOP_Add, // +
93 BOP_Sub, // -
94 BOP_Mul, // *
95 BOP_Div, // /
96 BOP_Rem, // %
97 BOP_Shl, // <<
98 BOP_Shr, // >>
99 BOP_BitAnd, // &
100 BOP_BitXor, // ^
101 BOP_BitOr, // |
102 BOP_Eq, // ==
103 BOP_Neq, // !=
104 BOP_Lt, // <
105 BOP_Leq, // <=
106 BOP_Cmp, // <=>
107 BOP_LogicAnd, // && (no short-circuit)
108 BOP_LogicOr // || (no short-circuit)
109 };
110
111 /// Opcode for cast operations.
112 enum TIL_CastOpcode : unsigned char {
113 CAST_none = 0,
114
115 // Extend precision of numeric type
116 CAST_extendNum,
117
118 // Truncate precision of numeric type
119 CAST_truncNum,
120
121 // Convert to floating point type
122 CAST_toFloat,
123
124 // Convert to integer type
125 CAST_toInt,
126
127 // Convert smart pointer to pointer (C++ only)
128 CAST_objToPtr
129 };
130
131 const TIL_Opcode COP_Min = COP_Future;
132 const TIL_Opcode COP_Max = COP_Branch;
133 const TIL_UnaryOpcode UOP_Min = UOP_Minus;
134 const TIL_UnaryOpcode UOP_Max = UOP_LogicNot;
135 const TIL_BinaryOpcode BOP_Min = BOP_Add;
136 const TIL_BinaryOpcode BOP_Max = BOP_LogicOr;
137 const TIL_CastOpcode CAST_Min = CAST_none;
138 const TIL_CastOpcode CAST_Max = CAST_toInt;
139
140 /// Return the name of a unary opcode.
141 StringRef getUnaryOpcodeString(TIL_UnaryOpcode Op);
142
143 /// Return the name of a binary opcode.
144 StringRef getBinaryOpcodeString(TIL_BinaryOpcode Op);
145
146 /// ValueTypes are data types that can actually be held in registers.
147 /// All variables and expressions must have a value type.
148 /// Pointer types are further subdivided into the various heap-allocated
149 /// types, such as functions, records, etc.
150 /// Structured types that are passed by value (e.g. complex numbers)
151 /// require special handling; they use BT_ValueRef, and size ST_0.
152 struct ValueType {
153 enum BaseType : unsigned char {
154 BT_Void = 0,
155 BT_Bool,
156 BT_Int,
157 BT_Float,
158 BT_String, // String literals
159 BT_Pointer,
160 BT_ValueRef
161 };
162
163 enum SizeType : unsigned char {
164 ST_0 = 0,
165 ST_1,
166 ST_8,
167 ST_16,
168 ST_32,
169 ST_64,
170 ST_128
171 };
172
ValueTypeValueType173 ValueType(BaseType B, SizeType Sz, bool S, unsigned char VS)
174 : Base(B), Size(Sz), Signed(S), VectSize(VS) {}
175
176 inline static SizeType getSizeType(unsigned nbytes);
177
178 template <class T>
179 inline static ValueType getValueType();
180
181 BaseType Base;
182 SizeType Size;
183 bool Signed;
184
185 // 0 for scalar, otherwise num elements in vector
186 unsigned char VectSize;
187 };
188
getSizeType(unsigned nbytes)189 inline ValueType::SizeType ValueType::getSizeType(unsigned nbytes) {
190 switch (nbytes) {
191 case 1: return ST_8;
192 case 2: return ST_16;
193 case 4: return ST_32;
194 case 8: return ST_64;
195 case 16: return ST_128;
196 default: return ST_0;
197 }
198 }
199
200 template<>
201 inline ValueType ValueType::getValueType<void>() {
202 return ValueType(BT_Void, ST_0, false, 0);
203 }
204
205 template<>
206 inline ValueType ValueType::getValueType<bool>() {
207 return ValueType(BT_Bool, ST_1, false, 0);
208 }
209
210 template<>
211 inline ValueType ValueType::getValueType<int8_t>() {
212 return ValueType(BT_Int, ST_8, true, 0);
213 }
214
215 template<>
216 inline ValueType ValueType::getValueType<uint8_t>() {
217 return ValueType(BT_Int, ST_8, false, 0);
218 }
219
220 template<>
221 inline ValueType ValueType::getValueType<int16_t>() {
222 return ValueType(BT_Int, ST_16, true, 0);
223 }
224
225 template<>
226 inline ValueType ValueType::getValueType<uint16_t>() {
227 return ValueType(BT_Int, ST_16, false, 0);
228 }
229
230 template<>
231 inline ValueType ValueType::getValueType<int32_t>() {
232 return ValueType(BT_Int, ST_32, true, 0);
233 }
234
235 template<>
236 inline ValueType ValueType::getValueType<uint32_t>() {
237 return ValueType(BT_Int, ST_32, false, 0);
238 }
239
240 template<>
241 inline ValueType ValueType::getValueType<int64_t>() {
242 return ValueType(BT_Int, ST_64, true, 0);
243 }
244
245 template<>
246 inline ValueType ValueType::getValueType<uint64_t>() {
247 return ValueType(BT_Int, ST_64, false, 0);
248 }
249
250 template<>
251 inline ValueType ValueType::getValueType<float>() {
252 return ValueType(BT_Float, ST_32, true, 0);
253 }
254
255 template<>
256 inline ValueType ValueType::getValueType<double>() {
257 return ValueType(BT_Float, ST_64, true, 0);
258 }
259
260 template<>
261 inline ValueType ValueType::getValueType<long double>() {
262 return ValueType(BT_Float, ST_128, true, 0);
263 }
264
265 template<>
266 inline ValueType ValueType::getValueType<StringRef>() {
267 return ValueType(BT_String, getSizeType(sizeof(StringRef)), false, 0);
268 }
269
270 template<>
271 inline ValueType ValueType::getValueType<void*>() {
272 return ValueType(BT_Pointer, getSizeType(sizeof(void*)), false, 0);
273 }
274
275 /// Base class for AST nodes in the typed intermediate language.
276 class SExpr {
277 public:
278 SExpr() = delete;
279
opcode()280 TIL_Opcode opcode() const { return Opcode; }
281
282 // Subclasses of SExpr must define the following:
283 //
284 // This(const This& E, ...) {
285 // copy constructor: construct copy of E, with some additional arguments.
286 // }
287 //
288 // template <class V>
289 // typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
290 // traverse all subexpressions, following the traversal/rewriter interface.
291 // }
292 //
293 // template <class C> typename C::CType compare(CType* E, C& Cmp) {
294 // compare all subexpressions, following the comparator interface
295 // }
new(size_t S,MemRegionRef & R)296 void *operator new(size_t S, MemRegionRef &R) {
297 return ::operator new(S, R);
298 }
299
300 /// SExpr objects must be created in an arena.
301 void *operator new(size_t) = delete;
302
303 /// SExpr objects cannot be deleted.
304 // This declaration is public to workaround a gcc bug that breaks building
305 // with REQUIRES_EH=1.
306 void operator delete(void *) = delete;
307
308 /// Returns the instruction ID for this expression.
309 /// All basic block instructions have a unique ID (i.e. virtual register).
id()310 unsigned id() const { return SExprID; }
311
312 /// Returns the block, if this is an instruction in a basic block,
313 /// otherwise returns null.
block()314 BasicBlock *block() const { return Block; }
315
316 /// Set the basic block and instruction ID for this expression.
setID(BasicBlock * B,unsigned id)317 void setID(BasicBlock *B, unsigned id) { Block = B; SExprID = id; }
318
319 protected:
SExpr(TIL_Opcode Op)320 SExpr(TIL_Opcode Op) : Opcode(Op) {}
SExpr(const SExpr & E)321 SExpr(const SExpr &E) : Opcode(E.Opcode), Flags(E.Flags) {}
322
323 const TIL_Opcode Opcode;
324 unsigned char Reserved = 0;
325 unsigned short Flags = 0;
326 unsigned SExprID = 0;
327 BasicBlock *Block = nullptr;
328 };
329
330 // Contains various helper functions for SExprs.
331 namespace ThreadSafetyTIL {
332
isTrivial(const SExpr * E)333 inline bool isTrivial(const SExpr *E) {
334 TIL_Opcode Op = E->opcode();
335 return Op == COP_Variable || Op == COP_Literal || Op == COP_LiteralPtr;
336 }
337
338 } // namespace ThreadSafetyTIL
339
340 // Nodes which declare variables
341
342 /// A named variable, e.g. "x".
343 ///
344 /// There are two distinct places in which a Variable can appear in the AST.
345 /// A variable declaration introduces a new variable, and can occur in 3 places:
346 /// Let-expressions: (Let (x = t) u)
347 /// Functions: (Function (x : t) u)
348 /// Self-applicable functions (SFunction (x) t)
349 ///
350 /// If a variable occurs in any other location, it is a reference to an existing
351 /// variable declaration -- e.g. 'x' in (x * y + z). To save space, we don't
352 /// allocate a separate AST node for variable references; a reference is just a
353 /// pointer to the original declaration.
