1 //===--- SemaType.cpp - Semantic Analysis for Types -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements type-related semantic analysis.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "TypeLocBuilder.h"
14 #include "clang/AST/ASTConsumer.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/ASTMutationListener.h"
17 #include "clang/AST/ASTStructuralEquivalence.h"
18 #include "clang/AST/CXXInheritance.h"
19 #include "clang/AST/DeclObjC.h"
20 #include "clang/AST/DeclTemplate.h"
21 #include "clang/AST/Expr.h"
22 #include "clang/AST/Type.h"
23 #include "clang/AST/TypeLoc.h"
24 #include "clang/AST/TypeLocVisitor.h"
25 #include "clang/Basic/PartialDiagnostic.h"
26 #include "clang/Basic/SourceLocation.h"
27 #include "clang/Basic/Specifiers.h"
28 #include "clang/Basic/TargetInfo.h"
29 #include "clang/Lex/Preprocessor.h"
30 #include "clang/Sema/DeclSpec.h"
31 #include "clang/Sema/DelayedDiagnostic.h"
32 #include "clang/Sema/Lookup.h"
33 #include "clang/Sema/ParsedTemplate.h"
34 #include "clang/Sema/ScopeInfo.h"
35 #include "clang/Sema/SemaInternal.h"
36 #include "clang/Sema/Template.h"
37 #include "clang/Sema/TemplateInstCallback.h"
38 #include "llvm/ADT/ArrayRef.h"
39 #include "llvm/ADT/SmallPtrSet.h"
40 #include "llvm/ADT/SmallString.h"
41 #include "llvm/IR/DerivedTypes.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include <bitset>
44 #include <optional>
45
46 using namespace clang;
47
48 enum TypeDiagSelector {
49 TDS_Function,
50 TDS_Pointer,
51 TDS_ObjCObjOrBlock
52 };
53
54 /// isOmittedBlockReturnType - Return true if this declarator is missing a
55 /// return type because this is a omitted return type on a block literal.
isOmittedBlockReturnType(const Declarator & D)56 static bool isOmittedBlockReturnType(const Declarator &D) {
57 if (D.getContext() != DeclaratorContext::BlockLiteral ||
58 D.getDeclSpec().hasTypeSpecifier())
59 return false;
60
61 if (D.getNumTypeObjects() == 0)
62 return true; // ^{ ... }
63
64 if (D.getNumTypeObjects() == 1 &&
65 D.getTypeObject(0).Kind == DeclaratorChunk::Function)
66 return true; // ^(int X, float Y) { ... }
67
68 return false;
69 }
70
71 /// diagnoseBadTypeAttribute - Diagnoses a type attribute which
72 /// doesn't apply to the given type.
diagnoseBadTypeAttribute(Sema & S,const ParsedAttr & attr,QualType type)73 static void diagnoseBadTypeAttribute(Sema &S, const ParsedAttr &attr,
74 QualType type) {
75 TypeDiagSelector WhichType;
76 bool useExpansionLoc = true;
77 switch (attr.getKind()) {
78 case ParsedAttr::AT_ObjCGC:
79 WhichType = TDS_Pointer;
80 break;
81 case ParsedAttr::AT_ObjCOwnership:
82 WhichType = TDS_ObjCObjOrBlock;
83 break;
84 default:
85 // Assume everything else was a function attribute.
86 WhichType = TDS_Function;
87 useExpansionLoc = false;
88 break;
89 }
90
91 SourceLocation loc = attr.getLoc();
92 StringRef name = attr.getAttrName()->getName();
93
94 // The GC attributes are usually written with macros; special-case them.
95 IdentifierInfo *II = attr.isArgIdent(0) ? attr.getArgAsIdent(0)->Ident
96 : nullptr;
97 if (useExpansionLoc && loc.isMacroID() && II) {
98 if (II->isStr("strong")) {
99 if (S.findMacroSpelling(loc, "__strong")) name = "__strong";
100 } else if (II->isStr("weak")) {
101 if (S.findMacroSpelling(loc, "__weak")) name = "__weak";
102 }
103 }
104
105 S.Diag(loc, diag::warn_type_attribute_wrong_type) << name << WhichType
106 << type;
107 }
108
109 // objc_gc applies to Objective-C pointers or, otherwise, to the
110 // smallest available pointer type (i.e. 'void*' in 'void**').
111 #define OBJC_POINTER_TYPE_ATTRS_CASELIST \
112 case ParsedAttr::AT_ObjCGC: \
113 case ParsedAttr::AT_ObjCOwnership
114
115 // Calling convention attributes.
116 #define CALLING_CONV_ATTRS_CASELIST \
117 case ParsedAttr::AT_CDecl: \
118 case ParsedAttr::AT_FastCall: \
119 case ParsedAttr::AT_StdCall: \
120 case ParsedAttr::AT_ThisCall: \
121 case ParsedAttr::AT_RegCall: \
122 case ParsedAttr::AT_Pascal: \
123 case ParsedAttr::AT_SwiftCall: \
124 case ParsedAttr::AT_SwiftAsyncCall: \
125 case ParsedAttr::AT_VectorCall: \
126 case ParsedAttr::AT_AArch64VectorPcs: \
127 case ParsedAttr::AT_AArch64SVEPcs: \
128 case ParsedAttr::AT_AMDGPUKernelCall: \
129 case ParsedAttr::AT_MSABI: \
130 case ParsedAttr::AT_SysVABI: \
131 case ParsedAttr::AT_Pcs: \
132 case ParsedAttr::AT_IntelOclBicc: \
133 case ParsedAttr::AT_PreserveMost: \
134 case ParsedAttr::AT_PreserveAll
135
136 // Function type attributes.
137 #define FUNCTION_TYPE_ATTRS_CASELIST \
138 case ParsedAttr::AT_NSReturnsRetained: \
139 case ParsedAttr::AT_NoReturn: \
140 case ParsedAttr::AT_Regparm: \
141 case ParsedAttr::AT_CmseNSCall: \
142 case ParsedAttr::AT_AnyX86NoCallerSavedRegisters: \
143 case ParsedAttr::AT_AnyX86NoCfCheck: \
144 CALLING_CONV_ATTRS_CASELIST
145
146 // Microsoft-specific type qualifiers.
147 #define MS_TYPE_ATTRS_CASELIST \
148 case ParsedAttr::AT_Ptr32: \
149 case ParsedAttr::AT_Ptr64: \
150 case ParsedAttr::AT_SPtr: \
151 case ParsedAttr::AT_UPtr
152
153 // Nullability qualifiers.
154 #define NULLABILITY_TYPE_ATTRS_CASELIST \
155 case ParsedAttr::AT_TypeNonNull: \
156 case ParsedAttr::AT_TypeNullable: \
157 case ParsedAttr::AT_TypeNullableResult: \
158 case ParsedAttr::AT_TypeNullUnspecified
159
160 namespace {
161 /// An object which stores processing state for the entire
162 /// GetTypeForDeclarator process.
163 class TypeProcessingState {
164 Sema &sema;
165
166 /// The declarator being processed.
167 Declarator &declarator;
168
169 /// The index of the declarator chunk we're currently processing.
170 /// May be the total number of valid chunks, indicating the
171 /// DeclSpec.
172 unsigned chunkIndex;
173
174 /// The original set of attributes on the DeclSpec.
175 SmallVector<ParsedAttr *, 2> savedAttrs;
176
177 /// A list of attributes to diagnose the uselessness of when the
178 /// processing is complete.
179 SmallVector<ParsedAttr *, 2> ignoredTypeAttrs;
180
181 /// Attributes corresponding to AttributedTypeLocs that we have not yet
182 /// populated.
183 // FIXME: The two-phase mechanism by which we construct Types and fill
184 // their TypeLocs makes it hard to correctly assign these. We keep the
185 // attributes in creation order as an attempt to make them line up
186 // properly.
187 using TypeAttrPair = std::pair<const AttributedType*, const Attr*>;
188 SmallVector<TypeAttrPair, 8> AttrsForTypes;
189 bool AttrsForTypesSorted = true;
190
191 /// MacroQualifiedTypes mapping to macro expansion locations that will be
192 /// stored in a MacroQualifiedTypeLoc.
193 llvm::DenseMap<const MacroQualifiedType *, SourceLocation> LocsForMacros;
194
195 /// Flag to indicate we parsed a noderef attribute. This is used for
196 /// validating that noderef was used on a pointer or array.
197 bool parsedNoDeref;
198
199 public:
TypeProcessingState(Sema & sema,Declarator & declarator)200 TypeProcessingState(Sema &sema, Declarator &declarator)
201 : sema(sema), declarator(declarator),
202 chunkIndex(declarator.getNumTypeObjects()), parsedNoDeref(false) {}
203
getSema() const204 Sema &getSema() const {
205 return sema;
206 }
207
getDeclarator() const208 Declarator &getDeclarator() const {
209 return declarator;
210 }
211
isProcessingDeclSpec() const212 bool isProcessingDeclSpec() const {
213 return chunkIndex == declarator.getNumTypeObjects();
214 }
215
getCurrentChunkIndex() const216 unsigned getCurrentChunkIndex() const {
217 return chunkIndex;
218 }
219
setCurrentChunkIndex(unsigned idx)220 void setCurrentChunkIndex(unsigned idx) {
221 assert(idx <= declarator.getNumTypeObjects());
222 chunkIndex = idx;
223 }
224
getCurrentAttributes() const225 ParsedAttributesView &getCurrentAttributes() const {
226 if (isProcessingDeclSpec())
227 return getMutableDeclSpec().getAttributes();
228 return declarator.getTypeObject(chunkIndex).getAttrs();
229 }
230
231 /// Save the current set of attributes on the DeclSpec.
saveDeclSpecAttrs()232 void saveDeclSpecAttrs() {
233 // Don't try to save them multiple times.
234 if (!savedAttrs.empty())
235 return;
236
237 DeclSpec &spec = getMutableDeclSpec();
238 llvm::append_range(savedAttrs,
239 llvm::make_pointer_range(spec.getAttributes()));
240 }
241
242 /// Record that we had nowhere to put the given type attribute.
243 /// We will diagnose such attributes later.
addIgnoredTypeAttr(ParsedAttr & attr)244 void addIgnoredTypeAttr(ParsedAttr &attr) {
245 ignoredTypeAttrs.push_back(&attr);
246 }
247
248 /// Diagnose all the ignored type attributes, given that the
249 /// declarator worked out to the given type.
diagnoseIgnoredTypeAttrs(QualType type) const250 void diagnoseIgnoredTypeAttrs(QualType type) const {
251 for (auto *Attr : ignoredTypeAttrs)
252 diagnoseBadTypeAttribute(getSema(), *Attr, type);
253 }
254
255 /// Get an attributed type for the given attribute, and remember the Attr
256 /// object so that we can attach it to the AttributedTypeLoc.
getAttributedType(Attr * A,QualType ModifiedType,QualType EquivType)257 QualType getAttributedType(Attr *A, QualType ModifiedType,
258 QualType EquivType) {
259 QualType T =
260 sema.Context.getAttributedType(A->getKind(), ModifiedType, EquivType);
261 AttrsForTypes.push_back({cast<AttributedType>(T.getTypePtr()), A});
262 AttrsForTypesSorted = false;
263 return T;
264 }
265
266 /// Get a BTFTagAttributed type for the btf_type_tag attribute.
getBTFTagAttributedType(const BTFTypeTagAttr * BTFAttr,QualType WrappedType)267 QualType getBTFTagAttributedType(const BTFTypeTagAttr *BTFAttr,
268 QualType WrappedType) {
269 return sema.Context.getBTFTagAttributedType(BTFAttr, WrappedType);
270 }
271
272 /// Completely replace the \c auto in \p TypeWithAuto by
273 /// \p Replacement. Also replace \p TypeWithAuto in \c TypeAttrPair if
274 /// necessary.
ReplaceAutoType(QualType TypeWithAuto,QualType Replacement)275 QualType ReplaceAutoType(QualType TypeWithAuto, QualType Replacement) {
276 QualType T = sema.ReplaceAutoType(TypeWithAuto, Replacement);
277 if (auto *AttrTy = TypeWithAuto->getAs<AttributedType>()) {
278 // Attributed type still should be an attributed type after replacement.
279 auto *NewAttrTy = cast<AttributedType>(T.getTypePtr());
280 for (TypeAttrPair &A : AttrsForTypes) {
281 if (A.first == AttrTy)
282 A.first = NewAttrTy;
283 }
284 AttrsForTypesSorted = false;
285 }
286 return T;
287 }
288
289 /// Extract and remove the Attr* for a given attributed type.
takeAttrForAttributedType(const AttributedType * AT)290 const Attr *takeAttrForAttributedType(const AttributedType *AT) {
291 if (!AttrsForTypesSorted) {
292 llvm::stable_sort(AttrsForTypes, llvm::less_first());
293 AttrsForTypesSorted = true;
294 }
295
296 // FIXME: This is quadratic if we have lots of reuses of the same
297 // attributed type.
298 for (auto It = std::partition_point(
299 AttrsForTypes.begin(), AttrsForTypes.end(),
300 [=](const TypeAttrPair &A) { return A.first < AT; });
301 It != AttrsForTypes.end() && It->first == AT; ++It) {
302 if (It->second) {
303 const Attr *Result = It->second;
304 It->second = nullptr;
305 return Result;
306 }
307 }
308
309 llvm_unreachable("no Attr* for AttributedType*");
310 }
311
312 SourceLocation
getExpansionLocForMacroQualifiedType(const MacroQualifiedType * MQT) const313 getExpansionLocForMacroQualifiedType(const MacroQualifiedType *MQT) const {
314 auto FoundLoc = LocsForMacros.find(MQT);
315 assert(FoundLoc != LocsForMacros.end() &&
316 "Unable to find macro expansion location for MacroQualifedType");
317 return FoundLoc->second;
318 }
319
setExpansionLocForMacroQualifiedType(const MacroQualifiedType * MQT,SourceLocation Loc)320 void setExpansionLocForMacroQualifiedType(const MacroQualifiedType *MQT,
321 SourceLocation Loc) {
322 LocsForMacros[MQT] = Loc;
323 }
324
setParsedNoDeref(bool parsed)325 void setParsedNoDeref(bool parsed) { parsedNoDeref = parsed; }
326
didParseNoDeref() const327 bool didParseNoDeref() const { return parsedNoDeref; }
328
~TypeProcessingState()329 ~TypeProcessingState() {
330 if (savedAttrs.empty())
331 return;
332
333 getMutableDeclSpec().getAttributes().clearListOnly();
334 for (ParsedAttr *AL : savedAttrs)
335 getMutableDeclSpec().getAttributes().addAtEnd(AL);
336 }
337
338 private:
getMutableDeclSpec() const339 DeclSpec &getMutableDeclSpec() const {
340 return const_cast<DeclSpec&>(declarator.getDeclSpec());
341 }
342 };
343 } // end anonymous namespace
344
moveAttrFromListToList(ParsedAttr & attr,ParsedAttributesView & fromList,ParsedAttributesView & toList)345 static void moveAttrFromListToList(ParsedAttr &attr,
346 ParsedAttributesView &fromList,
347 ParsedAttributesView &toList) {
348 fromList.remove(&attr);
349 toList.addAtEnd(&attr);
350 }
351
352 /// The location of a type attribute.
353 enum TypeAttrLocation {
354 /// The attribute is in the decl-specifier-seq.
355 TAL_DeclSpec,
356 /// The attribute is part of a DeclaratorChunk.
357 TAL_DeclChunk,
358 /// The attribute is immediately after the declaration's name.
359 TAL_DeclName
360 };
361
362 static void processTypeAttrs(TypeProcessingState &state, QualType &type,
363 TypeAttrLocation TAL,
364 const ParsedAttributesView &attrs);
365
366 static bool handleFunctionTypeAttr(TypeProcessingState &state, ParsedAttr &attr,
367 QualType &type);
368
369 static bool handleMSPointerTypeQualifierAttr(TypeProcessingState &state,
370 ParsedAttr &attr, QualType &type);
371
372 static bool handleObjCGCTypeAttr(TypeProcessingState &state, ParsedAttr &attr,
373 QualType &type);
374
375 static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
376 ParsedAttr &attr, QualType &type);
377
handleObjCPointerTypeAttr(TypeProcessingState & state,ParsedAttr & attr,QualType & type)378 static bool handleObjCPointerTypeAttr(TypeProcessingState &state,
379 ParsedAttr &attr, QualType &type) {
380 if (attr.getKind() == ParsedAttr::AT_ObjCGC)
381 return handleObjCGCTypeAttr(state, attr, type);
382 assert(attr.getKind() == ParsedAttr::AT_ObjCOwnership);
383 return handleObjCOwnershipTypeAttr(state, attr, type);
384 }
385
386 /// Given the index of a declarator chunk, check whether that chunk
387 /// directly specifies the return type of a function and, if so, find
388 /// an appropriate place for it.
389 ///
390 /// \param i - a notional index which the search will start
391 /// immediately inside
392 ///
393 /// \param onlyBlockPointers Whether we should only look into block
394 /// pointer types (vs. all pointer types).
maybeMovePastReturnType(Declarator & declarator,unsigned i,bool onlyBlockPointers)395 static DeclaratorChunk *maybeMovePastReturnType(Declarator &declarator,
396 unsigned i,
397 bool onlyBlockPointers) {
398 assert(i <= declarator.getNumTypeObjects());
399
400 DeclaratorChunk *result = nullptr;
401
402 // First, look inwards past parens for a function declarator.
403 for (; i != 0; --i) {
404 DeclaratorChunk &fnChunk = declarator.getTypeObject(i-1);
405 switch (fnChunk.Kind) {
406 case DeclaratorChunk::Paren:
407 continue;
408
409 // If we find anything except a function, bail out.
410 case DeclaratorChunk::Pointer:
411 case DeclaratorChunk::BlockPointer:
412 case DeclaratorChunk::Array:
413 case DeclaratorChunk::Reference:
414 case DeclaratorChunk::MemberPointer:
415 case DeclaratorChunk::Pipe:
416 return result;
417
418 // If we do find a function declarator, scan inwards from that,
419 // looking for a (block-)pointer declarator.
420 case DeclaratorChunk::Function:
421 for (--i; i != 0; --i) {
422 DeclaratorChunk &ptrChunk = declarator.getTypeObject(i-1);
423 switch (ptrChunk.Kind) {
424 case DeclaratorChunk::Paren:
425 case DeclaratorChunk::Array:
426 case DeclaratorChunk::Function:
427 case DeclaratorChunk::Reference:
428 case DeclaratorChunk::Pipe:
429 continue;
430
431 case DeclaratorChunk::MemberPointer:
432 case DeclaratorChunk::Pointer:
433 if (onlyBlockPointers)
434 continue;
435
436 [[fallthrough]];
437
438 case DeclaratorChunk::BlockPointer:
439 result = &ptrChunk;
440 goto continue_outer;
441 }
442 llvm_unreachable("bad declarator chunk kind");
443 }
444
445 // If we run out of declarators doing that, we're done.
446 return result;
447 }
448 llvm_unreachable("bad declarator chunk kind");
449
450 // Okay, reconsider from our new point.
451 continue_outer: ;
452 }
453
454 // Ran out of chunks, bail out.
455 return result;
456 }
457
458 /// Given that an objc_gc attribute was written somewhere on a
459 /// declaration *other* than on the declarator itself (for which, use
460 /// distributeObjCPointerTypeAttrFromDeclarator), and given that it
461 /// didn't apply in whatever position it was written in, try to move
462 /// it to a more appropriate position.
distributeObjCPointerTypeAttr(TypeProcessingState & state,ParsedAttr & attr,QualType type)463 static void distributeObjCPointerTypeAttr(TypeProcessingState &state,
464 ParsedAttr &attr, QualType type) {
465 Declarator &declarator = state.getDeclarator();
466
467 // Move it to the outermost normal or block pointer declarator.
468 for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
469 DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
470 switch (chunk.Kind) {
471 case DeclaratorChunk::Pointer:
472 case DeclaratorChunk::BlockPointer: {
473 // But don't move an ARC ownership attribute to the return type
474 // of a block.
475 DeclaratorChunk *destChunk = nullptr;
476 if (state.isProcessingDeclSpec() &&
477 attr.getKind() == ParsedAttr::AT_ObjCOwnership)
478 destChunk = maybeMovePastReturnType(declarator, i - 1,
479 /*onlyBlockPointers=*/true);
480 if (!destChunk) destChunk = &chunk;
481
482 moveAttrFromListToList(attr, state.getCurrentAttributes(),
483 destChunk->getAttrs());
484 return;
485 }
486
487 case DeclaratorChunk::Paren:
488 case DeclaratorChunk::Array:
489 continue;
490
491 // We may be starting at the return type of a block.
492 case DeclaratorChunk::Function:
493 if (state.isProcessingDeclSpec() &&
494 attr.getKind() == ParsedAttr::AT_ObjCOwnership) {
495 if (DeclaratorChunk *dest = maybeMovePastReturnType(
496 declarator, i,
497 /*onlyBlockPointers=*/true)) {
498 moveAttrFromListToList(attr, state.getCurrentAttributes(),
499 dest->getAttrs());
500 return;
501 }
502 }
503 goto error;
504
505 // Don't walk through these.
506 case DeclaratorChunk::Reference:
507 case DeclaratorChunk::MemberPointer:
508 case DeclaratorChunk::Pipe:
509 goto error;
510 }
511 }
512 error:
513
514 diagnoseBadTypeAttribute(state.getSema(), attr, type);
515 }
516
517 /// Distribute an objc_gc type attribute that was written on the
518 /// declarator.
distributeObjCPointerTypeAttrFromDeclarator(TypeProcessingState & state,ParsedAttr & attr,QualType & declSpecType)519 static void distributeObjCPointerTypeAttrFromDeclarator(
520 TypeProcessingState &state, ParsedAttr &attr, QualType &declSpecType) {
521 Declarator &declarator = state.getDeclarator();
522
523 // objc_gc goes on the innermost pointer to something that's not a
524 // pointer.
525 unsigned innermost = -1U;
526 bool considerDeclSpec = true;
527 for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
528 DeclaratorChunk &chunk = declarator.getTypeObject(i);
529 switch (chunk.Kind) {
530 case DeclaratorChunk::Pointer:
531 case DeclaratorChunk::BlockPointer:
532 innermost = i;
533 continue;
534
535 case DeclaratorChunk::Reference:
536 case DeclaratorChunk::MemberPointer:
537 case DeclaratorChunk::Paren:
538 case DeclaratorChunk::Array:
539 case DeclaratorChunk::Pipe:
540 continue;
541
542 case DeclaratorChunk::Function:
543 considerDeclSpec = false;
544 goto done;
545 }
546 }
547 done:
548
549 // That might actually be the decl spec if we weren't blocked by
550 // anything in the declarator.
551 if (considerDeclSpec) {
552 if (handleObjCPointerTypeAttr(state, attr, declSpecType)) {
553 // Splice the attribute into the decl spec. Prevents the
554 // attribute from being applied multiple times and gives
555 // the source-location-filler something to work with.
556 state.saveDeclSpecAttrs();
557 declarator.getMutableDeclSpec().getAttributes().takeOneFrom(
558 declarator.getAttributes(), &attr);
559 return;
560 }
561 }
562
563 // Otherwise, if we found an appropriate chunk, splice the attribute
564 // into it.
565 if (innermost != -1U) {
566 moveAttrFromListToList(attr, declarator.getAttributes(),
567 declarator.getTypeObject(innermost).getAttrs());
568 return;
569 }
570
571 // Otherwise, diagnose when we're done building the type.
572 declarator.getAttributes().remove(&attr);
573 state.addIgnoredTypeAttr(attr);
574 }
575
576 /// A function type attribute was written somewhere in a declaration
577 /// *other* than on the declarator itself or in the decl spec. Given
578 /// that it didn't apply in whatever position it was written in, try
579 /// to move it to a more appropriate position.
distributeFunctionTypeAttr(TypeProcessingState & state,ParsedAttr & attr,QualType type)580 static void distributeFunctionTypeAttr(TypeProcessingState &state,
581 ParsedAttr &attr, QualType type) {
582 Declarator &declarator = state.getDeclarator();
583
584 // Try to push the attribute from the return type of a function to
585 // the function itself.
586 for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
587 DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
588 switch (chunk.Kind) {
589 case DeclaratorChunk::Function:
590 moveAttrFromListToList(attr, state.getCurrentAttributes(),
591 chunk.getAttrs());
592 return;
593
594 case DeclaratorChunk::Paren:
595 case DeclaratorChunk::Pointer:
596 case DeclaratorChunk::BlockPointer:
597 case DeclaratorChunk::Array:
598 case DeclaratorChunk::Reference:
599 case DeclaratorChunk::MemberPointer:
600 case DeclaratorChunk::Pipe:
601 continue;
602 }
603 }
604
605 diagnoseBadTypeAttribute(state.getSema(), attr, type);
606 }
607
608 /// Try to distribute a function type attribute to the innermost
609 /// function chunk or type. Returns true if the attribute was
610 /// distributed, false if no location was found.
distributeFunctionTypeAttrToInnermost(TypeProcessingState & state,ParsedAttr & attr,ParsedAttributesView & attrList,QualType & declSpecType)611 static bool distributeFunctionTypeAttrToInnermost(
612 TypeProcessingState &state, ParsedAttr &attr,
613 ParsedAttributesView &attrList, QualType &declSpecType) {
614 Declarator &declarator = state.getDeclarator();
615
616 // Put it on the innermost function chunk, if there is one.
617 for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
618 DeclaratorChunk &chunk = declarator.getTypeObject(i);
619 if (chunk.Kind != DeclaratorChunk::Function) continue;
620
621 moveAttrFromListToList(attr, attrList, chunk.getAttrs());
622 return true;
623 }
624
625 return handleFunctionTypeAttr(state, attr, declSpecType);
626 }
627
628 /// A function type attribute was written in the decl spec. Try to
629 /// apply it somewhere.
distributeFunctionTypeAttrFromDeclSpec(TypeProcessingState & state,ParsedAttr & attr,QualType & declSpecType)630 static void distributeFunctionTypeAttrFromDeclSpec(TypeProcessingState &state,
631 ParsedAttr &attr,
632 QualType &declSpecType) {
633 state.saveDeclSpecAttrs();
634
635 // Try to distribute to the innermost.
636 if (distributeFunctionTypeAttrToInnermost(
637 state, attr, state.getCurrentAttributes(), declSpecType))
638 return;
639
640 // If that failed, diagnose the bad attribute when the declarator is
641 // fully built.
642 state.addIgnoredTypeAttr(attr);
643 }
644
645 /// A function type attribute was written on the declarator or declaration.
646 /// Try to apply it somewhere.
647 /// `Attrs` is the attribute list containing the declaration (either of the
648 /// declarator or the declaration).
distributeFunctionTypeAttrFromDeclarator(TypeProcessingState & state,ParsedAttr & attr,QualType & declSpecType)649 static void distributeFunctionTypeAttrFromDeclarator(TypeProcessingState &state,
650 ParsedAttr &attr,
651 QualType &declSpecType) {
652 Declarator &declarator = state.getDeclarator();
653
654 // Try to distribute to the innermost.
655 if (distributeFunctionTypeAttrToInnermost(
656 state, attr, declarator.getAttributes(), declSpecType))
657 return;
658
659 // If that failed, diagnose the bad attribute when the declarator is
660 // fully built.
661 declarator.getAttributes().remove(&attr);
662 state.addIgnoredTypeAttr(attr);
663 }
664
665 /// Given that there are attributes written on the declarator or declaration
666 /// itself, try to distribute any type attributes to the appropriate
667 /// declarator chunk.
668 ///
669 /// These are attributes like the following:
670 /// int f ATTR;
671 /// int (f ATTR)();
672 /// but not necessarily this:
673 /// int f() ATTR;
674 ///
675 /// `Attrs` is the attribute list containing the declaration (either of the
676 /// declarator or the declaration).
distributeTypeAttrsFromDeclarator(TypeProcessingState & state,QualType & declSpecType)677 static void distributeTypeAttrsFromDeclarator(TypeProcessingState &state,
678 QualType &declSpecType) {
679 // The called functions in this loop actually remove things from the current
680 // list, so iterating over the existing list isn't possible. Instead, make a
681 // non-owning copy and iterate over that.
682 ParsedAttributesView AttrsCopy{state.getDeclarator().getAttributes()};
683 for (ParsedAttr &attr : AttrsCopy) {
684 // Do not distribute [[]] attributes. They have strict rules for what
685 // they appertain to.
686 if (attr.isStandardAttributeSyntax())
687 continue;
688
689 switch (attr.getKind()) {
690 OBJC_POINTER_TYPE_ATTRS_CASELIST:
691 distributeObjCPointerTypeAttrFromDeclarator(state, attr, declSpecType);
692 break;
693
694 FUNCTION_TYPE_ATTRS_CASELIST:
695 distributeFunctionTypeAttrFromDeclarator(state, attr, declSpecType);
696 break;
697
698 MS_TYPE_ATTRS_CASELIST:
699 // Microsoft type attributes cannot go after the declarator-id.
700 continue;
701
702 NULLABILITY_TYPE_ATTRS_CASELIST:
703 // Nullability specifiers cannot go after the declarator-id.
704
705 // Objective-C __kindof does not get distributed.
706 case ParsedAttr::AT_ObjCKindOf:
707 continue;
708
709 default:
710 break;
711 }
712 }
713 }
714
715 /// Add a synthetic '()' to a block-literal declarator if it is
716 /// required, given the return type.
maybeSynthesizeBlockSignature(TypeProcessingState & state,QualType declSpecType)717 static void maybeSynthesizeBlockSignature(TypeProcessingState &state,
718 QualType declSpecType) {
719 Declarator &declarator = state.getDeclarator();
720
721 // First, check whether the declarator would produce a function,
722 // i.e. whether the innermost semantic chunk is a function.
723 if (declarator.isFunctionDeclarator()) {
724 // If so, make that declarator a prototyped declarator.
725 declarator.getFunctionTypeInfo().hasPrototype = true;
726 return;
727 }
728
729 // If there are any type objects, the type as written won't name a
730 // function, regardless of the decl spec type. This is because a
731 // block signature declarator is always an abstract-declarator, and
732 // abstract-declarators can't just be parentheses chunks. Therefore
733 // we need to build a function chunk unless there are no type
734 // objects and the decl spec type is a function.
735 if (!declarator.getNumTypeObjects() && declSpecType->isFunctionType())
736 return;
737
738 // Note that there *are* cases with invalid declarators where
739 // declarators consist solely of parentheses. In general, these
740 // occur only in failed efforts to make function declarators, so
741 // faking up the function chunk is still the right thing to do.
742
743 // Otherwise, we need to fake up a function declarator.
744 SourceLocation loc = declarator.getBeginLoc();
745
746 // ...and *prepend* it to the declarator.
747 SourceLocation NoLoc;
748 declarator.AddInnermostTypeInfo(DeclaratorChunk::getFunction(
749 /*HasProto=*/true,
750 /*IsAmbiguous=*/false,
751 /*LParenLoc=*/NoLoc,
752 /*ArgInfo=*/nullptr,
753 /*NumParams=*/0,
754 /*EllipsisLoc=*/NoLoc,
755 /*RParenLoc=*/NoLoc,
756 /*RefQualifierIsLvalueRef=*/true,
757 /*RefQualifierLoc=*/NoLoc,
758 /*MutableLoc=*/NoLoc, EST_None,
759 /*ESpecRange=*/SourceRange(),
760 /*Exceptions=*/nullptr,
761 /*ExceptionRanges=*/nullptr,
762 /*NumExceptions=*/0,
763 /*NoexceptExpr=*/nullptr,
764 /*ExceptionSpecTokens=*/nullptr,
765 /*DeclsInPrototype=*/std::nullopt, loc, loc, declarator));
766
767 // For consistency, make sure the state still has us as processing
768 // the decl spec.
