1 /**************************************************************** 2 3 The author of this software is David M. Gay. 4 5 Copyright (C) 1998-2000 by Lucent Technologies 6 All Rights Reserved 7 8 Permission to use, copy, modify, and distribute this software and 9 its documentation for any purpose and without fee is hereby 10 granted, provided that the above copyright notice appear in all 11 copies and that both that the copyright notice and this 12 permission notice and warranty disclaimer appear in supporting 13 documentation, and that the name of Lucent or any of its entities 14 not be used in advertising or publicity pertaining to 15 distribution of the software without specific, written prior 16 permission. 17 18 LUCENT DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, 19 INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. 20 IN NO EVENT SHALL LUCENT OR ANY OF ITS ENTITIES BE LIABLE FOR ANY 21 SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 22 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER 23 IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, 24 ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF 25 THIS SOFTWARE. 26 27 ****************************************************************/ 28 29 /* $FreeBSD: head/contrib/gdtoa/gdtoaimp.h 227753 2011-11-20 14:45:42Z theraven $ */ 30 31 /* This is a variation on dtoa.c that converts arbitary binary 32 floating-point formats to and from decimal notation. It uses 33 double-precision arithmetic internally, so there are still 34 various #ifdefs that adapt the calculations to the native 35 double-precision arithmetic (any of IEEE, VAX D_floating, 36 or IBM mainframe arithmetic). 37 38 Please send bug reports to David M. Gay (dmg at acm dot org, 39 with " at " changed at "@" and " dot " changed to "."). 40 */ 41 42 /* On a machine with IEEE extended-precision registers, it is 43 * necessary to specify double-precision (53-bit) rounding precision 44 * before invoking strtod or dtoa. If the machine uses (the equivalent 45 * of) Intel 80x87 arithmetic, the call 46 * _control87(PC_53, MCW_PC); 47 * does this with many compilers. Whether this or another call is 48 * appropriate depends on the compiler; for this to work, it may be 49 * necessary to #include "float.h" or another system-dependent header 50 * file. 51 */ 52 53 /* strtod for IEEE-, VAX-, and IBM-arithmetic machines. 54 * 55 * This strtod returns a nearest machine number to the input decimal 56 * string (or sets errno to ERANGE). With IEEE arithmetic, ties are 57 * broken by the IEEE round-even rule. Otherwise ties are broken by 58 * biased rounding (add half and chop). 59 * 60 * Inspired loosely by William D. Clinger's paper "How to Read Floating 61 * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 112-126]. 62 * 63 * Modifications: 64 * 65 * 1. We only require IEEE, IBM, or VAX double-precision 66 * arithmetic (not IEEE double-extended). 67 * 2. We get by with floating-point arithmetic in a case that 68 * Clinger missed -- when we're computing d * 10^n 69 * for a small integer d and the integer n is not too 70 * much larger than 22 (the maximum integer k for which 71 * we can represent 10^k exactly), we may be able to 72 * compute (d*10^k) * 10^(e-k) with just one roundoff. 73 * 3. Rather than a bit-at-a-time adjustment of the binary 74 * result in the hard case, we use floating-point 75 * arithmetic to determine the adjustment to within 76 * one bit; only in really hard cases do we need to 77 * compute a second residual. 78 * 4. Because of 3., we don't need a large table of powers of 10 79 * for ten-to-e (just some small tables, e.g. of 10^k 80 * for 0 <= k <= 22). 