354 class Variable : public SExpr {
355 public:
356 enum VariableKind {
357 /// Let-variable
358 VK_Let,
359
360 /// Function parameter
361 VK_Fun,
362
363 /// SFunction (self) parameter
364 VK_SFun
365 };
366
367 Variable(StringRef s, SExpr *D = nullptr)
SExpr(COP_Variable)368 : SExpr(COP_Variable), Name(s), Definition(D) {
369 Flags = VK_Let;
370 }
371
372 Variable(SExpr *D, const ValueDecl *Cvd = nullptr)
SExpr(COP_Variable)373 : SExpr(COP_Variable), Name(Cvd ? Cvd->getName() : "_x"),
374 Definition(D), Cvdecl(Cvd) {
375 Flags = VK_Let;
376 }
377
Variable(const Variable & Vd,SExpr * D)378 Variable(const Variable &Vd, SExpr *D) // rewrite constructor
379 : SExpr(Vd), Name(Vd.Name), Definition(D), Cvdecl(Vd.Cvdecl) {
380 Flags = Vd.kind();
381 }
382
classof(const SExpr * E)383 static bool classof(const SExpr *E) { return E->opcode() == COP_Variable; }
384
385 /// Return the kind of variable (let, function param, or self)
kind()386 VariableKind kind() const { return static_cast<VariableKind>(Flags); }
387
388 /// Return the name of the variable, if any.
name()389 StringRef name() const { return Name; }
390
391 /// Return the clang declaration for this variable, if any.
clangDecl()392 const ValueDecl *clangDecl() const { return Cvdecl; }
393
394 /// Return the definition of the variable.
395 /// For let-vars, this is the setting expression.
396 /// For function and self parameters, it is the type of the variable.
definition()397 SExpr *definition() { return Definition; }
definition()398 const SExpr *definition() const { return Definition; }
399
setName(StringRef S)400 void setName(StringRef S) { Name = S; }
setKind(VariableKind K)401 void setKind(VariableKind K) { Flags = K; }
setDefinition(SExpr * E)402 void setDefinition(SExpr *E) { Definition = E; }
setClangDecl(const ValueDecl * VD)403 void setClangDecl(const ValueDecl *VD) { Cvdecl = VD; }
404
405 template <class V>
traverse(V & Vs,typename V::R_Ctx Ctx)406 typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
407 // This routine is only called for variable references.
408 return Vs.reduceVariableRef(this);
409 }
410
411 template <class C>
compare(const Variable * E,C & Cmp)412 typename C::CType compare(const Variable* E, C& Cmp) const {
413 return Cmp.compareVariableRefs(this, E);
414 }
415
416 private:
417 friend class BasicBlock;
418 friend class Function;
419 friend class Let;
420 friend class SFunction;
421
422 // The name of the variable.
423 StringRef Name;
424
425 // The TIL type or definition.
426 SExpr *Definition;
427
428 // The clang declaration for this variable.
429 const ValueDecl *Cvdecl = nullptr;
430 };
431
432 /// Placeholder for an expression that has not yet been created.
433 /// Used to implement lazy copy and rewriting strategies.
434 class Future : public SExpr {
435 public:
436 enum FutureStatus {
437 FS_pending,
438 FS_evaluating,
439 FS_done
440 };
441
Future()442 Future() : SExpr(COP_Future) {}
443 virtual ~Future() = delete;
444
classof(const SExpr * E)445 static bool classof(const SExpr *E) { return E->opcode() == COP_Future; }
446
447 // A lazy rewriting strategy should subclass Future and override this method.
compute()448 virtual SExpr *compute() { return nullptr; }
449
450 // Return the result of this future if it exists, otherwise return null.
maybeGetResult()451 SExpr *maybeGetResult() const { return Result; }
452
453 // Return the result of this future; forcing it if necessary.
result()454 SExpr *result() {
455 switch (Status) {
456 case FS_pending:
457 return force();
458 case FS_evaluating:
459 return nullptr; // infinite loop; illegal recursion.
460 case FS_done:
461 return Result;
462 }
463 }
464
465 template <class V>
traverse(V & Vs,typename V::R_Ctx Ctx)466 typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
467 assert(Result && "Cannot traverse Future that has not been forced.");
468 return Vs.traverse(Result, Ctx);
469 }
470
471 template <class C>
compare(const Future * E,C & Cmp)472 typename C::CType compare(const Future* E, C& Cmp) const {
473 if (!Result || !E->Result)
474 return Cmp.comparePointers(this, E);
475 return Cmp.compare(Result, E->Result);
476 }
477
478 private:
479 SExpr* force();
480
481 FutureStatus Status = FS_pending;
482 SExpr *Result = nullptr;
483 };
484
485 /// Placeholder for expressions that cannot be represented in the TIL.
486 class Undefined : public SExpr {
487 public:
SExpr(COP_Undefined)488 Undefined(const Stmt *S = nullptr) : SExpr(COP_Undefined), Cstmt(S) {}
Undefined(const Undefined & U)489 Undefined(const Undefined &U) : SExpr(U), Cstmt(U.Cstmt) {}
490
classof(const SExpr * E)491 static bool classof(const SExpr *E) { return E->opcode() == COP_Undefined; }
492
493 template <class V>
traverse(V & Vs,typename V::R_Ctx Ctx)494 typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
495 return Vs.reduceUndefined(*this);
496 }
497
498 template <class C>
compare(const Undefined * E,C & Cmp)499 typename C::CType compare(const Undefined* E, C& Cmp) const {
500 return Cmp.trueResult();
501 }
502
503 private:
504 const Stmt *Cstmt;
505 };
506
507 /// Placeholder for a wildcard that matches any other expression.
508 class Wildcard : public SExpr {
509 public:
Wildcard()510 Wildcard() : SExpr(COP_Wildcard) {}
511 Wildcard(const Wildcard &) = default;
512
classof(const SExpr * E)513 static bool classof(const SExpr *E) { return E->opcode() == COP_Wildcard; }
514
traverse(V & Vs,typename V::R_Ctx Ctx)515 template <class V> typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
516 return Vs.reduceWildcard(*this);
517 }
518
519 template <class C>
compare(const Wildcard * E,C & Cmp)520 typename C::CType compare(const Wildcard* E, C& Cmp) const {
521 return Cmp.trueResult();
522 }
523 };
524
525 template <class T> class LiteralT;
526
527 // Base class for literal values.
528 class Literal : public SExpr {
529 public:
Literal(const Expr * C)530 Literal(const Expr *C)
531 : SExpr(COP_Literal), ValType(ValueType::getValueType<void>()), Cexpr(C) {}
Literal(ValueType VT)532 Literal(ValueType VT) : SExpr(COP_Literal), ValType(VT) {}
533 Literal(const Literal &) = default;
534
classof(const SExpr * E)535 static bool classof(const SExpr *E) { return E->opcode() == COP_Literal; }
536
537 // The clang expression for this literal.
clangExpr()538 const Expr *clangExpr() const { return Cexpr; }
539
valueType()540 ValueType valueType() const { return ValType; }
541
as()542 template<class T> const LiteralT<T>& as() const {
543 return *static_cast<const LiteralT<T>*>(this);
544 }
as()545 template<class T> LiteralT<T>& as() {
546 return *static_cast<LiteralT<T>*>(this);
547 }
548
549 template <class V> typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx);
550
551 template <class C>
compare(const Literal * E,C & Cmp)552 typename C::CType compare(const Literal* E, C& Cmp) const {
553 // TODO: defer actual comparison to LiteralT
554 return Cmp.trueResult();
555 }
556
557 private:
558 const ValueType ValType;
559 const Expr *Cexpr = nullptr;
560 };
561
562 // Derived class for literal values, which stores the actual value.
563 template<class T>
564 class LiteralT : public Literal {
565 public:
LiteralT(T Dat)566 LiteralT(T Dat) : Literal(ValueType::getValueType<T>()), Val(Dat) {}
LiteralT(const LiteralT<T> & L)567 LiteralT(const LiteralT<T> &L) : Literal(L), Val(L.Val) {}
568
value()569 T value() const { return Val;}
value()570 T& value() { return Val; }
571
572 private:
573 T Val;
574 };
575
576 template <class V>
traverse(V & Vs,typename V::R_Ctx Ctx)577 typename V::R_SExpr Literal::traverse(V &Vs, typename V::R_Ctx Ctx) {
578 if (Cexpr)
579 return Vs.reduceLiteral(*this);
580
581 switch (ValType.Base) {
582 case ValueType::BT_Void:
583 break;
584 case ValueType::BT_Bool:
585 return Vs.reduceLiteralT(as<bool>());
586 case ValueType::BT_Int: {
587 switch (ValType.Size) {
588 case ValueType::ST_8:
589 if (ValType.Signed)
590 return Vs.reduceLiteralT(as<int8_t>());
591 else
592 return Vs.reduceLiteralT(as<uint8_t>());
593 case ValueType::ST_16:
594 if (ValType.Signed)
595 return Vs.reduceLiteralT(as<int16_t>());
596 else
597 return Vs.reduceLiteralT(as<uint16_t>());
598 case ValueType::ST_32:
599 if (ValType.Signed)
600 return Vs.reduceLiteralT(as<int32_t>());
601 else
602 return Vs.reduceLiteralT(as<uint32_t>());
603 case ValueType::ST_64:
604 if (ValType.Signed)
605 return Vs.reduceLiteralT(as<int64_t>());
606 else
607 return Vs.reduceLiteralT(as<uint64_t>());
608 default:
609 break;
610 }
611 }
612 case ValueType::BT_Float: {
613 switch (ValType.Size) {
614 case ValueType::ST_32:
615 return Vs.reduceLiteralT(as<float>());
616 case ValueType::ST_64:
617 return Vs.reduceLiteralT(as<double>());
618 default:
619 break;
620 }
621 }
622 case ValueType::BT_String:
623 return Vs.reduceLiteralT(as<StringRef>());
624 case ValueType::BT_Pointer:
625 return Vs.reduceLiteralT(as<void*>());
626 case ValueType::BT_ValueRef:
627 break;
628 }
629 return Vs.reduceLiteral(*this);
630 }
631
632 /// A Literal pointer to an object allocated in memory.
633 /// At compile time, pointer literals are represented by symbolic names.