769 assert(state.getCurrentChunkIndex() == declarator.getNumTypeObjects() - 1);
770 state.setCurrentChunkIndex(declarator.getNumTypeObjects());
771 }
772
diagnoseAndRemoveTypeQualifiers(Sema & S,const DeclSpec & DS,unsigned & TypeQuals,QualType TypeSoFar,unsigned RemoveTQs,unsigned DiagID)773 static void diagnoseAndRemoveTypeQualifiers(Sema &S, const DeclSpec &DS,
774 unsigned &TypeQuals,
775 QualType TypeSoFar,
776 unsigned RemoveTQs,
777 unsigned DiagID) {
778 // If this occurs outside a template instantiation, warn the user about
779 // it; they probably didn't mean to specify a redundant qualifier.
780 typedef std::pair<DeclSpec::TQ, SourceLocation> QualLoc;
781 for (QualLoc Qual : {QualLoc(DeclSpec::TQ_const, DS.getConstSpecLoc()),
782 QualLoc(DeclSpec::TQ_restrict, DS.getRestrictSpecLoc()),
783 QualLoc(DeclSpec::TQ_volatile, DS.getVolatileSpecLoc()),
784 QualLoc(DeclSpec::TQ_atomic, DS.getAtomicSpecLoc())}) {
785 if (!(RemoveTQs & Qual.first))
786 continue;
787
788 if (!S.inTemplateInstantiation()) {
789 if (TypeQuals & Qual.first)
790 S.Diag(Qual.second, DiagID)
791 << DeclSpec::getSpecifierName(Qual.first) << TypeSoFar
792 << FixItHint::CreateRemoval(Qual.second);
793 }
794
795 TypeQuals &= ~Qual.first;
796 }
797 }
798
799 /// Return true if this is omitted block return type. Also check type
800 /// attributes and type qualifiers when returning true.
checkOmittedBlockReturnType(Sema & S,Declarator & declarator,QualType Result)801 static bool checkOmittedBlockReturnType(Sema &S, Declarator &declarator,
802 QualType Result) {
803 if (!isOmittedBlockReturnType(declarator))
804 return false;
805
806 // Warn if we see type attributes for omitted return type on a block literal.
807 SmallVector<ParsedAttr *, 2> ToBeRemoved;
808 for (ParsedAttr &AL : declarator.getMutableDeclSpec().getAttributes()) {
809 if (AL.isInvalid() || !AL.isTypeAttr())
810 continue;
811 S.Diag(AL.getLoc(),
812 diag::warn_block_literal_attributes_on_omitted_return_type)
813 << AL;
814 ToBeRemoved.push_back(&AL);
815 }
816 // Remove bad attributes from the list.
817 for (ParsedAttr *AL : ToBeRemoved)
818 declarator.getMutableDeclSpec().getAttributes().remove(AL);
819
820 // Warn if we see type qualifiers for omitted return type on a block literal.
821 const DeclSpec &DS = declarator.getDeclSpec();
822 unsigned TypeQuals = DS.getTypeQualifiers();
823 diagnoseAndRemoveTypeQualifiers(S, DS, TypeQuals, Result, (unsigned)-1,
824 diag::warn_block_literal_qualifiers_on_omitted_return_type);
825 declarator.getMutableDeclSpec().ClearTypeQualifiers();
826
827 return true;
828 }
829
830 /// Apply Objective-C type arguments to the given type.
applyObjCTypeArgs(Sema & S,SourceLocation loc,QualType type,ArrayRef<TypeSourceInfo * > typeArgs,SourceRange typeArgsRange,bool failOnError,bool rebuilding)831 static QualType applyObjCTypeArgs(Sema &S, SourceLocation loc, QualType type,
832 ArrayRef<TypeSourceInfo *> typeArgs,
833 SourceRange typeArgsRange, bool failOnError,
834 bool rebuilding) {
835 // We can only apply type arguments to an Objective-C class type.
836 const auto *objcObjectType = type->getAs<ObjCObjectType>();
837 if (!objcObjectType || !objcObjectType->getInterface()) {
838 S.Diag(loc, diag::err_objc_type_args_non_class)
839 << type
840 << typeArgsRange;
841
842 if (failOnError)
843 return QualType();
844 return type;
845 }
846
847 // The class type must be parameterized.
848 ObjCInterfaceDecl *objcClass = objcObjectType->getInterface();
849 ObjCTypeParamList *typeParams = objcClass->getTypeParamList();
850 if (!typeParams) {
851 S.Diag(loc, diag::err_objc_type_args_non_parameterized_class)
852 << objcClass->getDeclName()
853 << FixItHint::CreateRemoval(typeArgsRange);
854
855 if (failOnError)
856 return QualType();
857
858 return type;
859 }
860
861 // The type must not already be specialized.
862 if (objcObjectType->isSpecialized()) {
863 S.Diag(loc, diag::err_objc_type_args_specialized_class)
864 << type
865 << FixItHint::CreateRemoval(typeArgsRange);
866
867 if (failOnError)
868 return QualType();
869
870 return type;
871 }
872
873 // Check the type arguments.
874 SmallVector<QualType, 4> finalTypeArgs;
875 unsigned numTypeParams = typeParams->size();
876 bool anyPackExpansions = false;
877 for (unsigned i = 0, n = typeArgs.size(); i != n; ++i) {
878 TypeSourceInfo *typeArgInfo = typeArgs[i];
879 QualType typeArg = typeArgInfo->getType();
880
881 // Type arguments cannot have explicit qualifiers or nullability.
882 // We ignore indirect sources of these, e.g. behind typedefs or
883 // template arguments.
884 if (TypeLoc qual = typeArgInfo->getTypeLoc().findExplicitQualifierLoc()) {
885 bool diagnosed = false;
886 SourceRange rangeToRemove;
887 if (auto attr = qual.getAs<AttributedTypeLoc>()) {
888 rangeToRemove = attr.getLocalSourceRange();
889 if (attr.getTypePtr()->getImmediateNullability()) {
890 typeArg = attr.getTypePtr()->getModifiedType();
891 S.Diag(attr.getBeginLoc(),
892 diag::err_objc_type_arg_explicit_nullability)
893 << typeArg << FixItHint::CreateRemoval(rangeToRemove);
894 diagnosed = true;
895 }
896 }
897
898 // When rebuilding, qualifiers might have gotten here through a
899 // final substitution.
900 if (!rebuilding && !diagnosed) {
901 S.Diag(qual.getBeginLoc(), diag::err_objc_type_arg_qualified)
902 << typeArg << typeArg.getQualifiers().getAsString()
903 << FixItHint::CreateRemoval(rangeToRemove);
904 }
905 }
906
907 // Remove qualifiers even if they're non-local.
908 typeArg = typeArg.getUnqualifiedType();
909
910 finalTypeArgs.push_back(typeArg);
911
912 if (typeArg->getAs<PackExpansionType>())
913 anyPackExpansions = true;
914
915 // Find the corresponding type parameter, if there is one.
916 ObjCTypeParamDecl *typeParam = nullptr;
917 if (!anyPackExpansions) {
918 if (i < numTypeParams) {
919 typeParam = typeParams->begin()[i];
920 } else {
921 // Too many arguments.
922 S.Diag(loc, diag::err_objc_type_args_wrong_arity)
923 << false
924 << objcClass->getDeclName()
925 << (unsigned)typeArgs.size()
926 << numTypeParams;
927 S.Diag(objcClass->getLocation(), diag::note_previous_decl)
928 << objcClass;
929
930 if (failOnError)
931 return QualType();
932
933 return type;
934 }
935 }
936
937 // Objective-C object pointer types must be substitutable for the bounds.
938 if (const auto *typeArgObjC = typeArg->getAs<ObjCObjectPointerType>()) {
939 // If we don't have a type parameter to match against, assume
940 // everything is fine. There was a prior pack expansion that
941 // means we won't be able to match anything.
942 if (!typeParam) {
943 assert(anyPackExpansions && "Too many arguments?");
944 continue;
945 }
946
947 // Retrieve the bound.
948 QualType bound = typeParam->getUnderlyingType();
949 const auto *boundObjC = bound->getAs<ObjCObjectPointerType>();
950
951 // Determine whether the type argument is substitutable for the bound.
952 if (typeArgObjC->isObjCIdType()) {
953 // When the type argument is 'id', the only acceptable type
954 // parameter bound is 'id'.
955 if (boundObjC->isObjCIdType())
956 continue;
957 } else if (S.Context.canAssignObjCInterfaces(boundObjC, typeArgObjC)) {
958 // Otherwise, we follow the assignability rules.
959 continue;
960 }
961
962 // Diagnose the mismatch.
963 S.Diag(typeArgInfo->getTypeLoc().getBeginLoc(),
964 diag::err_objc_type_arg_does_not_match_bound)
965 << typeArg << bound << typeParam->getDeclName();
966 S.Diag(typeParam->getLocation(), diag::note_objc_type_param_here)
967 << typeParam->getDeclName();
968
969 if (failOnError)
970 return QualType();
971
972 return type;
973 }
974
975 // Block pointer types are permitted for unqualified 'id' bounds.
976 if (typeArg->isBlockPointerType()) {
977 // If we don't have a type parameter to match against, assume
978 // everything is fine. There was a prior pack expansion that
979 // means we won't be able to match anything.
980 if (!typeParam) {
981 assert(anyPackExpansions && "Too many arguments?");
982 continue;
983 }
984
985 // Retrieve the bound.
986 QualType bound = typeParam->getUnderlyingType();
987 if (bound->isBlockCompatibleObjCPointerType(S.Context))
988 continue;
989
990 // Diagnose the mismatch.
991 S.Diag(typeArgInfo->getTypeLoc().getBeginLoc(),
992 diag::err_objc_type_arg_does_not_match_bound)
993 << typeArg << bound << typeParam->getDeclName();
994 S.Diag(typeParam->getLocation(), diag::note_objc_type_param_here)
995 << typeParam->getDeclName();
996
997 if (failOnError)
998 return QualType();
999
1000 return type;
1001 }
1002
1003 // Dependent types will be checked at instantiation time.
1004 if (typeArg->isDependentType()) {
1005 continue;
1006 }
1007
1008 // Diagnose non-id-compatible type arguments.
1009 S.Diag(typeArgInfo->getTypeLoc().getBeginLoc(),
1010 diag::err_objc_type_arg_not_id_compatible)
1011 << typeArg << typeArgInfo->getTypeLoc().getSourceRange();
1012
1013 if (failOnError)
1014 return QualType();
1015
1016 return type;
1017 }
1018
1019 // Make sure we didn't have the wrong number of arguments.
1020 if (!anyPackExpansions && finalTypeArgs.size() != numTypeParams) {
1021 S.Diag(loc, diag::err_objc_type_args_wrong_arity)
1022 << (typeArgs.size() < typeParams->size())
1023 << objcClass->getDeclName()
1024 << (unsigned)finalTypeArgs.size()
1025 << (unsigned)numTypeParams;
1026 S.Diag(objcClass->getLocation(), diag::note_previous_decl)
1027 << objcClass;
1028
1029 if (failOnError)
1030 return QualType();
1031
1032 return type;
1033 }
1034
1035 // Success. Form the specialized type.
1036 return S.Context.getObjCObjectType(type, finalTypeArgs, { }, false);
1037 }
1038
BuildObjCTypeParamType(const ObjCTypeParamDecl * Decl,SourceLocation ProtocolLAngleLoc,ArrayRef<ObjCProtocolDecl * > Protocols,ArrayRef<SourceLocation> ProtocolLocs,SourceLocation ProtocolRAngleLoc,bool FailOnError)1039 QualType Sema::BuildObjCTypeParamType(const ObjCTypeParamDecl *Decl,
1040 SourceLocation ProtocolLAngleLoc,
1041 ArrayRef<ObjCProtocolDecl *> Protocols,
1042 ArrayRef<SourceLocation> ProtocolLocs,
1043 SourceLocation ProtocolRAngleLoc,
1044 bool FailOnError) {
1045 QualType Result = QualType(Decl->getTypeForDecl(), 0);
1046 if (!Protocols.empty()) {
1047 bool HasError;
1048 Result = Context.applyObjCProtocolQualifiers(Result, Protocols,
1049 HasError);
1050 if (HasError) {
1051 Diag(SourceLocation(), diag::err_invalid_protocol_qualifiers)
1052 << SourceRange(ProtocolLAngleLoc, ProtocolRAngleLoc);
1053 if (FailOnError) Result = QualType();
1054 }
1055 if (FailOnError && Result.isNull())
1056 return QualType();
1057 }
1058
1059 return Result;
1060 }
1061
BuildObjCObjectType(QualType BaseType,SourceLocation Loc,SourceLocation TypeArgsLAngleLoc,ArrayRef<TypeSourceInfo * > TypeArgs,SourceLocation TypeArgsRAngleLoc,SourceLocation ProtocolLAngleLoc,ArrayRef<ObjCProtocolDecl * > Protocols,ArrayRef<SourceLocation> ProtocolLocs,SourceLocation ProtocolRAngleLoc,bool FailOnError,bool Rebuilding)1062 QualType Sema::BuildObjCObjectType(
1063 QualType BaseType, SourceLocation Loc, SourceLocation TypeArgsLAngleLoc,
1064 ArrayRef<TypeSourceInfo *> TypeArgs, SourceLocation TypeArgsRAngleLoc,
1065 SourceLocation ProtocolLAngleLoc, ArrayRef<ObjCProtocolDecl *> Protocols,
1066 ArrayRef<SourceLocation> ProtocolLocs, SourceLocation ProtocolRAngleLoc,
1067 bool FailOnError, bool Rebuilding) {
1068 QualType Result = BaseType;
1069 if (!TypeArgs.empty()) {
1070 Result =
1071 applyObjCTypeArgs(*this, Loc, Result, TypeArgs,
1072 SourceRange(TypeArgsLAngleLoc, TypeArgsRAngleLoc),
1073 FailOnError, Rebuilding);
1074 if (FailOnError && Result.isNull())
1075 return QualType();
1076 }
1077
1078 if (!Protocols.empty()) {
1079 bool HasError;
1080 Result = Context.applyObjCProtocolQualifiers(Result, Protocols,
1081 HasError);
1082 if (HasError) {
1083 Diag(Loc, diag::err_invalid_protocol_qualifiers)
1084 << SourceRange(ProtocolLAngleLoc, ProtocolRAngleLoc);
1085 if (FailOnError) Result = QualType();
1086 }
1087 if (FailOnError && Result.isNull())
1088 return QualType();
1089 }
1090
1091 return Result;
1092 }
1093
actOnObjCProtocolQualifierType(SourceLocation lAngleLoc,ArrayRef<Decl * > protocols,ArrayRef<SourceLocation> protocolLocs,SourceLocation rAngleLoc)1094 TypeResult Sema::actOnObjCProtocolQualifierType(
1095 SourceLocation lAngleLoc,
1096 ArrayRef<Decl *> protocols,
1097 ArrayRef<SourceLocation> protocolLocs,
1098 SourceLocation rAngleLoc) {
1099 // Form id<protocol-list>.
1100 QualType Result = Context.getObjCObjectType(
1101 Context.ObjCBuiltinIdTy, {},
1102 llvm::ArrayRef((ObjCProtocolDecl *const *)protocols.data(),
1103 protocols.size()),
1104 false);
1105 Result = Context.getObjCObjectPointerType(Result);
1106
1107 TypeSourceInfo *ResultTInfo = Context.CreateTypeSourceInfo(Result);
1108 TypeLoc ResultTL = ResultTInfo->getTypeLoc();
1109
1110 auto ObjCObjectPointerTL = ResultTL.castAs<ObjCObjectPointerTypeLoc>();
1111 ObjCObjectPointerTL.setStarLoc(SourceLocation()); // implicit
1112
1113 auto ObjCObjectTL = ObjCObjectPointerTL.getPointeeLoc()
1114 .castAs<ObjCObjectTypeLoc>();
1115 ObjCObjectTL.setHasBaseTypeAsWritten(false);
1116 ObjCObjectTL.getBaseLoc().initialize(Context, SourceLocation());
1117
1118 // No type arguments.
1119 ObjCObjectTL.setTypeArgsLAngleLoc(SourceLocation());
1120 ObjCObjectTL.setTypeArgsRAngleLoc(SourceLocation());
1121
1122 // Fill in protocol qualifiers.
1123 ObjCObjectTL.setProtocolLAngleLoc(lAngleLoc);
1124 ObjCObjectTL.setProtocolRAngleLoc(rAngleLoc);
1125 for (unsigned i = 0, n = protocols.size(); i != n; ++i)
1126 ObjCObjectTL.setProtocolLoc(i, protocolLocs[i]);
1127
1128 // We're done. Return the completed type to the parser.
1129 return CreateParsedType(Result, ResultTInfo);
1130 }
1131
actOnObjCTypeArgsAndProtocolQualifiers(Scope * S,SourceLocation Loc,ParsedType BaseType,SourceLocation TypeArgsLAngleLoc,ArrayRef<ParsedType> TypeArgs,SourceLocation TypeArgsRAngleLoc,SourceLocation ProtocolLAngleLoc,ArrayRef<Decl * > Protocols,ArrayRef<SourceLocation> ProtocolLocs,SourceLocation ProtocolRAngleLoc)1132 TypeResult Sema::actOnObjCTypeArgsAndProtocolQualifiers(
1133 Scope *S,
1134 SourceLocation Loc,
1135 ParsedType BaseType,
1136 SourceLocation TypeArgsLAngleLoc,
1137 ArrayRef<ParsedType> TypeArgs,
1138 SourceLocation TypeArgsRAngleLoc,
1139 SourceLocation ProtocolLAngleLoc,
1140 ArrayRef<Decl *> Protocols,
1141 ArrayRef<SourceLocation> ProtocolLocs,
1142 SourceLocation ProtocolRAngleLoc) {
1143 TypeSourceInfo *BaseTypeInfo = nullptr;
1144 QualType T = GetTypeFromParser(BaseType, &BaseTypeInfo);
1145 if (T.isNull())
1146 return true;
1147
1148 // Handle missing type-source info.
1149 if (!BaseTypeInfo)
1150 BaseTypeInfo = Context.getTrivialTypeSourceInfo(T, Loc);
1151
1152 // Extract type arguments.
1153 SmallVector<TypeSourceInfo *, 4> ActualTypeArgInfos;
1154 for (unsigned i = 0, n = TypeArgs.size(); i != n; ++i) {
1155 TypeSourceInfo *TypeArgInfo = nullptr;
1156 QualType TypeArg = GetTypeFromParser(TypeArgs[i], &TypeArgInfo);
1157 if (TypeArg.isNull()) {
1158 ActualTypeArgInfos.clear();
1159 break;
1160 }
1161
1162 assert(TypeArgInfo && "No type source info?");
1163 ActualTypeArgInfos.push_back(TypeArgInfo);
1164 }
1165
1166 // Build the object type.
1167 QualType Result = BuildObjCObjectType(
1168 T, BaseTypeInfo->getTypeLoc().getSourceRange().getBegin(),
1169 TypeArgsLAngleLoc, ActualTypeArgInfos, TypeArgsRAngleLoc,
1170 ProtocolLAngleLoc,
1171 llvm::ArrayRef((ObjCProtocolDecl *const *)Protocols.data(),
1172 Protocols.size()),
1173 ProtocolLocs, ProtocolRAngleLoc,
1174 /*FailOnError=*/false,
1175 /*Rebuilding=*/false);
1176
1177 if (Result == T)
1178 return BaseType;
1179
1180 // Create source information for this type.
1181 TypeSourceInfo *ResultTInfo = Context.CreateTypeSourceInfo(Result);
1182 TypeLoc ResultTL = ResultTInfo->getTypeLoc();
1183
1184 // For id<Proto1, Proto2> or Class<Proto1, Proto2>, we'll have an
1185 // object pointer type. Fill in source information for it.
1186 if (auto ObjCObjectPointerTL = ResultTL.getAs<ObjCObjectPointerTypeLoc>()) {
1187 // The '*' is implicit.
1188 ObjCObjectPointerTL.setStarLoc(SourceLocation());
1189 ResultTL = ObjCObjectPointerTL.getPointeeLoc();
1190 }
1191
1192 if (auto OTPTL = ResultTL.getAs<ObjCTypeParamTypeLoc>()) {
1193 // Protocol qualifier information.
1194 if (OTPTL.getNumProtocols() > 0) {
1195 assert(OTPTL.getNumProtocols() == Protocols.size());
1196 OTPTL.setProtocolLAngleLoc(ProtocolLAngleLoc);
1197 OTPTL.setProtocolRAngleLoc(ProtocolRAngleLoc);
1198 for (unsigned i = 0, n = Protocols.size(); i != n; ++i)
1199 OTPTL.setProtocolLoc(i, ProtocolLocs[i]);
1200 }
1201
1202 // We're done. Return the completed type to the parser.
1203 return CreateParsedType(Result, ResultTInfo);
1204 }
1205
1206 auto ObjCObjectTL = ResultTL.castAs<ObjCObjectTypeLoc>();
1207
1208 // Type argument information.
1209 if (ObjCObjectTL.getNumTypeArgs() > 0) {
1210 assert(ObjCObjectTL.getNumTypeArgs() == ActualTypeArgInfos.size());
1211 ObjCObjectTL.setTypeArgsLAngleLoc(TypeArgsLAngleLoc);
1212 ObjCObjectTL.setTypeArgsRAngleLoc(TypeArgsRAngleLoc);
1213 for (unsigned i = 0, n = ActualTypeArgInfos.size(); i != n; ++i)
1214 ObjCObjectTL.setTypeArgTInfo(i, ActualTypeArgInfos[i]);
1215 } else {
1216 ObjCObjectTL.setTypeArgsLAngleLoc(SourceLocation());
1217 ObjCObjectTL.setTypeArgsRAngleLoc(SourceLocation());
1218 }
1219
1220 // Protocol qualifier information.
1221 if (ObjCObjectTL.getNumProtocols() > 0) {
1222 assert(ObjCObjectTL.getNumProtocols() == Protocols.size());
1223 ObjCObjectTL.setProtocolLAngleLoc(ProtocolLAngleLoc);
1224 ObjCObjectTL.setProtocolRAngleLoc(ProtocolRAngleLoc);
1225 for (unsigned i = 0, n = Protocols.size(); i != n; ++i)
1226 ObjCObjectTL.setProtocolLoc(i, ProtocolLocs[i]);
1227 } else {
1228 ObjCObjectTL.setProtocolLAngleLoc(SourceLocation());
1229 ObjCObjectTL.setProtocolRAngleLoc(SourceLocation());
1230 }
1231
1232 // Base type.
1233 ObjCObjectTL.setHasBaseTypeAsWritten(true);
1234 if (ObjCObjectTL.getType() == T)
1235 ObjCObjectTL.getBaseLoc().initializeFullCopy(BaseTypeInfo->getTypeLoc());
1236 else
1237 ObjCObjectTL.getBaseLoc().initialize(Context, Loc);
1238
1239 // We're done. Return the completed type to the parser.
1240 return CreateParsedType(Result, ResultTInfo);
1241 }
1242
1243 static OpenCLAccessAttr::Spelling
getImageAccess(const ParsedAttributesView & Attrs)1244 getImageAccess(const ParsedAttributesView &Attrs) {
1245 for (const ParsedAttr &AL : Attrs)
1246 if (AL.getKind() == ParsedAttr::AT_OpenCLAccess)
1247 return static_cast<OpenCLAccessAttr::Spelling>(AL.getSemanticSpelling());
1248 return OpenCLAccessAttr::Keyword_read_only;
1249 }
1250
1251 static UnaryTransformType::UTTKind
TSTToUnaryTransformType(DeclSpec::TST SwitchTST)1252 TSTToUnaryTransformType(DeclSpec::TST SwitchTST) {
1253 switch (SwitchTST) {
1254 #define TRANSFORM_TYPE_TRAIT_DEF(Enum, Trait) \
1255 case TST_##Trait: \
1256 return UnaryTransformType::Enum;
1257 #include "clang/Basic/TransformTypeTraits.def"
1258 default:
1259 llvm_unreachable("attempted to parse a non-unary transform builtin");
1260 }
1261 }
1262
1263 /// Convert the specified declspec to the appropriate type
1264 /// object.
1265 /// \param state Specifies the declarator containing the declaration specifier
1266 /// to be converted, along with other associated processing state.
1267 /// \returns The type described by the declaration specifiers. This function
1268 /// never returns null.
ConvertDeclSpecToType(TypeProcessingState & state)1269 static QualType ConvertDeclSpecToType(TypeProcessingState &state) {
1270 // FIXME: Should move the logic from DeclSpec::Finish to here for validity
1271 // checking.
1272
1273 Sema &S = state.getSema();
1274 Declarator &declarator = state.getDeclarator();
1275 DeclSpec &DS = declarator.getMutableDeclSpec();
1276 SourceLocation DeclLoc = declarator.getIdentifierLoc();
1277 if (DeclLoc.isInvalid())
1278 DeclLoc = DS.getBeginLoc();
1279
1280 ASTContext &Context = S.Context;
1281
1282 QualType Result;
1283 switch (DS.getTypeSpecType()) {
1284 case DeclSpec::TST_void:
1285 Result = Context.VoidTy;
1286 break;
1287 case DeclSpec::TST_char:
1288 if (DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified)
1289 Result = Context.CharTy;
1290 else if (DS.getTypeSpecSign() == TypeSpecifierSign::Signed)
1291 Result = Context.SignedCharTy;
1292 else {
1293 assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned &&
1294 "Unknown TSS value");
1295 Result = Context.UnsignedCharTy;
1296 }
1297 break;
1298 case DeclSpec::TST_wchar:
1299 if (DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified)
1300 Result = Context.WCharTy;
1301 else if (DS.getTypeSpecSign() == TypeSpecifierSign::Signed) {
1302 S.Diag(DS.getTypeSpecSignLoc(), diag::ext_wchar_t_sign_spec)
1303 << DS.getSpecifierName(DS.getTypeSpecType(),
1304 Context.getPrintingPolicy());
1305 Result = Context.getSignedWCharType();
1306 } else {
1307 assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned &&
1308 "Unknown TSS value");
1309 S.Diag(DS.getTypeSpecSignLoc(), diag::ext_wchar_t_sign_spec)
1310 << DS.getSpecifierName(DS.getTypeSpecType(),
1311 Context.getPrintingPolicy());
1312 Result = Context.getUnsignedWCharType();
1313 }
1314 break;
1315 case DeclSpec::TST_char8:
1316 assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&
1317 "Unknown TSS value");
1318 Result = Context.Char8Ty;
1319 break;
1320 case DeclSpec::TST_char16:
1321 assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&
1322 "Unknown TSS value");
1323 Result = Context.Char16Ty;
1324 break;
1325 case DeclSpec::TST_char32:
1326 assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&
1327 "Unknown TSS value");
1328 Result = Context.Char32Ty;
1329 break;
1330 case DeclSpec::TST_unspecified:
1331 // If this is a missing declspec in a block literal return context, then it
1332 // is inferred from the return statements inside the block.
1333 // The declspec is always missing in a lambda expr context; it is either
1334 // specified with a trailing return type or inferred.
1335 if (S.getLangOpts().CPlusPlus14 &&
1336 declarator.getContext() == DeclaratorContext::LambdaExpr) {
1337 // In C++1y, a lambda's implicit return type is 'auto'.
1338 Result = Context.getAutoDeductType();
1339 break;
1340 } else if (declarator.getContext() == DeclaratorContext::LambdaExpr ||
1341 checkOmittedBlockReturnType(S, declarator,
1342 Context.DependentTy)) {
1343 Result = Context.DependentTy;
1344 break;
1345 }
1346
1347 // Unspecified typespec defaults to int in C90. However, the C90 grammar
1348 // [C90 6.5] only allows a decl-spec if there was *some* type-specifier,
1349 // type-qualifier, or storage-class-specifier. If not, emit an extwarn.
1350 // Note that the one exception to this is function definitions, which are
1351 // allowed to be completely missing a declspec. This is handled in the
1352 // parser already though by it pretending to have seen an 'int' in this
1353 // case.
1354 if (S.getLangOpts().isImplicitIntRequired()) {
1355 S.Diag(DeclLoc, diag::warn_missing_type_specifier)
1356 << DS.getSourceRange()
1357 << FixItHint::CreateInsertion(DS.getBeginLoc(), "int");
1358 } else if (!DS.hasTypeSpecifier()) {
1359 // C99 and C++ require a type specifier. For example, C99 6.7.2p2 says:
1360 // "At least one type specifier shall be given in the declaration
1361 // specifiers in each declaration, and in the specifier-qualifier list in
1362 // each struct declaration and type name."
1363 if (!S.getLangOpts().isImplicitIntAllowed() && !DS.isTypeSpecPipe()) {
1364 S.Diag(DeclLoc, diag::err_missing_type_specifier)
1365 << DS.getSourceRange();
1366
1367 // When this occurs, often something is very broken with the value
1368 // being declared, poison it as invalid so we don't get chains of
1369 // errors.
1370 declarator.setInvalidType(true);
1371 } else if (S.getLangOpts().getOpenCLCompatibleVersion() >= 200 &&
1372 DS.isTypeSpecPipe()) {
1373 S.Diag(DeclLoc, diag::err_missing_actual_pipe_type)
1374 << DS.getSourceRange();
1375 declarator.setInvalidType(true);
1376 } else {
1377 assert(S.getLangOpts().isImplicitIntAllowed() &&
1378 "implicit int is disabled?");
1379 S.Diag(DeclLoc, diag::ext_missing_type_specifier)
1380 << DS.getSourceRange()
1381 << FixItHint::CreateInsertion(DS.getBeginLoc(), "int");
1382 }
1383 }
1384
1385 [[fallthrough]];
1386 case DeclSpec::TST_int: {
1387 if (DS.getTypeSpecSign() != TypeSpecifierSign::Unsigned) {
1388 switch (DS.getTypeSpecWidth()) {
1389 case TypeSpecifierWidth::Unspecified:
1390 Result = Context.IntTy;
1391 break;
1392 case TypeSpecifierWidth::Short:
1393 Result = Context.ShortTy;
1394 break;
1395 case TypeSpecifierWidth::Long:
1396 Result = Context.LongTy;
1397 break;
1398 case TypeSpecifierWidth::LongLong:
1399 Result = Context.LongLongTy;
1400
1401 // 'long long' is a C99 or C++11 feature.
1402 if (!S.getLangOpts().C99) {
1403 if (S.getLangOpts().CPlusPlus)
1404 S.Diag(DS.getTypeSpecWidthLoc(),
1405 S.getLangOpts().CPlusPlus11 ?
1406 diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
1407 else
1408 S.Diag(DS.getTypeSpecWidthLoc(), diag::ext_c99_longlong);
1409 }
1410 break;
1411 }
1412 } else {
1413 switch (DS.getTypeSpecWidth()) {
1414 case TypeSpecifierWidth::Unspecified:
1415 Result = Context.UnsignedIntTy;
1416 break;
1417 case TypeSpecifierWidth::Short:
1418 Result = Context.UnsignedShortTy;
1419 break;
1420 case TypeSpecifierWidth::Long:
1421 Result = Context.UnsignedLongTy;
1422 break;
1423 case TypeSpecifierWidth::LongLong:
1424 Result = Context.UnsignedLongLongTy;
1425
1426 // 'long long' is a C99 or C++11 feature.