81 */ 82 83 /* 84 * #define IEEE_8087 for IEEE-arithmetic machines where the least 85 * significant byte has the lowest address. 86 * #define IEEE_MC68k for IEEE-arithmetic machines where the most 87 * significant byte has the lowest address. 88 * #define Long int on machines with 32-bit ints and 64-bit longs. 89 * #define Sudden_Underflow for IEEE-format machines without gradual 90 * underflow (i.e., that flush to zero on underflow). 91 * #define IBM for IBM mainframe-style floating-point arithmetic. 92 * #define VAX for VAX-style floating-point arithmetic (D_floating). 93 * #define No_leftright to omit left-right logic in fast floating-point 94 * computation of dtoa. 95 * #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3. 96 * #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines 97 * that use extended-precision instructions to compute rounded 98 * products and quotients) with IBM. 99 * #define ROUND_BIASED for IEEE-format with biased rounding and arithmetic 100 * that rounds toward +Infinity. 101 * #define ROUND_BIASED_without_Round_Up for IEEE-format with biased 102 * rounding when the underlying floating-point arithmetic uses 103 * unbiased rounding. This prevent using ordinary floating-point 104 * arithmetic when the result could be computed with one rounding error. 105 * #define Inaccurate_Divide for IEEE-format with correctly rounded 106 * products but inaccurate quotients, e.g., for Intel i860. 107 * #define NO_LONG_LONG on machines that do not have a "long long" 108 * integer type (of >= 64 bits). On such machines, you can 109 * #define Just_16 to store 16 bits per 32-bit Long when doing 110 * high-precision integer arithmetic. Whether this speeds things 111 * up or slows things down depends on the machine and the number 112 * being converted. If long long is available and the name is 113 * something other than "long long", #define Llong to be the name, 114 * and if "unsigned Llong" does not work as an unsigned version of 115 * Llong, #define #ULLong to be the corresponding unsigned type. 116 * #define KR_headers for old-style C function headers. 117 * #define Bad_float_h if your system lacks a float.h or if it does not 118 * define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP, 119 * FLT_RADIX, FLT_ROUNDS, and DBL_MAX. 120 * #define MALLOC your_malloc, where your_malloc(n) acts like malloc(n) 121 * if memory is available and otherwise does something you deem 122 * appropriate. If MALLOC is undefined, malloc will be invoked 123 * directly -- and assumed always to succeed. Similarly, if you 124 * want something other than the system's free() to be called to 125 * recycle memory acquired from MALLOC, #define FREE to be the 126 * name of the alternate routine. (FREE or free is only called in 127 * pathological cases, e.g., in a gdtoa call after a gdtoa return in 128 * mode 3 with thousands of digits requested.) 129 * #define Omit_Private_Memory to omit logic (added Jan. 1998) for making 130 * memory allocations from a private pool of memory when possible. 131 * When used, the private pool is PRIVATE_MEM bytes long: 2304 bytes, 132 * unless #defined to be a different length. This default length 133 * suffices to get rid of MALLOC calls except for unusual cases, 134 * such as decimal-to-binary conversion of a very long string of 135 * digits. When converting IEEE double precision values, the 136 * longest string gdtoa can return is about 751 bytes long. For 137 * conversions by strtod of strings of 800 digits and all gdtoa 138 * conversions of IEEE doubles in single-threaded executions with 139 * 8-byte pointers, PRIVATE_MEM >= 7400 appears to suffice; with 140 * 4-byte pointers, PRIVATE_MEM >= 7112 appears adequate. 