634 class LiteralPtr : public SExpr {
635 public:
LiteralPtr(const ValueDecl * D)636 LiteralPtr(const ValueDecl *D) : SExpr(COP_LiteralPtr), Cvdecl(D) {}
637 LiteralPtr(const LiteralPtr &) = default;
638
classof(const SExpr * E)639 static bool classof(const SExpr *E) { return E->opcode() == COP_LiteralPtr; }
640
641 // The clang declaration for the value that this pointer points to.
clangDecl()642 const ValueDecl *clangDecl() const { return Cvdecl; }
setClangDecl(const ValueDecl * VD)643 void setClangDecl(const ValueDecl *VD) { Cvdecl = VD; }
644
645 template <class V>
traverse(V & Vs,typename V::R_Ctx Ctx)646 typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
647 return Vs.reduceLiteralPtr(*this);
648 }
649
650 template <class C>
compare(const LiteralPtr * E,C & Cmp)651 typename C::CType compare(const LiteralPtr* E, C& Cmp) const {
652 if (!Cvdecl || !E->Cvdecl)
653 return Cmp.comparePointers(this, E);
654 return Cmp.comparePointers(Cvdecl, E->Cvdecl);
655 }
656
657 private:
658 const ValueDecl *Cvdecl;
659 };
660
661 /// A function -- a.k.a. lambda abstraction.
662 /// Functions with multiple arguments are created by currying,
663 /// e.g. (Function (x: Int) (Function (y: Int) (Code { return x + y })))
664 class Function : public SExpr {
665 public:
Function(Variable * Vd,SExpr * Bd)666 Function(Variable *Vd, SExpr *Bd)
667 : SExpr(COP_Function), VarDecl(Vd), Body(Bd) {
668 Vd->setKind(Variable::VK_Fun);
669 }
670
Function(const Function & F,Variable * Vd,SExpr * Bd)671 Function(const Function &F, Variable *Vd, SExpr *Bd) // rewrite constructor
672 : SExpr(F), VarDecl(Vd), Body(Bd) {
673 Vd->setKind(Variable::VK_Fun);
674 }
675
classof(const SExpr * E)676 static bool classof(const SExpr *E) { return E->opcode() == COP_Function; }
677
variableDecl()678 Variable *variableDecl() { return VarDecl; }
variableDecl()679 const Variable *variableDecl() const { return VarDecl; }
680
body()681 SExpr *body() { return Body; }
body()682 const SExpr *body() const { return Body; }
683
684 template <class V>
traverse(V & Vs,typename V::R_Ctx Ctx)685 typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
686 // This is a variable declaration, so traverse the definition.
687 auto E0 = Vs.traverse(VarDecl->Definition, Vs.typeCtx(Ctx));
688 // Tell the rewriter to enter the scope of the function.
689 Variable *Nvd = Vs.enterScope(*VarDecl, E0);
690 auto E1 = Vs.traverse(Body, Vs.declCtx(Ctx));
691 Vs.exitScope(*VarDecl);
692 return Vs.reduceFunction(*this, Nvd, E1);
693 }
694
695 template <class C>
compare(const Function * E,C & Cmp)696 typename C::CType compare(const Function* E, C& Cmp) const {
697 typename C::CType Ct =
698 Cmp.compare(VarDecl->definition(), E->VarDecl->definition());
699 if (Cmp.notTrue(Ct))
700 return Ct;
701 Cmp.enterScope(variableDecl(), E->variableDecl());
702 Ct = Cmp.compare(body(), E->body());
703 Cmp.leaveScope();
704 return Ct;
705 }
706
707 private:
708 Variable *VarDecl;
709 SExpr* Body;
710 };
711
712 /// A self-applicable function.
713 /// A self-applicable function can be applied to itself. It's useful for
714 /// implementing objects and late binding.
715 class SFunction : public SExpr {
716 public:
SFunction(Variable * Vd,SExpr * B)717 SFunction(Variable *Vd, SExpr *B)
718 : SExpr(COP_SFunction), VarDecl(Vd), Body(B) {
719 assert(Vd->Definition == nullptr);
720 Vd->setKind(Variable::VK_SFun);
721 Vd->Definition = this;
722 }
723
SFunction(const SFunction & F,Variable * Vd,SExpr * B)724 SFunction(const SFunction &F, Variable *Vd, SExpr *B) // rewrite constructor
725 : SExpr(F), VarDecl(Vd), Body(B) {
726 assert(Vd->Definition == nullptr);
727 Vd->setKind(Variable::VK_SFun);
728 Vd->Definition = this;
729 }
730
classof(const SExpr * E)731 static bool classof(const SExpr *E) { return E->opcode() == COP_SFunction; }
732
variableDecl()733 Variable *variableDecl() { return VarDecl; }
variableDecl()734 const Variable *variableDecl() const { return VarDecl; }
735
body()736 SExpr *body() { return Body; }
body()737 const SExpr *body() const { return Body; }
738
739 template <class V>
traverse(V & Vs,typename V::R_Ctx Ctx)740 typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
741 // A self-variable points to the SFunction itself.
742 // A rewrite must introduce the variable with a null definition, and update
743 // it after 'this' has been rewritten.
744 Variable *Nvd = Vs.enterScope(*VarDecl, nullptr);
745 auto E1 = Vs.traverse(Body, Vs.declCtx(Ctx));
746 Vs.exitScope(*VarDecl);
747 // A rewrite operation will call SFun constructor to set Vvd->Definition.
748 return Vs.reduceSFunction(*this, Nvd, E1);
749 }
750
751 template <class C>
compare(const SFunction * E,C & Cmp)752 typename C::CType compare(const SFunction* E, C& Cmp) const {
753 Cmp.enterScope(variableDecl(), E->variableDecl());
754 typename C::CType Ct = Cmp.compare(body(), E->body());
755 Cmp.leaveScope();
756 return Ct;
757 }
758
759 private:
760 Variable *VarDecl;
761 SExpr* Body;
762 };
763
764 /// A block of code -- e.g. the body of a function.
765 class Code : public SExpr {
766 public:
Code(SExpr * T,SExpr * B)767 Code(SExpr *T, SExpr *B) : SExpr(COP_Code), ReturnType(T), Body(B) {}
Code(const Code & C,SExpr * T,SExpr * B)768 Code(const Code &C, SExpr *T, SExpr *B) // rewrite constructor
769 : SExpr(C), ReturnType(T), Body(B) {}
770
classof(const SExpr * E)771 static bool classof(const SExpr *E) { return E->opcode() == COP_Code; }
772
returnType()773 SExpr *returnType() { return ReturnType; }
returnType()774 const SExpr *returnType() const { return ReturnType; }
775
body()776 SExpr *body() { return Body; }
body()777 const SExpr *body() const { return Body; }
778
779 template <class V>
traverse(V & Vs,typename V::R_Ctx Ctx)780 typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
781 auto Nt = Vs.traverse(ReturnType, Vs.typeCtx(Ctx));
782 auto Nb = Vs.traverse(Body, Vs.lazyCtx(Ctx));
783 return Vs.reduceCode(*this, Nt, Nb);
784 }
785
786 template <class C>
compare(const Code * E,C & Cmp)787 typename C::CType compare(const Code* E, C& Cmp) const {
788 typename C::CType Ct = Cmp.compare(returnType(), E->returnType());
789 if (Cmp.notTrue(Ct))
790 return Ct;
791 return Cmp.compare(body(), E->body());
792 }
793
794 private:
795 SExpr* ReturnType;
796 SExpr* Body;
797 };
798
799 /// A typed, writable location in memory
800 class Field : public SExpr {
801 public:
Field(SExpr * R,SExpr * B)802 Field(SExpr *R, SExpr *B) : SExpr(COP_Field), Range(R), Body(B) {}
Field(const Field & C,SExpr * R,SExpr * B)803 Field(const Field &C, SExpr *R, SExpr *B) // rewrite constructor
804 : SExpr(C), Range(R), Body(B) {}
805
classof(const SExpr * E)806 static bool classof(const SExpr *E) { return E->opcode() == COP_Field; }
807
range()808 SExpr *range() { return Range; }
range()809 const SExpr *range() const { return Range; }
810
body()811 SExpr *body() { return Body; }
body()812 const SExpr *body() const { return Body; }
813
814 template <class V>
traverse(V & Vs,typename V::R_Ctx Ctx)815 typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
816 auto Nr = Vs.traverse(Range, Vs.typeCtx(Ctx));
817 auto Nb = Vs.traverse(Body, Vs.lazyCtx(Ctx));
818 return Vs.reduceField(*this, Nr, Nb);
819 }
820
821 template <class C>
compare(const Field * E,C & Cmp)822 typename C::CType compare(const Field* E, C& Cmp) const {
823 typename C::CType Ct = Cmp.compare(range(), E->range());
824 if (Cmp.notTrue(Ct))
825 return Ct;
826 return Cmp.compare(body(), E->body());
827 }
828
829 private:
830 SExpr* Range;
831 SExpr* Body;
832 };
833
834 /// Apply an argument to a function.
835 /// Note that this does not actually call the function. Functions are curried,
836 /// so this returns a closure in which the first parameter has been applied.
837 /// Once all parameters have been applied, Call can be used to invoke the
838 /// function.
839 class Apply : public SExpr {
840 public:
Apply(SExpr * F,SExpr * A)841 Apply(SExpr *F, SExpr *A) : SExpr(COP_Apply), Fun(F), Arg(A) {}
Apply(const Apply & A,SExpr * F,SExpr * Ar)842 Apply(const Apply &A, SExpr *F, SExpr *Ar) // rewrite constructor
843 : SExpr(A), Fun(F), Arg(Ar) {}
844
classof(const SExpr * E)845 static bool classof(const SExpr *E) { return E->opcode() == COP_Apply; }
846
fun()847 SExpr *fun() { return Fun; }
fun()848 const SExpr *fun() const { return Fun; }
849
arg()850 SExpr *arg() { return Arg; }
arg()851 const SExpr *arg() const { return Arg; }
852
853 template <class V>
traverse(V & Vs,typename V::R_Ctx Ctx)854 typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
855 auto Nf = Vs.traverse(Fun, Vs.subExprCtx(Ctx));
856 auto Na = Vs.traverse(Arg, Vs.subExprCtx(Ctx));
857 return Vs.reduceApply(*this, Nf, Na);
858 }
859
860 template <class C>
compare(const Apply * E,C & Cmp)861 typename C::CType compare(const Apply* E, C& Cmp) const {
862 typename C::CType Ct = Cmp.compare(fun(), E->fun());
863 if (Cmp.notTrue(Ct))
864 return Ct;
865 return Cmp.compare(arg(), E->arg());
866 }
867
868 private:
869 SExpr* Fun;
870 SExpr* Arg;
871 };
872
873 /// Apply a self-argument to a self-applicable function.