1427 if (!S.getLangOpts().C99) {
1428 if (S.getLangOpts().CPlusPlus)
1429 S.Diag(DS.getTypeSpecWidthLoc(),
1430 S.getLangOpts().CPlusPlus11 ?
1431 diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
1432 else
1433 S.Diag(DS.getTypeSpecWidthLoc(), diag::ext_c99_longlong);
1434 }
1435 break;
1436 }
1437 }
1438 break;
1439 }
1440 case DeclSpec::TST_bitint: {
1441 if (!S.Context.getTargetInfo().hasBitIntType())
1442 S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported) << "_BitInt";
1443 Result =
1444 S.BuildBitIntType(DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned,
1445 DS.getRepAsExpr(), DS.getBeginLoc());
1446 if (Result.isNull()) {
1447 Result = Context.IntTy;
1448 declarator.setInvalidType(true);
1449 }
1450 break;
1451 }
1452 case DeclSpec::TST_accum: {
1453 switch (DS.getTypeSpecWidth()) {
1454 case TypeSpecifierWidth::Short:
1455 Result = Context.ShortAccumTy;
1456 break;
1457 case TypeSpecifierWidth::Unspecified:
1458 Result = Context.AccumTy;
1459 break;
1460 case TypeSpecifierWidth::Long:
1461 Result = Context.LongAccumTy;
1462 break;
1463 case TypeSpecifierWidth::LongLong:
1464 llvm_unreachable("Unable to specify long long as _Accum width");
1465 }
1466
1467 if (DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned)
1468 Result = Context.getCorrespondingUnsignedType(Result);
1469
1470 if (DS.isTypeSpecSat())
1471 Result = Context.getCorrespondingSaturatedType(Result);
1472
1473 break;
1474 }
1475 case DeclSpec::TST_fract: {
1476 switch (DS.getTypeSpecWidth()) {
1477 case TypeSpecifierWidth::Short:
1478 Result = Context.ShortFractTy;
1479 break;
1480 case TypeSpecifierWidth::Unspecified:
1481 Result = Context.FractTy;
1482 break;
1483 case TypeSpecifierWidth::Long:
1484 Result = Context.LongFractTy;
1485 break;
1486 case TypeSpecifierWidth::LongLong:
1487 llvm_unreachable("Unable to specify long long as _Fract width");
1488 }
1489
1490 if (DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned)
1491 Result = Context.getCorrespondingUnsignedType(Result);
1492
1493 if (DS.isTypeSpecSat())
1494 Result = Context.getCorrespondingSaturatedType(Result);
1495
1496 break;
1497 }
1498 case DeclSpec::TST_int128:
1499 if (!S.Context.getTargetInfo().hasInt128Type() &&
1500 !(S.getLangOpts().SYCLIsDevice || S.getLangOpts().CUDAIsDevice ||
1501 (S.getLangOpts().OpenMP && S.getLangOpts().OpenMPIsDevice)))
1502 S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported)
1503 << "__int128";
1504 if (DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned)
1505 Result = Context.UnsignedInt128Ty;
1506 else
1507 Result = Context.Int128Ty;
1508 break;
1509 case DeclSpec::TST_float16:
1510 // CUDA host and device may have different _Float16 support, therefore
1511 // do not diagnose _Float16 usage to avoid false alarm.
1512 // ToDo: more precise diagnostics for CUDA.
1513 if (!S.Context.getTargetInfo().hasFloat16Type() && !S.getLangOpts().CUDA &&
1514 !(S.getLangOpts().OpenMP && S.getLangOpts().OpenMPIsDevice))
1515 S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported)
1516 << "_Float16";
1517 Result = Context.Float16Ty;
1518 break;
1519 case DeclSpec::TST_half: Result = Context.HalfTy; break;
1520 case DeclSpec::TST_BFloat16:
1521 if (!S.Context.getTargetInfo().hasBFloat16Type())
1522 S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported)
1523 << "__bf16";
1524 Result = Context.BFloat16Ty;
1525 break;
1526 case DeclSpec::TST_float: Result = Context.FloatTy; break;
1527 case DeclSpec::TST_double:
1528 if (DS.getTypeSpecWidth() == TypeSpecifierWidth::Long)
1529 Result = Context.LongDoubleTy;
1530 else
1531 Result = Context.DoubleTy;
1532 if (S.getLangOpts().OpenCL) {
1533 if (!S.getOpenCLOptions().isSupported("cl_khr_fp64", S.getLangOpts()))
1534 S.Diag(DS.getTypeSpecTypeLoc(), diag::err_opencl_requires_extension)
1535 << 0 << Result
1536 << (S.getLangOpts().getOpenCLCompatibleVersion() == 300
1537 ? "cl_khr_fp64 and __opencl_c_fp64"
1538 : "cl_khr_fp64");
1539 else if (!S.getOpenCLOptions().isAvailableOption("cl_khr_fp64", S.getLangOpts()))
1540 S.Diag(DS.getTypeSpecTypeLoc(), diag::ext_opencl_double_without_pragma);
1541 }
1542 break;
1543 case DeclSpec::TST_float128:
1544 if (!S.Context.getTargetInfo().hasFloat128Type() &&
1545 !S.getLangOpts().SYCLIsDevice &&
1546 !(S.getLangOpts().OpenMP && S.getLangOpts().OpenMPIsDevice))
1547 S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported)
1548 << "__float128";
1549 Result = Context.Float128Ty;
1550 break;
1551 case DeclSpec::TST_ibm128:
1552 if (!S.Context.getTargetInfo().hasIbm128Type() &&
1553 !S.getLangOpts().SYCLIsDevice &&
1554 !(S.getLangOpts().OpenMP && S.getLangOpts().OpenMPIsDevice))
1555 S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported) << "__ibm128";
1556 Result = Context.Ibm128Ty;
1557 break;
1558 case DeclSpec::TST_bool:
1559 Result = Context.BoolTy; // _Bool or bool
1560 break;
1561 case DeclSpec::TST_decimal32: // _Decimal32
1562 case DeclSpec::TST_decimal64: // _Decimal64
1563 case DeclSpec::TST_decimal128: // _Decimal128
1564 S.Diag(DS.getTypeSpecTypeLoc(), diag::err_decimal_unsupported);
1565 Result = Context.IntTy;
1566 declarator.setInvalidType(true);
1567 break;
1568 case DeclSpec::TST_class:
1569 case DeclSpec::TST_enum:
1570 case DeclSpec::TST_union:
1571 case DeclSpec::TST_struct:
1572 case DeclSpec::TST_interface: {
1573 TagDecl *D = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl());
1574 if (!D) {
1575 // This can happen in C++ with ambiguous lookups.
1576 Result = Context.IntTy;
1577 declarator.setInvalidType(true);
1578 break;
1579 }
1580
1581 // If the type is deprecated or unavailable, diagnose it.
1582 S.DiagnoseUseOfDecl(D, DS.getTypeSpecTypeNameLoc());
1583
1584 assert(DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified &&
1585 DS.getTypeSpecComplex() == 0 &&
1586 DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&
1587 "No qualifiers on tag names!");
1588
1589 // TypeQuals handled by caller.
1590 Result = Context.getTypeDeclType(D);
1591
1592 // In both C and C++, make an ElaboratedType.
1593 ElaboratedTypeKeyword Keyword
1594 = ElaboratedType::getKeywordForTypeSpec(DS.getTypeSpecType());
1595 Result = S.getElaboratedType(Keyword, DS.getTypeSpecScope(), Result,
1596 DS.isTypeSpecOwned() ? D : nullptr);
1597 break;
1598 }
1599 case DeclSpec::TST_typename: {
1600 assert(DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified &&
1601 DS.getTypeSpecComplex() == 0 &&
1602 DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&
1603 "Can't handle qualifiers on typedef names yet!");
1604 Result = S.GetTypeFromParser(DS.getRepAsType());
1605 if (Result.isNull()) {
1606 declarator.setInvalidType(true);
1607 }
1608
1609 // TypeQuals handled by caller.
1610 break;
1611 }
1612 case DeclSpec::TST_typeof_unqualType:
1613 case DeclSpec::TST_typeofType:
1614 // FIXME: Preserve type source info.
1615 Result = S.GetTypeFromParser(DS.getRepAsType());
1616 assert(!Result.isNull() && "Didn't get a type for typeof?");
1617 if (!Result->isDependentType())
1618 if (const TagType *TT = Result->getAs<TagType>())
1619 S.DiagnoseUseOfDecl(TT->getDecl(), DS.getTypeSpecTypeLoc());
1620 // TypeQuals handled by caller.
1621 Result = Context.getTypeOfType(
1622 Result, DS.getTypeSpecType() == DeclSpec::TST_typeof_unqualType
1623 ? TypeOfKind::Unqualified
1624 : TypeOfKind::Qualified);
1625 break;
1626 case DeclSpec::TST_typeof_unqualExpr:
1627 case DeclSpec::TST_typeofExpr: {
1628 Expr *E = DS.getRepAsExpr();
1629 assert(E && "Didn't get an expression for typeof?");
1630 // TypeQuals handled by caller.
1631 Result = S.BuildTypeofExprType(E, DS.getTypeSpecType() ==
1632 DeclSpec::TST_typeof_unqualExpr
1633 ? TypeOfKind::Unqualified
1634 : TypeOfKind::Qualified);
1635 if (Result.isNull()) {
1636 Result = Context.IntTy;
1637 declarator.setInvalidType(true);
1638 }
1639 break;
1640 }
1641 case DeclSpec::TST_decltype: {
1642 Expr *E = DS.getRepAsExpr();
1643 assert(E && "Didn't get an expression for decltype?");
1644 // TypeQuals handled by caller.
1645 Result = S.BuildDecltypeType(E);
1646 if (Result.isNull()) {
1647 Result = Context.IntTy;
1648 declarator.setInvalidType(true);
1649 }
1650 break;
1651 }
1652 #define TRANSFORM_TYPE_TRAIT_DEF(_, Trait) case DeclSpec::TST_##Trait:
1653 #include "clang/Basic/TransformTypeTraits.def"
1654 Result = S.GetTypeFromParser(DS.getRepAsType());
1655 assert(!Result.isNull() && "Didn't get a type for the transformation?");
1656 Result = S.BuildUnaryTransformType(
1657 Result, TSTToUnaryTransformType(DS.getTypeSpecType()),
1658 DS.getTypeSpecTypeLoc());
1659 if (Result.isNull()) {
1660 Result = Context.IntTy;
1661 declarator.setInvalidType(true);
1662 }
1663 break;
1664
1665 case DeclSpec::TST_auto:
1666 case DeclSpec::TST_decltype_auto: {
1667 auto AutoKW = DS.getTypeSpecType() == DeclSpec::TST_decltype_auto
1668 ? AutoTypeKeyword::DecltypeAuto
1669 : AutoTypeKeyword::Auto;
1670
1671 ConceptDecl *TypeConstraintConcept = nullptr;
1672 llvm::SmallVector<TemplateArgument, 8> TemplateArgs;
1673 if (DS.isConstrainedAuto()) {
1674 if (TemplateIdAnnotation *TemplateId = DS.getRepAsTemplateId()) {
1675 TypeConstraintConcept =
1676 cast<ConceptDecl>(TemplateId->Template.get().getAsTemplateDecl());
1677 TemplateArgumentListInfo TemplateArgsInfo;
1678 TemplateArgsInfo.setLAngleLoc(TemplateId->LAngleLoc);
1679 TemplateArgsInfo.setRAngleLoc(TemplateId->RAngleLoc);
1680 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
1681 TemplateId->NumArgs);
1682 S.translateTemplateArguments(TemplateArgsPtr, TemplateArgsInfo);
1683 for (const auto &ArgLoc : TemplateArgsInfo.arguments())
1684 TemplateArgs.push_back(ArgLoc.getArgument());
1685 } else {
1686 declarator.setInvalidType(true);
1687 }
1688 }
1689 Result = S.Context.getAutoType(QualType(), AutoKW,
1690 /*IsDependent*/ false, /*IsPack=*/false,
1691 TypeConstraintConcept, TemplateArgs);
1692 break;
1693 }
1694
1695 case DeclSpec::TST_auto_type:
1696 Result = Context.getAutoType(QualType(), AutoTypeKeyword::GNUAutoType, false);
1697 break;
1698
1699 case DeclSpec::TST_unknown_anytype:
1700 Result = Context.UnknownAnyTy;
1701 break;
1702
1703 case DeclSpec::TST_atomic:
1704 Result = S.GetTypeFromParser(DS.getRepAsType());
1705 assert(!Result.isNull() && "Didn't get a type for _Atomic?");
1706 Result = S.BuildAtomicType(Result, DS.getTypeSpecTypeLoc());
1707 if (Result.isNull()) {
1708 Result = Context.IntTy;
1709 declarator.setInvalidType(true);
1710 }
1711 break;
1712
1713 #define GENERIC_IMAGE_TYPE(ImgType, Id) \
1714 case DeclSpec::TST_##ImgType##_t: \
1715 switch (getImageAccess(DS.getAttributes())) { \
1716 case OpenCLAccessAttr::Keyword_write_only: \
1717 Result = Context.Id##WOTy; \
1718 break; \
1719 case OpenCLAccessAttr::Keyword_read_write: \
1720 Result = Context.Id##RWTy; \
1721 break; \
1722 case OpenCLAccessAttr::Keyword_read_only: \
1723 Result = Context.Id##ROTy; \
1724 break; \
1725 case OpenCLAccessAttr::SpellingNotCalculated: \
1726 llvm_unreachable("Spelling not yet calculated"); \
1727 } \
1728 break;
1729 #include "clang/Basic/OpenCLImageTypes.def"
1730
1731 case DeclSpec::TST_error:
1732 Result = Context.IntTy;
1733 declarator.setInvalidType(true);
1734 break;
1735 }
1736
1737 // FIXME: we want resulting declarations to be marked invalid, but claiming
1738 // the type is invalid is too strong - e.g. it causes ActOnTypeName to return
1739 // a null type.
1740 if (Result->containsErrors())
1741 declarator.setInvalidType();
1742
1743 if (S.getLangOpts().OpenCL) {
1744 const auto &OpenCLOptions = S.getOpenCLOptions();
1745 bool IsOpenCLC30Compatible =
1746 S.getLangOpts().getOpenCLCompatibleVersion() == 300;
1747 // OpenCL C v3.0 s6.3.3 - OpenCL image types require __opencl_c_images
1748 // support.
1749 // OpenCL C v3.0 s6.2.1 - OpenCL 3d image write types requires support
1750 // for OpenCL C 2.0, or OpenCL C 3.0 or newer and the
1751 // __opencl_c_3d_image_writes feature. OpenCL C v3.0 API s4.2 - For devices
1752 // that support OpenCL 3.0, cl_khr_3d_image_writes must be returned when and
1753 // only when the optional feature is supported
1754 if ((Result->isImageType() || Result->isSamplerT()) &&
1755 (IsOpenCLC30Compatible &&
1756 !OpenCLOptions.isSupported("__opencl_c_images", S.getLangOpts()))) {
1757 S.Diag(DS.getTypeSpecTypeLoc(), diag::err_opencl_requires_extension)
1758 << 0 << Result << "__opencl_c_images";
1759 declarator.setInvalidType();
1760 } else if (Result->isOCLImage3dWOType() &&
1761 !OpenCLOptions.isSupported("cl_khr_3d_image_writes",
1762 S.getLangOpts())) {
1763 S.Diag(DS.getTypeSpecTypeLoc(), diag::err_opencl_requires_extension)
1764 << 0 << Result
1765 << (IsOpenCLC30Compatible
1766 ? "cl_khr_3d_image_writes and __opencl_c_3d_image_writes"
1767 : "cl_khr_3d_image_writes");
1768 declarator.setInvalidType();
1769 }
1770 }
1771
1772 bool IsFixedPointType = DS.getTypeSpecType() == DeclSpec::TST_accum ||
1773 DS.getTypeSpecType() == DeclSpec::TST_fract;
1774
1775 // Only fixed point types can be saturated
1776 if (DS.isTypeSpecSat() && !IsFixedPointType)
1777 S.Diag(DS.getTypeSpecSatLoc(), diag::err_invalid_saturation_spec)
1778 << DS.getSpecifierName(DS.getTypeSpecType(),
1779 Context.getPrintingPolicy());
1780
1781 // Handle complex types.
1782 if (DS.getTypeSpecComplex() == DeclSpec::TSC_complex) {
1783 if (S.getLangOpts().Freestanding)
1784 S.Diag(DS.getTypeSpecComplexLoc(), diag::ext_freestanding_complex);
1785 Result = Context.getComplexType(Result);
1786 } else if (DS.isTypeAltiVecVector()) {
1787 unsigned typeSize = static_cast<unsigned>(Context.getTypeSize(Result));
1788 assert(typeSize > 0 && "type size for vector must be greater than 0 bits");
1789 VectorType::VectorKind VecKind = VectorType::AltiVecVector;
1790 if (DS.isTypeAltiVecPixel())
1791 VecKind = VectorType::AltiVecPixel;
1792 else if (DS.isTypeAltiVecBool())
1793 VecKind = VectorType::AltiVecBool;
1794 Result = Context.getVectorType(Result, 128/typeSize, VecKind);
1795 }
1796
1797 // FIXME: Imaginary.
1798 if (DS.getTypeSpecComplex() == DeclSpec::TSC_imaginary)
1799 S.Diag(DS.getTypeSpecComplexLoc(), diag::err_imaginary_not_supported);
1800
1801 // Before we process any type attributes, synthesize a block literal
1802 // function declarator if necessary.
1803 if (declarator.getContext() == DeclaratorContext::BlockLiteral)
1804 maybeSynthesizeBlockSignature(state, Result);
1805
1806 // Apply any type attributes from the decl spec. This may cause the
1807 // list of type attributes to be temporarily saved while the type
1808 // attributes are pushed around.
1809 // pipe attributes will be handled later ( at GetFullTypeForDeclarator )
1810 if (!DS.isTypeSpecPipe()) {
1811 // We also apply declaration attributes that "slide" to the decl spec.
1812 // Ordering can be important for attributes. The decalaration attributes
1813 // come syntactically before the decl spec attributes, so we process them
1814 // in that order.
1815 ParsedAttributesView SlidingAttrs;
1816 for (ParsedAttr &AL : declarator.getDeclarationAttributes()) {
1817 if (AL.slidesFromDeclToDeclSpecLegacyBehavior()) {
1818 SlidingAttrs.addAtEnd(&AL);
1819
1820 // For standard syntax attributes, which would normally appertain to the
1821 // declaration here, suggest moving them to the type instead. But only
1822 // do this for our own vendor attributes; moving other vendors'
1823 // attributes might hurt portability.
1824 // There's one special case that we need to deal with here: The
1825 // `MatrixType` attribute may only be used in a typedef declaration. If
1826 // it's being used anywhere else, don't output the warning as
1827 // ProcessDeclAttributes() will output an error anyway.
1828 if (AL.isStandardAttributeSyntax() && AL.isClangScope() &&
1829 !(AL.getKind() == ParsedAttr::AT_MatrixType &&
1830 DS.getStorageClassSpec() != DeclSpec::SCS_typedef)) {
1831 S.Diag(AL.getLoc(), diag::warn_type_attribute_deprecated_on_decl)
1832 << AL;
1833 }
1834 }
1835 }
1836 // During this call to processTypeAttrs(),
1837 // TypeProcessingState::getCurrentAttributes() will erroneously return a
1838 // reference to the DeclSpec attributes, rather than the declaration
1839 // attributes. However, this doesn't matter, as getCurrentAttributes()
1840 // is only called when distributing attributes from one attribute list
1841 // to another. Declaration attributes are always C++11 attributes, and these
1842 // are never distributed.
1843 processTypeAttrs(state, Result, TAL_DeclSpec, SlidingAttrs);
1844 processTypeAttrs(state, Result, TAL_DeclSpec, DS.getAttributes());
1845 }
1846
1847 // Apply const/volatile/restrict qualifiers to T.
1848 if (unsigned TypeQuals = DS.getTypeQualifiers()) {
1849 // Warn about CV qualifiers on function types.
1850 // C99 6.7.3p8:
1851 // If the specification of a function type includes any type qualifiers,
1852 // the behavior is undefined.
1853 // C++11 [dcl.fct]p7:
1854 // The effect of a cv-qualifier-seq in a function declarator is not the
1855 // same as adding cv-qualification on top of the function type. In the
1856 // latter case, the cv-qualifiers are ignored.
1857 if (Result->isFunctionType()) {
1858 diagnoseAndRemoveTypeQualifiers(
1859 S, DS, TypeQuals, Result, DeclSpec::TQ_const | DeclSpec::TQ_volatile,
1860 S.getLangOpts().CPlusPlus
1861 ? diag::warn_typecheck_function_qualifiers_ignored
1862 : diag::warn_typecheck_function_qualifiers_unspecified);
1863 // No diagnostic for 'restrict' or '_Atomic' applied to a
1864 // function type; we'll diagnose those later, in BuildQualifiedType.
1865 }
1866
1867 // C++11 [dcl.ref]p1:
1868 // Cv-qualified references are ill-formed except when the
1869 // cv-qualifiers are introduced through the use of a typedef-name
1870 // or decltype-specifier, in which case the cv-qualifiers are ignored.
1871 //
1872 // There don't appear to be any other contexts in which a cv-qualified
1873 // reference type could be formed, so the 'ill-formed' clause here appears
1874 // to never happen.
1875 if (TypeQuals && Result->isReferenceType()) {
1876 diagnoseAndRemoveTypeQualifiers(
1877 S, DS, TypeQuals, Result,
1878 DeclSpec::TQ_const | DeclSpec::TQ_volatile | DeclSpec::TQ_atomic,
1879 diag::warn_typecheck_reference_qualifiers);
1880 }
1881
1882 // C90 6.5.3 constraints: "The same type qualifier shall not appear more
1883 // than once in the same specifier-list or qualifier-list, either directly
1884 // or via one or more typedefs."
1885 if (!S.getLangOpts().C99 && !S.getLangOpts().CPlusPlus
1886 && TypeQuals & Result.getCVRQualifiers()) {
1887 if (TypeQuals & DeclSpec::TQ_const && Result.isConstQualified()) {
1888 S.Diag(DS.getConstSpecLoc(), diag::ext_duplicate_declspec)
1889 << "const";
1890 }
1891
1892 if (TypeQuals & DeclSpec::TQ_volatile && Result.isVolatileQualified()) {
1893 S.Diag(DS.getVolatileSpecLoc(), diag::ext_duplicate_declspec)
1894 << "volatile";
1895 }
1896
1897 // C90 doesn't have restrict nor _Atomic, so it doesn't force us to
1898 // produce a warning in this case.
1899 }
1900
1901 QualType Qualified = S.BuildQualifiedType(Result, DeclLoc, TypeQuals, &DS);
1902
1903 // If adding qualifiers fails, just use the unqualified type.
1904 if (Qualified.isNull())
1905 declarator.setInvalidType(true);
1906 else
1907 Result = Qualified;
1908 }
1909
1910 assert(!Result.isNull() && "This function should not return a null type");
1911 return Result;
1912 }
1913
getPrintableNameForEntity(DeclarationName Entity)1914 static std::string getPrintableNameForEntity(DeclarationName Entity) {
1915 if (Entity)
1916 return Entity.getAsString();
1917
1918 return "type name";
1919 }
1920
isDependentOrGNUAutoType(QualType T)1921 static bool isDependentOrGNUAutoType(QualType T) {
1922 if (T->isDependentType())
1923 return true;
1924
1925 const auto *AT = dyn_cast<AutoType>(T);
1926 return AT && AT->isGNUAutoType();
1927 }
1928
BuildQualifiedType(QualType T,SourceLocation Loc,Qualifiers Qs,const DeclSpec * DS)1929 QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc,
1930 Qualifiers Qs, const DeclSpec *DS) {
1931 if (T.isNull())
1932 return QualType();
1933
1934 // Ignore any attempt to form a cv-qualified reference.
1935 if (T->isReferenceType()) {
1936 Qs.removeConst();
1937 Qs.removeVolatile();
1938 }
1939
1940 // Enforce C99 6.7.3p2: "Types other than pointer types derived from
1941 // object or incomplete types shall not be restrict-qualified."
1942 if (Qs.hasRestrict()) {
1943 unsigned DiagID = 0;
1944 QualType ProblemTy;
1945
1946 if (T->isAnyPointerType() || T->isReferenceType() ||
1947 T->isMemberPointerType()) {
1948 QualType EltTy;
1949 if (T->isObjCObjectPointerType())
1950 EltTy = T;
1951 else if (const MemberPointerType *PTy = T->getAs<MemberPointerType>())
1952 EltTy = PTy->getPointeeType();
1953 else
1954 EltTy = T->getPointeeType();
1955
1956 // If we have a pointer or reference, the pointee must have an object
1957 // incomplete type.
1958 if (!EltTy->isIncompleteOrObjectType()) {
1959 DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
1960 ProblemTy = EltTy;
1961 }
1962 } else if (!isDependentOrGNUAutoType(T)) {
1963 // For an __auto_type variable, we may not have seen the initializer yet
1964 // and so have no idea whether the underlying type is a pointer type or
1965 // not.
1966 DiagID = diag::err_typecheck_invalid_restrict_not_pointer;
1967 ProblemTy = T;
1968 }
1969
1970 if (DiagID) {
1971 Diag(DS ? DS->getRestrictSpecLoc() : Loc, DiagID) << ProblemTy;
1972 Qs.removeRestrict();
1973 }
1974 }
1975
1976 return Context.getQualifiedType(T, Qs);
1977 }
1978
BuildQualifiedType(QualType T,SourceLocation Loc,unsigned CVRAU,const DeclSpec * DS)1979 QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc,
1980 unsigned CVRAU, const DeclSpec *DS) {
1981 if (T.isNull())
1982 return QualType();
1983
1984 // Ignore any attempt to form a cv-qualified reference.
1985 if (T->isReferenceType())
1986 CVRAU &=
1987 ~(DeclSpec::TQ_const | DeclSpec::TQ_volatile | DeclSpec::TQ_atomic);
1988
1989 // Convert from DeclSpec::TQ to Qualifiers::TQ by just dropping TQ_atomic and
1990 // TQ_unaligned;
1991 unsigned CVR = CVRAU & ~(DeclSpec::TQ_atomic | DeclSpec::TQ_unaligned);
1992
1993 // C11 6.7.3/5:
1994 // If the same qualifier appears more than once in the same
1995 // specifier-qualifier-list, either directly or via one or more typedefs,
1996 // the behavior is the same as if it appeared only once.
1997 //
1998 // It's not specified what happens when the _Atomic qualifier is applied to
1999 // a type specified with the _Atomic specifier, but we assume that this
2000 // should be treated as if the _Atomic qualifier appeared multiple times.
2001 if (CVRAU & DeclSpec::TQ_atomic && !T->isAtomicType()) {
2002 // C11 6.7.3/5:
2003 // If other qualifiers appear along with the _Atomic qualifier in a
2004 // specifier-qualifier-list, the resulting type is the so-qualified
2005 // atomic type.
2006 //
2007 // Don't need to worry about array types here, since _Atomic can't be
2008 // applied to such types.
2009 SplitQualType Split = T.getSplitUnqualifiedType();
2010 T = BuildAtomicType(QualType(Split.Ty, 0),
2011 DS ? DS->getAtomicSpecLoc() : Loc);
2012 if (T.isNull())
2013 return T;
2014 Split.Quals.addCVRQualifiers(CVR);
2015 return BuildQualifiedType(T, Loc, Split.Quals);
2016 }
2017
2018 Qualifiers Q = Qualifiers::fromCVRMask(CVR);
2019 Q.setUnaligned(CVRAU & DeclSpec::TQ_unaligned);
2020 return BuildQualifiedType(T, Loc, Q, DS);
2021 }
2022
2023 /// Build a paren type including \p T.
BuildParenType(QualType T)2024 QualType Sema::BuildParenType(QualType T) {
2025 return Context.getParenType(T);
2026 }
2027
2028 /// Given that we're building a pointer or reference to the given
inferARCLifetimeForPointee(Sema & S,QualType type,SourceLocation loc,bool isReference)2029 static QualType inferARCLifetimeForPointee(Sema &S, QualType type,
2030 SourceLocation loc,
2031 bool isReference) {
2032 // Bail out if retention is unrequired or already specified.
2033 if (!type->isObjCLifetimeType() ||
2034 type.getObjCLifetime() != Qualifiers::OCL_None)
2035 return type;
2036
2037 Qualifiers::ObjCLifetime implicitLifetime = Qualifiers::OCL_None;
2038
2039 // If the object type is const-qualified, we can safely use
2040 // __unsafe_unretained. This is safe (because there are no read
2041 // barriers), and it'll be safe to coerce anything but __weak* to
2042 // the resulting type.
2043 if (type.isConstQualified()) {
2044 implicitLifetime = Qualifiers::OCL_ExplicitNone;
2045
2046 // Otherwise, check whether the static type does not require
2047 // retaining. This currently only triggers for Class (possibly
2048 // protocol-qualifed, and arrays thereof).
2049 } else if (type->isObjCARCImplicitlyUnretainedType()) {
2050 implicitLifetime = Qualifiers::OCL_ExplicitNone;
2051
2052 // If we are in an unevaluated context, like sizeof, skip adding a
2053 // qualification.
2054 } else if (S.isUnevaluatedContext()) {
2055 return type;
2056
2057 // If that failed, give an error and recover using __strong. __strong
2058 // is the option most likely to prevent spurious second-order diagnostics,
2059 // like when binding a reference to a field.
2060 } else {
2061 // These types can show up in private ivars in system headers, so
2062 // we need this to not be an error in those cases. Instead we
2063 // want to delay.
2064 if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
2065 S.DelayedDiagnostics.add(
2066 sema::DelayedDiagnostic::makeForbiddenType(loc,
2067 diag::err_arc_indirect_no_ownership, type, isReference));
2068 } else {
2069 S.Diag(loc, diag::err_arc_indirect_no_ownership) << type << isReference;
2070 }
2071 implicitLifetime = Qualifiers::OCL_Strong;
2072 }
2073 assert(implicitLifetime && "didn't infer any lifetime!");
2074
2075 Qualifiers qs;
2076 qs.addObjCLifetime(implicitLifetime);
2077 return S.Context.getQualifiedType(type, qs);
2078 }
2079
getFunctionQualifiersAsString(const FunctionProtoType * FnTy)2080 static std::string getFunctionQualifiersAsString(const FunctionProtoType *FnTy){
2081 std::string Quals = FnTy->getMethodQuals().getAsString();
2082
2083 switch (FnTy->getRefQualifier()) {
2084 case RQ_None:
2085 break;
2086
2087 case RQ_LValue:
2088 if (!Quals.empty())
2089 Quals += ' ';
2090 Quals += '&';
2091 break;
2092
2093 case RQ_RValue:
2094 if (!Quals.empty())
2095 Quals += ' ';
2096 Quals += "&&";
2097 break;
2098 }
2099
2100 return Quals;
2101 }
2102
2103 namespace {
2104 /// Kinds of declarator that cannot contain a qualified function type.
2105 ///
2106 /// C++98 [dcl.fct]p4 / C++11 [dcl.fct]p6:
2107 /// a function type with a cv-qualifier or a ref-qualifier can only appear
2108 /// at the topmost level of a type.