141 * #define NO_INFNAN_CHECK if you do not wish to have INFNAN_CHECK 142 * #defined automatically on IEEE systems. On such systems, 143 * when INFNAN_CHECK is #defined, strtod checks 144 * for Infinity and NaN (case insensitively). 145 * When INFNAN_CHECK is #defined and No_Hex_NaN is not #defined, 146 * strtodg also accepts (case insensitively) strings of the form 147 * NaN(x), where x is a string of hexadecimal digits (optionally 148 * preceded by 0x or 0X) and spaces; if there is only one string 149 * of hexadecimal digits, it is taken for the fraction bits of the 150 * resulting NaN; if there are two or more strings of hexadecimal 151 * digits, each string is assigned to the next available sequence 152 * of 32-bit words of fractions bits (starting with the most 153 * significant), right-aligned in each sequence. 154 * Unless GDTOA_NON_PEDANTIC_NANCHECK is #defined, input "NaN(...)" 155 * is consumed even when ... has the wrong form (in which case the 156 * "(...)" is consumed but ignored). 157 * #define MULTIPLE_THREADS if the system offers preemptively scheduled 158 * multiple threads. In this case, you must provide (or suitably 159 * #define) two locks, acquired by ACQUIRE_DTOA_LOCK(n) and freed 160 * by FREE_DTOA_LOCK(n) for n = 0 or 1. (The second lock, accessed 161 * in pow5mult, ensures lazy evaluation of only one copy of high 162 * powers of 5; omitting this lock would introduce a small 163 * probability of wasting memory, but would otherwise be harmless.) 164 * You must also invoke freedtoa(s) to free the value s returned by 165 * dtoa. You may do so whether or not MULTIPLE_THREADS is #defined. 166 * #define IMPRECISE_INEXACT if you do not care about the setting of 167 * the STRTOG_Inexact bits in the special case of doing IEEE double 168 * precision conversions (which could also be done by the strtod in 169 * dtoa.c). 170 * #define NO_HEX_FP to disable recognition of C9x's hexadecimal 171 * floating-point constants. 172 * #define -DNO_ERRNO to suppress setting errno (in strtod.c and 173 * strtodg.c). 174 * #define NO_STRING_H to use private versions of memcpy. 175 * On some K&R systems, it may also be necessary to 176 * #define DECLARE_SIZE_T in this case. 177 * #define USE_LOCALE to use the current locale's decimal_point value. 178 */ 179 180 #ifndef GDTOAIMP_H_INCLUDED 181 #define GDTOAIMP_H_INCLUDED 182 183 #define Long int 184 185 #include "gdtoa.h" 186 #include "gd_qnan.h" 187 #ifdef Honor_FLT_ROUNDS 188 #include <fenv.h> 189 #endif 190 191 #ifdef DEBUG 192 #include "stdio.h" 193 #define Bug(x) {fprintf(stderr, "%s\n", x); exit(1);} 194 #endif 195 196 #include "limits.h" 197 #include "stdlib.h" 198 #include "string.h" 199 #include "libc_private.h" 200 201 #include "namespace.h" 202 #include <pthread.h> 203 #include "un-namespace.h" 204 #include "xlocale_private.h" 205 206 #ifdef KR_headers 207 #define Char char 208 #else 209 #define Char void 210 #endif 211 212 #ifdef MALLOC 213 extern Char *MALLOC ANSI((size_t)); 214 #else 215 #define MALLOC malloc 216 #endif 217 218 #define INFNAN_CHECK 219 #define USE_LOCALE 220 #define NO_LOCALE_CACHE 221 #define Honor_FLT_ROUNDS 222 #define Trust_FLT_ROUNDS 223 224 #undef IEEE_Arith 225 #undef Avoid_Underflow 226 #ifdef IEEE_MC68k 227 #define IEEE_Arith 228 #endif 229 #ifdef IEEE_8087 230 #define IEEE_Arith 231 #endif 232 233 #include "errno.h" 234 #ifdef Bad_float_h 235 236 #ifdef IEEE_Arith 237 #define DBL_DIG 15 238 #define DBL_MAX_10_EXP 308 239 #define DBL_MAX_EXP 1024 240 #define FLT_RADIX 2 241 #define DBL_MAX 1.7976931348623157e+308 