874 class SApply : public SExpr {
875 public:
SExpr(COP_SApply)876 SApply(SExpr *Sf, SExpr *A = nullptr) : SExpr(COP_SApply), Sfun(Sf), Arg(A) {}
877 SApply(SApply &A, SExpr *Sf, SExpr *Ar = nullptr) // rewrite constructor
SExpr(A)878 : SExpr(A), Sfun(Sf), Arg(Ar) {}
879
classof(const SExpr * E)880 static bool classof(const SExpr *E) { return E->opcode() == COP_SApply; }
881
sfun()882 SExpr *sfun() { return Sfun; }
sfun()883 const SExpr *sfun() const { return Sfun; }
884
arg()885 SExpr *arg() { return Arg ? Arg : Sfun; }
arg()886 const SExpr *arg() const { return Arg ? Arg : Sfun; }
887
isDelegation()888 bool isDelegation() const { return Arg != nullptr; }
889
890 template <class V>
traverse(V & Vs,typename V::R_Ctx Ctx)891 typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
892 auto Nf = Vs.traverse(Sfun, Vs.subExprCtx(Ctx));
893 typename V::R_SExpr Na = Arg ? Vs.traverse(Arg, Vs.subExprCtx(Ctx))
894 : nullptr;
895 return Vs.reduceSApply(*this, Nf, Na);
896 }
897
898 template <class C>
compare(const SApply * E,C & Cmp)899 typename C::CType compare(const SApply* E, C& Cmp) const {
900 typename C::CType Ct = Cmp.compare(sfun(), E->sfun());
901 if (Cmp.notTrue(Ct) || (!arg() && !E->arg()))
902 return Ct;
903 return Cmp.compare(arg(), E->arg());
904 }
905
906 private:
907 SExpr* Sfun;
908 SExpr* Arg;
909 };
910
911 /// Project a named slot from a C++ struct or class.
912 class Project : public SExpr {
913 public:
Project(SExpr * R,const ValueDecl * Cvd)914 Project(SExpr *R, const ValueDecl *Cvd)
915 : SExpr(COP_Project), Rec(R), Cvdecl(Cvd) {
916 assert(Cvd && "ValueDecl must not be null");
917 }
918
classof(const SExpr * E)919 static bool classof(const SExpr *E) { return E->opcode() == COP_Project; }
920
record()921 SExpr *record() { return Rec; }
record()922 const SExpr *record() const { return Rec; }
923
clangDecl()924 const ValueDecl *clangDecl() const { return Cvdecl; }
925
isArrow()926 bool isArrow() const { return (Flags & 0x01) != 0; }
927
setArrow(bool b)928 void setArrow(bool b) {
929 if (b) Flags |= 0x01;
930 else Flags &= 0xFFFE;
931 }
932
slotName()933 StringRef slotName() const {
934 if (Cvdecl->getDeclName().isIdentifier())
935 return Cvdecl->getName();
936 if (!SlotName) {
937 SlotName = "";
938 llvm::raw_string_ostream OS(*SlotName);
939 Cvdecl->printName(OS);
940 }
941 return *SlotName;
942 }
943
944 template <class V>
traverse(V & Vs,typename V::R_Ctx Ctx)945 typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
946 auto Nr = Vs.traverse(Rec, Vs.subExprCtx(Ctx));
947 return Vs.reduceProject(*this, Nr);
948 }
949
950 template <class C>
compare(const Project * E,C & Cmp)951 typename C::CType compare(const Project* E, C& Cmp) const {
952 typename C::CType Ct = Cmp.compare(record(), E->record());
953 if (Cmp.notTrue(Ct))
954 return Ct;
955 return Cmp.comparePointers(Cvdecl, E->Cvdecl);
956 }
957
958 private:
959 SExpr* Rec;
960 mutable std::optional<std::string> SlotName;
961 const ValueDecl *Cvdecl;
962 };
963
964 /// Call a function (after all arguments have been applied).
965 class Call : public SExpr {
966 public:
967 Call(SExpr *T, const CallExpr *Ce = nullptr)
SExpr(COP_Call)968 : SExpr(COP_Call), Target(T), Cexpr(Ce) {}
Call(const Call & C,SExpr * T)969 Call(const Call &C, SExpr *T) : SExpr(C), Target(T), Cexpr(C.Cexpr) {}
970
classof(const SExpr * E)971 static bool classof(const SExpr *E) { return E->opcode() == COP_Call; }
972
target()973 SExpr *target() { return Target; }
target()974 const SExpr *target() const { return Target; }
975
clangCallExpr()976 const CallExpr *clangCallExpr() const { return Cexpr; }
977
978 template <class V>
traverse(V & Vs,typename V::R_Ctx Ctx)979 typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
980 auto Nt = Vs.traverse(Target, Vs.subExprCtx(Ctx));
981 return Vs.reduceCall(*this, Nt);
982 }
983
984 template <class C>
compare(const Call * E,C & Cmp)985 typename C::CType compare(const Call* E, C& Cmp) const {
986 return Cmp.compare(target(), E->target());
987 }
988
989 private:
990 SExpr* Target;
991 const CallExpr *Cexpr;
992 };
993
994 /// Allocate memory for a new value on the heap or stack.
995 class Alloc : public SExpr {
996 public:
997 enum AllocKind {
998 AK_Stack,
999 AK_Heap
1000 };
1001
Alloc(SExpr * D,AllocKind K)1002 Alloc(SExpr *D, AllocKind K) : SExpr(COP_Alloc), Dtype(D) { Flags = K; }
Alloc(const Alloc & A,SExpr * Dt)1003 Alloc(const Alloc &A, SExpr *Dt) : SExpr(A), Dtype(Dt) { Flags = A.kind(); }
1004
classof(const SExpr * E)1005 static bool classof(const SExpr *E) { return E->opcode() == COP_Call; }
1006
kind()1007 AllocKind kind() const { return static_cast<AllocKind>(Flags); }
1008
dataType()1009 SExpr *dataType() { return Dtype; }
dataType()1010 const SExpr *dataType() const { return Dtype; }
1011
1012 template <class V>
traverse(V & Vs,typename V::R_Ctx Ctx)1013 typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
1014 auto Nd = Vs.traverse(Dtype, Vs.declCtx(Ctx));
1015 return Vs.reduceAlloc(*this, Nd);
1016 }
1017
1018 template <class C>
compare(const Alloc * E,C & Cmp)1019 typename C::CType compare(const Alloc* E, C& Cmp) const {
1020 typename C::CType Ct = Cmp.compareIntegers(kind(), E->kind());
1021 if (Cmp.notTrue(Ct))
1022 return Ct;
1023 return Cmp.compare(dataType(), E->dataType());
1024 }
1025
1026 private:
1027 SExpr* Dtype;
1028 };
1029
1030 /// Load a value from memory.
1031 class Load : public SExpr {
1032 public:
Load(SExpr * P)1033 Load(SExpr *P) : SExpr(COP_Load), Ptr(P) {}
Load(const Load & L,SExpr * P)1034 Load(const Load &L, SExpr *P) : SExpr(L), Ptr(P) {}
1035
classof(const SExpr * E)1036 static bool classof(const SExpr *E) { return E->opcode() == COP_Load; }
1037
pointer()1038 SExpr *pointer() { return Ptr; }
pointer()1039 const SExpr *pointer() const { return Ptr; }
1040
1041 template <class V>
traverse(V & Vs,typename V::R_Ctx Ctx)1042 typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
1043 auto Np = Vs.traverse(Ptr, Vs.subExprCtx(Ctx));
1044 return Vs.reduceLoad(*this, Np);
1045 }
1046
1047 template <class C>
compare(const Load * E,C & Cmp)1048 typename C::CType compare(const Load* E, C& Cmp) const {
1049 return Cmp.compare(pointer(), E->pointer());
1050 }
1051
1052 private:
1053 SExpr* Ptr;
1054 };
1055
1056 /// Store a value to memory.
1057 /// The destination is a pointer to a field, the source is the value to store.
1058 class Store : public SExpr {
1059 public:
Store(SExpr * P,SExpr * V)1060 Store(SExpr *P, SExpr *V) : SExpr(COP_Store), Dest(P), Source(V) {}
Store(const Store & S,SExpr * P,SExpr * V)1061 Store(const Store &S, SExpr *P, SExpr *V) : SExpr(S), Dest(P), Source(V) {}
1062
classof(const SExpr * E)1063 static bool classof(const SExpr *E) { return E->opcode() == COP_Store; }
1064
destination()1065 SExpr *destination() { return Dest; } // Address to store to
destination()1066 const SExpr *destination() const { return Dest; }
1067
source()1068 SExpr *source() { return Source; } // Value to store
source()1069 const SExpr *source() const { return Source; }
1070
1071 template <class V>
traverse(V & Vs,typename V::R_Ctx Ctx)1072 typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
1073 auto Np = Vs.traverse(Dest, Vs.subExprCtx(Ctx));
1074 auto Nv = Vs.traverse(Source, Vs.subExprCtx(Ctx));
1075 return Vs.reduceStore(*this, Np, Nv);
1076 }
1077
1078 template <class C>
compare(const Store * E,C & Cmp)1079 typename C::CType compare(const Store* E, C& Cmp) const {
1080 typename C::CType Ct = Cmp.compare(destination(), E->destination());
1081 if (Cmp.notTrue(Ct))
1082 return Ct;
1083 return Cmp.compare(source(), E->source());
1084 }
1085
1086 private:
1087 SExpr* Dest;
1088 SExpr* Source;
1089 };
1090
1091 /// If p is a reference to an array, then p[i] is a reference to the i'th
1092 /// element of the array.