2109 ///
2110 /// Parens and member pointers are permitted. We don't diagnose array and
2111 /// function declarators, because they don't allow function types at all.
2112 ///
2113 /// The values of this enum are used in diagnostics.
2114 enum QualifiedFunctionKind { QFK_BlockPointer, QFK_Pointer, QFK_Reference };
2115 } // end anonymous namespace
2116
2117 /// Check whether the type T is a qualified function type, and if it is,
2118 /// diagnose that it cannot be contained within the given kind of declarator.
checkQualifiedFunction(Sema & S,QualType T,SourceLocation Loc,QualifiedFunctionKind QFK)2119 static bool checkQualifiedFunction(Sema &S, QualType T, SourceLocation Loc,
2120 QualifiedFunctionKind QFK) {
2121 // Does T refer to a function type with a cv-qualifier or a ref-qualifier?
2122 const FunctionProtoType *FPT = T->getAs<FunctionProtoType>();
2123 if (!FPT ||
2124 (FPT->getMethodQuals().empty() && FPT->getRefQualifier() == RQ_None))
2125 return false;
2126
2127 S.Diag(Loc, diag::err_compound_qualified_function_type)
2128 << QFK << isa<FunctionType>(T.IgnoreParens()) << T
2129 << getFunctionQualifiersAsString(FPT);
2130 return true;
2131 }
2132
CheckQualifiedFunctionForTypeId(QualType T,SourceLocation Loc)2133 bool Sema::CheckQualifiedFunctionForTypeId(QualType T, SourceLocation Loc) {
2134 const FunctionProtoType *FPT = T->getAs<FunctionProtoType>();
2135 if (!FPT ||
2136 (FPT->getMethodQuals().empty() && FPT->getRefQualifier() == RQ_None))
2137 return false;
2138
2139 Diag(Loc, diag::err_qualified_function_typeid)
2140 << T << getFunctionQualifiersAsString(FPT);
2141 return true;
2142 }
2143
2144 // Helper to deduce addr space of a pointee type in OpenCL mode.
deduceOpenCLPointeeAddrSpace(Sema & S,QualType PointeeType)2145 static QualType deduceOpenCLPointeeAddrSpace(Sema &S, QualType PointeeType) {
2146 if (!PointeeType->isUndeducedAutoType() && !PointeeType->isDependentType() &&
2147 !PointeeType->isSamplerT() &&
2148 !PointeeType.hasAddressSpace())
2149 PointeeType = S.getASTContext().getAddrSpaceQualType(
2150 PointeeType, S.getASTContext().getDefaultOpenCLPointeeAddrSpace());
2151 return PointeeType;
2152 }
2153
2154 /// Build a pointer type.
2155 ///
2156 /// \param T The type to which we'll be building a pointer.
2157 ///
2158 /// \param Loc The location of the entity whose type involves this
2159 /// pointer type or, if there is no such entity, the location of the
2160 /// type that will have pointer type.
2161 ///
2162 /// \param Entity The name of the entity that involves the pointer
2163 /// type, if known.
2164 ///
2165 /// \returns A suitable pointer type, if there are no
2166 /// errors. Otherwise, returns a NULL type.
BuildPointerType(QualType T,SourceLocation Loc,DeclarationName Entity)2167 QualType Sema::BuildPointerType(QualType T,
2168 SourceLocation Loc, DeclarationName Entity) {
2169 if (T->isReferenceType()) {
2170 // C++ 8.3.2p4: There shall be no ... pointers to references ...
2171 Diag(Loc, diag::err_illegal_decl_pointer_to_reference)
2172 << getPrintableNameForEntity(Entity) << T;
2173 return QualType();
2174 }
2175
2176 if (T->isFunctionType() && getLangOpts().OpenCL &&
2177 !getOpenCLOptions().isAvailableOption("__cl_clang_function_pointers",
2178 getLangOpts())) {
2179 Diag(Loc, diag::err_opencl_function_pointer) << /*pointer*/ 0;
2180 return QualType();
2181 }
2182
2183 if (getLangOpts().HLSL && Loc.isValid()) {
2184 Diag(Loc, diag::err_hlsl_pointers_unsupported) << 0;
2185 return QualType();
2186 }
2187
2188 if (checkQualifiedFunction(*this, T, Loc, QFK_Pointer))
2189 return QualType();
2190
2191 assert(!T->isObjCObjectType() && "Should build ObjCObjectPointerType");
2192
2193 // In ARC, it is forbidden to build pointers to unqualified pointers.
2194 if (getLangOpts().ObjCAutoRefCount)
2195 T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ false);
2196
2197 if (getLangOpts().OpenCL)
2198 T = deduceOpenCLPointeeAddrSpace(*this, T);
2199
2200 // Build the pointer type.
2201 return Context.getPointerType(T);
2202 }
2203
2204 /// Build a reference type.
2205 ///
2206 /// \param T The type to which we'll be building a reference.
2207 ///
2208 /// \param Loc The location of the entity whose type involves this
2209 /// reference type or, if there is no such entity, the location of the
2210 /// type that will have reference type.
2211 ///
2212 /// \param Entity The name of the entity that involves the reference
2213 /// type, if known.
2214 ///
2215 /// \returns A suitable reference type, if there are no
2216 /// errors. Otherwise, returns a NULL type.
BuildReferenceType(QualType T,bool SpelledAsLValue,SourceLocation Loc,DeclarationName Entity)2217 QualType Sema::BuildReferenceType(QualType T, bool SpelledAsLValue,
2218 SourceLocation Loc,
2219 DeclarationName Entity) {
2220 assert(Context.getCanonicalType(T) != Context.OverloadTy &&
2221 "Unresolved overloaded function type");
2222
2223 // C++0x [dcl.ref]p6:
2224 // If a typedef (7.1.3), a type template-parameter (14.3.1), or a
2225 // decltype-specifier (7.1.6.2) denotes a type TR that is a reference to a
2226 // type T, an attempt to create the type "lvalue reference to cv TR" creates
2227 // the type "lvalue reference to T", while an attempt to create the type
2228 // "rvalue reference to cv TR" creates the type TR.
2229 bool LValueRef = SpelledAsLValue || T->getAs<LValueReferenceType>();
2230
2231 // C++ [dcl.ref]p4: There shall be no references to references.
2232 //
2233 // According to C++ DR 106, references to references are only
2234 // diagnosed when they are written directly (e.g., "int & &"),
2235 // but not when they happen via a typedef:
2236 //
2237 // typedef int& intref;
2238 // typedef intref& intref2;
2239 //
2240 // Parser::ParseDeclaratorInternal diagnoses the case where
2241 // references are written directly; here, we handle the
2242 // collapsing of references-to-references as described in C++0x.
2243 // DR 106 and 540 introduce reference-collapsing into C++98/03.
2244
2245 // C++ [dcl.ref]p1:
2246 // A declarator that specifies the type "reference to cv void"
2247 // is ill-formed.
2248 if (T->isVoidType()) {
2249 Diag(Loc, diag::err_reference_to_void);
2250 return QualType();
2251 }
2252
2253 if (getLangOpts().HLSL && Loc.isValid()) {
2254 Diag(Loc, diag::err_hlsl_pointers_unsupported) << 1;
2255 return QualType();
2256 }
2257
2258 if (checkQualifiedFunction(*this, T, Loc, QFK_Reference))
2259 return QualType();
2260
2261 if (T->isFunctionType() && getLangOpts().OpenCL &&
2262 !getOpenCLOptions().isAvailableOption("__cl_clang_function_pointers",
2263 getLangOpts())) {
2264 Diag(Loc, diag::err_opencl_function_pointer) << /*reference*/ 1;
2265 return QualType();
2266 }
2267
2268 // In ARC, it is forbidden to build references to unqualified pointers.
2269 if (getLangOpts().ObjCAutoRefCount)
2270 T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ true);
2271
2272 if (getLangOpts().OpenCL)
2273 T = deduceOpenCLPointeeAddrSpace(*this, T);
2274
2275 // Handle restrict on references.
2276 if (LValueRef)
2277 return Context.getLValueReferenceType(T, SpelledAsLValue);
2278 return Context.getRValueReferenceType(T);
2279 }
2280
2281 /// Build a Read-only Pipe type.
2282 ///
2283 /// \param T The type to which we'll be building a Pipe.
2284 ///
2285 /// \param Loc We do not use it for now.
2286 ///
2287 /// \returns A suitable pipe type, if there are no errors. Otherwise, returns a
2288 /// NULL type.
BuildReadPipeType(QualType T,SourceLocation Loc)2289 QualType Sema::BuildReadPipeType(QualType T, SourceLocation Loc) {
2290 return Context.getReadPipeType(T);
2291 }
2292
2293 /// Build a Write-only Pipe type.
2294 ///
2295 /// \param T The type to which we'll be building a Pipe.
2296 ///
2297 /// \param Loc We do not use it for now.
2298 ///
2299 /// \returns A suitable pipe type, if there are no errors. Otherwise, returns a
2300 /// NULL type.
BuildWritePipeType(QualType T,SourceLocation Loc)2301 QualType Sema::BuildWritePipeType(QualType T, SourceLocation Loc) {
2302 return Context.getWritePipeType(T);
2303 }
2304
2305 /// Build a bit-precise integer type.
2306 ///
2307 /// \param IsUnsigned Boolean representing the signedness of the type.
2308 ///
2309 /// \param BitWidth Size of this int type in bits, or an expression representing
2310 /// that.
2311 ///
2312 /// \param Loc Location of the keyword.
BuildBitIntType(bool IsUnsigned,Expr * BitWidth,SourceLocation Loc)2313 QualType Sema::BuildBitIntType(bool IsUnsigned, Expr *BitWidth,
2314 SourceLocation Loc) {
2315 if (BitWidth->isInstantiationDependent())
2316 return Context.getDependentBitIntType(IsUnsigned, BitWidth);
2317
2318 llvm::APSInt Bits(32);
2319 ExprResult ICE =
2320 VerifyIntegerConstantExpression(BitWidth, &Bits, /*FIXME*/ AllowFold);
2321
2322 if (ICE.isInvalid())
2323 return QualType();
2324
2325 size_t NumBits = Bits.getZExtValue();
2326 if (!IsUnsigned && NumBits < 2) {
2327 Diag(Loc, diag::err_bit_int_bad_size) << 0;
2328 return QualType();
2329 }
2330
2331 if (IsUnsigned && NumBits < 1) {
2332 Diag(Loc, diag::err_bit_int_bad_size) << 1;
2333 return QualType();
2334 }
2335
2336 const TargetInfo &TI = getASTContext().getTargetInfo();
2337 if (NumBits > TI.getMaxBitIntWidth()) {
2338 Diag(Loc, diag::err_bit_int_max_size)
2339 << IsUnsigned << static_cast<uint64_t>(TI.getMaxBitIntWidth());
2340 return QualType();
2341 }
2342
2343 return Context.getBitIntType(IsUnsigned, NumBits);
2344 }
2345
2346 /// Check whether the specified array bound can be evaluated using the relevant
2347 /// language rules. If so, returns the possibly-converted expression and sets
2348 /// SizeVal to the size. If not, but the expression might be a VLA bound,
2349 /// returns ExprResult(). Otherwise, produces a diagnostic and returns
2350 /// ExprError().
checkArraySize(Sema & S,Expr * & ArraySize,llvm::APSInt & SizeVal,unsigned VLADiag,bool VLAIsError)2351 static ExprResult checkArraySize(Sema &S, Expr *&ArraySize,
2352 llvm::APSInt &SizeVal, unsigned VLADiag,
2353 bool VLAIsError) {
2354 if (S.getLangOpts().CPlusPlus14 &&
2355 (VLAIsError ||
2356 !ArraySize->getType()->isIntegralOrUnscopedEnumerationType())) {
2357 // C++14 [dcl.array]p1:
2358 // The constant-expression shall be a converted constant expression of
2359 // type std::size_t.
2360 //
2361 // Don't apply this rule if we might be forming a VLA: in that case, we
2362 // allow non-constant expressions and constant-folding. We only need to use
2363 // the converted constant expression rules (to properly convert the source)
2364 // when the source expression is of class type.
2365 return S.CheckConvertedConstantExpression(
2366 ArraySize, S.Context.getSizeType(), SizeVal, Sema::CCEK_ArrayBound);
2367 }
2368
2369 // If the size is an ICE, it certainly isn't a VLA. If we're in a GNU mode
2370 // (like gnu99, but not c99) accept any evaluatable value as an extension.
2371 class VLADiagnoser : public Sema::VerifyICEDiagnoser {
2372 public:
2373 unsigned VLADiag;
2374 bool VLAIsError;
2375 bool IsVLA = false;
2376
2377 VLADiagnoser(unsigned VLADiag, bool VLAIsError)
2378 : VLADiag(VLADiag), VLAIsError(VLAIsError) {}
2379
2380 Sema::SemaDiagnosticBuilder diagnoseNotICEType(Sema &S, SourceLocation Loc,
2381 QualType T) override {
2382 return S.Diag(Loc, diag::err_array_size_non_int) << T;
2383 }
2384
2385 Sema::SemaDiagnosticBuilder diagnoseNotICE(Sema &S,
2386 SourceLocation Loc) override {
2387 IsVLA = !VLAIsError;
2388 return S.Diag(Loc, VLADiag);
2389 }
2390
2391 Sema::SemaDiagnosticBuilder diagnoseFold(Sema &S,
2392 SourceLocation Loc) override {
2393 return S.Diag(Loc, diag::ext_vla_folded_to_constant);
2394 }
2395 } Diagnoser(VLADiag, VLAIsError);
2396
2397 ExprResult R =
2398 S.VerifyIntegerConstantExpression(ArraySize, &SizeVal, Diagnoser);
2399 if (Diagnoser.IsVLA)
2400 return ExprResult();
2401 return R;
2402 }
2403
checkArrayElementAlignment(QualType EltTy,SourceLocation Loc)2404 bool Sema::checkArrayElementAlignment(QualType EltTy, SourceLocation Loc) {
2405 EltTy = Context.getBaseElementType(EltTy);
2406 if (EltTy->isIncompleteType() || EltTy->isDependentType() ||
2407 EltTy->isUndeducedType())
2408 return true;
2409
2410 CharUnits Size = Context.getTypeSizeInChars(EltTy);
2411 CharUnits Alignment = Context.getTypeAlignInChars(EltTy);
2412
2413 if (Size.isMultipleOf(Alignment))
2414 return true;
2415
2416 Diag(Loc, diag::err_array_element_alignment)
2417 << EltTy << Size.getQuantity() << Alignment.getQuantity();
2418 return false;
2419 }
2420
2421 /// Build an array type.
2422 ///
2423 /// \param T The type of each element in the array.
2424 ///
2425 /// \param ASM C99 array size modifier (e.g., '*', 'static').
2426 ///
2427 /// \param ArraySize Expression describing the size of the array.
2428 ///
2429 /// \param Brackets The range from the opening '[' to the closing ']'.
2430 ///
2431 /// \param Entity The name of the entity that involves the array
2432 /// type, if known.
2433 ///
2434 /// \returns A suitable array type, if there are no errors. Otherwise,
2435 /// returns a NULL type.
BuildArrayType(QualType T,ArrayType::ArraySizeModifier ASM,Expr * ArraySize,unsigned Quals,SourceRange Brackets,DeclarationName Entity)2436 QualType Sema::BuildArrayType(QualType T, ArrayType::ArraySizeModifier ASM,
2437 Expr *ArraySize, unsigned Quals,
2438 SourceRange Brackets, DeclarationName Entity) {
2439
2440 SourceLocation Loc = Brackets.getBegin();
2441 if (getLangOpts().CPlusPlus) {
2442 // C++ [dcl.array]p1:
2443 // T is called the array element type; this type shall not be a reference
2444 // type, the (possibly cv-qualified) type void, a function type or an
2445 // abstract class type.
2446 //
2447 // C++ [dcl.array]p3:
2448 // When several "array of" specifications are adjacent, [...] only the
2449 // first of the constant expressions that specify the bounds of the arrays
2450 // may be omitted.
2451 //
2452 // Note: function types are handled in the common path with C.
2453 if (T->isReferenceType()) {
2454 Diag(Loc, diag::err_illegal_decl_array_of_references)
2455 << getPrintableNameForEntity(Entity) << T;
2456 return QualType();
2457 }
2458
2459 if (T->isVoidType() || T->isIncompleteArrayType()) {
2460 Diag(Loc, diag::err_array_incomplete_or_sizeless_type) << 0 << T;
2461 return QualType();
2462 }
2463
2464 if (RequireNonAbstractType(Brackets.getBegin(), T,
2465 diag::err_array_of_abstract_type))
2466 return QualType();
2467
2468 // Mentioning a member pointer type for an array type causes us to lock in
2469 // an inheritance model, even if it's inside an unused typedef.
2470 if (Context.getTargetInfo().getCXXABI().isMicrosoft())
2471 if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>())
2472 if (!MPTy->getClass()->isDependentType())
2473 (void)isCompleteType(Loc, T);
2474
2475 } else {
2476 // C99 6.7.5.2p1: If the element type is an incomplete or function type,
2477 // reject it (e.g. void ary[7], struct foo ary[7], void ary[7]())
2478 if (RequireCompleteSizedType(Loc, T,
2479 diag::err_array_incomplete_or_sizeless_type))
2480 return QualType();
2481 }
2482
2483 if (T->isSizelessType()) {
2484 Diag(Loc, diag::err_array_incomplete_or_sizeless_type) << 1 << T;
2485 return QualType();
2486 }
2487
2488 if (T->isFunctionType()) {
2489 Diag(Loc, diag::err_illegal_decl_array_of_functions)
2490 << getPrintableNameForEntity(Entity) << T;
2491 return QualType();
2492 }
2493
2494 if (const RecordType *EltTy = T->getAs<RecordType>()) {
2495 // If the element type is a struct or union that contains a variadic
2496 // array, accept it as a GNU extension: C99 6.7.2.1p2.
2497 if (EltTy->getDecl()->hasFlexibleArrayMember())
2498 Diag(Loc, diag::ext_flexible_array_in_array) << T;
2499 } else if (T->isObjCObjectType()) {
2500 Diag(Loc, diag::err_objc_array_of_interfaces) << T;
2501 return QualType();
2502 }
2503
2504 if (!checkArrayElementAlignment(T, Loc))
2505 return QualType();
2506
2507 // Do placeholder conversions on the array size expression.
2508 if (ArraySize && ArraySize->hasPlaceholderType()) {
2509 ExprResult Result = CheckPlaceholderExpr(ArraySize);
2510 if (Result.isInvalid()) return QualType();
2511 ArraySize = Result.get();
2512 }
2513
2514 // Do lvalue-to-rvalue conversions on the array size expression.
2515 if (ArraySize && !ArraySize->isPRValue()) {
2516 ExprResult Result = DefaultLvalueConversion(ArraySize);
2517 if (Result.isInvalid())
2518 return QualType();
2519
2520 ArraySize = Result.get();
2521 }
2522
2523 // C99 6.7.5.2p1: The size expression shall have integer type.
2524 // C++11 allows contextual conversions to such types.
2525 if (!getLangOpts().CPlusPlus11 &&
2526 ArraySize && !ArraySize->isTypeDependent() &&
2527 !ArraySize->getType()->isIntegralOrUnscopedEnumerationType()) {
2528 Diag(ArraySize->getBeginLoc(), diag::err_array_size_non_int)
2529 << ArraySize->getType() << ArraySize->getSourceRange();
2530 return QualType();
2531 }
2532
2533 // VLAs always produce at least a -Wvla diagnostic, sometimes an error.
2534 unsigned VLADiag;
2535 bool VLAIsError;
2536 if (getLangOpts().OpenCL) {
2537 // OpenCL v1.2 s6.9.d: variable length arrays are not supported.
2538 VLADiag = diag::err_opencl_vla;
2539 VLAIsError = true;
2540 } else if (getLangOpts().C99) {
2541 VLADiag = diag::warn_vla_used;
2542 VLAIsError = false;
2543 } else if (isSFINAEContext()) {
2544 VLADiag = diag::err_vla_in_sfinae;
2545 VLAIsError = true;
2546 } else if (getLangOpts().OpenMP && isInOpenMPTaskUntiedContext()) {
2547 VLADiag = diag::err_openmp_vla_in_task_untied;
2548 VLAIsError = true;
2549 } else {
2550 VLADiag = diag::ext_vla;
2551 VLAIsError = false;
2552 }
2553
2554 llvm::APSInt ConstVal(Context.getTypeSize(Context.getSizeType()));
2555 if (!ArraySize) {
2556 if (ASM == ArrayType::Star) {
2557 Diag(Loc, VLADiag);
2558 if (VLAIsError)
2559 return QualType();
2560
2561 T = Context.getVariableArrayType(T, nullptr, ASM, Quals, Brackets);
2562 } else {
2563 T = Context.getIncompleteArrayType(T, ASM, Quals);
2564 }
2565 } else if (ArraySize->isTypeDependent() || ArraySize->isValueDependent()) {
2566 T = Context.getDependentSizedArrayType(T, ArraySize, ASM, Quals, Brackets);
2567 } else {
2568 ExprResult R =
2569 checkArraySize(*this, ArraySize, ConstVal, VLADiag, VLAIsError);
2570 if (R.isInvalid())
2571 return QualType();
2572
2573 if (!R.isUsable()) {
2574 // C99: an array with a non-ICE size is a VLA. We accept any expression
2575 // that we can fold to a non-zero positive value as a non-VLA as an
2576 // extension.
2577 T = Context.getVariableArrayType(T, ArraySize, ASM, Quals, Brackets);
2578 } else if (!T->isDependentType() && !T->isIncompleteType() &&
2579 !T->isConstantSizeType()) {
2580 // C99: an array with an element type that has a non-constant-size is a
2581 // VLA.
2582 // FIXME: Add a note to explain why this isn't a VLA.
2583 Diag(Loc, VLADiag);
2584 if (VLAIsError)
2585 return QualType();
2586 T = Context.getVariableArrayType(T, ArraySize, ASM, Quals, Brackets);
2587 } else {
2588 // C99 6.7.5.2p1: If the expression is a constant expression, it shall
2589 // have a value greater than zero.
2590 // In C++, this follows from narrowing conversions being disallowed.
2591 if (ConstVal.isSigned() && ConstVal.isNegative()) {
2592 if (Entity)
2593 Diag(ArraySize->getBeginLoc(), diag::err_decl_negative_array_size)
2594 << getPrintableNameForEntity(Entity)
2595 << ArraySize->getSourceRange();
2596 else
2597 Diag(ArraySize->getBeginLoc(),
2598 diag::err_typecheck_negative_array_size)
2599 << ArraySize->getSourceRange();
2600 return QualType();
2601 }
2602 if (ConstVal == 0) {
2603 // GCC accepts zero sized static arrays. We allow them when
2604 // we're not in a SFINAE context.
2605 Diag(ArraySize->getBeginLoc(),
2606 isSFINAEContext() ? diag::err_typecheck_zero_array_size
2607 : diag::ext_typecheck_zero_array_size)
2608 << 0 << ArraySize->getSourceRange();
2609 }
2610
2611 // Is the array too large?
2612 unsigned ActiveSizeBits =
2613 (!T->isDependentType() && !T->isVariablyModifiedType() &&
2614 !T->isIncompleteType() && !T->isUndeducedType())
2615 ? ConstantArrayType::getNumAddressingBits(Context, T, ConstVal)
2616 : ConstVal.getActiveBits();
2617 if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
2618 Diag(ArraySize->getBeginLoc(), diag::err_array_too_large)
2619 << toString(ConstVal, 10) << ArraySize->getSourceRange();
2620 return QualType();
2621 }
2622
2623 T = Context.getConstantArrayType(T, ConstVal, ArraySize, ASM, Quals);
2624 }
2625 }
2626
2627 if (T->isVariableArrayType() && !Context.getTargetInfo().isVLASupported()) {
2628 // CUDA device code and some other targets don't support VLAs.
2629 bool IsCUDADevice = (getLangOpts().CUDA && getLangOpts().CUDAIsDevice);
2630 targetDiag(Loc,
2631 IsCUDADevice ? diag::err_cuda_vla : diag::err_vla_unsupported)
2632 << (IsCUDADevice ? CurrentCUDATarget() : 0);
2633 }
2634
2635 // If this is not C99, diagnose array size modifiers on non-VLAs.
2636 if (!getLangOpts().C99 && !T->isVariableArrayType() &&
2637 (ASM != ArrayType::Normal || Quals != 0)) {
2638 Diag(Loc, getLangOpts().CPlusPlus ? diag::err_c99_array_usage_cxx
2639 : diag::ext_c99_array_usage)
2640 << ASM;
2641 }
2642
2643 // OpenCL v2.0 s6.12.5 - Arrays of blocks are not supported.
2644 // OpenCL v2.0 s6.16.13.1 - Arrays of pipe type are not supported.
2645 // OpenCL v2.0 s6.9.b - Arrays of image/sampler type are not supported.
2646 if (getLangOpts().OpenCL) {
2647 const QualType ArrType = Context.getBaseElementType(T);
2648 if (ArrType->isBlockPointerType() || ArrType->isPipeType() ||
2649 ArrType->isSamplerT() || ArrType->isImageType()) {
2650 Diag(Loc, diag::err_opencl_invalid_type_array) << ArrType;
2651 return QualType();
2652 }
2653 }
2654
2655 return T;
2656 }
2657
BuildVectorType(QualType CurType,Expr * SizeExpr,SourceLocation AttrLoc)2658 QualType Sema::BuildVectorType(QualType CurType, Expr *SizeExpr,
2659 SourceLocation AttrLoc) {
2660 // The base type must be integer (not Boolean or enumeration) or float, and
2661 // can't already be a vector.
2662 if ((!CurType->isDependentType() &&
2663 (!CurType->isBuiltinType() || CurType->isBooleanType() ||
2664 (!CurType->isIntegerType() && !CurType->isRealFloatingType())) &&
2665 !CurType->isBitIntType()) ||
2666 CurType->isArrayType()) {
2667 Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << CurType;
2668 return QualType();
2669 }
2670 // Only support _BitInt elements with byte-sized power of 2 NumBits.
2671 if (CurType->isBitIntType()) {
2672 unsigned NumBits = CurType->getAs<BitIntType>()->getNumBits();
2673 if (!llvm::isPowerOf2_32(NumBits) || NumBits < 8) {
2674 Diag(AttrLoc, diag::err_attribute_invalid_bitint_vector_type)
2675 << (NumBits < 8);
2676 return QualType();
2677 }
2678 }
2679
2680 if (SizeExpr->isTypeDependent() || SizeExpr->isValueDependent())
2681 return Context.getDependentVectorType(CurType, SizeExpr, AttrLoc,
2682 VectorType::GenericVector);
2683
2684 std::optional<llvm::APSInt> VecSize =
2685 SizeExpr->getIntegerConstantExpr(Context);
2686 if (!VecSize) {
2687 Diag(AttrLoc, diag::err_attribute_argument_type)
2688 << "vector_size" << AANT_ArgumentIntegerConstant
2689 << SizeExpr->getSourceRange();
2690 return QualType();
2691 }
2692
2693 if (CurType->isDependentType())
2694 return Context.getDependentVectorType(CurType, SizeExpr, AttrLoc,
2695 VectorType::GenericVector);
2696
2697 // vecSize is specified in bytes - convert to bits.
2698 if (!VecSize->isIntN(61)) {
2699 // Bit size will overflow uint64.
2700 Diag(AttrLoc, diag::err_attribute_size_too_large)
2701 << SizeExpr->getSourceRange() << "vector";
2702 return QualType();
2703 }
2704 uint64_t VectorSizeBits = VecSize->getZExtValue() * 8;
2705 unsigned TypeSize = static_cast<unsigned>(Context.getTypeSize(CurType));
2706
2707 if (VectorSizeBits == 0) {
2708 Diag(AttrLoc, diag::err_attribute_zero_size)
2709 << SizeExpr->getSourceRange() << "vector";
2710 return QualType();
2711 }
2712
2713 if (!TypeSize || VectorSizeBits % TypeSize) {
2714 Diag(AttrLoc, diag::err_attribute_invalid_size)
2715 << SizeExpr->getSourceRange();
2716 return QualType();
2717 }
2718
2719 if (VectorSizeBits / TypeSize > std::numeric_limits<uint32_t>::max()) {
2720 Diag(AttrLoc, diag::err_attribute_size_too_large)
2721 << SizeExpr->getSourceRange() << "vector";
2722 return QualType();
2723 }
2724
2725 return Context.getVectorType(CurType, VectorSizeBits / TypeSize,
2726 VectorType::GenericVector);
2727 }
2728
2729 /// Build an ext-vector type.
2730 ///
2731 /// Run the required checks for the extended vector type.
BuildExtVectorType(QualType T,Expr * ArraySize,SourceLocation AttrLoc)2732 QualType Sema::BuildExtVectorType(QualType T, Expr *ArraySize,
2733 SourceLocation AttrLoc) {
2734 // Unlike gcc's vector_size attribute, we do not allow vectors to be defined
2735 // in conjunction with complex types (pointers, arrays, functions, etc.).
2736 //
2737 // Additionally, OpenCL prohibits vectors of booleans (they're considered a
2738 // reserved data type under OpenCL v2.0 s6.1.4), we don't support selects
2739 // on bitvectors, and we have no well-defined ABI for bitvectors, so vectors
2740 // of bool aren't allowed.
2741 //
2742 // We explictly allow bool elements in ext_vector_type for C/C++.
2743 bool IsNoBoolVecLang = getLangOpts().OpenCL || getLangOpts().OpenCLCPlusPlus;
2744 if ((!T->isDependentType() && !T->isIntegerType() &&
2745 !T->isRealFloatingType()) ||
2746 (IsNoBoolVecLang && T->isBooleanType())) {
2747 Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << T;
2748 return QualType();
2749 }
2750
2751 // Only support _BitInt elements with byte-sized power of 2 NumBits.
2752 if (T->isBitIntType()) {
2753 unsigned NumBits = T->getAs<BitIntType>()->getNumBits();
2754 if (!llvm::isPowerOf2_32(NumBits) || NumBits < 8) {
2755 Diag(AttrLoc, diag::err_attribute_invalid_bitint_vector_type)
2756 << (NumBits < 8);
2757 return QualType();
2758 }
2759 }
2760
2761 if (!ArraySize->isTypeDependent() && !ArraySize->isValueDependent()) {
2762 std::optional<llvm::APSInt> vecSize =
2763 ArraySize->getIntegerConstantExpr(Context);
2764 if (!vecSize) {
2765 Diag(AttrLoc, diag::err_attribute_argument_type)
2766 << "ext_vector_type" << AANT_ArgumentIntegerConstant
2767 << ArraySize->getSourceRange();
2768 return QualType();
2769 }
2770
2771 if (!vecSize->isIntN(32)) {
2772 Diag(AttrLoc, diag::err_attribute_size_too_large)
2773 << ArraySize->getSourceRange() << "vector";
2774 return QualType();
2775 }
2776 // Unlike gcc's vector_size attribute, the size is specified as the
2777 // number of elements, not the number of bytes.