242 #endif 243 244 #ifdef IBM 245 #define DBL_DIG 16 246 #define DBL_MAX_10_EXP 75 247 #define DBL_MAX_EXP 63 248 #define FLT_RADIX 16 249 #define DBL_MAX 7.2370055773322621e+75 250 #endif 251 252 #ifdef VAX 253 #define DBL_DIG 16 254 #define DBL_MAX_10_EXP 38 255 #define DBL_MAX_EXP 127 256 #define FLT_RADIX 2 257 #define DBL_MAX 1.7014118346046923e+38 258 #define n_bigtens 2 259 #endif 260 261 #ifndef LONG_MAX 262 #define LONG_MAX 2147483647 263 #endif 264 265 #else /* ifndef Bad_float_h */ 266 #include "float.h" 267 #endif /* Bad_float_h */ 268 269 #ifdef IEEE_Arith 270 #define Scale_Bit 0x10 271 #define n_bigtens 5 272 #endif 273 274 #ifdef IBM 275 #define n_bigtens 3 276 #endif 277 278 #ifdef VAX 279 #define n_bigtens 2 280 #endif 281 282 #ifndef __MATH_H__ 283 #include "math.h" 284 #endif 285 286 #ifdef __cplusplus 287 extern "C" { 288 #endif 289 290 #if defined(IEEE_8087) + defined(IEEE_MC68k) + defined(VAX) + defined(IBM) != 1 291 Exactly one of IEEE_8087, IEEE_MC68k, VAX, or IBM should be defined. 292 #endif 293 294 typedef union { double d; ULong L[2]; } U; 295 296 #ifdef IEEE_8087 297 #define word0(x) (x)->L[1] 298 #define word1(x) (x)->L[0] 299 #else 300 #define word0(x) (x)->L[0] 301 #define word1(x) (x)->L[1] 302 #endif 303 #define dval(x) (x)->d 304 305 /* The following definition of Storeinc is appropriate for MIPS processors. 306 * An alternative that might be better on some machines is 307 * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff) 308 */ 309 #if defined(IEEE_8087) + defined(VAX) 310 #define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b, \ 311 ((unsigned short *)a)[0] = (unsigned short)c, a++) 312 #else 313 #define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b, \ 314 ((unsigned short *)a)[1] = (unsigned short)c, a++) 315 #endif 316 317 /* #define P DBL_MANT_DIG */ 318 /* Ten_pmax = floor(P*log(2)/log(5)) */ 319 /* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */ 320 /* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */ 321 /* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */ 322 323 #ifdef IEEE_Arith 324 #define Exp_shift 20 325 #define Exp_shift1 20 326 #define Exp_msk1 0x100000 327 #define Exp_msk11 0x100000 328 #define Exp_mask 0x7ff00000 329 #define P 53 330 #define Bias 1023 331 #define Emin (-1022) 332 #define Exp_1 0x3ff00000 333 #define Exp_11 0x3ff00000 334 #define Ebits 11 335 #define Frac_mask 0xfffff 336 #define Frac_mask1 0xfffff 337 #define Ten_pmax 22 338 #define Bletch 0x10 339 #define Bndry_mask 0xfffff 340 #define Bndry_mask1 0xfffff 341 #define LSB 1 342 #define Sign_bit 0x80000000 343 #define Log2P 1 344 #define Tiny0 0 345 #define Tiny1 1 346 #define Quick_max 14 347 #define Int_max 14 348 349 #ifndef Flt_Rounds 350 #ifdef FLT_ROUNDS 351 #define Flt_Rounds FLT_ROUNDS 352 #else 353 #define Flt_Rounds 1 354 #endif 355 #endif /*Flt_Rounds*/ 356 357 #else /* ifndef IEEE_Arith */ 358 #undef Sudden_Underflow 359 #define Sudden_Underflow 360 #ifdef IBM 361 #undef Flt_Rounds 362 #define Flt_Rounds 0 363 #define Exp_shift 24 364 #define Exp_shift1 24 365 #define Exp_msk1 0x1000000 366 #define Exp_msk11 0x1000000 367 #define Exp_mask 0x7f000000 368 #define P 14 369 #define Bias 65 370 #define Exp_1 0x41000000 371 #define Exp_11 0x41000000 372 #define Ebits 8 /* exponent has 7 bits, but 8 is the right value in b2d */ 373 #define Frac_mask 0xffffff 374 #define Frac_mask1 0xffffff 375 #define Bletch 4 376 #define Ten_pmax 22 377 #define Bndry_mask 0xefffff 378 #define Bndry_mask1 0xffffff 379 #define LSB 1 380 #define Sign_bit 0x80000000 381 #define Log2P 4 382 #define Tiny0 0x100000 383 #define Tiny1 0 