1093 class ArrayIndex : public SExpr {
1094 public:
ArrayIndex(SExpr * A,SExpr * N)1095 ArrayIndex(SExpr *A, SExpr *N) : SExpr(COP_ArrayIndex), Array(A), Index(N) {}
ArrayIndex(const ArrayIndex & E,SExpr * A,SExpr * N)1096 ArrayIndex(const ArrayIndex &E, SExpr *A, SExpr *N)
1097 : SExpr(E), Array(A), Index(N) {}
1098
classof(const SExpr * E)1099 static bool classof(const SExpr *E) { return E->opcode() == COP_ArrayIndex; }
1100
array()1101 SExpr *array() { return Array; }
array()1102 const SExpr *array() const { return Array; }
1103
index()1104 SExpr *index() { return Index; }
index()1105 const SExpr *index() const { return Index; }
1106
1107 template <class V>
traverse(V & Vs,typename V::R_Ctx Ctx)1108 typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
1109 auto Na = Vs.traverse(Array, Vs.subExprCtx(Ctx));
1110 auto Ni = Vs.traverse(Index, Vs.subExprCtx(Ctx));
1111 return Vs.reduceArrayIndex(*this, Na, Ni);
1112 }
1113
1114 template <class C>
compare(const ArrayIndex * E,C & Cmp)1115 typename C::CType compare(const ArrayIndex* E, C& Cmp) const {
1116 typename C::CType Ct = Cmp.compare(array(), E->array());
1117 if (Cmp.notTrue(Ct))
1118 return Ct;
1119 return Cmp.compare(index(), E->index());
1120 }
1121
1122 private:
1123 SExpr* Array;
1124 SExpr* Index;
1125 };
1126
1127 /// Pointer arithmetic, restricted to arrays only.
1128 /// If p is a reference to an array, then p + n, where n is an integer, is
1129 /// a reference to a subarray.
1130 class ArrayAdd : public SExpr {
1131 public:
ArrayAdd(SExpr * A,SExpr * N)1132 ArrayAdd(SExpr *A, SExpr *N) : SExpr(COP_ArrayAdd), Array(A), Index(N) {}
ArrayAdd(const ArrayAdd & E,SExpr * A,SExpr * N)1133 ArrayAdd(const ArrayAdd &E, SExpr *A, SExpr *N)
1134 : SExpr(E), Array(A), Index(N) {}
1135
classof(const SExpr * E)1136 static bool classof(const SExpr *E) { return E->opcode() == COP_ArrayAdd; }
1137
array()1138 SExpr *array() { return Array; }
array()1139 const SExpr *array() const { return Array; }
1140
index()1141 SExpr *index() { return Index; }
index()1142 const SExpr *index() const { return Index; }
1143
1144 template <class V>
traverse(V & Vs,typename V::R_Ctx Ctx)1145 typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
1146 auto Na = Vs.traverse(Array, Vs.subExprCtx(Ctx));
1147 auto Ni = Vs.traverse(Index, Vs.subExprCtx(Ctx));
1148 return Vs.reduceArrayAdd(*this, Na, Ni);
1149 }
1150
1151 template <class C>
compare(const ArrayAdd * E,C & Cmp)1152 typename C::CType compare(const ArrayAdd* E, C& Cmp) const {
1153 typename C::CType Ct = Cmp.compare(array(), E->array());
1154 if (Cmp.notTrue(Ct))
1155 return Ct;
1156 return Cmp.compare(index(), E->index());
1157 }
1158
1159 private:
1160 SExpr* Array;
1161 SExpr* Index;
1162 };
1163
1164 /// Simple arithmetic unary operations, e.g. negate and not.
1165 /// These operations have no side-effects.
1166 class UnaryOp : public SExpr {
1167 public:
UnaryOp(TIL_UnaryOpcode Op,SExpr * E)1168 UnaryOp(TIL_UnaryOpcode Op, SExpr *E) : SExpr(COP_UnaryOp), Expr0(E) {
1169 Flags = Op;
1170 }
1171
UnaryOp(const UnaryOp & U,SExpr * E)1172 UnaryOp(const UnaryOp &U, SExpr *E) : SExpr(U), Expr0(E) { Flags = U.Flags; }
1173
classof(const SExpr * E)1174 static bool classof(const SExpr *E) { return E->opcode() == COP_UnaryOp; }
1175
unaryOpcode()1176 TIL_UnaryOpcode unaryOpcode() const {
1177 return static_cast<TIL_UnaryOpcode>(Flags);
1178 }
1179
expr()1180 SExpr *expr() { return Expr0; }
expr()1181 const SExpr *expr() const { return Expr0; }
1182
1183 template <class V>
traverse(V & Vs,typename V::R_Ctx Ctx)1184 typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
1185 auto Ne = Vs.traverse(Expr0, Vs.subExprCtx(Ctx));
1186 return Vs.reduceUnaryOp(*this, Ne);
1187 }
1188
1189 template <class C>
compare(const UnaryOp * E,C & Cmp)1190 typename C::CType compare(const UnaryOp* E, C& Cmp) const {
1191 typename C::CType Ct =
1192 Cmp.compareIntegers(unaryOpcode(), E->unaryOpcode());
1193 if (Cmp.notTrue(Ct))
1194 return Ct;
1195 return Cmp.compare(expr(), E->expr());
1196 }
1197
1198 private:
1199 SExpr* Expr0;
1200 };
1201
1202 /// Simple arithmetic binary operations, e.g. +, -, etc.
1203 /// These operations have no side effects.
1204 class BinaryOp : public SExpr {
1205 public:
BinaryOp(TIL_BinaryOpcode Op,SExpr * E0,SExpr * E1)1206 BinaryOp(TIL_BinaryOpcode Op, SExpr *E0, SExpr *E1)
1207 : SExpr(COP_BinaryOp), Expr0(E0), Expr1(E1) {
1208 Flags = Op;
1209 }
1210
BinaryOp(const BinaryOp & B,SExpr * E0,SExpr * E1)1211 BinaryOp(const BinaryOp &B, SExpr *E0, SExpr *E1)
1212 : SExpr(B), Expr0(E0), Expr1(E1) {
1213 Flags = B.Flags;
1214 }
1215
classof(const SExpr * E)1216 static bool classof(const SExpr *E) { return E->opcode() == COP_BinaryOp; }
1217
binaryOpcode()1218 TIL_BinaryOpcode binaryOpcode() const {
1219 return static_cast<TIL_BinaryOpcode>(Flags);
1220 }
1221
expr0()1222 SExpr *expr0() { return Expr0; }
expr0()1223 const SExpr *expr0() const { return Expr0; }
1224
expr1()1225 SExpr *expr1() { return Expr1; }
expr1()1226 const SExpr *expr1() const { return Expr1; }
1227
1228 template <class V>
traverse(V & Vs,typename V::R_Ctx Ctx)1229 typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
1230 auto Ne0 = Vs.traverse(Expr0, Vs.subExprCtx(Ctx));
1231 auto Ne1 = Vs.traverse(Expr1, Vs.subExprCtx(Ctx));
1232 return Vs.reduceBinaryOp(*this, Ne0, Ne1);
1233 }
1234
1235 template <class C>
compare(const BinaryOp * E,C & Cmp)1236 typename C::CType compare(const BinaryOp* E, C& Cmp) const {
1237 typename C::CType Ct =
1238 Cmp.compareIntegers(binaryOpcode(), E->binaryOpcode());
1239 if (Cmp.notTrue(Ct))
1240 return Ct;
1241 Ct = Cmp.compare(expr0(), E->expr0());
1242 if (Cmp.notTrue(Ct))
1243 return Ct;
1244 return Cmp.compare(expr1(), E->expr1());
1245 }
1246
1247 private:
1248 SExpr* Expr0;
1249 SExpr* Expr1;
1250 };
1251
1252 /// Cast expressions.
1253 /// Cast expressions are essentially unary operations, but we treat them
1254 /// as a distinct AST node because they only change the type of the result.
1255 class Cast : public SExpr {
1256 public:
Cast(TIL_CastOpcode Op,SExpr * E)1257 Cast(TIL_CastOpcode Op, SExpr *E) : SExpr(COP_Cast), Expr0(E) { Flags = Op; }
Cast(const Cast & C,SExpr * E)1258 Cast(const Cast &C, SExpr *E) : SExpr(C), Expr0(E) { Flags = C.Flags; }
1259
classof(const SExpr * E)1260 static bool classof(const SExpr *E) { return E->opcode() == COP_Cast; }
1261
castOpcode()1262 TIL_CastOpcode castOpcode() const {
1263 return static_cast<TIL_CastOpcode>(Flags);
1264 }
1265
expr()1266 SExpr *expr() { return Expr0; }
expr()1267 const SExpr *expr() const { return Expr0; }
1268
1269 template <class V>
traverse(V & Vs,typename V::R_Ctx Ctx)1270 typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
1271 auto Ne = Vs.traverse(Expr0, Vs.subExprCtx(Ctx));
1272 return Vs.reduceCast(*this, Ne);
1273 }
1274
1275 template <class C>
compare(const Cast * E,C & Cmp)1276 typename C::CType compare(const Cast* E, C& Cmp) const {
1277 typename C::CType Ct =
1278 Cmp.compareIntegers(castOpcode(), E->castOpcode());
1279 if (Cmp.notTrue(Ct))
1280 return Ct;
1281 return Cmp.compare(expr(), E->expr());
1282 }
1283
1284 private:
1285 SExpr* Expr0;
1286 };
1287
1288 class SCFG;
1289
1290 /// Phi Node, for code in SSA form.