2778 unsigned vectorSize = static_cast<unsigned>(vecSize->getZExtValue());
2779
2780 if (vectorSize == 0) {
2781 Diag(AttrLoc, diag::err_attribute_zero_size)
2782 << ArraySize->getSourceRange() << "vector";
2783 return QualType();
2784 }
2785
2786 return Context.getExtVectorType(T, vectorSize);
2787 }
2788
2789 return Context.getDependentSizedExtVectorType(T, ArraySize, AttrLoc);
2790 }
2791
BuildMatrixType(QualType ElementTy,Expr * NumRows,Expr * NumCols,SourceLocation AttrLoc)2792 QualType Sema::BuildMatrixType(QualType ElementTy, Expr *NumRows, Expr *NumCols,
2793 SourceLocation AttrLoc) {
2794 assert(Context.getLangOpts().MatrixTypes &&
2795 "Should never build a matrix type when it is disabled");
2796
2797 // Check element type, if it is not dependent.
2798 if (!ElementTy->isDependentType() &&
2799 !MatrixType::isValidElementType(ElementTy)) {
2800 Diag(AttrLoc, diag::err_attribute_invalid_matrix_type) << ElementTy;
2801 return QualType();
2802 }
2803
2804 if (NumRows->isTypeDependent() || NumCols->isTypeDependent() ||
2805 NumRows->isValueDependent() || NumCols->isValueDependent())
2806 return Context.getDependentSizedMatrixType(ElementTy, NumRows, NumCols,
2807 AttrLoc);
2808
2809 std::optional<llvm::APSInt> ValueRows =
2810 NumRows->getIntegerConstantExpr(Context);
2811 std::optional<llvm::APSInt> ValueColumns =
2812 NumCols->getIntegerConstantExpr(Context);
2813
2814 auto const RowRange = NumRows->getSourceRange();
2815 auto const ColRange = NumCols->getSourceRange();
2816
2817 // Both are row and column expressions are invalid.
2818 if (!ValueRows && !ValueColumns) {
2819 Diag(AttrLoc, diag::err_attribute_argument_type)
2820 << "matrix_type" << AANT_ArgumentIntegerConstant << RowRange
2821 << ColRange;
2822 return QualType();
2823 }
2824
2825 // Only the row expression is invalid.
2826 if (!ValueRows) {
2827 Diag(AttrLoc, diag::err_attribute_argument_type)
2828 << "matrix_type" << AANT_ArgumentIntegerConstant << RowRange;
2829 return QualType();
2830 }
2831
2832 // Only the column expression is invalid.
2833 if (!ValueColumns) {
2834 Diag(AttrLoc, diag::err_attribute_argument_type)
2835 << "matrix_type" << AANT_ArgumentIntegerConstant << ColRange;
2836 return QualType();
2837 }
2838
2839 // Check the matrix dimensions.
2840 unsigned MatrixRows = static_cast<unsigned>(ValueRows->getZExtValue());
2841 unsigned MatrixColumns = static_cast<unsigned>(ValueColumns->getZExtValue());
2842 if (MatrixRows == 0 && MatrixColumns == 0) {
2843 Diag(AttrLoc, diag::err_attribute_zero_size)
2844 << "matrix" << RowRange << ColRange;
2845 return QualType();
2846 }
2847 if (MatrixRows == 0) {
2848 Diag(AttrLoc, diag::err_attribute_zero_size) << "matrix" << RowRange;
2849 return QualType();
2850 }
2851 if (MatrixColumns == 0) {
2852 Diag(AttrLoc, diag::err_attribute_zero_size) << "matrix" << ColRange;
2853 return QualType();
2854 }
2855 if (!ConstantMatrixType::isDimensionValid(MatrixRows)) {
2856 Diag(AttrLoc, diag::err_attribute_size_too_large)
2857 << RowRange << "matrix row";
2858 return QualType();
2859 }
2860 if (!ConstantMatrixType::isDimensionValid(MatrixColumns)) {
2861 Diag(AttrLoc, diag::err_attribute_size_too_large)
2862 << ColRange << "matrix column";
2863 return QualType();
2864 }
2865 return Context.getConstantMatrixType(ElementTy, MatrixRows, MatrixColumns);
2866 }
2867
CheckFunctionReturnType(QualType T,SourceLocation Loc)2868 bool Sema::CheckFunctionReturnType(QualType T, SourceLocation Loc) {
2869 if (T->isArrayType() || T->isFunctionType()) {
2870 Diag(Loc, diag::err_func_returning_array_function)
2871 << T->isFunctionType() << T;
2872 return true;
2873 }
2874
2875 // Functions cannot return half FP.
2876 if (T->isHalfType() && !getLangOpts().NativeHalfArgsAndReturns &&
2877 !Context.getTargetInfo().allowHalfArgsAndReturns()) {
2878 Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 1 <<
2879 FixItHint::CreateInsertion(Loc, "*");
2880 return true;
2881 }
2882
2883 // Methods cannot return interface types. All ObjC objects are
2884 // passed by reference.
2885 if (T->isObjCObjectType()) {
2886 Diag(Loc, diag::err_object_cannot_be_passed_returned_by_value)
2887 << 0 << T << FixItHint::CreateInsertion(Loc, "*");
2888 return true;
2889 }
2890
2891 if (T.hasNonTrivialToPrimitiveDestructCUnion() ||
2892 T.hasNonTrivialToPrimitiveCopyCUnion())
2893 checkNonTrivialCUnion(T, Loc, NTCUC_FunctionReturn,
2894 NTCUK_Destruct|NTCUK_Copy);
2895
2896 // C++2a [dcl.fct]p12:
2897 // A volatile-qualified return type is deprecated
2898 if (T.isVolatileQualified() && getLangOpts().CPlusPlus20)
2899 Diag(Loc, diag::warn_deprecated_volatile_return) << T;
2900
2901 if (T.getAddressSpace() != LangAS::Default && getLangOpts().HLSL)
2902 return true;
2903 return false;
2904 }
2905
2906 /// Check the extended parameter information. Most of the necessary
2907 /// checking should occur when applying the parameter attribute; the
2908 /// only other checks required are positional restrictions.
checkExtParameterInfos(Sema & S,ArrayRef<QualType> paramTypes,const FunctionProtoType::ExtProtoInfo & EPI,llvm::function_ref<SourceLocation (unsigned)> getParamLoc)2909 static void checkExtParameterInfos(Sema &S, ArrayRef<QualType> paramTypes,
2910 const FunctionProtoType::ExtProtoInfo &EPI,
2911 llvm::function_ref<SourceLocation(unsigned)> getParamLoc) {
2912 assert(EPI.ExtParameterInfos && "shouldn't get here without param infos");
2913
2914 bool emittedError = false;
2915 auto actualCC = EPI.ExtInfo.getCC();
2916 enum class RequiredCC { OnlySwift, SwiftOrSwiftAsync };
2917 auto checkCompatible = [&](unsigned paramIndex, RequiredCC required) {
2918 bool isCompatible =
2919 (required == RequiredCC::OnlySwift)
2920 ? (actualCC == CC_Swift)
2921 : (actualCC == CC_Swift || actualCC == CC_SwiftAsync);
2922 if (isCompatible || emittedError)
2923 return;
2924 S.Diag(getParamLoc(paramIndex), diag::err_swift_param_attr_not_swiftcall)
2925 << getParameterABISpelling(EPI.ExtParameterInfos[paramIndex].getABI())
2926 << (required == RequiredCC::OnlySwift);
2927 emittedError = true;
2928 };
2929 for (size_t paramIndex = 0, numParams = paramTypes.size();
2930 paramIndex != numParams; ++paramIndex) {
2931 switch (EPI.ExtParameterInfos[paramIndex].getABI()) {
2932 // Nothing interesting to check for orindary-ABI parameters.
2933 case ParameterABI::Ordinary:
2934 continue;
2935
2936 // swift_indirect_result parameters must be a prefix of the function
2937 // arguments.
2938 case ParameterABI::SwiftIndirectResult:
2939 checkCompatible(paramIndex, RequiredCC::SwiftOrSwiftAsync);
2940 if (paramIndex != 0 &&
2941 EPI.ExtParameterInfos[paramIndex - 1].getABI()
2942 != ParameterABI::SwiftIndirectResult) {
2943 S.Diag(getParamLoc(paramIndex),
2944 diag::err_swift_indirect_result_not_first);
2945 }
2946 continue;
2947
2948 case ParameterABI::SwiftContext:
2949 checkCompatible(paramIndex, RequiredCC::SwiftOrSwiftAsync);
2950 continue;
2951
2952 // SwiftAsyncContext is not limited to swiftasynccall functions.
2953 case ParameterABI::SwiftAsyncContext:
2954 continue;
2955
2956 // swift_error parameters must be preceded by a swift_context parameter.
2957 case ParameterABI::SwiftErrorResult:
2958 checkCompatible(paramIndex, RequiredCC::OnlySwift);
2959 if (paramIndex == 0 ||
2960 EPI.ExtParameterInfos[paramIndex - 1].getABI() !=
2961 ParameterABI::SwiftContext) {
2962 S.Diag(getParamLoc(paramIndex),
2963 diag::err_swift_error_result_not_after_swift_context);
2964 }
2965 continue;
2966 }
2967 llvm_unreachable("bad ABI kind");
2968 }
2969 }
2970
BuildFunctionType(QualType T,MutableArrayRef<QualType> ParamTypes,SourceLocation Loc,DeclarationName Entity,const FunctionProtoType::ExtProtoInfo & EPI)2971 QualType Sema::BuildFunctionType(QualType T,
2972 MutableArrayRef<QualType> ParamTypes,
2973 SourceLocation Loc, DeclarationName Entity,
2974 const FunctionProtoType::ExtProtoInfo &EPI) {
2975 bool Invalid = false;
2976
2977 Invalid |= CheckFunctionReturnType(T, Loc);
2978
2979 for (unsigned Idx = 0, Cnt = ParamTypes.size(); Idx < Cnt; ++Idx) {
2980 // FIXME: Loc is too inprecise here, should use proper locations for args.
2981 QualType ParamType = Context.getAdjustedParameterType(ParamTypes[Idx]);
2982 if (ParamType->isVoidType()) {
2983 Diag(Loc, diag::err_param_with_void_type);
2984 Invalid = true;
2985 } else if (ParamType->isHalfType() && !getLangOpts().NativeHalfArgsAndReturns &&
2986 !Context.getTargetInfo().allowHalfArgsAndReturns()) {
2987 // Disallow half FP arguments.
2988 Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 0 <<
2989 FixItHint::CreateInsertion(Loc, "*");
2990 Invalid = true;
2991 }
2992
2993 // C++2a [dcl.fct]p4:
2994 // A parameter with volatile-qualified type is deprecated
2995 if (ParamType.isVolatileQualified() && getLangOpts().CPlusPlus20)
2996 Diag(Loc, diag::warn_deprecated_volatile_param) << ParamType;
2997
2998 ParamTypes[Idx] = ParamType;
2999 }
3000
3001 if (EPI.ExtParameterInfos) {
3002 checkExtParameterInfos(*this, ParamTypes, EPI,
3003 [=](unsigned i) { return Loc; });
3004 }
3005
3006 if (EPI.ExtInfo.getProducesResult()) {
3007 // This is just a warning, so we can't fail to build if we see it.
3008 checkNSReturnsRetainedReturnType(Loc, T);
3009 }
3010
3011 if (Invalid)
3012 return QualType();
3013
3014 return Context.getFunctionType(T, ParamTypes, EPI);
3015 }
3016
3017 /// Build a member pointer type \c T Class::*.
3018 ///
3019 /// \param T the type to which the member pointer refers.
3020 /// \param Class the class type into which the member pointer points.
3021 /// \param Loc the location where this type begins
3022 /// \param Entity the name of the entity that will have this member pointer type
3023 ///
3024 /// \returns a member pointer type, if successful, or a NULL type if there was
3025 /// an error.
BuildMemberPointerType(QualType T,QualType Class,SourceLocation Loc,DeclarationName Entity)3026 QualType Sema::BuildMemberPointerType(QualType T, QualType Class,
3027 SourceLocation Loc,
3028 DeclarationName Entity) {
3029 // Verify that we're not building a pointer to pointer to function with
3030 // exception specification.
3031 if (CheckDistantExceptionSpec(T)) {
3032 Diag(Loc, diag::err_distant_exception_spec);
3033 return QualType();
3034 }
3035
3036 // C++ 8.3.3p3: A pointer to member shall not point to ... a member
3037 // with reference type, or "cv void."
3038 if (T->isReferenceType()) {
3039 Diag(Loc, diag::err_illegal_decl_mempointer_to_reference)
3040 << getPrintableNameForEntity(Entity) << T;
3041 return QualType();
3042 }
3043
3044 if (T->isVoidType()) {
3045 Diag(Loc, diag::err_illegal_decl_mempointer_to_void)
3046 << getPrintableNameForEntity(Entity);
3047 return QualType();
3048 }
3049
3050 if (!Class->isDependentType() && !Class->isRecordType()) {
3051 Diag(Loc, diag::err_mempointer_in_nonclass_type) << Class;
3052 return QualType();
3053 }
3054
3055 if (T->isFunctionType() && getLangOpts().OpenCL &&
3056 !getOpenCLOptions().isAvailableOption("__cl_clang_function_pointers",
3057 getLangOpts())) {
3058 Diag(Loc, diag::err_opencl_function_pointer) << /*pointer*/ 0;
3059 return QualType();
3060 }
3061
3062 if (getLangOpts().HLSL && Loc.isValid()) {
3063 Diag(Loc, diag::err_hlsl_pointers_unsupported) << 0;
3064 return QualType();
3065 }
3066
3067 // Adjust the default free function calling convention to the default method
3068 // calling convention.
3069 bool IsCtorOrDtor =
3070 (Entity.getNameKind() == DeclarationName::CXXConstructorName) ||
3071 (Entity.getNameKind() == DeclarationName::CXXDestructorName);
3072 if (T->isFunctionType())
3073 adjustMemberFunctionCC(T, /*IsStatic=*/false, IsCtorOrDtor, Loc);
3074
3075 return Context.getMemberPointerType(T, Class.getTypePtr());
3076 }
3077
3078 /// Build a block pointer type.
3079 ///
3080 /// \param T The type to which we'll be building a block pointer.
3081 ///
3082 /// \param Loc The source location, used for diagnostics.
3083 ///
3084 /// \param Entity The name of the entity that involves the block pointer
3085 /// type, if known.
3086 ///
3087 /// \returns A suitable block pointer type, if there are no
3088 /// errors. Otherwise, returns a NULL type.
BuildBlockPointerType(QualType T,SourceLocation Loc,DeclarationName Entity)3089 QualType Sema::BuildBlockPointerType(QualType T,
3090 SourceLocation Loc,
3091 DeclarationName Entity) {
3092 if (!T->isFunctionType()) {
3093 Diag(Loc, diag::err_nonfunction_block_type);
3094 return QualType();
3095 }
3096
3097 if (checkQualifiedFunction(*this, T, Loc, QFK_BlockPointer))
3098 return QualType();
3099
3100 if (getLangOpts().OpenCL)
3101 T = deduceOpenCLPointeeAddrSpace(*this, T);
3102
3103 return Context.getBlockPointerType(T);
3104 }
3105
GetTypeFromParser(ParsedType Ty,TypeSourceInfo ** TInfo)3106 QualType Sema::GetTypeFromParser(ParsedType Ty, TypeSourceInfo **TInfo) {
3107 QualType QT = Ty.get();
3108 if (QT.isNull()) {
3109 if (TInfo) *TInfo = nullptr;
3110 return QualType();
3111 }
3112
3113 TypeSourceInfo *DI = nullptr;
3114 if (const LocInfoType *LIT = dyn_cast<LocInfoType>(QT)) {
3115 QT = LIT->getType();
3116 DI = LIT->getTypeSourceInfo();
3117 }
3118
3119 if (TInfo) *TInfo = DI;
3120 return QT;
3121 }
3122
3123 static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
3124 Qualifiers::ObjCLifetime ownership,
3125 unsigned chunkIndex);
3126
3127 /// Given that this is the declaration of a parameter under ARC,
3128 /// attempt to infer attributes and such for pointer-to-whatever
3129 /// types.
inferARCWriteback(TypeProcessingState & state,QualType & declSpecType)3130 static void inferARCWriteback(TypeProcessingState &state,
3131 QualType &declSpecType) {
3132 Sema &S = state.getSema();
3133 Declarator &declarator = state.getDeclarator();
3134
3135 // TODO: should we care about decl qualifiers?
3136
3137 // Check whether the declarator has the expected form. We walk
3138 // from the inside out in order to make the block logic work.
3139 unsigned outermostPointerIndex = 0;
3140 bool isBlockPointer = false;
3141 unsigned numPointers = 0;
3142 for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
3143 unsigned chunkIndex = i;
3144 DeclaratorChunk &chunk = declarator.getTypeObject(chunkIndex);
3145 switch (chunk.Kind) {
3146 case DeclaratorChunk::Paren:
3147 // Ignore parens.
3148 break;
3149
3150 case DeclaratorChunk::Reference:
3151 case DeclaratorChunk::Pointer:
3152 // Count the number of pointers. Treat references
3153 // interchangeably as pointers; if they're mis-ordered, normal
3154 // type building will discover that.
3155 outermostPointerIndex = chunkIndex;
3156 numPointers++;
3157 break;
3158
3159 case DeclaratorChunk::BlockPointer:
3160 // If we have a pointer to block pointer, that's an acceptable
3161 // indirect reference; anything else is not an application of
3162 // the rules.
3163 if (numPointers != 1) return;
3164 numPointers++;
3165 outermostPointerIndex = chunkIndex;
3166 isBlockPointer = true;
3167
3168 // We don't care about pointer structure in return values here.
3169 goto done;
3170
3171 case DeclaratorChunk::Array: // suppress if written (id[])?
3172 case DeclaratorChunk::Function:
3173 case DeclaratorChunk::MemberPointer:
3174 case DeclaratorChunk::Pipe:
3175 return;
3176 }
3177 }
3178 done:
3179
3180 // If we have *one* pointer, then we want to throw the qualifier on
3181 // the declaration-specifiers, which means that it needs to be a
3182 // retainable object type.
3183 if (numPointers == 1) {
3184 // If it's not a retainable object type, the rule doesn't apply.
3185 if (!declSpecType->isObjCRetainableType()) return;
3186
3187 // If it already has lifetime, don't do anything.
3188 if (declSpecType.getObjCLifetime()) return;
3189
3190 // Otherwise, modify the type in-place.
3191 Qualifiers qs;
3192
3193 if (declSpecType->isObjCARCImplicitlyUnretainedType())
3194 qs.addObjCLifetime(Qualifiers::OCL_ExplicitNone);
3195 else
3196 qs.addObjCLifetime(Qualifiers::OCL_Autoreleasing);
3197 declSpecType = S.Context.getQualifiedType(declSpecType, qs);
3198
3199 // If we have *two* pointers, then we want to throw the qualifier on
3200 // the outermost pointer.
3201 } else if (numPointers == 2) {
3202 // If we don't have a block pointer, we need to check whether the
3203 // declaration-specifiers gave us something that will turn into a
3204 // retainable object pointer after we slap the first pointer on it.
3205 if (!isBlockPointer && !declSpecType->isObjCObjectType())
3206 return;
3207
3208 // Look for an explicit lifetime attribute there.
3209 DeclaratorChunk &chunk = declarator.getTypeObject(outermostPointerIndex);
3210 if (chunk.Kind != DeclaratorChunk::Pointer &&
3211 chunk.Kind != DeclaratorChunk::BlockPointer)
3212 return;
3213 for (const ParsedAttr &AL : chunk.getAttrs())
3214 if (AL.getKind() == ParsedAttr::AT_ObjCOwnership)
3215 return;
3216
3217 transferARCOwnershipToDeclaratorChunk(state, Qualifiers::OCL_Autoreleasing,
3218 outermostPointerIndex);
3219
3220 // Any other number of pointers/references does not trigger the rule.
3221 } else return;
3222
3223 // TODO: mark whether we did this inference?
3224 }
3225
diagnoseIgnoredQualifiers(unsigned DiagID,unsigned Quals,SourceLocation FallbackLoc,SourceLocation ConstQualLoc,SourceLocation VolatileQualLoc,SourceLocation RestrictQualLoc,SourceLocation AtomicQualLoc,SourceLocation UnalignedQualLoc)3226 void Sema::diagnoseIgnoredQualifiers(unsigned DiagID, unsigned Quals,
3227 SourceLocation FallbackLoc,
3228 SourceLocation ConstQualLoc,
3229 SourceLocation VolatileQualLoc,
3230 SourceLocation RestrictQualLoc,
3231 SourceLocation AtomicQualLoc,
3232 SourceLocation UnalignedQualLoc) {
3233 if (!Quals)
3234 return;
3235
3236 struct Qual {
3237 const char *Name;
3238 unsigned Mask;
3239 SourceLocation Loc;
3240 } const QualKinds[5] = {
3241 { "const", DeclSpec::TQ_const, ConstQualLoc },
3242 { "volatile", DeclSpec::TQ_volatile, VolatileQualLoc },
3243 { "restrict", DeclSpec::TQ_restrict, RestrictQualLoc },
3244 { "__unaligned", DeclSpec::TQ_unaligned, UnalignedQualLoc },
3245 { "_Atomic", DeclSpec::TQ_atomic, AtomicQualLoc }
3246 };
3247
3248 SmallString<32> QualStr;
3249 unsigned NumQuals = 0;
3250 SourceLocation Loc;
3251 FixItHint FixIts[5];
3252
3253 // Build a string naming the redundant qualifiers.
3254 for (auto &E : QualKinds) {
3255 if (Quals & E.Mask) {
3256 if (!QualStr.empty()) QualStr += ' ';
3257 QualStr += E.Name;
3258
3259 // If we have a location for the qualifier, offer a fixit.
3260 SourceLocation QualLoc = E.Loc;
3261 if (QualLoc.isValid()) {
3262 FixIts[NumQuals] = FixItHint::CreateRemoval(QualLoc);
3263 if (Loc.isInvalid() ||
3264 getSourceManager().isBeforeInTranslationUnit(QualLoc, Loc))
3265 Loc = QualLoc;
3266 }
3267
3268 ++NumQuals;
3269 }
3270 }
3271
3272 Diag(Loc.isInvalid() ? FallbackLoc : Loc, DiagID)
3273 << QualStr << NumQuals << FixIts[0] << FixIts[1] << FixIts[2] << FixIts[3];
3274 }
3275
3276 // Diagnose pointless type qualifiers on the return type of a function.
diagnoseRedundantReturnTypeQualifiers(Sema & S,QualType RetTy,Declarator & D,unsigned FunctionChunkIndex)3277 static void diagnoseRedundantReturnTypeQualifiers(Sema &S, QualType RetTy,
3278 Declarator &D,
3279 unsigned FunctionChunkIndex) {
3280 const DeclaratorChunk::FunctionTypeInfo &FTI =
3281 D.getTypeObject(FunctionChunkIndex).Fun;
3282 if (FTI.hasTrailingReturnType()) {
3283 S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type,
3284 RetTy.getLocalCVRQualifiers(),
3285 FTI.getTrailingReturnTypeLoc());
3286 return;
3287 }
3288
3289 for (unsigned OuterChunkIndex = FunctionChunkIndex + 1,
3290 End = D.getNumTypeObjects();
3291 OuterChunkIndex != End; ++OuterChunkIndex) {
3292 DeclaratorChunk &OuterChunk = D.getTypeObject(OuterChunkIndex);
3293 switch (OuterChunk.Kind) {
3294 case DeclaratorChunk::Paren:
3295 continue;
3296
3297 case DeclaratorChunk::Pointer: {
3298 DeclaratorChunk::PointerTypeInfo &PTI = OuterChunk.Ptr;
3299 S.diagnoseIgnoredQualifiers(
3300 diag::warn_qual_return_type,
3301 PTI.TypeQuals,
3302 SourceLocation(),
3303 PTI.ConstQualLoc,
3304 PTI.VolatileQualLoc,
3305 PTI.RestrictQualLoc,
3306 PTI.AtomicQualLoc,
3307 PTI.UnalignedQualLoc);
3308 return;
3309 }
3310
3311 case DeclaratorChunk::Function:
3312 case DeclaratorChunk::BlockPointer:
3313 case DeclaratorChunk::Reference:
3314 case DeclaratorChunk::Array:
3315 case DeclaratorChunk::MemberPointer:
3316 case DeclaratorChunk::Pipe:
3317 // FIXME: We can't currently provide an accurate source location and a
3318 // fix-it hint for these.
3319 unsigned AtomicQual = RetTy->isAtomicType() ? DeclSpec::TQ_atomic : 0;
3320 S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type,
3321 RetTy.getCVRQualifiers() | AtomicQual,
3322 D.getIdentifierLoc());
3323 return;
3324 }
3325
3326 llvm_unreachable("unknown declarator chunk kind");
3327 }
3328
3329 // If the qualifiers come from a conversion function type, don't diagnose
3330 // them -- they're not necessarily redundant, since such a conversion
3331 // operator can be explicitly called as "x.operator const int()".
3332 if (D.getName().getKind() == UnqualifiedIdKind::IK_ConversionFunctionId)
3333 return;
3334
3335 // Just parens all the way out to the decl specifiers. Diagnose any qualifiers
3336 // which are present there.
3337 S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type,
3338 D.getDeclSpec().getTypeQualifiers(),
3339 D.getIdentifierLoc(),
3340 D.getDeclSpec().getConstSpecLoc(),
3341 D.getDeclSpec().getVolatileSpecLoc(),
3342 D.getDeclSpec().getRestrictSpecLoc(),
3343 D.getDeclSpec().getAtomicSpecLoc(),
3344 D.getDeclSpec().getUnalignedSpecLoc());
3345 }
3346
3347 static std::pair<QualType, TypeSourceInfo *>
InventTemplateParameter(TypeProcessingState & state,QualType T,TypeSourceInfo * TrailingTSI,AutoType * Auto,InventedTemplateParameterInfo & Info)3348 InventTemplateParameter(TypeProcessingState &state, QualType T,
3349 TypeSourceInfo *TrailingTSI, AutoType *Auto,
3350 InventedTemplateParameterInfo &Info) {
3351 Sema &S = state.getSema();
3352 Declarator &D = state.getDeclarator();
3353
3354 const unsigned TemplateParameterDepth = Info.AutoTemplateParameterDepth;
3355 const unsigned AutoParameterPosition = Info.TemplateParams.size();
3356 const bool IsParameterPack = D.hasEllipsis();
3357
3358 // If auto is mentioned in a lambda parameter or abbreviated function
3359 // template context, convert it to a template parameter type.
3360
3361 // Create the TemplateTypeParmDecl here to retrieve the corresponding
3362 // template parameter type. Template parameters are temporarily added
3363 // to the TU until the associated TemplateDecl is created.
3364 TemplateTypeParmDecl *InventedTemplateParam =
3365 TemplateTypeParmDecl::Create(
3366 S.Context, S.Context.getTranslationUnitDecl(),
3367 /*KeyLoc=*/D.getDeclSpec().getTypeSpecTypeLoc(),
3368 /*NameLoc=*/D.getIdentifierLoc(),
3369 TemplateParameterDepth, AutoParameterPosition,
3370 S.InventAbbreviatedTemplateParameterTypeName(
3371 D.getIdentifier(), AutoParameterPosition), false,
3372 IsParameterPack, /*HasTypeConstraint=*/Auto->isConstrained());
3373 InventedTemplateParam->setImplicit();
3374 Info.TemplateParams.push_back(InventedTemplateParam);
3375
3376 // Attach type constraints to the new parameter.
3377 if (Auto->isConstrained()) {
3378 if (TrailingTSI) {
3379 // The 'auto' appears in a trailing return type we've already built;
3380 // extract its type constraints to attach to the template parameter.
3381 AutoTypeLoc AutoLoc = TrailingTSI->getTypeLoc().getContainedAutoTypeLoc();
3382 TemplateArgumentListInfo TAL(AutoLoc.getLAngleLoc(), AutoLoc.getRAngleLoc());
3383 bool Invalid = false;
3384 for (unsigned Idx = 0; Idx < AutoLoc.getNumArgs(); ++Idx) {
3385 if (D.getEllipsisLoc().isInvalid() && !Invalid &&
3386 S.DiagnoseUnexpandedParameterPack(AutoLoc.getArgLoc(Idx),
3387 Sema::UPPC_TypeConstraint))
3388 Invalid = true;
3389 TAL.addArgument(AutoLoc.getArgLoc(Idx));
3390 }
3391
3392 if (!Invalid) {
3393 S.AttachTypeConstraint(
3394 AutoLoc.getNestedNameSpecifierLoc(), AutoLoc.getConceptNameInfo(),
3395 AutoLoc.getNamedConcept(),
3396 AutoLoc.hasExplicitTemplateArgs() ? &TAL : nullptr,
3397 InventedTemplateParam, D.getEllipsisLoc());
3398 }
3399 } else {
3400 // The 'auto' appears in the decl-specifiers; we've not finished forming
3401 // TypeSourceInfo for it yet.
3402 TemplateIdAnnotation *TemplateId = D.getDeclSpec().getRepAsTemplateId();
3403 TemplateArgumentListInfo TemplateArgsInfo;
3404 bool Invalid = false;
3405 if (TemplateId->LAngleLoc.isValid()) {
3406 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
3407 TemplateId->NumArgs);
3408 S.translateTemplateArguments(TemplateArgsPtr, TemplateArgsInfo);
3409
3410 if (D.getEllipsisLoc().isInvalid()) {
3411 for (TemplateArgumentLoc Arg : TemplateArgsInfo.arguments()) {
3412 if (S.DiagnoseUnexpandedParameterPack(Arg,
3413 Sema::UPPC_TypeConstraint)) {
3414 Invalid = true;
3415 break;
3416 }
3417 }
3418 }
3419 }
3420 if (!Invalid) {
3421 S.AttachTypeConstraint(
3422 D.getDeclSpec().getTypeSpecScope().getWithLocInContext(S.Context),
3423 DeclarationNameInfo(DeclarationName(TemplateId->Name),
3424 TemplateId->TemplateNameLoc),
3425 cast<ConceptDecl>(TemplateId->Template.get().getAsTemplateDecl()),
3426 TemplateId->LAngleLoc.isValid() ? &TemplateArgsInfo : nullptr,
3427 InventedTemplateParam, D.getEllipsisLoc());
3428 }
3429 }
3430 }
3431
3432 // Replace the 'auto' in the function parameter with this invented
3433 // template type parameter.
3434 // FIXME: Retain some type sugar to indicate that this was written
3435 // as 'auto'?
3436 QualType Replacement(InventedTemplateParam->getTypeForDecl(), 0);
3437 QualType NewT = state.ReplaceAutoType(T, Replacement);
3438 TypeSourceInfo *NewTSI =
3439 TrailingTSI ? S.ReplaceAutoTypeSourceInfo(TrailingTSI, Replacement)
3440 : nullptr;
3441 return {NewT, NewTSI};
3442 }
3443
3444 static TypeSourceInfo *
3445 GetTypeSourceInfoForDeclarator(TypeProcessingState &State,
3446 QualType T, TypeSourceInfo *ReturnTypeInfo);
3447
GetDeclSpecTypeForDeclarator(TypeProcessingState & state,TypeSourceInfo * & ReturnTypeInfo)3448 static QualType GetDeclSpecTypeForDeclarator(TypeProcessingState &state,
3449 TypeSourceInfo *&ReturnTypeInfo) {
3450 Sema &SemaRef = state.getSema();
3451 Declarator &D = state.getDeclarator();
3452 QualType T;
3453 ReturnTypeInfo = nullptr;
3454
3455 // The TagDecl owned by the DeclSpec.