384 #define Quick_max 14 385 #define Int_max 15 386 #else /* VAX */ 387 #undef Flt_Rounds 388 #define Flt_Rounds 1 389 #define Exp_shift 23 390 #define Exp_shift1 7 391 #define Exp_msk1 0x80 392 #define Exp_msk11 0x800000 393 #define Exp_mask 0x7f80 394 #define P 56 395 #define Bias 129 396 #define Exp_1 0x40800000 397 #define Exp_11 0x4080 398 #define Ebits 8 399 #define Frac_mask 0x7fffff 400 #define Frac_mask1 0xffff007f 401 #define Ten_pmax 24 402 #define Bletch 2 403 #define Bndry_mask 0xffff007f 404 #define Bndry_mask1 0xffff007f 405 #define LSB 0x10000 406 #define Sign_bit 0x8000 407 #define Log2P 1 408 #define Tiny0 0x80 409 #define Tiny1 0 410 #define Quick_max 15 411 #define Int_max 15 412 #endif /* IBM, VAX */ 413 #endif /* IEEE_Arith */ 414 415 #ifndef IEEE_Arith 416 #define ROUND_BIASED 417 #else 418 #ifdef ROUND_BIASED_without_Round_Up 419 #undef ROUND_BIASED 420 #define ROUND_BIASED 421 #endif 422 #endif 423 424 #ifdef RND_PRODQUOT 425 #define rounded_product(a,b) a = rnd_prod(a, b) 426 #define rounded_quotient(a,b) a = rnd_quot(a, b) 427 #ifdef KR_headers 428 extern double rnd_prod(), rnd_quot(); 429 #else 430 extern double rnd_prod(double, double), rnd_quot(double, double); 431 #endif 432 #else 433 #define rounded_product(a,b) a *= b 434 #define rounded_quotient(a,b) a /= b 435 #endif 436 437 #define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1)) 438 #define Big1 0xffffffff 439 440 #undef Pack_16 441 #ifndef Pack_32 442 #define Pack_32 443 #endif 444 445 #ifdef NO_LONG_LONG 446 #undef ULLong 447 #ifdef Just_16 448 #undef Pack_32 449 #define Pack_16 450 /* When Pack_32 is not defined, we store 16 bits per 32-bit Long. 451 * This makes some inner loops simpler and sometimes saves work 452 * during multiplications, but it often seems to make things slightly 453 * slower. Hence the default is now to store 32 bits per Long. 454 */ 455 #endif 456 #else /* long long available */ 457 #ifndef Llong 458 #define Llong long long 459 #endif 460 #ifndef ULLong 461 #define ULLong unsigned Llong 462 #endif 463 #endif /* NO_LONG_LONG */ 464 465 #ifdef Pack_32 466 #define ULbits 32 467 #define kshift 5 468 #define kmask 31 469 #define ALL_ON 0xffffffff 470 #else 471 #define ULbits 16 472 #define kshift 4 473 #define kmask 15 474 #define ALL_ON 0xffff 475 #endif 476 477 #define MULTIPLE_THREADS 478 extern pthread_mutex_t __gdtoa_locks[2]; 479 #define ACQUIRE_DTOA_LOCK(n) do { \ 480 if (__isthreaded) \ 481 _pthread_mutex_lock(&__gdtoa_locks[n]); \ 482 } while(0) 483 #define FREE_DTOA_LOCK(n) do { \ 484 if (__isthreaded) \ 485 _pthread_mutex_unlock(&__gdtoa_locks[n]); \ 486 } while(0) 487 488 #define Kmax 9 489 490 struct 491 Bigint { 492 struct Bigint *next; 493 int k, maxwds, sign, wds; 494 ULong x[1]; 495 }; 496 497 typedef struct Bigint Bigint; 498 499 #ifdef NO_STRING_H 500 #ifdef DECLARE_SIZE_T 501 typedef unsigned int size_t; 502 #endif 503 extern void memcpy_D2A ANSI((void*, const void*, size_t)); 504 #define Bcopy(x,y) memcpy_D2A(&x->sign,&y->sign,y->wds*sizeof(ULong) + 2*sizeof(int)) 505 #else /* !NO_STRING_H */ 506 #define Bcopy(x,y) memcpy(&x->sign,&y->sign,y->wds*sizeof(ULong) + 2*sizeof(int)) 507 #endif /* NO_STRING_H */ 508 509 /* 510 * Paranoia: Protect exported symbols, including ones in files we don't 511 * compile right now. The standard strtof and strtod survive. 