1291 /// Each Phi node has an array of possible values that it can take,
1292 /// depending on where control flow comes from.
1293 class Phi : public SExpr {
1294 public:
1295 using ValArray = SimpleArray<SExpr *>;
1296
1297 // In minimal SSA form, all Phi nodes are MultiVal.
1298 // During conversion to SSA, incomplete Phi nodes may be introduced, which
1299 // are later determined to be SingleVal, and are thus redundant.
1300 enum Status {
1301 PH_MultiVal = 0, // Phi node has multiple distinct values. (Normal)
1302 PH_SingleVal, // Phi node has one distinct value, and can be eliminated
1303 PH_Incomplete // Phi node is incomplete
1304 };
1305
Phi()1306 Phi() : SExpr(COP_Phi) {}
Phi(MemRegionRef A,unsigned Nvals)1307 Phi(MemRegionRef A, unsigned Nvals) : SExpr(COP_Phi), Values(A, Nvals) {}
Phi(const Phi & P,ValArray && Vs)1308 Phi(const Phi &P, ValArray &&Vs) : SExpr(P), Values(std::move(Vs)) {}
1309
classof(const SExpr * E)1310 static bool classof(const SExpr *E) { return E->opcode() == COP_Phi; }
1311
values()1312 const ValArray &values() const { return Values; }
values()1313 ValArray &values() { return Values; }
1314
status()1315 Status status() const { return static_cast<Status>(Flags); }
setStatus(Status s)1316 void setStatus(Status s) { Flags = s; }
1317
1318 /// Return the clang declaration of the variable for this Phi node, if any.
clangDecl()1319 const ValueDecl *clangDecl() const { return Cvdecl; }
1320
1321 /// Set the clang variable associated with this Phi node.
setClangDecl(const ValueDecl * Cvd)1322 void setClangDecl(const ValueDecl *Cvd) { Cvdecl = Cvd; }
1323
1324 template <class V>
traverse(V & Vs,typename V::R_Ctx Ctx)1325 typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
1326 typename V::template Container<typename V::R_SExpr>
1327 Nvs(Vs, Values.size());
1328
1329 for (const auto *Val : Values)
1330 Nvs.push_back( Vs.traverse(Val, Vs.subExprCtx(Ctx)) );
1331 return Vs.reducePhi(*this, Nvs);
1332 }
1333
1334 template <class C>
compare(const Phi * E,C & Cmp)1335 typename C::CType compare(const Phi *E, C &Cmp) const {
1336 // TODO: implement CFG comparisons
1337 return Cmp.comparePointers(this, E);
1338 }
1339
1340 private:
1341 ValArray Values;
1342 const ValueDecl* Cvdecl = nullptr;
1343 };
1344
1345 /// Base class for basic block terminators: Branch, Goto, and Return.
1346 class Terminator : public SExpr {
1347 protected:
Terminator(TIL_Opcode Op)1348 Terminator(TIL_Opcode Op) : SExpr(Op) {}
Terminator(const SExpr & E)1349 Terminator(const SExpr &E) : SExpr(E) {}
1350
1351 public:
classof(const SExpr * E)1352 static bool classof(const SExpr *E) {
1353 return E->opcode() >= COP_Goto && E->opcode() <= COP_Return;
1354 }
1355
1356 /// Return the list of basic blocks that this terminator can branch to.
1357 ArrayRef<BasicBlock *> successors();
1358
successors()1359 ArrayRef<BasicBlock *> successors() const {
1360 return const_cast<Terminator*>(this)->successors();
1361 }
1362 };
1363
1364 /// Jump to another basic block.
1365 /// A goto instruction is essentially a tail-recursive call into another
1366 /// block. In addition to the block pointer, it specifies an index into the
1367 /// phi nodes of that block. The index can be used to retrieve the "arguments"
1368 /// of the call.
1369 class Goto : public Terminator {
1370 public:
Goto(BasicBlock * B,unsigned I)1371 Goto(BasicBlock *B, unsigned I)
1372 : Terminator(COP_Goto), TargetBlock(B), Index(I) {}
Goto(const Goto & G,BasicBlock * B,unsigned I)1373 Goto(const Goto &G, BasicBlock *B, unsigned I)
1374 : Terminator(COP_Goto), TargetBlock(B), Index(I) {}
1375
classof(const SExpr * E)1376 static bool classof(const SExpr *E) { return E->opcode() == COP_Goto; }
1377
targetBlock()1378 const BasicBlock *targetBlock() const { return TargetBlock; }
targetBlock()1379 BasicBlock *targetBlock() { return TargetBlock; }
1380
1381 /// Returns the index into the
index()1382 unsigned index() const { return Index; }
1383
1384 /// Return the list of basic blocks that this terminator can branch to.
successors()1385 ArrayRef<BasicBlock *> successors() { return TargetBlock; }
1386
1387 template <class V>
traverse(V & Vs,typename V::R_Ctx Ctx)1388 typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
1389 BasicBlock *Ntb = Vs.reduceBasicBlockRef(TargetBlock);
1390 return Vs.reduceGoto(*this, Ntb);
1391 }
1392
1393 template <class C>
compare(const Goto * E,C & Cmp)1394 typename C::CType compare(const Goto *E, C &Cmp) const {
1395 // TODO: implement CFG comparisons
1396 return Cmp.comparePointers(this, E);
1397 }
1398
1399 private:
1400 BasicBlock *TargetBlock;
1401 unsigned Index;
1402 };
1403
1404 /// A conditional branch to two other blocks.
1405 /// Note that unlike Goto, Branch does not have an index. The target blocks
1406 /// must be child-blocks, and cannot have Phi nodes.
1407 class Branch : public Terminator {
1408 public:
Branch(SExpr * C,BasicBlock * T,BasicBlock * E)1409 Branch(SExpr *C, BasicBlock *T, BasicBlock *E)
1410 : Terminator(COP_Branch), Condition(C) {
1411 Branches[0] = T;
1412 Branches[1] = E;
1413 }
1414
Branch(const Branch & Br,SExpr * C,BasicBlock * T,BasicBlock * E)1415 Branch(const Branch &Br, SExpr *C, BasicBlock *T, BasicBlock *E)
1416 : Terminator(Br), Condition(C) {
1417 Branches[0] = T;
1418 Branches[1] = E;
1419 }
1420
classof(const SExpr * E)1421 static bool classof(const SExpr *E) { return E->opcode() == COP_Branch; }
1422
condition()1423 const SExpr *condition() const { return Condition; }
condition()1424 SExpr *condition() { return Condition; }
1425
thenBlock()1426 const BasicBlock *thenBlock() const { return Branches[0]; }
thenBlock()1427 BasicBlock *thenBlock() { return Branches[0]; }
1428
elseBlock()1429 const BasicBlock *elseBlock() const { return Branches[1]; }
elseBlock()1430 BasicBlock *elseBlock() { return Branches[1]; }
1431
1432 /// Return the list of basic blocks that this terminator can branch to.
successors()1433 ArrayRef<BasicBlock *> successors() { return llvm::ArrayRef(Branches); }
1434
1435 template <class V>
traverse(V & Vs,typename V::R_Ctx Ctx)1436 typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
1437 auto Nc = Vs.traverse(Condition, Vs.subExprCtx(Ctx));
1438 BasicBlock *Ntb = Vs.reduceBasicBlockRef(Branches[0]);
1439 BasicBlock *Nte = Vs.reduceBasicBlockRef(Branches[1]);
1440 return Vs.reduceBranch(*this, Nc, Ntb, Nte);
1441 }
1442
1443 template <class C>
compare(const Branch * E,C & Cmp)1444 typename C::CType compare(const Branch *E, C &Cmp) const {
1445 // TODO: implement CFG comparisons
1446 return Cmp.comparePointers(this, E);
1447 }
1448
1449 private:
1450 SExpr *Condition;
1451 BasicBlock *Branches[2];
1452 };
1453
1454 /// Return from the enclosing function, passing the return value to the caller.
1455 /// Only the exit block should end with a return statement.
1456 class Return : public Terminator {
1457 public:
Return(SExpr * Rval)1458 Return(SExpr* Rval) : Terminator(COP_Return), Retval(Rval) {}
Return(const Return & R,SExpr * Rval)1459 Return(const Return &R, SExpr* Rval) : Terminator(R), Retval(Rval) {}
1460
classof(const SExpr * E)1461 static bool classof(const SExpr *E) { return E->opcode() == COP_Return; }
1462
1463 /// Return an empty list.
successors()1464 ArrayRef<BasicBlock *> successors() { return std::nullopt; }
1465
returnValue()1466 SExpr *returnValue() { return Retval; }
returnValue()1467 const SExpr *returnValue() const { return Retval; }
1468
1469 template <class V>
traverse(V & Vs,typename V::R_Ctx Ctx)1470 typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
1471 auto Ne = Vs.traverse(Retval, Vs.subExprCtx(Ctx));
1472 return Vs.reduceReturn(*this, Ne);
1473 }
1474
1475 template <class C>
compare(const Return * E,C & Cmp)1476 typename C::CType compare(const Return *E, C &Cmp) const {
1477 return Cmp.compare(Retval, E->Retval);
1478 }
1479
1480 private:
1481 SExpr* Retval;
1482 };
1483
successors()1484 inline ArrayRef<BasicBlock*> Terminator::successors() {
1485 switch (opcode()) {
1486 case COP_Goto: return cast<Goto>(this)->successors();
1487 case COP_Branch: return cast<Branch>(this)->successors();
1488 case COP_Return: return cast<Return>(this)->successors();
1489 default:
1490 return std::nullopt;
1491 }
1492 }
1493
1494 /// A basic block is part of an SCFG. It can be treated as a function in
1495 /// continuation passing style. A block consists of a sequence of phi nodes,
1496 /// which are "arguments" to the function, followed by a sequence of
1497 /// instructions. It ends with a Terminator, which is a Branch or Goto to
1498 /// another basic block in the same SCFG.