3456 TagDecl *OwnedTagDecl = nullptr;
3457
3458 switch (D.getName().getKind()) {
3459 case UnqualifiedIdKind::IK_ImplicitSelfParam:
3460 case UnqualifiedIdKind::IK_OperatorFunctionId:
3461 case UnqualifiedIdKind::IK_Identifier:
3462 case UnqualifiedIdKind::IK_LiteralOperatorId:
3463 case UnqualifiedIdKind::IK_TemplateId:
3464 T = ConvertDeclSpecToType(state);
3465
3466 if (!D.isInvalidType() && D.getDeclSpec().isTypeSpecOwned()) {
3467 OwnedTagDecl = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
3468 // Owned declaration is embedded in declarator.
3469 OwnedTagDecl->setEmbeddedInDeclarator(true);
3470 }
3471 break;
3472
3473 case UnqualifiedIdKind::IK_ConstructorName:
3474 case UnqualifiedIdKind::IK_ConstructorTemplateId:
3475 case UnqualifiedIdKind::IK_DestructorName:
3476 // Constructors and destructors don't have return types. Use
3477 // "void" instead.
3478 T = SemaRef.Context.VoidTy;
3479 processTypeAttrs(state, T, TAL_DeclSpec,
3480 D.getMutableDeclSpec().getAttributes());
3481 break;
3482
3483 case UnqualifiedIdKind::IK_DeductionGuideName:
3484 // Deduction guides have a trailing return type and no type in their
3485 // decl-specifier sequence. Use a placeholder return type for now.
3486 T = SemaRef.Context.DependentTy;
3487 break;
3488
3489 case UnqualifiedIdKind::IK_ConversionFunctionId:
3490 // The result type of a conversion function is the type that it
3491 // converts to.
3492 T = SemaRef.GetTypeFromParser(D.getName().ConversionFunctionId,
3493 &ReturnTypeInfo);
3494 break;
3495 }
3496
3497 // Note: We don't need to distribute declaration attributes (i.e.
3498 // D.getDeclarationAttributes()) because those are always C++11 attributes,
3499 // and those don't get distributed.
3500 distributeTypeAttrsFromDeclarator(state, T);
3501
3502 // Find the deduced type in this type. Look in the trailing return type if we
3503 // have one, otherwise in the DeclSpec type.
3504 // FIXME: The standard wording doesn't currently describe this.
3505 DeducedType *Deduced = T->getContainedDeducedType();
3506 bool DeducedIsTrailingReturnType = false;
3507 if (Deduced && isa<AutoType>(Deduced) && D.hasTrailingReturnType()) {
3508 QualType T = SemaRef.GetTypeFromParser(D.getTrailingReturnType());
3509 Deduced = T.isNull() ? nullptr : T->getContainedDeducedType();
3510 DeducedIsTrailingReturnType = true;
3511 }
3512
3513 // C++11 [dcl.spec.auto]p5: reject 'auto' if it is not in an allowed context.
3514 if (Deduced) {
3515 AutoType *Auto = dyn_cast<AutoType>(Deduced);
3516 int Error = -1;
3517
3518 // Is this a 'auto' or 'decltype(auto)' type (as opposed to __auto_type or
3519 // class template argument deduction)?
3520 bool IsCXXAutoType =
3521 (Auto && Auto->getKeyword() != AutoTypeKeyword::GNUAutoType);
3522 bool IsDeducedReturnType = false;
3523
3524 switch (D.getContext()) {
3525 case DeclaratorContext::LambdaExpr:
3526 // Declared return type of a lambda-declarator is implicit and is always
3527 // 'auto'.
3528 break;
3529 case DeclaratorContext::ObjCParameter:
3530 case DeclaratorContext::ObjCResult:
3531 Error = 0;
3532 break;
3533 case DeclaratorContext::RequiresExpr:
3534 Error = 22;
3535 break;
3536 case DeclaratorContext::Prototype:
3537 case DeclaratorContext::LambdaExprParameter: {
3538 InventedTemplateParameterInfo *Info = nullptr;
3539 if (D.getContext() == DeclaratorContext::Prototype) {
3540 // With concepts we allow 'auto' in function parameters.
3541 if (!SemaRef.getLangOpts().CPlusPlus20 || !Auto ||
3542 Auto->getKeyword() != AutoTypeKeyword::Auto) {
3543 Error = 0;
3544 break;
3545 } else if (!SemaRef.getCurScope()->isFunctionDeclarationScope()) {
3546 Error = 21;
3547 break;
3548 }
3549
3550 Info = &SemaRef.InventedParameterInfos.back();
3551 } else {
3552 // In C++14, generic lambdas allow 'auto' in their parameters.
3553 if (!SemaRef.getLangOpts().CPlusPlus14 || !Auto ||
3554 Auto->getKeyword() != AutoTypeKeyword::Auto) {
3555 Error = 16;
3556 break;
3557 }
3558 Info = SemaRef.getCurLambda();
3559 assert(Info && "No LambdaScopeInfo on the stack!");
3560 }
3561
3562 // We'll deal with inventing template parameters for 'auto' in trailing
3563 // return types when we pick up the trailing return type when processing
3564 // the function chunk.
3565 if (!DeducedIsTrailingReturnType)
3566 T = InventTemplateParameter(state, T, nullptr, Auto, *Info).first;
3567 break;
3568 }
3569 case DeclaratorContext::Member: {
3570 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static ||
3571 D.isFunctionDeclarator())
3572 break;
3573 bool Cxx = SemaRef.getLangOpts().CPlusPlus;
3574 if (isa<ObjCContainerDecl>(SemaRef.CurContext)) {
3575 Error = 6; // Interface member.
3576 } else {
3577 switch (cast<TagDecl>(SemaRef.CurContext)->getTagKind()) {
3578 case TTK_Enum: llvm_unreachable("unhandled tag kind");
3579 case TTK_Struct: Error = Cxx ? 1 : 2; /* Struct member */ break;
3580 case TTK_Union: Error = Cxx ? 3 : 4; /* Union member */ break;
3581 case TTK_Class: Error = 5; /* Class member */ break;
3582 case TTK_Interface: Error = 6; /* Interface member */ break;
3583 }
3584 }
3585 if (D.getDeclSpec().isFriendSpecified())
3586 Error = 20; // Friend type
3587 break;
3588 }
3589 case DeclaratorContext::CXXCatch:
3590 case DeclaratorContext::ObjCCatch:
3591 Error = 7; // Exception declaration
3592 break;
3593 case DeclaratorContext::TemplateParam:
3594 if (isa<DeducedTemplateSpecializationType>(Deduced) &&
3595 !SemaRef.getLangOpts().CPlusPlus20)
3596 Error = 19; // Template parameter (until C++20)
3597 else if (!SemaRef.getLangOpts().CPlusPlus17)
3598 Error = 8; // Template parameter (until C++17)
3599 break;
3600 case DeclaratorContext::BlockLiteral:
3601 Error = 9; // Block literal
3602 break;
3603 case DeclaratorContext::TemplateArg:
3604 // Within a template argument list, a deduced template specialization
3605 // type will be reinterpreted as a template template argument.
3606 if (isa<DeducedTemplateSpecializationType>(Deduced) &&
3607 !D.getNumTypeObjects() &&
3608 D.getDeclSpec().getParsedSpecifiers() == DeclSpec::PQ_TypeSpecifier)
3609 break;
3610 [[fallthrough]];
3611 case DeclaratorContext::TemplateTypeArg:
3612 Error = 10; // Template type argument
3613 break;
3614 case DeclaratorContext::AliasDecl:
3615 case DeclaratorContext::AliasTemplate:
3616 Error = 12; // Type alias
3617 break;
3618 case DeclaratorContext::TrailingReturn:
3619 case DeclaratorContext::TrailingReturnVar:
3620 if (!SemaRef.getLangOpts().CPlusPlus14 || !IsCXXAutoType)
3621 Error = 13; // Function return type
3622 IsDeducedReturnType = true;
3623 break;
3624 case DeclaratorContext::ConversionId:
3625 if (!SemaRef.getLangOpts().CPlusPlus14 || !IsCXXAutoType)
3626 Error = 14; // conversion-type-id
3627 IsDeducedReturnType = true;
3628 break;
3629 case DeclaratorContext::FunctionalCast:
3630 if (isa<DeducedTemplateSpecializationType>(Deduced))
3631 break;
3632 if (SemaRef.getLangOpts().CPlusPlus2b && IsCXXAutoType &&
3633 !Auto->isDecltypeAuto())
3634 break; // auto(x)
3635 [[fallthrough]];
3636 case DeclaratorContext::TypeName:
3637 case DeclaratorContext::Association:
3638 Error = 15; // Generic
3639 break;
3640 case DeclaratorContext::File:
3641 case DeclaratorContext::Block:
3642 case DeclaratorContext::ForInit:
3643 case DeclaratorContext::SelectionInit:
3644 case DeclaratorContext::Condition:
3645 // FIXME: P0091R3 (erroneously) does not permit class template argument
3646 // deduction in conditions, for-init-statements, and other declarations
3647 // that are not simple-declarations.
3648 break;
3649 case DeclaratorContext::CXXNew:
3650 // FIXME: P0091R3 does not permit class template argument deduction here,
3651 // but we follow GCC and allow it anyway.
3652 if (!IsCXXAutoType && !isa<DeducedTemplateSpecializationType>(Deduced))
3653 Error = 17; // 'new' type
3654 break;
3655 case DeclaratorContext::KNRTypeList:
3656 Error = 18; // K&R function parameter
3657 break;
3658 }
3659
3660 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3661 Error = 11;
3662
3663 // In Objective-C it is an error to use 'auto' on a function declarator
3664 // (and everywhere for '__auto_type').
3665 if (D.isFunctionDeclarator() &&
3666 (!SemaRef.getLangOpts().CPlusPlus11 || !IsCXXAutoType))
3667 Error = 13;
3668
3669 SourceRange AutoRange = D.getDeclSpec().getTypeSpecTypeLoc();
3670 if (D.getName().getKind() == UnqualifiedIdKind::IK_ConversionFunctionId)
3671 AutoRange = D.getName().getSourceRange();
3672
3673 if (Error != -1) {
3674 unsigned Kind;
3675 if (Auto) {
3676 switch (Auto->getKeyword()) {
3677 case AutoTypeKeyword::Auto: Kind = 0; break;
3678 case AutoTypeKeyword::DecltypeAuto: Kind = 1; break;
3679 case AutoTypeKeyword::GNUAutoType: Kind = 2; break;
3680 }
3681 } else {
3682 assert(isa<DeducedTemplateSpecializationType>(Deduced) &&
3683 "unknown auto type");
3684 Kind = 3;
3685 }
3686
3687 auto *DTST = dyn_cast<DeducedTemplateSpecializationType>(Deduced);
3688 TemplateName TN = DTST ? DTST->getTemplateName() : TemplateName();
3689
3690 SemaRef.Diag(AutoRange.getBegin(), diag::err_auto_not_allowed)
3691 << Kind << Error << (int)SemaRef.getTemplateNameKindForDiagnostics(TN)
3692 << QualType(Deduced, 0) << AutoRange;
3693 if (auto *TD = TN.getAsTemplateDecl())
3694 SemaRef.Diag(TD->getLocation(), diag::note_template_decl_here);
3695
3696 T = SemaRef.Context.IntTy;
3697 D.setInvalidType(true);
3698 } else if (Auto && D.getContext() != DeclaratorContext::LambdaExpr) {
3699 // If there was a trailing return type, we already got
3700 // warn_cxx98_compat_trailing_return_type in the parser.
3701 SemaRef.Diag(AutoRange.getBegin(),
3702 D.getContext() == DeclaratorContext::LambdaExprParameter
3703 ? diag::warn_cxx11_compat_generic_lambda
3704 : IsDeducedReturnType
3705 ? diag::warn_cxx11_compat_deduced_return_type
3706 : diag::warn_cxx98_compat_auto_type_specifier)
3707 << AutoRange;
3708 }
3709 }
3710
3711 if (SemaRef.getLangOpts().CPlusPlus &&
3712 OwnedTagDecl && OwnedTagDecl->isCompleteDefinition()) {
3713 // Check the contexts where C++ forbids the declaration of a new class
3714 // or enumeration in a type-specifier-seq.
3715 unsigned DiagID = 0;
3716 switch (D.getContext()) {
3717 case DeclaratorContext::TrailingReturn:
3718 case DeclaratorContext::TrailingReturnVar:
3719 // Class and enumeration definitions are syntactically not allowed in
3720 // trailing return types.
3721 llvm_unreachable("parser should not have allowed this");
3722 break;
3723 case DeclaratorContext::File:
3724 case DeclaratorContext::Member:
3725 case DeclaratorContext::Block:
3726 case DeclaratorContext::ForInit:
3727 case DeclaratorContext::SelectionInit:
3728 case DeclaratorContext::BlockLiteral:
3729 case DeclaratorContext::LambdaExpr:
3730 // C++11 [dcl.type]p3:
3731 // A type-specifier-seq shall not define a class or enumeration unless
3732 // it appears in the type-id of an alias-declaration (7.1.3) that is not
3733 // the declaration of a template-declaration.
3734 case DeclaratorContext::AliasDecl:
3735 break;
3736 case DeclaratorContext::AliasTemplate:
3737 DiagID = diag::err_type_defined_in_alias_template;
3738 break;
3739 case DeclaratorContext::TypeName:
3740 case DeclaratorContext::FunctionalCast:
3741 case DeclaratorContext::ConversionId:
3742 case DeclaratorContext::TemplateParam:
3743 case DeclaratorContext::CXXNew:
3744 case DeclaratorContext::CXXCatch:
3745 case DeclaratorContext::ObjCCatch:
3746 case DeclaratorContext::TemplateArg:
3747 case DeclaratorContext::TemplateTypeArg:
3748 case DeclaratorContext::Association:
3749 DiagID = diag::err_type_defined_in_type_specifier;
3750 break;
3751 case DeclaratorContext::Prototype:
3752 case DeclaratorContext::LambdaExprParameter:
3753 case DeclaratorContext::ObjCParameter:
3754 case DeclaratorContext::ObjCResult:
3755 case DeclaratorContext::KNRTypeList:
3756 case DeclaratorContext::RequiresExpr:
3757 // C++ [dcl.fct]p6:
3758 // Types shall not be defined in return or parameter types.
3759 DiagID = diag::err_type_defined_in_param_type;
3760 break;
3761 case DeclaratorContext::Condition:
3762 // C++ 6.4p2:
3763 // The type-specifier-seq shall not contain typedef and shall not declare
3764 // a new class or enumeration.
3765 DiagID = diag::err_type_defined_in_condition;
3766 break;
3767 }
3768
3769 if (DiagID != 0) {
3770 SemaRef.Diag(OwnedTagDecl->getLocation(), DiagID)
3771 << SemaRef.Context.getTypeDeclType(OwnedTagDecl);
3772 D.setInvalidType(true);
3773 }
3774 }
3775
3776 assert(!T.isNull() && "This function should not return a null type");
3777 return T;
3778 }
3779
3780 /// Produce an appropriate diagnostic for an ambiguity between a function
3781 /// declarator and a C++ direct-initializer.
warnAboutAmbiguousFunction(Sema & S,Declarator & D,DeclaratorChunk & DeclType,QualType RT)3782 static void warnAboutAmbiguousFunction(Sema &S, Declarator &D,
3783 DeclaratorChunk &DeclType, QualType RT) {
3784 const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
3785 assert(FTI.isAmbiguous && "no direct-initializer / function ambiguity");
3786
3787 // If the return type is void there is no ambiguity.
3788 if (RT->isVoidType())
3789 return;
3790
3791 // An initializer for a non-class type can have at most one argument.
3792 if (!RT->isRecordType() && FTI.NumParams > 1)
3793 return;
3794
3795 // An initializer for a reference must have exactly one argument.
3796 if (RT->isReferenceType() && FTI.NumParams != 1)
3797 return;
3798
3799 // Only warn if this declarator is declaring a function at block scope, and
3800 // doesn't have a storage class (such as 'extern') specified.
3801 if (!D.isFunctionDeclarator() ||
3802 D.getFunctionDefinitionKind() != FunctionDefinitionKind::Declaration ||
3803 !S.CurContext->isFunctionOrMethod() ||
3804 D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_unspecified)
3805 return;
3806
3807 // Inside a condition, a direct initializer is not permitted. We allow one to
3808 // be parsed in order to give better diagnostics in condition parsing.
3809 if (D.getContext() == DeclaratorContext::Condition)
3810 return;
3811
3812 SourceRange ParenRange(DeclType.Loc, DeclType.EndLoc);
3813
3814 S.Diag(DeclType.Loc,
3815 FTI.NumParams ? diag::warn_parens_disambiguated_as_function_declaration
3816 : diag::warn_empty_parens_are_function_decl)
3817 << ParenRange;
3818
3819 // If the declaration looks like:
3820 // T var1,
3821 // f();
3822 // and name lookup finds a function named 'f', then the ',' was
3823 // probably intended to be a ';'.
3824 if (!D.isFirstDeclarator() && D.getIdentifier()) {
3825 FullSourceLoc Comma(D.getCommaLoc(), S.SourceMgr);
3826 FullSourceLoc Name(D.getIdentifierLoc(), S.SourceMgr);
3827 if (Comma.getFileID() != Name.getFileID() ||
3828 Comma.getSpellingLineNumber() != Name.getSpellingLineNumber()) {
3829 LookupResult Result(S, D.getIdentifier(), SourceLocation(),
3830 Sema::LookupOrdinaryName);
3831 if (S.LookupName(Result, S.getCurScope()))
3832 S.Diag(D.getCommaLoc(), diag::note_empty_parens_function_call)
3833 << FixItHint::CreateReplacement(D.getCommaLoc(), ";")
3834 << D.getIdentifier();
3835 Result.suppressDiagnostics();
3836 }
3837 }
3838
3839 if (FTI.NumParams > 0) {
3840 // For a declaration with parameters, eg. "T var(T());", suggest adding
3841 // parens around the first parameter to turn the declaration into a
3842 // variable declaration.
3843 SourceRange Range = FTI.Params[0].Param->getSourceRange();
3844 SourceLocation B = Range.getBegin();
3845 SourceLocation E = S.getLocForEndOfToken(Range.getEnd());
3846 // FIXME: Maybe we should suggest adding braces instead of parens
3847 // in C++11 for classes that don't have an initializer_list constructor.
3848 S.Diag(B, diag::note_additional_parens_for_variable_declaration)
3849 << FixItHint::CreateInsertion(B, "(")
3850 << FixItHint::CreateInsertion(E, ")");
3851 } else {
3852 // For a declaration without parameters, eg. "T var();", suggest replacing
3853 // the parens with an initializer to turn the declaration into a variable
3854 // declaration.
3855 const CXXRecordDecl *RD = RT->getAsCXXRecordDecl();
3856
3857 // Empty parens mean value-initialization, and no parens mean
3858 // default initialization. These are equivalent if the default
3859 // constructor is user-provided or if zero-initialization is a
3860 // no-op.
3861 if (RD && RD->hasDefinition() &&
3862 (RD->isEmpty() || RD->hasUserProvidedDefaultConstructor()))
3863 S.Diag(DeclType.Loc, diag::note_empty_parens_default_ctor)
3864 << FixItHint::CreateRemoval(ParenRange);
3865 else {
3866 std::string Init =
3867 S.getFixItZeroInitializerForType(RT, ParenRange.getBegin());
3868 if (Init.empty() && S.LangOpts.CPlusPlus11)
3869 Init = "{}";
3870 if (!Init.empty())
3871 S.Diag(DeclType.Loc, diag::note_empty_parens_zero_initialize)
3872 << FixItHint::CreateReplacement(ParenRange, Init);
3873 }
3874 }
3875 }
3876
3877 /// Produce an appropriate diagnostic for a declarator with top-level
3878 /// parentheses.
warnAboutRedundantParens(Sema & S,Declarator & D,QualType T)3879 static void warnAboutRedundantParens(Sema &S, Declarator &D, QualType T) {
3880 DeclaratorChunk &Paren = D.getTypeObject(D.getNumTypeObjects() - 1);
3881 assert(Paren.Kind == DeclaratorChunk::Paren &&
3882 "do not have redundant top-level parentheses");
3883
3884 // This is a syntactic check; we're not interested in cases that arise
3885 // during template instantiation.
3886 if (S.inTemplateInstantiation())
3887 return;
3888
3889 // Check whether this could be intended to be a construction of a temporary
3890 // object in C++ via a function-style cast.
3891 bool CouldBeTemporaryObject =
3892 S.getLangOpts().CPlusPlus && D.isExpressionContext() &&
3893 !D.isInvalidType() && D.getIdentifier() &&
3894 D.getDeclSpec().getParsedSpecifiers() == DeclSpec::PQ_TypeSpecifier &&
3895 (T->isRecordType() || T->isDependentType()) &&
3896 D.getDeclSpec().getTypeQualifiers() == 0 && D.isFirstDeclarator();
3897
3898 bool StartsWithDeclaratorId = true;
3899 for (auto &C : D.type_objects()) {
3900 switch (C.Kind) {
3901 case DeclaratorChunk::Paren:
3902 if (&C == &Paren)
3903 continue;
3904 [[fallthrough]];
3905 case DeclaratorChunk::Pointer:
3906 StartsWithDeclaratorId = false;
3907 continue;
3908
3909 case DeclaratorChunk::Array:
3910 if (!C.Arr.NumElts)
3911 CouldBeTemporaryObject = false;
3912 continue;
3913
3914 case DeclaratorChunk::Reference:
3915 // FIXME: Suppress the warning here if there is no initializer; we're
3916 // going to give an error anyway.
3917 // We assume that something like 'T (&x) = y;' is highly likely to not
3918 // be intended to be a temporary object.
3919 CouldBeTemporaryObject = false;
3920 StartsWithDeclaratorId = false;
3921 continue;
3922
3923 case DeclaratorChunk::Function:
3924 // In a new-type-id, function chunks require parentheses.
3925 if (D.getContext() == DeclaratorContext::CXXNew)
3926 return;
3927 // FIXME: "A(f())" deserves a vexing-parse warning, not just a
3928 // redundant-parens warning, but we don't know whether the function
3929 // chunk was syntactically valid as an expression here.
3930 CouldBeTemporaryObject = false;
3931 continue;
3932
3933 case DeclaratorChunk::BlockPointer:
3934 case DeclaratorChunk::MemberPointer:
3935 case DeclaratorChunk::Pipe:
3936 // These cannot appear in expressions.
3937 CouldBeTemporaryObject = false;
3938 StartsWithDeclaratorId = false;
3939 continue;
3940 }
3941 }
3942
3943 // FIXME: If there is an initializer, assume that this is not intended to be
3944 // a construction of a temporary object.
3945
3946 // Check whether the name has already been declared; if not, this is not a
3947 // function-style cast.
3948 if (CouldBeTemporaryObject) {
3949 LookupResult Result(S, D.getIdentifier(), SourceLocation(),
3950 Sema::LookupOrdinaryName);
3951 if (!S.LookupName(Result, S.getCurScope()))
3952 CouldBeTemporaryObject = false;
3953 Result.suppressDiagnostics();
3954 }
3955
3956 SourceRange ParenRange(Paren.Loc, Paren.EndLoc);
3957
3958 if (!CouldBeTemporaryObject) {
3959 // If we have A (::B), the parentheses affect the meaning of the program.
3960 // Suppress the warning in that case. Don't bother looking at the DeclSpec
3961 // here: even (e.g.) "int ::x" is visually ambiguous even though it's
3962 // formally unambiguous.
3963 if (StartsWithDeclaratorId && D.getCXXScopeSpec().isValid()) {
3964 for (NestedNameSpecifier *NNS = D.getCXXScopeSpec().getScopeRep(); NNS;
3965 NNS = NNS->getPrefix()) {
3966 if (NNS->getKind() == NestedNameSpecifier::Global)
3967 return;
3968 }
3969 }
3970
3971 S.Diag(Paren.Loc, diag::warn_redundant_parens_around_declarator)
3972 << ParenRange << FixItHint::CreateRemoval(Paren.Loc)
3973 << FixItHint::CreateRemoval(Paren.EndLoc);
3974 return;
3975 }
3976
3977 S.Diag(Paren.Loc, diag::warn_parens_disambiguated_as_variable_declaration)
3978 << ParenRange << D.getIdentifier();
3979 auto *RD = T->getAsCXXRecordDecl();
3980 if (!RD || !RD->hasDefinition() || RD->hasNonTrivialDestructor())
3981 S.Diag(Paren.Loc, diag::note_raii_guard_add_name)
3982 << FixItHint::CreateInsertion(Paren.Loc, " varname") << T
3983 << D.getIdentifier();
3984 // FIXME: A cast to void is probably a better suggestion in cases where it's
3985 // valid (when there is no initializer and we're not in a condition).
3986 S.Diag(D.getBeginLoc(), diag::note_function_style_cast_add_parentheses)
3987 << FixItHint::CreateInsertion(D.getBeginLoc(), "(")
3988 << FixItHint::CreateInsertion(S.getLocForEndOfToken(D.getEndLoc()), ")");
3989 S.Diag(Paren.Loc, diag::note_remove_parens_for_variable_declaration)
3990 << FixItHint::CreateRemoval(Paren.Loc)
3991 << FixItHint::CreateRemoval(Paren.EndLoc);
3992 }
3993
3994 /// Helper for figuring out the default CC for a function declarator type. If
3995 /// this is the outermost chunk, then we can determine the CC from the
3996 /// declarator context. If not, then this could be either a member function
3997 /// type or normal function type.
getCCForDeclaratorChunk(Sema & S,Declarator & D,const ParsedAttributesView & AttrList,const DeclaratorChunk::FunctionTypeInfo & FTI,unsigned ChunkIndex)3998 static CallingConv getCCForDeclaratorChunk(
3999 Sema &S, Declarator &D, const ParsedAttributesView &AttrList,
4000 const DeclaratorChunk::FunctionTypeInfo &FTI, unsigned ChunkIndex) {
4001 assert(D.getTypeObject(ChunkIndex).Kind == DeclaratorChunk::Function);
4002
4003 // Check for an explicit CC attribute.
4004 for (const ParsedAttr &AL : AttrList) {
4005 switch (AL.getKind()) {
4006 CALLING_CONV_ATTRS_CASELIST : {
4007 // Ignore attributes that don't validate or can't apply to the
4008 // function type. We'll diagnose the failure to apply them in
4009 // handleFunctionTypeAttr.
4010 CallingConv CC;
4011 if (!S.CheckCallingConvAttr(AL, CC) &&
4012 (!FTI.isVariadic || supportsVariadicCall(CC))) {
4013 return CC;
4014 }
4015 break;
4016 }
4017
4018 default:
4019 break;
4020 }
4021 }
4022
4023 bool IsCXXInstanceMethod = false;
4024
4025 if (S.getLangOpts().CPlusPlus) {
4026 // Look inwards through parentheses to see if this chunk will form a
4027 // member pointer type or if we're the declarator. Any type attributes
4028 // between here and there will override the CC we choose here.
4029 unsigned I = ChunkIndex;
4030 bool FoundNonParen = false;
4031 while (I && !FoundNonParen) {
4032 --I;
4033 if (D.getTypeObject(I).Kind != DeclaratorChunk::Paren)
4034 FoundNonParen = true;
4035 }
4036
4037 if (FoundNonParen) {
4038 // If we're not the declarator, we're a regular function type unless we're
4039 // in a member pointer.
4040 IsCXXInstanceMethod =
4041 D.getTypeObject(I).Kind == DeclaratorChunk::MemberPointer;
4042 } else if (D.getContext() == DeclaratorContext::LambdaExpr) {
4043 // This can only be a call operator for a lambda, which is an instance
4044 // method.
4045 IsCXXInstanceMethod = true;
4046 } else {
4047 // We're the innermost decl chunk, so must be a function declarator.
4048 assert(D.isFunctionDeclarator());
4049
4050 // If we're inside a record, we're declaring a method, but it could be
4051 // explicitly or implicitly static.
4052 IsCXXInstanceMethod =
4053 D.isFirstDeclarationOfMember() &&
4054 D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
4055 !D.isStaticMember();
4056 }
4057 }
4058
4059 CallingConv CC = S.Context.getDefaultCallingConvention(FTI.isVariadic,
4060 IsCXXInstanceMethod);
4061
4062 // Attribute AT_OpenCLKernel affects the calling convention for SPIR
4063 // and AMDGPU targets, hence it cannot be treated as a calling
4064 // convention attribute. This is the simplest place to infer
4065 // calling convention for OpenCL kernels.
4066 if (S.getLangOpts().OpenCL) {
4067 for (const ParsedAttr &AL : D.getDeclSpec().getAttributes()) {
4068 if (AL.getKind() == ParsedAttr::AT_OpenCLKernel) {
4069 CC = CC_OpenCLKernel;
4070 break;
4071 }
4072 }
4073 } else if (S.getLangOpts().CUDA) {
4074 // If we're compiling CUDA/HIP code and targeting SPIR-V we need to make
4075 // sure the kernels will be marked with the right calling convention so that
4076 // they will be visible by the APIs that ingest SPIR-V.
4077 llvm::Triple Triple = S.Context.getTargetInfo().getTriple();
4078 if (Triple.getArch() == llvm::Triple::spirv32 ||
4079 Triple.getArch() == llvm::Triple::spirv64) {
4080 for (const ParsedAttr &AL : D.getDeclSpec().getAttributes()) {
4081 if (AL.getKind() == ParsedAttr::AT_CUDAGlobal) {
4082 CC = CC_OpenCLKernel;
4083 break;
4084 }
4085 }
4086 }
4087 }
4088
4089 return CC;
4090 }
4091
4092 namespace {
4093 /// A simple notion of pointer kinds, which matches up with the various
4094 /// pointer declarators.
4095 enum class SimplePointerKind {
4096 Pointer,
4097 BlockPointer,
4098 MemberPointer,
4099 Array,
4100 };
4101 } // end anonymous namespace
4102
getNullabilityKeyword(NullabilityKind nullability)4103 IdentifierInfo *Sema::getNullabilityKeyword(NullabilityKind nullability) {
4104 switch (nullability) {
4105 case NullabilityKind::NonNull:
4106 if (!Ident__Nonnull)
4107 Ident__Nonnull = PP.getIdentifierInfo("_Nonnull");
4108 return Ident__Nonnull;
4109
4110 case NullabilityKind::Nullable:
4111 if (!Ident__Nullable)
4112 Ident__Nullable = PP.getIdentifierInfo("_Nullable");
4113 return Ident__Nullable;
4114
4115 case NullabilityKind::NullableResult:
4116 if (!Ident__Nullable_result)
4117 Ident__Nullable_result = PP.getIdentifierInfo("_Nullable_result");
4118 return Ident__Nullable_result;
4119
4120 case NullabilityKind::Unspecified:
4121 if (!Ident__Null_unspecified)
4122 Ident__Null_unspecified = PP.getIdentifierInfo("_Null_unspecified");
4123 return Ident__Null_unspecified;
4124 }
4125 llvm_unreachable("Unknown nullability kind.");
4126 }
4127
4128 /// Retrieve the identifier "NSError".
getNSErrorIdent()4129 IdentifierInfo *Sema::getNSErrorIdent() {
4130 if (!Ident_NSError)
4131 Ident_NSError = PP.getIdentifierInfo("NSError");
4132
4133 return Ident_NSError;
4134 }
4135
4136 /// Check whether there is a nullability attribute of any kind in the given
4137 /// attribute list.
hasNullabilityAttr(const ParsedAttributesView & attrs)4138 static bool hasNullabilityAttr(const ParsedAttributesView &attrs) {
4139 for (const ParsedAttr &AL : attrs) {
4140 if (AL.getKind() == ParsedAttr::AT_TypeNonNull ||
4141 AL.getKind() == ParsedAttr::AT_TypeNullable ||
4142 AL.getKind() == ParsedAttr::AT_TypeNullableResult ||
4143 AL.getKind() == ParsedAttr::AT_TypeNullUnspecified)
4144 return true;
4145 }
4146
4147 return false;
4148 }
4149
4150 namespace {
4151 /// Describes the kind of a pointer a declarator describes.