512 */ 513 #define dtoa __dtoa 514 #define gdtoa __gdtoa 515 #define freedtoa __freedtoa 516 #define strtodg __strtodg 517 #define g_ddfmt __g_ddfmt 518 #define g_dfmt __g_dfmt 519 #define g_ffmt __g_ffmt 520 #define g_Qfmt __g_Qfmt 521 #define g_xfmt __g_xfmt 522 #define g_xLfmt __g_xLfmt 523 #define strtoId __strtoId 524 #define strtoIdd __strtoIdd 525 #define strtoIf __strtoIf 526 #define strtoIQ __strtoIQ 527 #define strtoIx __strtoIx 528 #define strtoIxL __strtoIxL 529 #define strtord_l __strtord_l 530 #define strtordd __strtordd 531 #define strtorf __strtorf 532 #define strtorQ_l __strtorQ_l 533 #define strtorx_l __strtorx_l 534 #define strtorxL __strtorxL 535 #define strtodI __strtodI 536 #define strtopd __strtopd 537 #define strtopdd __strtopdd 538 #define strtopf __strtopf 539 #define strtopQ __strtopQ 540 #define strtopx __strtopx 541 #define strtopxL __strtopxL 542 543 /* Protect gdtoa-internal symbols */ 544 #define Balloc __Balloc_D2A 545 #define Bfree __Bfree_D2A 546 #define ULtoQ __ULtoQ_D2A 547 #define ULtof __ULtof_D2A 548 #define ULtod __ULtod_D2A 549 #define ULtodd __ULtodd_D2A 550 #define ULtox __ULtox_D2A 551 #define ULtoxL __ULtoxL_D2A 552 #define any_on __any_on_D2A 553 #define b2d __b2d_D2A 554 #define bigtens __bigtens_D2A 555 #define cmp __cmp_D2A 556 #define copybits __copybits_D2A 557 #define d2b __d2b_D2A 558 #define decrement __decrement_D2A 559 #define diff __diff_D2A 560 #define dtoa_result __dtoa_result_D2A 561 #define g__fmt __g__fmt_D2A 562 #define gethex __gethex_D2A 563 #define hexdig __hexdig_D2A 564 #define hexdig_init_D2A __hexdig_init_D2A 565 #define hexnan __hexnan_D2A 566 #define hi0bits __hi0bits_D2A 567 #define hi0bits_D2A __hi0bits_D2A 568 #define i2b __i2b_D2A 569 #define increment __increment_D2A 570 #define lo0bits __lo0bits_D2A 571 #define lshift __lshift_D2A 572 #define match __match_D2A 573 #define mult __mult_D2A 574 #define multadd __multadd_D2A 575 #define nrv_alloc __nrv_alloc_D2A 576 #define pow5mult __pow5mult_D2A 577 #define quorem __quorem_D2A 578 #define ratio __ratio_D2A 579 #define rshift __rshift_D2A 580 #define rv_alloc __rv_alloc_D2A 581 #define s2b __s2b_D2A 582 #define set_ones __set_ones_D2A 583 #define strcp __strcp_D2A 584 #define strcp_D2A __strcp_D2A 585 #define strtoIg __strtoIg_D2A 586 #define sum __sum_D2A 587 #define tens __tens_D2A 588 #define tinytens __tinytens_D2A 589 #define tinytens __tinytens_D2A 590 #define trailz __trailz_D2A 591 #define ulp __ulp_D2A 592 593 extern char *dtoa_result; 594 extern CONST double bigtens[], tens[], tinytens[]; 595 extern unsigned char hexdig[]; 596 597 extern Bigint *Balloc ANSI((int)); 598 extern void Bfree ANSI((Bigint*)); 599 extern void ULtof ANSI((ULong*, ULong*, Long, int)); 600 extern void ULtod ANSI((ULong*, ULong*, Long, int)); 601 extern void ULtodd ANSI((ULong*, ULong*, Long, int)); 602 extern void ULtoQ ANSI((ULong*, ULong*, Long, int)); 603 extern void ULtox ANSI((UShort*, ULong*, Long, int)); 604 extern void ULtoxL ANSI((ULong*, ULong*, Long, int)); 605 extern ULong any_on ANSI((Bigint*, int)); 606 extern double b2d ANSI((Bigint*, int*)); 607 extern int cmp ANSI((Bigint*, Bigint*)); 608 extern void copybits ANSI((ULong*, int, Bigint*)); 609 extern Bigint *d2b ANSI((double, int*, int*)); 610 extern void decrement ANSI((Bigint*)); 611 extern Bigint *diff ANSI((Bigint*, Bigint*)); 612 extern char *dtoa ANSI((double d, int mode, int ndigits, 613 int *decpt, int *sign, char **rve)); 614 extern void freedtoa ANSI((char*)); 615 extern char *gdtoa ANSI((FPI *fpi, int be, ULong *bits, int *kindp, 616 int mode, int ndigits, int *decpt, char **rve)); 617 extern char *g__fmt ANSI((char*, char*, char*, int, ULong, size_t)); 618 extern int gethex ANSI((CONST char**, FPI*, Long*, Bigint**, int)); 619 extern void hexdig_init_D2A(Void); 620 extern int hexnan ANSI((CONST char**, FPI*, ULong*)); 621 extern int hi0bits ANSI((ULong)); 622 extern Bigint *i2b ANSI((int)); 