1499 class BasicBlock : public SExpr {
1500 public:
1501 using InstrArray = SimpleArray<SExpr *>;
1502 using BlockArray = SimpleArray<BasicBlock *>;
1503
1504 // TopologyNodes are used to overlay tree structures on top of the CFG,
1505 // such as dominator and postdominator trees. Each block is assigned an
1506 // ID in the tree according to a depth-first search. Tree traversals are
1507 // always up, towards the parents.
1508 struct TopologyNode {
1509 int NodeID = 0;
1510
1511 // Includes this node, so must be > 1.
1512 int SizeOfSubTree = 0;
1513
1514 // Pointer to parent.
1515 BasicBlock *Parent = nullptr;
1516
1517 TopologyNode() = default;
1518
isParentOfTopologyNode1519 bool isParentOf(const TopologyNode& OtherNode) {
1520 return OtherNode.NodeID > NodeID &&
1521 OtherNode.NodeID < NodeID + SizeOfSubTree;
1522 }
1523
isParentOfOrEqualTopologyNode1524 bool isParentOfOrEqual(const TopologyNode& OtherNode) {
1525 return OtherNode.NodeID >= NodeID &&
1526 OtherNode.NodeID < NodeID + SizeOfSubTree;
1527 }
1528 };
1529
BasicBlock(MemRegionRef A)1530 explicit BasicBlock(MemRegionRef A)
1531 : SExpr(COP_BasicBlock), Arena(A), BlockID(0), Visited(false) {}
BasicBlock(BasicBlock & B,MemRegionRef A,InstrArray && As,InstrArray && Is,Terminator * T)1532 BasicBlock(BasicBlock &B, MemRegionRef A, InstrArray &&As, InstrArray &&Is,
1533 Terminator *T)
1534 : SExpr(COP_BasicBlock), Arena(A), BlockID(0), Visited(false),
1535 Args(std::move(As)), Instrs(std::move(Is)), TermInstr(T) {}
1536
classof(const SExpr * E)1537 static bool classof(const SExpr *E) { return E->opcode() == COP_BasicBlock; }
1538
1539 /// Returns the block ID. Every block has a unique ID in the CFG.
blockID()1540 int blockID() const { return BlockID; }
1541
1542 /// Returns the number of predecessors.
numPredecessors()1543 size_t numPredecessors() const { return Predecessors.size(); }
numSuccessors()1544 size_t numSuccessors() const { return successors().size(); }
1545
cfg()1546 const SCFG* cfg() const { return CFGPtr; }
cfg()1547 SCFG* cfg() { return CFGPtr; }
1548
parent()1549 const BasicBlock *parent() const { return DominatorNode.Parent; }
parent()1550 BasicBlock *parent() { return DominatorNode.Parent; }
1551
arguments()1552 const InstrArray &arguments() const { return Args; }
arguments()1553 InstrArray &arguments() { return Args; }
1554
instructions()1555 InstrArray &instructions() { return Instrs; }
instructions()1556 const InstrArray &instructions() const { return Instrs; }
1557
1558 /// Returns a list of predecessors.
1559 /// The order of predecessors in the list is important; each phi node has
1560 /// exactly one argument for each precessor, in the same order.
predecessors()1561 BlockArray &predecessors() { return Predecessors; }
predecessors()1562 const BlockArray &predecessors() const { return Predecessors; }
1563
successors()1564 ArrayRef<BasicBlock*> successors() { return TermInstr->successors(); }
successors()1565 ArrayRef<BasicBlock*> successors() const { return TermInstr->successors(); }
1566
terminator()1567 const Terminator *terminator() const { return TermInstr; }
terminator()1568 Terminator *terminator() { return TermInstr; }
1569
setTerminator(Terminator * E)1570 void setTerminator(Terminator *E) { TermInstr = E; }
1571
Dominates(const BasicBlock & Other)1572 bool Dominates(const BasicBlock &Other) {
1573 return DominatorNode.isParentOfOrEqual(Other.DominatorNode);
1574 }
1575
PostDominates(const BasicBlock & Other)1576 bool PostDominates(const BasicBlock &Other) {
1577 return PostDominatorNode.isParentOfOrEqual(Other.PostDominatorNode);
1578 }
1579
1580 /// Add a new argument.
addArgument(Phi * V)1581 void addArgument(Phi *V) {
1582 Args.reserveCheck(1, Arena);
1583 Args.push_back(V);
1584 }
1585
1586 /// Add a new instruction.
addInstruction(SExpr * V)1587 void addInstruction(SExpr *V) {
1588 Instrs.reserveCheck(1, Arena);
1589 Instrs.push_back(V);
1590 }
1591
1592 // Add a new predecessor, and return the phi-node index for it.
1593 // Will add an argument to all phi-nodes, initialized to nullptr.
1594 unsigned addPredecessor(BasicBlock *Pred);
1595
1596 // Reserve space for Nargs arguments.
reserveArguments(unsigned Nargs)1597 void reserveArguments(unsigned Nargs) { Args.reserve(Nargs, Arena); }
1598
1599 // Reserve space for Nins instructions.
reserveInstructions(unsigned Nins)1600 void reserveInstructions(unsigned Nins) { Instrs.reserve(Nins, Arena); }
1601
1602 // Reserve space for NumPreds predecessors, including space in phi nodes.
1603 void reservePredecessors(unsigned NumPreds);
1604
1605 /// Return the index of BB, or Predecessors.size if BB is not a predecessor.
findPredecessorIndex(const BasicBlock * BB)1606 unsigned findPredecessorIndex(const BasicBlock *BB) const {
1607 auto I = llvm::find(Predecessors, BB);
1608 return std::distance(Predecessors.cbegin(), I);
1609 }
1610
1611 template <class V>
traverse(V & Vs,typename V::R_Ctx Ctx)1612 typename V::R_BasicBlock traverse(V &Vs, typename V::R_Ctx Ctx) {
1613 typename V::template Container<SExpr*> Nas(Vs, Args.size());
1614 typename V::template Container<SExpr*> Nis(Vs, Instrs.size());
1615
1616 // Entering the basic block should do any scope initialization.
1617 Vs.enterBasicBlock(*this);
1618
1619 for (const auto *E : Args) {
1620 auto Ne = Vs.traverse(E, Vs.subExprCtx(Ctx));
1621 Nas.push_back(Ne);
1622 }
1623 for (const auto *E : Instrs) {
1624 auto Ne = Vs.traverse(E, Vs.subExprCtx(Ctx));
1625 Nis.push_back(Ne);
1626 }
1627 auto Nt = Vs.traverse(TermInstr, Ctx);
1628
1629 // Exiting the basic block should handle any scope cleanup.
1630 Vs.exitBasicBlock(*this);
1631
1632 return Vs.reduceBasicBlock(*this, Nas, Nis, Nt);
1633 }
1634
1635 template <class C>
compare(const BasicBlock * E,C & Cmp)1636 typename C::CType compare(const BasicBlock *E, C &Cmp) const {
1637 // TODO: implement CFG comparisons
1638 return Cmp.comparePointers(this, E);
1639 }
1640
1641 private:
1642 friend class SCFG;
1643
1644 // assign unique ids to all instructions
1645 unsigned renumberInstrs(unsigned id);
1646
1647 unsigned topologicalSort(SimpleArray<BasicBlock *> &Blocks, unsigned ID);
1648 unsigned topologicalFinalSort(SimpleArray<BasicBlock *> &Blocks, unsigned ID);
1649 void computeDominator();
1650 void computePostDominator();
1651
1652 // The arena used to allocate this block.
1653 MemRegionRef Arena;
1654
1655 // The CFG that contains this block.
1656 SCFG *CFGPtr = nullptr;
1657
1658 // Unique ID for this BB in the containing CFG. IDs are in topological order.
1659 unsigned BlockID : 31;
1660
1661 // Bit to determine if a block has been visited during a traversal.
1662 bool Visited : 1;
1663
1664 // Predecessor blocks in the CFG.
1665 BlockArray Predecessors;
1666
1667 // Phi nodes. One argument per predecessor.
1668 InstrArray Args;
1669
1670 // Instructions.
1671 InstrArray Instrs;
1672
1673 // Terminating instruction.
1674 Terminator *TermInstr = nullptr;
1675
1676 // The dominator tree.
1677 TopologyNode DominatorNode;
1678
1679 // The post-dominator tree.
1680 TopologyNode PostDominatorNode;
1681 };
1682
1683 /// An SCFG is a control-flow graph. It consists of a set of basic blocks,
1684 /// each of which terminates in a branch to another basic block. There is one
1685 /// entry point, and one exit point.
1686 class SCFG : public SExpr {
1687 public:
1688 using BlockArray = SimpleArray<BasicBlock *>;
1689 using iterator = BlockArray::iterator;
1690 using const_iterator = BlockArray::const_iterator;
1691
SCFG(MemRegionRef A,unsigned Nblocks)1692 SCFG(MemRegionRef A, unsigned Nblocks)
1693 : SExpr(COP_SCFG), Arena(A), Blocks(A, Nblocks) {
1694 Entry = new (A) BasicBlock(A);
1695 Exit = new (A) BasicBlock(A);
1696 auto *V = new (A) Phi();
1697 Exit->addArgument(V);
1698 Exit->setTerminator(new (A) Return(V));
1699 add(Entry);
1700 add(Exit);
1701 }
1702
SCFG(const SCFG & Cfg,BlockArray && Ba)1703 SCFG(const SCFG &Cfg, BlockArray &&Ba) // steals memory from Ba
1704 : SExpr(COP_SCFG), Arena(Cfg.Arena), Blocks(std::move(Ba)) {
1705 // TODO: set entry and exit!