4152 enum class PointerDeclaratorKind {
4153 // Not a pointer.
4154 NonPointer,
4155 // Single-level pointer.
4156 SingleLevelPointer,
4157 // Multi-level pointer (of any pointer kind).
4158 MultiLevelPointer,
4159 // CFFooRef*
4160 MaybePointerToCFRef,
4161 // CFErrorRef*
4162 CFErrorRefPointer,
4163 // NSError**
4164 NSErrorPointerPointer,
4165 };
4166
4167 /// Describes a declarator chunk wrapping a pointer that marks inference as
4168 /// unexpected.
4169 // These values must be kept in sync with diagnostics.
4170 enum class PointerWrappingDeclaratorKind {
4171 /// Pointer is top-level.
4172 None = -1,
4173 /// Pointer is an array element.
4174 Array = 0,
4175 /// Pointer is the referent type of a C++ reference.
4176 Reference = 1
4177 };
4178 } // end anonymous namespace
4179
4180 /// Classify the given declarator, whose type-specified is \c type, based on
4181 /// what kind of pointer it refers to.
4182 ///
4183 /// This is used to determine the default nullability.
4184 static PointerDeclaratorKind
classifyPointerDeclarator(Sema & S,QualType type,Declarator & declarator,PointerWrappingDeclaratorKind & wrappingKind)4185 classifyPointerDeclarator(Sema &S, QualType type, Declarator &declarator,
4186 PointerWrappingDeclaratorKind &wrappingKind) {
4187 unsigned numNormalPointers = 0;
4188
4189 // For any dependent type, we consider it a non-pointer.
4190 if (type->isDependentType())
4191 return PointerDeclaratorKind::NonPointer;
4192
4193 // Look through the declarator chunks to identify pointers.
4194 for (unsigned i = 0, n = declarator.getNumTypeObjects(); i != n; ++i) {
4195 DeclaratorChunk &chunk = declarator.getTypeObject(i);
4196 switch (chunk.Kind) {
4197 case DeclaratorChunk::Array:
4198 if (numNormalPointers == 0)
4199 wrappingKind = PointerWrappingDeclaratorKind::Array;
4200 break;
4201
4202 case DeclaratorChunk::Function:
4203 case DeclaratorChunk::Pipe:
4204 break;
4205
4206 case DeclaratorChunk::BlockPointer:
4207 case DeclaratorChunk::MemberPointer:
4208 return numNormalPointers > 0 ? PointerDeclaratorKind::MultiLevelPointer
4209 : PointerDeclaratorKind::SingleLevelPointer;
4210
4211 case DeclaratorChunk::Paren:
4212 break;
4213
4214 case DeclaratorChunk::Reference:
4215 if (numNormalPointers == 0)
4216 wrappingKind = PointerWrappingDeclaratorKind::Reference;
4217 break;
4218
4219 case DeclaratorChunk::Pointer:
4220 ++numNormalPointers;
4221 if (numNormalPointers > 2)
4222 return PointerDeclaratorKind::MultiLevelPointer;
4223 break;
4224 }
4225 }
4226
4227 // Then, dig into the type specifier itself.
4228 unsigned numTypeSpecifierPointers = 0;
4229 do {
4230 // Decompose normal pointers.
4231 if (auto ptrType = type->getAs<PointerType>()) {
4232 ++numNormalPointers;
4233
4234 if (numNormalPointers > 2)
4235 return PointerDeclaratorKind::MultiLevelPointer;
4236
4237 type = ptrType->getPointeeType();
4238 ++numTypeSpecifierPointers;
4239 continue;
4240 }
4241
4242 // Decompose block pointers.
4243 if (type->getAs<BlockPointerType>()) {
4244 return numNormalPointers > 0 ? PointerDeclaratorKind::MultiLevelPointer
4245 : PointerDeclaratorKind::SingleLevelPointer;
4246 }
4247
4248 // Decompose member pointers.
4249 if (type->getAs<MemberPointerType>()) {
4250 return numNormalPointers > 0 ? PointerDeclaratorKind::MultiLevelPointer
4251 : PointerDeclaratorKind::SingleLevelPointer;
4252 }
4253
4254 // Look at Objective-C object pointers.
4255 if (auto objcObjectPtr = type->getAs<ObjCObjectPointerType>()) {
4256 ++numNormalPointers;
4257 ++numTypeSpecifierPointers;
4258
4259 // If this is NSError**, report that.
4260 if (auto objcClassDecl = objcObjectPtr->getInterfaceDecl()) {
4261 if (objcClassDecl->getIdentifier() == S.getNSErrorIdent() &&
4262 numNormalPointers == 2 && numTypeSpecifierPointers < 2) {
4263 return PointerDeclaratorKind::NSErrorPointerPointer;
4264 }
4265 }
4266
4267 break;
4268 }
4269
4270 // Look at Objective-C class types.
4271 if (auto objcClass = type->getAs<ObjCInterfaceType>()) {
4272 if (objcClass->getInterface()->getIdentifier() == S.getNSErrorIdent()) {
4273 if (numNormalPointers == 2 && numTypeSpecifierPointers < 2)
4274 return PointerDeclaratorKind::NSErrorPointerPointer;
4275 }
4276
4277 break;
4278 }
4279
4280 // If at this point we haven't seen a pointer, we won't see one.
4281 if (numNormalPointers == 0)
4282 return PointerDeclaratorKind::NonPointer;
4283
4284 if (auto recordType = type->getAs<RecordType>()) {
4285 RecordDecl *recordDecl = recordType->getDecl();
4286
4287 // If this is CFErrorRef*, report it as such.
4288 if (numNormalPointers == 2 && numTypeSpecifierPointers < 2 &&
4289 S.isCFError(recordDecl)) {
4290 return PointerDeclaratorKind::CFErrorRefPointer;
4291 }
4292 break;
4293 }
4294
4295 break;
4296 } while (true);
4297
4298 switch (numNormalPointers) {
4299 case 0:
4300 return PointerDeclaratorKind::NonPointer;
4301
4302 case 1:
4303 return PointerDeclaratorKind::SingleLevelPointer;
4304
4305 case 2:
4306 return PointerDeclaratorKind::MaybePointerToCFRef;
4307
4308 default:
4309 return PointerDeclaratorKind::MultiLevelPointer;
4310 }
4311 }
4312
isCFError(RecordDecl * RD)4313 bool Sema::isCFError(RecordDecl *RD) {
4314 // If we already know about CFError, test it directly.
4315 if (CFError)
4316 return CFError == RD;
4317
4318 // Check whether this is CFError, which we identify based on its bridge to
4319 // NSError. CFErrorRef used to be declared with "objc_bridge" but is now
4320 // declared with "objc_bridge_mutable", so look for either one of the two
4321 // attributes.
4322 if (RD->getTagKind() == TTK_Struct) {
4323 IdentifierInfo *bridgedType = nullptr;
4324 if (auto bridgeAttr = RD->getAttr<ObjCBridgeAttr>())
4325 bridgedType = bridgeAttr->getBridgedType();
4326 else if (auto bridgeAttr = RD->getAttr<ObjCBridgeMutableAttr>())
4327 bridgedType = bridgeAttr->getBridgedType();
4328
4329 if (bridgedType == getNSErrorIdent()) {
4330 CFError = RD;
4331 return true;
4332 }
4333 }
4334
4335 return false;
4336 }
4337
getNullabilityCompletenessCheckFileID(Sema & S,SourceLocation loc)4338 static FileID getNullabilityCompletenessCheckFileID(Sema &S,
4339 SourceLocation loc) {
4340 // If we're anywhere in a function, method, or closure context, don't perform
4341 // completeness checks.
4342 for (DeclContext *ctx = S.CurContext; ctx; ctx = ctx->getParent()) {
4343 if (ctx->isFunctionOrMethod())
4344 return FileID();
4345
4346 if (ctx->isFileContext())
4347 break;
4348 }
4349
4350 // We only care about the expansion location.
4351 loc = S.SourceMgr.getExpansionLoc(loc);
4352 FileID file = S.SourceMgr.getFileID(loc);
4353 if (file.isInvalid())
4354 return FileID();
4355
4356 // Retrieve file information.
4357 bool invalid = false;
4358 const SrcMgr::SLocEntry &sloc = S.SourceMgr.getSLocEntry(file, &invalid);
4359 if (invalid || !sloc.isFile())
4360 return FileID();
4361
4362 // We don't want to perform completeness checks on the main file or in
4363 // system headers.
4364 const SrcMgr::FileInfo &fileInfo = sloc.getFile();
4365 if (fileInfo.getIncludeLoc().isInvalid())
4366 return FileID();
4367 if (fileInfo.getFileCharacteristic() != SrcMgr::C_User &&
4368 S.Diags.getSuppressSystemWarnings()) {
4369 return FileID();
4370 }
4371
4372 return file;
4373 }
4374
4375 /// Creates a fix-it to insert a C-style nullability keyword at \p pointerLoc,
4376 /// taking into account whitespace before and after.
4377 template <typename DiagBuilderT>
fixItNullability(Sema & S,DiagBuilderT & Diag,SourceLocation PointerLoc,NullabilityKind Nullability)4378 static void fixItNullability(Sema &S, DiagBuilderT &Diag,
4379 SourceLocation PointerLoc,
4380 NullabilityKind Nullability) {
4381 assert(PointerLoc.isValid());
4382 if (PointerLoc.isMacroID())
4383 return;
4384
4385 SourceLocation FixItLoc = S.getLocForEndOfToken(PointerLoc);
4386 if (!FixItLoc.isValid() || FixItLoc == PointerLoc)
4387 return;
4388
4389 const char *NextChar = S.SourceMgr.getCharacterData(FixItLoc);
4390 if (!NextChar)
4391 return;
4392
4393 SmallString<32> InsertionTextBuf{" "};
4394 InsertionTextBuf += getNullabilitySpelling(Nullability);
4395 InsertionTextBuf += " ";
4396 StringRef InsertionText = InsertionTextBuf.str();
4397
4398 if (isWhitespace(*NextChar)) {
4399 InsertionText = InsertionText.drop_back();
4400 } else if (NextChar[-1] == '[') {
4401 if (NextChar[0] == ']')
4402 InsertionText = InsertionText.drop_back().drop_front();
4403 else
4404 InsertionText = InsertionText.drop_front();
4405 } else if (!isAsciiIdentifierContinue(NextChar[0], /*allow dollar*/ true) &&
4406 !isAsciiIdentifierContinue(NextChar[-1], /*allow dollar*/ true)) {
4407 InsertionText = InsertionText.drop_back().drop_front();
4408 }
4409
4410 Diag << FixItHint::CreateInsertion(FixItLoc, InsertionText);
4411 }
4412
emitNullabilityConsistencyWarning(Sema & S,SimplePointerKind PointerKind,SourceLocation PointerLoc,SourceLocation PointerEndLoc)4413 static void emitNullabilityConsistencyWarning(Sema &S,
4414 SimplePointerKind PointerKind,
4415 SourceLocation PointerLoc,
4416 SourceLocation PointerEndLoc) {
4417 assert(PointerLoc.isValid());
4418
4419 if (PointerKind == SimplePointerKind::Array) {
4420 S.Diag(PointerLoc, diag::warn_nullability_missing_array);
4421 } else {
4422 S.Diag(PointerLoc, diag::warn_nullability_missing)
4423 << static_cast<unsigned>(PointerKind);
4424 }
4425
4426 auto FixItLoc = PointerEndLoc.isValid() ? PointerEndLoc : PointerLoc;
4427 if (FixItLoc.isMacroID())
4428 return;
4429
4430 auto addFixIt = [&](NullabilityKind Nullability) {
4431 auto Diag = S.Diag(FixItLoc, diag::note_nullability_fix_it);
4432 Diag << static_cast<unsigned>(Nullability);
4433 Diag << static_cast<unsigned>(PointerKind);
4434 fixItNullability(S, Diag, FixItLoc, Nullability);
4435 };
4436 addFixIt(NullabilityKind::Nullable);
4437 addFixIt(NullabilityKind::NonNull);
4438 }
4439
4440 /// Complains about missing nullability if the file containing \p pointerLoc
4441 /// has other uses of nullability (either the keywords or the \c assume_nonnull
4442 /// pragma).
4443 ///
4444 /// If the file has \e not seen other uses of nullability, this particular
4445 /// pointer is saved for possible later diagnosis. See recordNullabilitySeen().
4446 static void
checkNullabilityConsistency(Sema & S,SimplePointerKind pointerKind,SourceLocation pointerLoc,SourceLocation pointerEndLoc=SourceLocation ())4447 checkNullabilityConsistency(Sema &S, SimplePointerKind pointerKind,
4448 SourceLocation pointerLoc,
4449 SourceLocation pointerEndLoc = SourceLocation()) {
4450 // Determine which file we're performing consistency checking for.
4451 FileID file = getNullabilityCompletenessCheckFileID(S, pointerLoc);
4452 if (file.isInvalid())
4453 return;
4454
4455 // If we haven't seen any type nullability in this file, we won't warn now
4456 // about anything.
4457 FileNullability &fileNullability = S.NullabilityMap[file];
4458 if (!fileNullability.SawTypeNullability) {
4459 // If this is the first pointer declarator in the file, and the appropriate
4460 // warning is on, record it in case we need to diagnose it retroactively.
4461 diag::kind diagKind;
4462 if (pointerKind == SimplePointerKind::Array)
4463 diagKind = diag::warn_nullability_missing_array;
4464 else
4465 diagKind = diag::warn_nullability_missing;
4466
4467 if (fileNullability.PointerLoc.isInvalid() &&
4468 !S.Context.getDiagnostics().isIgnored(diagKind, pointerLoc)) {
4469 fileNullability.PointerLoc = pointerLoc;
4470 fileNullability.PointerEndLoc = pointerEndLoc;
4471 fileNullability.PointerKind = static_cast<unsigned>(pointerKind);
4472 }
4473
4474 return;
4475 }
4476
4477 // Complain about missing nullability.
4478 emitNullabilityConsistencyWarning(S, pointerKind, pointerLoc, pointerEndLoc);
4479 }
4480
4481 /// Marks that a nullability feature has been used in the file containing
4482 /// \p loc.
4483 ///
4484 /// If this file already had pointer types in it that were missing nullability,
4485 /// the first such instance is retroactively diagnosed.
4486 ///
4487 /// \sa checkNullabilityConsistency
recordNullabilitySeen(Sema & S,SourceLocation loc)4488 static void recordNullabilitySeen(Sema &S, SourceLocation loc) {
4489 FileID file = getNullabilityCompletenessCheckFileID(S, loc);
4490 if (file.isInvalid())
4491 return;
4492
4493 FileNullability &fileNullability = S.NullabilityMap[file];
4494 if (fileNullability.SawTypeNullability)
4495 return;
4496 fileNullability.SawTypeNullability = true;
4497
4498 // If we haven't seen any type nullability before, now we have. Retroactively
4499 // diagnose the first unannotated pointer, if there was one.
4500 if (fileNullability.PointerLoc.isInvalid())
4501 return;
4502
4503 auto kind = static_cast<SimplePointerKind>(fileNullability.PointerKind);
4504 emitNullabilityConsistencyWarning(S, kind, fileNullability.PointerLoc,
4505 fileNullability.PointerEndLoc);
4506 }
4507
4508 /// Returns true if any of the declarator chunks before \p endIndex include a
4509 /// level of indirection: array, pointer, reference, or pointer-to-member.
4510 ///
4511 /// Because declarator chunks are stored in outer-to-inner order, testing
4512 /// every chunk before \p endIndex is testing all chunks that embed the current
4513 /// chunk as part of their type.
4514 ///
4515 /// It is legal to pass the result of Declarator::getNumTypeObjects() as the
4516 /// end index, in which case all chunks are tested.
hasOuterPointerLikeChunk(const Declarator & D,unsigned endIndex)4517 static bool hasOuterPointerLikeChunk(const Declarator &D, unsigned endIndex) {
4518 unsigned i = endIndex;
4519 while (i != 0) {
4520 // Walk outwards along the declarator chunks.
4521 --i;
4522 const DeclaratorChunk &DC = D.getTypeObject(i);
4523 switch (DC.Kind) {
4524 case DeclaratorChunk::Paren:
4525 break;
4526 case DeclaratorChunk::Array:
4527 case DeclaratorChunk::Pointer:
4528 case DeclaratorChunk::Reference:
4529 case DeclaratorChunk::MemberPointer:
4530 return true;
4531 case DeclaratorChunk::Function:
4532 case DeclaratorChunk::BlockPointer:
4533 case DeclaratorChunk::Pipe:
4534 // These are invalid anyway, so just ignore.
4535 break;
4536 }
4537 }
4538 return false;
4539 }
4540
IsNoDerefableChunk(DeclaratorChunk Chunk)4541 static bool IsNoDerefableChunk(DeclaratorChunk Chunk) {
4542 return (Chunk.Kind == DeclaratorChunk::Pointer ||
4543 Chunk.Kind == DeclaratorChunk::Array);
4544 }
4545
4546 template<typename AttrT>
createSimpleAttr(ASTContext & Ctx,ParsedAttr & AL)4547 static AttrT *createSimpleAttr(ASTContext &Ctx, ParsedAttr &AL) {
4548 AL.setUsedAsTypeAttr();
4549 return ::new (Ctx) AttrT(Ctx, AL);
4550 }
4551
createNullabilityAttr(ASTContext & Ctx,ParsedAttr & Attr,NullabilityKind NK)4552 static Attr *createNullabilityAttr(ASTContext &Ctx, ParsedAttr &Attr,
4553 NullabilityKind NK) {
4554 switch (NK) {
4555 case NullabilityKind::NonNull:
4556 return createSimpleAttr<TypeNonNullAttr>(Ctx, Attr);
4557
4558 case NullabilityKind::Nullable:
4559 return createSimpleAttr<TypeNullableAttr>(Ctx, Attr);
4560
4561 case NullabilityKind::NullableResult:
4562 return createSimpleAttr<TypeNullableResultAttr>(Ctx, Attr);
4563
4564 case NullabilityKind::Unspecified:
4565 return createSimpleAttr<TypeNullUnspecifiedAttr>(Ctx, Attr);
4566 }
4567 llvm_unreachable("unknown NullabilityKind");
4568 }
4569
4570 // Diagnose whether this is a case with the multiple addr spaces.
4571 // Returns true if this is an invalid case.
4572 // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "No type shall be qualified
4573 // by qualifiers for two or more different address spaces."
DiagnoseMultipleAddrSpaceAttributes(Sema & S,LangAS ASOld,LangAS ASNew,SourceLocation AttrLoc)4574 static bool DiagnoseMultipleAddrSpaceAttributes(Sema &S, LangAS ASOld,
4575 LangAS ASNew,
4576 SourceLocation AttrLoc) {
4577 if (ASOld != LangAS::Default) {
4578 if (ASOld != ASNew) {
4579 S.Diag(AttrLoc, diag::err_attribute_address_multiple_qualifiers);
4580 return true;
4581 }
4582 // Emit a warning if they are identical; it's likely unintended.
4583 S.Diag(AttrLoc,
4584 diag::warn_attribute_address_multiple_identical_qualifiers);
4585 }
4586 return false;
4587 }
4588
GetFullTypeForDeclarator(TypeProcessingState & state,QualType declSpecType,TypeSourceInfo * TInfo)4589 static TypeSourceInfo *GetFullTypeForDeclarator(TypeProcessingState &state,
4590 QualType declSpecType,
4591 TypeSourceInfo *TInfo) {
4592 // The TypeSourceInfo that this function returns will not be a null type.
4593 // If there is an error, this function will fill in a dummy type as fallback.
4594 QualType T = declSpecType;
4595 Declarator &D = state.getDeclarator();
4596 Sema &S = state.getSema();
4597 ASTContext &Context = S.Context;
4598 const LangOptions &LangOpts = S.getLangOpts();
4599
4600 // The name we're declaring, if any.
4601 DeclarationName Name;
4602 if (D.getIdentifier())
4603 Name = D.getIdentifier();
4604
4605 // Does this declaration declare a typedef-name?
4606 bool IsTypedefName =
4607 D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef ||
4608 D.getContext() == DeclaratorContext::AliasDecl ||
4609 D.getContext() == DeclaratorContext::AliasTemplate;
4610
4611 // Does T refer to a function type with a cv-qualifier or a ref-qualifier?
4612 bool IsQualifiedFunction = T->isFunctionProtoType() &&
4613 (!T->castAs<FunctionProtoType>()->getMethodQuals().empty() ||
4614 T->castAs<FunctionProtoType>()->getRefQualifier() != RQ_None);
4615
4616 // If T is 'decltype(auto)', the only declarators we can have are parens
4617 // and at most one function declarator if this is a function declaration.
4618 // If T is a deduced class template specialization type, we can have no
4619 // declarator chunks at all.
4620 if (auto *DT = T->getAs<DeducedType>()) {
4621 const AutoType *AT = T->getAs<AutoType>();
4622 bool IsClassTemplateDeduction = isa<DeducedTemplateSpecializationType>(DT);
4623 if ((AT && AT->isDecltypeAuto()) || IsClassTemplateDeduction) {
4624 for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
4625 unsigned Index = E - I - 1;
4626 DeclaratorChunk &DeclChunk = D.getTypeObject(Index);
4627 unsigned DiagId = IsClassTemplateDeduction
4628 ? diag::err_deduced_class_template_compound_type
4629 : diag::err_decltype_auto_compound_type;
4630 unsigned DiagKind = 0;
4631 switch (DeclChunk.Kind) {
4632 case DeclaratorChunk::Paren:
4633 // FIXME: Rejecting this is a little silly.
4634 if (IsClassTemplateDeduction) {
4635 DiagKind = 4;
4636 break;
4637 }
4638 continue;
4639 case DeclaratorChunk::Function: {
4640 if (IsClassTemplateDeduction) {
4641 DiagKind = 3;
4642 break;
4643 }
4644 unsigned FnIndex;
4645 if (D.isFunctionDeclarationContext() &&
4646 D.isFunctionDeclarator(FnIndex) && FnIndex == Index)
4647 continue;
4648 DiagId = diag::err_decltype_auto_function_declarator_not_declaration;
4649 break;
4650 }
4651 case DeclaratorChunk::Pointer:
4652 case DeclaratorChunk::BlockPointer:
4653 case DeclaratorChunk::MemberPointer:
4654 DiagKind = 0;
4655 break;
4656 case DeclaratorChunk::Reference:
4657 DiagKind = 1;
4658 break;
4659 case DeclaratorChunk::Array:
4660 DiagKind = 2;
4661 break;
4662 case DeclaratorChunk::Pipe:
4663 break;
4664 }
4665
4666 S.Diag(DeclChunk.Loc, DiagId) << DiagKind;
4667 D.setInvalidType(true);
4668 break;
4669 }
4670 }
4671 }
4672
4673 // Determine whether we should infer _Nonnull on pointer types.
4674 std::optional<NullabilityKind> inferNullability;
4675 bool inferNullabilityCS = false;
4676 bool inferNullabilityInnerOnly = false;
4677 bool inferNullabilityInnerOnlyComplete = false;
4678
4679 // Are we in an assume-nonnull region?
4680 bool inAssumeNonNullRegion = false;
4681 SourceLocation assumeNonNullLoc = S.PP.getPragmaAssumeNonNullLoc();
4682 if (assumeNonNullLoc.isValid()) {
4683 inAssumeNonNullRegion = true;
4684 recordNullabilitySeen(S, assumeNonNullLoc);
4685 }
4686
4687 // Whether to complain about missing nullability specifiers or not.
4688 enum {
4689 /// Never complain.
4690 CAMN_No,
4691 /// Complain on the inner pointers (but not the outermost
4692 /// pointer).
4693 CAMN_InnerPointers,
4694 /// Complain about any pointers that don't have nullability
4695 /// specified or inferred.
4696 CAMN_Yes
4697 } complainAboutMissingNullability = CAMN_No;
4698 unsigned NumPointersRemaining = 0;
4699 auto complainAboutInferringWithinChunk = PointerWrappingDeclaratorKind::None;
4700
4701 if (IsTypedefName) {
4702 // For typedefs, we do not infer any nullability (the default),
4703 // and we only complain about missing nullability specifiers on
4704 // inner pointers.
4705 complainAboutMissingNullability = CAMN_InnerPointers;
4706
4707 if (T->canHaveNullability(/*ResultIfUnknown*/ false) &&
4708 !T->getNullability()) {
4709 // Note that we allow but don't require nullability on dependent types.
4710 ++NumPointersRemaining;
4711 }
4712
4713 for (unsigned i = 0, n = D.getNumTypeObjects(); i != n; ++i) {
4714 DeclaratorChunk &chunk = D.getTypeObject(i);
4715 switch (chunk.Kind) {
4716 case DeclaratorChunk::Array:
4717 case DeclaratorChunk::Function:
4718 case DeclaratorChunk::Pipe:
4719 break;
4720
4721 case DeclaratorChunk::BlockPointer:
4722 case DeclaratorChunk::MemberPointer:
4723 ++NumPointersRemaining;
4724 break;
4725
4726 case DeclaratorChunk::Paren:
4727 case DeclaratorChunk::Reference:
4728 continue;
4729
4730 case DeclaratorChunk::Pointer:
4731 ++NumPointersRemaining;
4732 continue;
4733 }
4734 }
4735 } else {
4736 bool isFunctionOrMethod = false;
4737 switch (auto context = state.getDeclarator().getContext()) {
4738 case DeclaratorContext::ObjCParameter:
4739 case DeclaratorContext::ObjCResult:
4740 case DeclaratorContext::Prototype:
4741 case DeclaratorContext::TrailingReturn:
4742 case DeclaratorContext::TrailingReturnVar:
4743 isFunctionOrMethod = true;
4744 [[fallthrough]];
4745
4746 case DeclaratorContext::Member:
4747 if (state.getDeclarator().isObjCIvar() && !isFunctionOrMethod) {
4748 complainAboutMissingNullability = CAMN_No;
4749 break;
4750 }
4751
4752 // Weak properties are inferred to be nullable.
4753 if (state.getDeclarator().isObjCWeakProperty()) {
4754 // Weak properties cannot be nonnull, and should not complain about
4755 // missing nullable attributes during completeness checks.
4756 complainAboutMissingNullability = CAMN_No;
4757 if (inAssumeNonNullRegion) {
4758 inferNullability = NullabilityKind::Nullable;
4759 }
4760 break;
4761 }
4762
4763 [[fallthrough]];
4764
4765 case DeclaratorContext::File:
4766 case DeclaratorContext::KNRTypeList: {
4767 complainAboutMissingNullability = CAMN_Yes;
4768
4769 // Nullability inference depends on the type and declarator.
4770 auto wrappingKind = PointerWrappingDeclaratorKind::None;
4771 switch (classifyPointerDeclarator(S, T, D, wrappingKind)) {
4772 case PointerDeclaratorKind::NonPointer:
4773 case PointerDeclaratorKind::MultiLevelPointer:
4774 // Cannot infer nullability.
4775 break;
4776
4777 case PointerDeclaratorKind::SingleLevelPointer:
4778 // Infer _Nonnull if we are in an assumes-nonnull region.
4779 if (inAssumeNonNullRegion) {
4780 complainAboutInferringWithinChunk = wrappingKind;
4781 inferNullability = NullabilityKind::NonNull;
4782 inferNullabilityCS = (context == DeclaratorContext::ObjCParameter ||
4783 context == DeclaratorContext::ObjCResult);
4784 }
4785 break;
4786
4787 case PointerDeclaratorKind::CFErrorRefPointer:
4788 case PointerDeclaratorKind::NSErrorPointerPointer:
4789 // Within a function or method signature, infer _Nullable at both
4790 // levels.
4791 if (isFunctionOrMethod && inAssumeNonNullRegion)
4792 inferNullability = NullabilityKind::Nullable;
4793 break;
4794
4795 case PointerDeclaratorKind::MaybePointerToCFRef:
4796 if (isFunctionOrMethod) {
4797 // On pointer-to-pointer parameters marked cf_returns_retained or
4798 // cf_returns_not_retained, if the outer pointer is explicit then
4799 // infer the inner pointer as _Nullable.
4800 auto hasCFReturnsAttr =
4801 [](const ParsedAttributesView &AttrList) -> bool {
4802 return AttrList.hasAttribute(ParsedAttr::AT_CFReturnsRetained) ||
4803 AttrList.hasAttribute(ParsedAttr::AT_CFReturnsNotRetained);
4804 };
4805 if (const auto *InnermostChunk = D.getInnermostNonParenChunk()) {
4806 if (hasCFReturnsAttr(D.getDeclarationAttributes()) ||
4807 hasCFReturnsAttr(D.getAttributes()) ||
4808 hasCFReturnsAttr(InnermostChunk->getAttrs()) ||
4809 hasCFReturnsAttr(D.getDeclSpec().getAttributes())) {
4810 inferNullability = NullabilityKind::Nullable;
4811 inferNullabilityInnerOnly = true;
4812 }
4813 }
4814 }
4815 break;
4816 }
4817 break;
4818 }
4819
4820 case DeclaratorContext::ConversionId:
4821 complainAboutMissingNullability = CAMN_Yes;
4822 break;
4823
4824 case DeclaratorContext::AliasDecl:
4825 case DeclaratorContext::AliasTemplate:
4826 case DeclaratorContext::Block:
4827 case DeclaratorContext::BlockLiteral:
4828 case DeclaratorContext::Condition:
4829 case DeclaratorContext::CXXCatch:
4830 case DeclaratorContext::CXXNew:
4831 case DeclaratorContext::ForInit:
4832 case DeclaratorContext::SelectionInit:
4833 case DeclaratorContext::LambdaExpr:
4834 case DeclaratorContext::LambdaExprParameter:
4835 case DeclaratorContext::ObjCCatch:
4836 case DeclaratorContext::TemplateParam:
4837 case DeclaratorContext::TemplateArg:
4838 case DeclaratorContext::TemplateTypeArg:
4839 case DeclaratorContext::TypeName:
4840 case DeclaratorContext::FunctionalCast:
4841 case DeclaratorContext::RequiresExpr:
4842 case DeclaratorContext::Association:
4843 // Don't infer in these contexts.
4844 break;
4845 }
4846 }
4847
4848 // Local function that returns true if its argument looks like a va_list.
4849 auto isVaList = [&S](QualType T) -> bool {
4850 auto *typedefTy = T->getAs<TypedefType>();
4851 if (!typedefTy)
4852 return false;
4853 TypedefDecl *vaListTypedef = S.Context.getBuiltinVaListDecl();
4854 do {
4855 if (typedefTy->getDecl() == vaListTypedef)
4856 return true;
4857 if (auto *name = typedefTy->getDecl()->getIdentifier())
4858 if (name->isStr("va_list"))
4859 return true;
4860 typedefTy = typedefTy->desugar()->getAs<TypedefType>();
4861 } while (typedefTy);
4862 return false;
4863 };
4864
4865 // Local function that checks the nullability for a given pointer declarator.