623 extern Bigint *increment ANSI((Bigint*)); 624 extern int lo0bits ANSI((ULong*)); 625 extern Bigint *lshift ANSI((Bigint*, int)); 626 extern int match ANSI((CONST char**, char*)); 627 extern Bigint *mult ANSI((Bigint*, Bigint*)); 628 extern Bigint *multadd ANSI((Bigint*, int, int)); 629 extern char *nrv_alloc ANSI((char*, char **, int)); 630 extern Bigint *pow5mult ANSI((Bigint*, int)); 631 extern int quorem ANSI((Bigint*, Bigint*)); 632 extern double ratio ANSI((Bigint*, Bigint*)); 633 extern void rshift ANSI((Bigint*, int)); 634 extern char *rv_alloc ANSI((int)); 635 extern Bigint *s2b ANSI((CONST char*, int, int, ULong, int)); 636 extern Bigint *set_ones ANSI((Bigint*, int)); 637 extern char *strcp ANSI((char*, const char*)); 638 extern int strtodg_l ANSI((CONST char*, char**, FPI*, Long*, ULong*, locale_t)); 639 640 extern int strtoId ANSI((CONST char *, char **, double *, double *)); 641 extern int strtoIdd ANSI((CONST char *, char **, double *, double *)); 642 extern int strtoIf ANSI((CONST char *, char **, float *, float *)); 643 extern int strtoIg ANSI((CONST char*, char**, FPI*, Long*, Bigint**, int*)); 644 extern int strtoIQ ANSI((CONST char *, char **, void *, void *)); 645 extern int strtoIx ANSI((CONST char *, char **, void *, void *)); 646 extern int strtoIxL ANSI((CONST char *, char **, void *, void *)); 647 extern double strtod ANSI((const char *s00, char **se)); 648 extern double strtod_l ANSI((const char *s00, char **se, locale_t)); 649 extern int strtopQ ANSI((CONST char *, char **, Void *)); 650 extern int strtopf ANSI((CONST char *, char **, float *)); 651 extern int strtopd ANSI((CONST char *, char **, double *)); 652 extern int strtopdd ANSI((CONST char *, char **, double *)); 653 extern int strtopx ANSI((CONST char *, char **, Void *)); 654 extern int strtopxL ANSI((CONST char *, char **, Void *)); 655 extern int strtord_l ANSI((CONST char *, char **, int, double *, locale_t)); 656 extern int strtordd ANSI((CONST char *, char **, int, double *)); 657 extern int strtorf ANSI((CONST char *, char **, int, float *)); 658 extern int strtorQ_l ANSI((CONST char *, char **, int, void *, locale_t)); 659 extern int strtorx_l ANSI((CONST char *, char **, int, void *, locale_t)); 660 extern int strtorxL ANSI((CONST char *, char **, int, void *)); 661 extern Bigint *sum ANSI((Bigint*, Bigint*)); 662 extern int trailz ANSI((Bigint*)); 663 extern double ulp ANSI((U*)); 664 665 #ifdef __cplusplus 666 } 667 #endif 668 /* 669 * NAN_WORD0 and NAN_WORD1 are only referenced in strtod.c. Prior to 670 * 20050115, they used to be hard-wired here (to 0x7ff80000 and 0, 671 * respectively), but now are determined by compiling and running 672 * qnan.c to generate gd_qnan.h, which specifies d_QNAN0 and d_QNAN1. 673 * Formerly gdtoaimp.h recommended supplying suitable -DNAN_WORD0=... 674 * and -DNAN_WORD1=... values if necessary. This should still work. 675 * (On HP Series 700/800 machines, -DNAN_WORD0=0x7ff40000 works.) 676 */ 677 #ifdef IEEE_Arith 678 #ifndef NO_INFNAN_CHECK 679 #undef INFNAN_CHECK 680 #define INFNAN_CHECK 681 #endif 682 #ifdef IEEE_MC68k 683 #define _0 0 684 #define _1 1 685 #ifndef NAN_WORD0 686 #define NAN_WORD0 d_QNAN0 687 #endif 688 #ifndef NAN_WORD1 689 #define NAN_WORD1 d_QNAN1 690 #endif 691 #else 692 #define _0 1 693 #define _1 0 694 #ifndef NAN_WORD0 695 #define NAN_WORD0 d_QNAN1 696 #endif 697 #ifndef NAN_WORD1 698 #define NAN_WORD1 d_QNAN0 699 #endif 700 #endif 701 #else 702 #undef INFNAN_CHECK 703 #endif 704 705 #undef SI 706 #ifdef Sudden_Underflow 707 #define SI 1 708 #else 709 #define SI 0 710 #endif 711 712 #endif /* GDTOAIMP_H_INCLUDED */ 713