1706 }
1707
classof(const SExpr * E)1708 static bool classof(const SExpr *E) { return E->opcode() == COP_SCFG; }
1709
1710 /// Return true if this CFG is valid.
valid()1711 bool valid() const { return Entry && Exit && Blocks.size() > 0; }
1712
1713 /// Return true if this CFG has been normalized.
1714 /// After normalization, blocks are in topological order, and block and
1715 /// instruction IDs have been assigned.
normal()1716 bool normal() const { return Normal; }
1717
begin()1718 iterator begin() { return Blocks.begin(); }
end()1719 iterator end() { return Blocks.end(); }
1720
begin()1721 const_iterator begin() const { return cbegin(); }
end()1722 const_iterator end() const { return cend(); }
1723
cbegin()1724 const_iterator cbegin() const { return Blocks.cbegin(); }
cend()1725 const_iterator cend() const { return Blocks.cend(); }
1726
entry()1727 const BasicBlock *entry() const { return Entry; }
entry()1728 BasicBlock *entry() { return Entry; }
exit()1729 const BasicBlock *exit() const { return Exit; }
exit()1730 BasicBlock *exit() { return Exit; }
1731
1732 /// Return the number of blocks in the CFG.
1733 /// Block::blockID() will return a number less than numBlocks();
numBlocks()1734 size_t numBlocks() const { return Blocks.size(); }
1735
1736 /// Return the total number of instructions in the CFG.
1737 /// This is useful for building instruction side-tables;
1738 /// A call to SExpr::id() will return a number less than numInstructions().
numInstructions()1739 unsigned numInstructions() { return NumInstructions; }
1740
add(BasicBlock * BB)1741 inline void add(BasicBlock *BB) {
1742 assert(BB->CFGPtr == nullptr);
1743 BB->CFGPtr = this;
1744 Blocks.reserveCheck(1, Arena);
1745 Blocks.push_back(BB);
1746 }
1747
setEntry(BasicBlock * BB)1748 void setEntry(BasicBlock *BB) { Entry = BB; }
setExit(BasicBlock * BB)1749 void setExit(BasicBlock *BB) { Exit = BB; }
1750
1751 void computeNormalForm();
1752
1753 template <class V>
traverse(V & Vs,typename V::R_Ctx Ctx)1754 typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
1755 Vs.enterCFG(*this);
1756 typename V::template Container<BasicBlock *> Bbs(Vs, Blocks.size());
1757
1758 for (const auto *B : Blocks) {
1759 Bbs.push_back( B->traverse(Vs, Vs.subExprCtx(Ctx)) );
1760 }
1761 Vs.exitCFG(*this);
1762 return Vs.reduceSCFG(*this, Bbs);
1763 }
1764
1765 template <class C>
compare(const SCFG * E,C & Cmp)1766 typename C::CType compare(const SCFG *E, C &Cmp) const {
1767 // TODO: implement CFG comparisons
1768 return Cmp.comparePointers(this, E);
1769 }
1770
1771 private:
1772 // assign unique ids to all instructions
1773 void renumberInstrs();
1774
1775 MemRegionRef Arena;
1776 BlockArray Blocks;
1777 BasicBlock *Entry = nullptr;
1778 BasicBlock *Exit = nullptr;
1779 unsigned NumInstructions = 0;
1780 bool Normal = false;
1781 };
1782
1783 /// An identifier, e.g. 'foo' or 'x'.
1784 /// This is a pseduo-term; it will be lowered to a variable or projection.
1785 class Identifier : public SExpr {
1786 public:
Identifier(StringRef Id)1787 Identifier(StringRef Id): SExpr(COP_Identifier), Name(Id) {}
1788 Identifier(const Identifier &) = default;
1789
classof(const SExpr * E)1790 static bool classof(const SExpr *E) { return E->opcode() == COP_Identifier; }
1791
name()1792 StringRef name() const { return Name; }
1793
1794 template <class V>
traverse(V & Vs,typename V::R_Ctx Ctx)1795 typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
1796 return Vs.reduceIdentifier(*this);
1797 }
1798
1799 template <class C>
compare(const Identifier * E,C & Cmp)1800 typename C::CType compare(const Identifier* E, C& Cmp) const {
1801 return Cmp.compareStrings(name(), E->name());
1802 }
1803
1804 private:
1805 StringRef Name;
1806 };
1807
1808 /// An if-then-else expression.
1809 /// This is a pseduo-term; it will be lowered to a branch in a CFG.
1810 class IfThenElse : public SExpr {
1811 public:
IfThenElse(SExpr * C,SExpr * T,SExpr * E)1812 IfThenElse(SExpr *C, SExpr *T, SExpr *E)
1813 : SExpr(COP_IfThenElse), Condition(C), ThenExpr(T), ElseExpr(E) {}
IfThenElse(const IfThenElse & I,SExpr * C,SExpr * T,SExpr * E)1814 IfThenElse(const IfThenElse &I, SExpr *C, SExpr *T, SExpr *E)
1815 : SExpr(I), Condition(C), ThenExpr(T), ElseExpr(E) {}
1816
classof(const SExpr * E)1817 static bool classof(const SExpr *E) { return E->opcode() == COP_IfThenElse; }
1818
condition()1819 SExpr *condition() { return Condition; } // Address to store to
condition()1820 const SExpr *condition() const { return Condition; }
1821
thenExpr()1822 SExpr *thenExpr() { return ThenExpr; } // Value to store
thenExpr()1823 const SExpr *thenExpr() const { return ThenExpr; }
1824
elseExpr()1825 SExpr *elseExpr() { return ElseExpr; } // Value to store
elseExpr()1826 const SExpr *elseExpr() const { return ElseExpr; }
1827
1828 template <class V>
traverse(V & Vs,typename V::R_Ctx Ctx)1829 typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
1830 auto Nc = Vs.traverse(Condition, Vs.subExprCtx(Ctx));
1831 auto Nt = Vs.traverse(ThenExpr, Vs.subExprCtx(Ctx));
1832 auto Ne = Vs.traverse(ElseExpr, Vs.subExprCtx(Ctx));
1833 return Vs.reduceIfThenElse(*this, Nc, Nt, Ne);
1834 }
1835
1836 template <class C>
compare(const IfThenElse * E,C & Cmp)1837 typename C::CType compare(const IfThenElse* E, C& Cmp) const {
1838 typename C::CType Ct = Cmp.compare(condition(), E->condition());
1839 if (Cmp.notTrue(Ct))
1840 return Ct;
1841 Ct = Cmp.compare(thenExpr(), E->thenExpr());
1842 if (Cmp.notTrue(Ct))
1843 return Ct;
1844 return Cmp.compare(elseExpr(), E->elseExpr());
1845 }
1846
1847 private:
1848 SExpr* Condition;
1849 SExpr* ThenExpr;
1850 SExpr* ElseExpr;
1851 };
1852
1853 /// A let-expression, e.g. let x=t; u.
1854 /// This is a pseduo-term; it will be lowered to instructions in a CFG.
1855 class Let : public SExpr {
1856 public:
Let(Variable * Vd,SExpr * Bd)1857 Let(Variable *Vd, SExpr *Bd) : SExpr(COP_Let), VarDecl(Vd), Body(Bd) {
1858 Vd->setKind(Variable::VK_Let);
1859 }
1860
Let(const Let & L,Variable * Vd,SExpr * Bd)1861 Let(const Let &L, Variable *Vd, SExpr *Bd) : SExpr(L), VarDecl(Vd), Body(Bd) {
1862 Vd->setKind(Variable::VK_Let);
1863 }
1864
classof(const SExpr * E)1865 static bool classof(const SExpr *E) { return E->opcode() == COP_Let; }
1866
variableDecl()1867 Variable *variableDecl() { return VarDecl; }
variableDecl()1868 const Variable *variableDecl() const { return VarDecl; }
1869
body()1870 SExpr *body() { return Body; }
body()1871 const SExpr *body() const { return Body; }
1872
1873 template <class V>
traverse(V & Vs,typename V::R_Ctx Ctx)1874 typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
1875 // This is a variable declaration, so traverse the definition.
1876 auto E0 = Vs.traverse(VarDecl->Definition, Vs.subExprCtx(Ctx));
1877 // Tell the rewriter to enter the scope of the let variable.
1878 Variable *Nvd = Vs.enterScope(*VarDecl, E0);
1879 auto E1 = Vs.traverse(Body, Ctx);
1880 Vs.exitScope(*VarDecl);
1881 return Vs.reduceLet(*this, Nvd, E1);
1882 }
1883
1884 template <class C>
compare(const Let * E,C & Cmp)1885 typename C::CType compare(const Let* E, C& Cmp) const {
1886 typename C::CType Ct =
1887 Cmp.compare(VarDecl->definition(), E->VarDecl->definition());
1888 if (Cmp.notTrue(Ct))
1889 return Ct;
1890 Cmp.enterScope(variableDecl(), E->variableDecl());
1891 Ct = Cmp.compare(body(), E->body());
1892 Cmp.leaveScope();
1893 return Ct;
1894 }
1895
1896 private:
1897 Variable *VarDecl;
1898 SExpr* Body;
1899 };
1900
1901 const SExpr *getCanonicalVal(const SExpr *E);
1902 SExpr* simplifyToCanonicalVal(SExpr *E);
1903 void simplifyIncompleteArg(til::Phi *Ph);
1904
1905 } // namespace til
1906 } // namespace threadSafety
1907
1908 } // namespace clang
1909
1910 #endif // LLVM_CLANG_ANALYSIS_ANALYSES_THREADSAFETYTIL_H
1911