4866 // Returns true if _Nonnull was inferred.
4867 auto inferPointerNullability =
4868 [&](SimplePointerKind pointerKind, SourceLocation pointerLoc,
4869 SourceLocation pointerEndLoc,
4870 ParsedAttributesView &attrs, AttributePool &Pool) -> ParsedAttr * {
4871 // We've seen a pointer.
4872 if (NumPointersRemaining > 0)
4873 --NumPointersRemaining;
4874
4875 // If a nullability attribute is present, there's nothing to do.
4876 if (hasNullabilityAttr(attrs))
4877 return nullptr;
4878
4879 // If we're supposed to infer nullability, do so now.
4880 if (inferNullability && !inferNullabilityInnerOnlyComplete) {
4881 ParsedAttr::Syntax syntax = inferNullabilityCS
4882 ? ParsedAttr::AS_ContextSensitiveKeyword
4883 : ParsedAttr::AS_Keyword;
4884 ParsedAttr *nullabilityAttr = Pool.create(
4885 S.getNullabilityKeyword(*inferNullability), SourceRange(pointerLoc),
4886 nullptr, SourceLocation(), nullptr, 0, syntax);
4887
4888 attrs.addAtEnd(nullabilityAttr);
4889
4890 if (inferNullabilityCS) {
4891 state.getDeclarator().getMutableDeclSpec().getObjCQualifiers()
4892 ->setObjCDeclQualifier(ObjCDeclSpec::DQ_CSNullability);
4893 }
4894
4895 if (pointerLoc.isValid() &&
4896 complainAboutInferringWithinChunk !=
4897 PointerWrappingDeclaratorKind::None) {
4898 auto Diag =
4899 S.Diag(pointerLoc, diag::warn_nullability_inferred_on_nested_type);
4900 Diag << static_cast<int>(complainAboutInferringWithinChunk);
4901 fixItNullability(S, Diag, pointerLoc, NullabilityKind::NonNull);
4902 }
4903
4904 if (inferNullabilityInnerOnly)
4905 inferNullabilityInnerOnlyComplete = true;
4906 return nullabilityAttr;
4907 }
4908
4909 // If we're supposed to complain about missing nullability, do so
4910 // now if it's truly missing.
4911 switch (complainAboutMissingNullability) {
4912 case CAMN_No:
4913 break;
4914
4915 case CAMN_InnerPointers:
4916 if (NumPointersRemaining == 0)
4917 break;
4918 [[fallthrough]];
4919
4920 case CAMN_Yes:
4921 checkNullabilityConsistency(S, pointerKind, pointerLoc, pointerEndLoc);
4922 }
4923 return nullptr;
4924 };
4925
4926 // If the type itself could have nullability but does not, infer pointer
4927 // nullability and perform consistency checking.
4928 if (S.CodeSynthesisContexts.empty()) {
4929 if (T->canHaveNullability(/*ResultIfUnknown*/ false) &&
4930 !T->getNullability()) {
4931 if (isVaList(T)) {
4932 // Record that we've seen a pointer, but do nothing else.
4933 if (NumPointersRemaining > 0)
4934 --NumPointersRemaining;
4935 } else {
4936 SimplePointerKind pointerKind = SimplePointerKind::Pointer;
4937 if (T->isBlockPointerType())
4938 pointerKind = SimplePointerKind::BlockPointer;
4939 else if (T->isMemberPointerType())
4940 pointerKind = SimplePointerKind::MemberPointer;
4941
4942 if (auto *attr = inferPointerNullability(
4943 pointerKind, D.getDeclSpec().getTypeSpecTypeLoc(),
4944 D.getDeclSpec().getEndLoc(),
4945 D.getMutableDeclSpec().getAttributes(),
4946 D.getMutableDeclSpec().getAttributePool())) {
4947 T = state.getAttributedType(
4948 createNullabilityAttr(Context, *attr, *inferNullability), T, T);
4949 }
4950 }
4951 }
4952
4953 if (complainAboutMissingNullability == CAMN_Yes && T->isArrayType() &&
4954 !T->getNullability() && !isVaList(T) && D.isPrototypeContext() &&
4955 !hasOuterPointerLikeChunk(D, D.getNumTypeObjects())) {
4956 checkNullabilityConsistency(S, SimplePointerKind::Array,
4957 D.getDeclSpec().getTypeSpecTypeLoc());
4958 }
4959 }
4960
4961 bool ExpectNoDerefChunk =
4962 state.getCurrentAttributes().hasAttribute(ParsedAttr::AT_NoDeref);
4963
4964 // Walk the DeclTypeInfo, building the recursive type as we go.
4965 // DeclTypeInfos are ordered from the identifier out, which is
4966 // opposite of what we want :).
4967 for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
4968 unsigned chunkIndex = e - i - 1;
4969 state.setCurrentChunkIndex(chunkIndex);
4970 DeclaratorChunk &DeclType = D.getTypeObject(chunkIndex);
4971 IsQualifiedFunction &= DeclType.Kind == DeclaratorChunk::Paren;
4972 switch (DeclType.Kind) {
4973 case DeclaratorChunk::Paren:
4974 if (i == 0)
4975 warnAboutRedundantParens(S, D, T);
4976 T = S.BuildParenType(T);
4977 break;
4978 case DeclaratorChunk::BlockPointer:
4979 // If blocks are disabled, emit an error.
4980 if (!LangOpts.Blocks)
4981 S.Diag(DeclType.Loc, diag::err_blocks_disable) << LangOpts.OpenCL;
4982
4983 // Handle pointer nullability.
4984 inferPointerNullability(SimplePointerKind::BlockPointer, DeclType.Loc,
4985 DeclType.EndLoc, DeclType.getAttrs(),
4986 state.getDeclarator().getAttributePool());
4987
4988 T = S.BuildBlockPointerType(T, D.getIdentifierLoc(), Name);
4989 if (DeclType.Cls.TypeQuals || LangOpts.OpenCL) {
4990 // OpenCL v2.0, s6.12.5 - Block variable declarations are implicitly
4991 // qualified with const.
4992 if (LangOpts.OpenCL)
4993 DeclType.Cls.TypeQuals |= DeclSpec::TQ_const;
4994 T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Cls.TypeQuals);
4995 }
4996 break;
4997 case DeclaratorChunk::Pointer:
4998 // Verify that we're not building a pointer to pointer to function with
4999 // exception specification.
5000 if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
5001 S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
5002 D.setInvalidType(true);
5003 // Build the type anyway.
5004 }
5005
5006 // Handle pointer nullability
5007 inferPointerNullability(SimplePointerKind::Pointer, DeclType.Loc,
5008 DeclType.EndLoc, DeclType.getAttrs(),
5009 state.getDeclarator().getAttributePool());
5010
5011 if (LangOpts.ObjC && T->getAs<ObjCObjectType>()) {
5012 T = Context.getObjCObjectPointerType(T);
5013 if (DeclType.Ptr.TypeQuals)
5014 T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
5015 break;
5016 }
5017
5018 // OpenCL v2.0 s6.9b - Pointer to image/sampler cannot be used.
5019 // OpenCL v2.0 s6.13.16.1 - Pointer to pipe cannot be used.
5020 // OpenCL v2.0 s6.12.5 - Pointers to Blocks are not allowed.
5021 if (LangOpts.OpenCL) {
5022 if (T->isImageType() || T->isSamplerT() || T->isPipeType() ||
5023 T->isBlockPointerType()) {
5024 S.Diag(D.getIdentifierLoc(), diag::err_opencl_pointer_to_type) << T;
5025 D.setInvalidType(true);
5026 }
5027 }
5028
5029 T = S.BuildPointerType(T, DeclType.Loc, Name);
5030 if (DeclType.Ptr.TypeQuals)
5031 T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
5032 break;
5033 case DeclaratorChunk::Reference: {
5034 // Verify that we're not building a reference to pointer to function with
5035 // exception specification.
5036 if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
5037 S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
5038 D.setInvalidType(true);
5039 // Build the type anyway.
5040 }
5041 T = S.BuildReferenceType(T, DeclType.Ref.LValueRef, DeclType.Loc, Name);
5042
5043 if (DeclType.Ref.HasRestrict)
5044 T = S.BuildQualifiedType(T, DeclType.Loc, Qualifiers::Restrict);
5045 break;
5046 }
5047 case DeclaratorChunk::Array: {
5048 // Verify that we're not building an array of pointers to function with
5049 // exception specification.
5050 if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
5051 S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
5052 D.setInvalidType(true);
5053 // Build the type anyway.
5054 }
5055 DeclaratorChunk::ArrayTypeInfo &ATI = DeclType.Arr;
5056 Expr *ArraySize = static_cast<Expr*>(ATI.NumElts);
5057 ArrayType::ArraySizeModifier ASM;
5058 if (ATI.isStar)
5059 ASM = ArrayType::Star;
5060 else if (ATI.hasStatic)
5061 ASM = ArrayType::Static;
5062 else
5063 ASM = ArrayType::Normal;
5064 if (ASM == ArrayType::Star && !D.isPrototypeContext()) {
5065 // FIXME: This check isn't quite right: it allows star in prototypes
5066 // for function definitions, and disallows some edge cases detailed
5067 // in http://gcc.gnu.org/ml/gcc-patches/2009-02/msg00133.html
5068 S.Diag(DeclType.Loc, diag::err_array_star_outside_prototype);
5069 ASM = ArrayType::Normal;
5070 D.setInvalidType(true);
5071 }
5072
5073 // C99 6.7.5.2p1: The optional type qualifiers and the keyword static
5074 // shall appear only in a declaration of a function parameter with an
5075 // array type, ...
5076 if (ASM == ArrayType::Static || ATI.TypeQuals) {
5077 if (!(D.isPrototypeContext() ||
5078 D.getContext() == DeclaratorContext::KNRTypeList)) {
5079 S.Diag(DeclType.Loc, diag::err_array_static_outside_prototype) <<
5080 (ASM == ArrayType::Static ? "'static'" : "type qualifier");
5081 // Remove the 'static' and the type qualifiers.
5082 if (ASM == ArrayType::Static)
5083 ASM = ArrayType::Normal;
5084 ATI.TypeQuals = 0;
5085 D.setInvalidType(true);
5086 }
5087
5088 // C99 6.7.5.2p1: ... and then only in the outermost array type
5089 // derivation.
5090 if (hasOuterPointerLikeChunk(D, chunkIndex)) {
5091 S.Diag(DeclType.Loc, diag::err_array_static_not_outermost) <<
5092 (ASM == ArrayType::Static ? "'static'" : "type qualifier");
5093 if (ASM == ArrayType::Static)
5094 ASM = ArrayType::Normal;
5095 ATI.TypeQuals = 0;
5096 D.setInvalidType(true);
5097 }
5098 }
5099 const AutoType *AT = T->getContainedAutoType();
5100 // Allow arrays of auto if we are a generic lambda parameter.
5101 // i.e. [](auto (&array)[5]) { return array[0]; }; OK
5102 if (AT && D.getContext() != DeclaratorContext::LambdaExprParameter) {
5103 // We've already diagnosed this for decltype(auto).
5104 if (!AT->isDecltypeAuto())
5105 S.Diag(DeclType.Loc, diag::err_illegal_decl_array_of_auto)
5106 << getPrintableNameForEntity(Name) << T;
5107 T = QualType();
5108 break;
5109 }
5110
5111 // Array parameters can be marked nullable as well, although it's not
5112 // necessary if they're marked 'static'.
5113 if (complainAboutMissingNullability == CAMN_Yes &&
5114 !hasNullabilityAttr(DeclType.getAttrs()) &&
5115 ASM != ArrayType::Static &&
5116 D.isPrototypeContext() &&
5117 !hasOuterPointerLikeChunk(D, chunkIndex)) {
5118 checkNullabilityConsistency(S, SimplePointerKind::Array, DeclType.Loc);
5119 }
5120
5121 T = S.BuildArrayType(T, ASM, ArraySize, ATI.TypeQuals,
5122 SourceRange(DeclType.Loc, DeclType.EndLoc), Name);
5123 break;
5124 }
5125 case DeclaratorChunk::Function: {
5126 // If the function declarator has a prototype (i.e. it is not () and
5127 // does not have a K&R-style identifier list), then the arguments are part
5128 // of the type, otherwise the argument list is ().
5129 DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
5130 IsQualifiedFunction =
5131 FTI.hasMethodTypeQualifiers() || FTI.hasRefQualifier();
5132
5133 // Check for auto functions and trailing return type and adjust the
5134 // return type accordingly.
5135 if (!D.isInvalidType()) {
5136 // trailing-return-type is only required if we're declaring a function,
5137 // and not, for instance, a pointer to a function.
5138 if (D.getDeclSpec().hasAutoTypeSpec() &&
5139 !FTI.hasTrailingReturnType() && chunkIndex == 0) {
5140 if (!S.getLangOpts().CPlusPlus14) {
5141 S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
5142 D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto
5143 ? diag::err_auto_missing_trailing_return
5144 : diag::err_deduced_return_type);
5145 T = Context.IntTy;
5146 D.setInvalidType(true);
5147 } else {
5148 S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
5149 diag::warn_cxx11_compat_deduced_return_type);
5150 }
5151 } else if (FTI.hasTrailingReturnType()) {
5152 // T must be exactly 'auto' at this point. See CWG issue 681.
5153 if (isa<ParenType>(T)) {
5154 S.Diag(D.getBeginLoc(), diag::err_trailing_return_in_parens)
5155 << T << D.getSourceRange();
5156 D.setInvalidType(true);
5157 } else if (D.getName().getKind() ==
5158 UnqualifiedIdKind::IK_DeductionGuideName) {
5159 if (T != Context.DependentTy) {
5160 S.Diag(D.getDeclSpec().getBeginLoc(),
5161 diag::err_deduction_guide_with_complex_decl)
5162 << D.getSourceRange();
5163 D.setInvalidType(true);
5164 }
5165 } else if (D.getContext() != DeclaratorContext::LambdaExpr &&
5166 (T.hasQualifiers() || !isa<AutoType>(T) ||
5167 cast<AutoType>(T)->getKeyword() !=
5168 AutoTypeKeyword::Auto ||
5169 cast<AutoType>(T)->isConstrained())) {
5170 S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
5171 diag::err_trailing_return_without_auto)
5172 << T << D.getDeclSpec().getSourceRange();
5173 D.setInvalidType(true);
5174 }
5175 T = S.GetTypeFromParser(FTI.getTrailingReturnType(), &TInfo);
5176 if (T.isNull()) {
5177 // An error occurred parsing the trailing return type.
5178 T = Context.IntTy;
5179 D.setInvalidType(true);
5180 } else if (AutoType *Auto = T->getContainedAutoType()) {
5181 // If the trailing return type contains an `auto`, we may need to
5182 // invent a template parameter for it, for cases like
5183 // `auto f() -> C auto` or `[](auto (*p) -> auto) {}`.
5184 InventedTemplateParameterInfo *InventedParamInfo = nullptr;
5185 if (D.getContext() == DeclaratorContext::Prototype)
5186 InventedParamInfo = &S.InventedParameterInfos.back();
5187 else if (D.getContext() == DeclaratorContext::LambdaExprParameter)
5188 InventedParamInfo = S.getCurLambda();
5189 if (InventedParamInfo) {
5190 std::tie(T, TInfo) = InventTemplateParameter(
5191 state, T, TInfo, Auto, *InventedParamInfo);
5192 }
5193 }
5194 } else {
5195 // This function type is not the type of the entity being declared,
5196 // so checking the 'auto' is not the responsibility of this chunk.
5197 }
5198 }
5199
5200 // C99 6.7.5.3p1: The return type may not be a function or array type.
5201 // For conversion functions, we'll diagnose this particular error later.
5202 if (!D.isInvalidType() && (T->isArrayType() || T->isFunctionType()) &&
5203 (D.getName().getKind() !=
5204 UnqualifiedIdKind::IK_ConversionFunctionId)) {
5205 unsigned diagID = diag::err_func_returning_array_function;
5206 // Last processing chunk in block context means this function chunk
5207 // represents the block.
5208 if (chunkIndex == 0 &&
5209 D.getContext() == DeclaratorContext::BlockLiteral)
5210 diagID = diag::err_block_returning_array_function;
5211 S.Diag(DeclType.Loc, diagID) << T->isFunctionType() << T;
5212 T = Context.IntTy;
5213 D.setInvalidType(true);
5214 }
5215
5216 // Do not allow returning half FP value.
5217 // FIXME: This really should be in BuildFunctionType.
5218 if (T->isHalfType()) {
5219 if (S.getLangOpts().OpenCL) {
5220 if (!S.getOpenCLOptions().isAvailableOption("cl_khr_fp16",
5221 S.getLangOpts())) {
5222 S.Diag(D.getIdentifierLoc(), diag::err_opencl_invalid_return)
5223 << T << 0 /*pointer hint*/;
5224 D.setInvalidType(true);
5225 }
5226 } else if (!S.getLangOpts().NativeHalfArgsAndReturns &&
5227 !S.Context.getTargetInfo().allowHalfArgsAndReturns()) {
5228 S.Diag(D.getIdentifierLoc(),
5229 diag::err_parameters_retval_cannot_have_fp16_type) << 1;
5230 D.setInvalidType(true);
5231 }
5232 }
5233
5234 if (LangOpts.OpenCL) {
5235 // OpenCL v2.0 s6.12.5 - A block cannot be the return value of a
5236 // function.
5237 if (T->isBlockPointerType() || T->isImageType() || T->isSamplerT() ||
5238 T->isPipeType()) {
5239 S.Diag(D.getIdentifierLoc(), diag::err_opencl_invalid_return)
5240 << T << 1 /*hint off*/;
5241 D.setInvalidType(true);
5242 }
5243 // OpenCL doesn't support variadic functions and blocks
5244 // (s6.9.e and s6.12.5 OpenCL v2.0) except for printf.
5245 // We also allow here any toolchain reserved identifiers.
5246 if (FTI.isVariadic &&
5247 !S.getOpenCLOptions().isAvailableOption(
5248 "__cl_clang_variadic_functions", S.getLangOpts()) &&
5249 !(D.getIdentifier() &&
5250 ((D.getIdentifier()->getName() == "printf" &&
5251 LangOpts.getOpenCLCompatibleVersion() >= 120) ||
5252 D.getIdentifier()->getName().startswith("__")))) {
5253 S.Diag(D.getIdentifierLoc(), diag::err_opencl_variadic_function);
5254 D.setInvalidType(true);
5255 }
5256 }
5257
5258 // Methods cannot return interface types. All ObjC objects are
5259 // passed by reference.
5260 if (T->isObjCObjectType()) {
5261 SourceLocation DiagLoc, FixitLoc;
5262 if (TInfo) {
5263 DiagLoc = TInfo->getTypeLoc().getBeginLoc();
5264 FixitLoc = S.getLocForEndOfToken(TInfo->getTypeLoc().getEndLoc());
5265 } else {
5266 DiagLoc = D.getDeclSpec().getTypeSpecTypeLoc();
5267 FixitLoc = S.getLocForEndOfToken(D.getDeclSpec().getEndLoc());
5268 }
5269 S.Diag(DiagLoc, diag::err_object_cannot_be_passed_returned_by_value)
5270 << 0 << T
5271 << FixItHint::CreateInsertion(FixitLoc, "*");
5272
5273 T = Context.getObjCObjectPointerType(T);
5274 if (TInfo) {
5275 TypeLocBuilder TLB;
5276 TLB.pushFullCopy(TInfo->getTypeLoc());
5277 ObjCObjectPointerTypeLoc TLoc = TLB.push<ObjCObjectPointerTypeLoc>(T);
5278 TLoc.setStarLoc(FixitLoc);
5279 TInfo = TLB.getTypeSourceInfo(Context, T);
5280 }
5281
5282 D.setInvalidType(true);
5283 }
5284
5285 // cv-qualifiers on return types are pointless except when the type is a
5286 // class type in C++.
5287 if ((T.getCVRQualifiers() || T->isAtomicType()) &&
5288 !(S.getLangOpts().CPlusPlus &&
5289 (T->isDependentType() || T->isRecordType()))) {
5290 if (T->isVoidType() && !S.getLangOpts().CPlusPlus &&
5291 D.getFunctionDefinitionKind() ==
5292 FunctionDefinitionKind::Definition) {
5293 // [6.9.1/3] qualified void return is invalid on a C
5294 // function definition. Apparently ok on declarations and
5295 // in C++ though (!)
5296 S.Diag(DeclType.Loc, diag::err_func_returning_qualified_void) << T;
5297 } else
5298 diagnoseRedundantReturnTypeQualifiers(S, T, D, chunkIndex);
5299
5300 // C++2a [dcl.fct]p12:
5301 // A volatile-qualified return type is deprecated
5302 if (T.isVolatileQualified() && S.getLangOpts().CPlusPlus20)
5303 S.Diag(DeclType.Loc, diag::warn_deprecated_volatile_return) << T;
5304 }
5305
5306 // Objective-C ARC ownership qualifiers are ignored on the function
5307 // return type (by type canonicalization). Complain if this attribute
5308 // was written here.
5309 if (T.getQualifiers().hasObjCLifetime()) {
5310 SourceLocation AttrLoc;
5311 if (chunkIndex + 1 < D.getNumTypeObjects()) {
5312 DeclaratorChunk ReturnTypeChunk = D.getTypeObject(chunkIndex + 1);
5313 for (const ParsedAttr &AL : ReturnTypeChunk.getAttrs()) {
5314 if (AL.getKind() == ParsedAttr::AT_ObjCOwnership) {
5315 AttrLoc = AL.getLoc();
5316 break;
5317 }
5318 }
5319 }
5320 if (AttrLoc.isInvalid()) {
5321 for (const ParsedAttr &AL : D.getDeclSpec().getAttributes()) {
5322 if (AL.getKind() == ParsedAttr::AT_ObjCOwnership) {
5323 AttrLoc = AL.getLoc();
5324 break;
5325 }
5326 }
5327 }
5328
5329 if (AttrLoc.isValid()) {
5330 // The ownership attributes are almost always written via
5331 // the predefined
5332 // __strong/__weak/__autoreleasing/__unsafe_unretained.
5333 if (AttrLoc.isMacroID())
5334 AttrLoc =
5335 S.SourceMgr.getImmediateExpansionRange(AttrLoc).getBegin();
5336
5337 S.Diag(AttrLoc, diag::warn_arc_lifetime_result_type)
5338 << T.getQualifiers().getObjCLifetime();
5339 }
5340 }
5341
5342 if (LangOpts.CPlusPlus && D.getDeclSpec().hasTagDefinition()) {
5343 // C++ [dcl.fct]p6:
5344 // Types shall not be defined in return or parameter types.
5345 TagDecl *Tag = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
5346 S.Diag(Tag->getLocation(), diag::err_type_defined_in_result_type)
5347 << Context.getTypeDeclType(Tag);
5348 }
5349
5350 // Exception specs are not allowed in typedefs. Complain, but add it
5351 // anyway.
5352 if (IsTypedefName && FTI.getExceptionSpecType() && !LangOpts.CPlusPlus17)
5353 S.Diag(FTI.getExceptionSpecLocBeg(),
5354 diag::err_exception_spec_in_typedef)
5355 << (D.getContext() == DeclaratorContext::AliasDecl ||
5356 D.getContext() == DeclaratorContext::AliasTemplate);
5357
5358 // If we see "T var();" or "T var(T());" at block scope, it is probably
5359 // an attempt to initialize a variable, not a function declaration.
5360 if (FTI.isAmbiguous)
5361 warnAboutAmbiguousFunction(S, D, DeclType, T);
5362
5363 FunctionType::ExtInfo EI(
5364 getCCForDeclaratorChunk(S, D, DeclType.getAttrs(), FTI, chunkIndex));
5365
5366 // OpenCL disallows functions without a prototype, but it doesn't enforce
5367 // strict prototypes as in C2x because it allows a function definition to
5368 // have an identifier list. See OpenCL 3.0 6.11/g for more details.
5369 if (!FTI.NumParams && !FTI.isVariadic &&
5370 !LangOpts.requiresStrictPrototypes() && !LangOpts.OpenCL) {
5371 // Simple void foo(), where the incoming T is the result type.
5372 T = Context.getFunctionNoProtoType(T, EI);
5373 } else {
5374 // We allow a zero-parameter variadic function in C if the
5375 // function is marked with the "overloadable" attribute. Scan
5376 // for this attribute now. We also allow it in C2x per WG14 N2975.
5377 if (!FTI.NumParams && FTI.isVariadic && !LangOpts.CPlusPlus) {
5378 if (LangOpts.C2x)
5379 S.Diag(FTI.getEllipsisLoc(),
5380 diag::warn_c17_compat_ellipsis_only_parameter);
5381 else if (!D.getDeclarationAttributes().hasAttribute(
5382 ParsedAttr::AT_Overloadable) &&
5383 !D.getAttributes().hasAttribute(
5384 ParsedAttr::AT_Overloadable) &&
5385 !D.getDeclSpec().getAttributes().hasAttribute(
5386 ParsedAttr::AT_Overloadable))
5387 S.Diag(FTI.getEllipsisLoc(), diag::err_ellipsis_first_param);
5388 }
5389
5390 if (FTI.NumParams && FTI.Params[0].Param == nullptr) {
5391 // C99 6.7.5.3p3: Reject int(x,y,z) when it's not a function
5392 // definition.
5393 S.Diag(FTI.Params[0].IdentLoc,
5394 diag::err_ident_list_in_fn_declaration);
5395 D.setInvalidType(true);
5396 // Recover by creating a K&R-style function type, if possible.
5397 T = (!LangOpts.requiresStrictPrototypes() && !LangOpts.OpenCL)
5398 ? Context.getFunctionNoProtoType(T, EI)
5399 : Context.IntTy;
5400 break;
5401 }
5402
5403 FunctionProtoType::ExtProtoInfo EPI;
5404 EPI.ExtInfo = EI;
5405 EPI.Variadic = FTI.isVariadic;
5406 EPI.EllipsisLoc = FTI.getEllipsisLoc();
5407 EPI.HasTrailingReturn = FTI.hasTrailingReturnType();
5408 EPI.TypeQuals.addCVRUQualifiers(
5409 FTI.MethodQualifiers ? FTI.MethodQualifiers->getTypeQualifiers()
5410 : 0);
5411 EPI.RefQualifier = !FTI.hasRefQualifier()? RQ_None
5412 : FTI.RefQualifierIsLValueRef? RQ_LValue
5413 : RQ_RValue;
5414
5415 // Otherwise, we have a function with a parameter list that is
5416 // potentially variadic.
5417 SmallVector<QualType, 16> ParamTys;
5418 ParamTys.reserve(FTI.NumParams);
5419
5420 SmallVector<FunctionProtoType::ExtParameterInfo, 16>
5421 ExtParameterInfos(FTI.NumParams);
5422 bool HasAnyInterestingExtParameterInfos = false;
5423
5424 for (unsigned i = 0, e = FTI.NumParams; i != e; ++i) {
5425 ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
5426 QualType ParamTy = Param->getType();
5427 assert(!ParamTy.isNull() && "Couldn't parse type?");
5428
5429 // Look for 'void'. void is allowed only as a single parameter to a
5430 // function with no other parameters (C99 6.7.5.3p10). We record
5431 // int(void) as a FunctionProtoType with an empty parameter list.
5432 if (ParamTy->isVoidType()) {
5433 // If this is something like 'float(int, void)', reject it. 'void'
5434 // is an incomplete type (C99 6.2.5p19) and function decls cannot
5435 // have parameters of incomplete type.
5436 if (FTI.NumParams != 1 || FTI.isVariadic) {
5437 S.Diag(FTI.Params[i].IdentLoc, diag::err_void_only_param);
5438 ParamTy = Context.IntTy;
5439 Param->setType(ParamTy);
5440 } else if (FTI.Params[i].Ident) {
5441 // Reject, but continue to parse 'int(void abc)'.
5442 S.Diag(FTI.Params[i].IdentLoc, diag::err_param_with_void_type);
5443 ParamTy = Context.IntTy;
5444 Param->setType(ParamTy);
5445 } else {
5446 // Reject, but continue to parse 'float(const void)'.
5447 if (ParamTy.hasQualifiers())
5448 S.Diag(DeclType.Loc, diag::err_void_param_qualified);
5449
5450 // Do not add 'void' to the list.
5451 break;
5452 }
5453 } else if (ParamTy->isHalfType()) {
5454 // Disallow half FP parameters.
5455 // FIXME: This really should be in BuildFunctionType.
5456 if (S.getLangOpts().OpenCL) {
5457 if (!S.getOpenCLOptions().isAvailableOption("cl_khr_fp16",
5458 S.getLangOpts())) {
5459 S.Diag(Param->getLocation(), diag::err_opencl_invalid_param)
5460 << ParamTy << 0;
5461 D.setInvalidType();
5462 Param->setInvalidDecl();
5463 }
5464 } else if (!S.getLangOpts().NativeHalfArgsAndReturns &&
5465 !S.Context.getTargetInfo().allowHalfArgsAndReturns()) {
5466 S.Diag(Param->getLocation(),
5467 diag::err_parameters_retval_cannot_have_fp16_type) << 0;
5468 D.setInvalidType();
5469 }
5470 } else if (!FTI.hasPrototype) {
5471 if (Context.isPromotableIntegerType(ParamTy)) {
5472 ParamTy = Context.getPromotedIntegerType(ParamTy);
5473 Param->setKNRPromoted(true);
5474 } else if (const BuiltinType *BTy = ParamTy->getAs<BuiltinType>()) {
5475 if (BTy->getKind() == BuiltinType::Float) {
5476 ParamTy = Context.DoubleTy;
5477 Param->setKNRPromoted(true);
5478 }
5479 }
5480 } else if (S.getLangOpts().OpenCL && ParamTy->isBlockPointerType()) {
5481 // OpenCL 2.0 s6.12.5: A block cannot be a parameter of a function.
5482 S.Diag(Param->getLocation(), diag::err_opencl_invalid_param)
5483 << ParamTy << 1 /*hint off*/;
5484 D.setInvalidType();
5485 }
5486
5487 if (LangOpts.ObjCAutoRefCount && Param->hasAttr<NSConsumedAttr>()) {
5488 ExtParameterInfos[i] = ExtParameterInfos[i].withIsConsumed(true);
5489 HasAnyInterestingExtParameterInfos = true;
5490 }
5491
5492 if (auto attr = Param->getAttr<ParameterABIAttr>()) {
5493 ExtParameterInfos[i] =
5494 ExtParameterInfos[i].withABI(attr->getABI());
5495 HasAnyInterestingExtParameterInfos = true;
5496 }
5497
5498 if (Param->hasAttr<PassObjectSizeAttr>()) {
5499 ExtParameterInfos[i] = ExtParameterInfos[i].withHasPassObjectSize();
5500 HasAnyInterestingExtParameterInfos = true;
5501 }
5502
5503 if (Param->hasAttr<NoEscapeAttr>()) {
5504 ExtParameterInfos[i] = ExtParameterInfos[i].withIsNoEscape(true);
5505 HasAnyInterestingExtParameterInfos = true;
5506 }
5507
5508 ParamTys.push_back(ParamTy);
5509 }
5510
5511 if (HasAnyInterestingExtParameterInfos) {
5512 EPI.ExtParameterInfos = ExtParameterInfos.data();
5513 checkExtParameterInfos(S, ParamTys, EPI,
5514 [&](unsigned i) { return FTI.Params[i].Param->getLocation(); });
5515 }
5516
5517 SmallVector<QualType, 4> Exceptions;
5518 SmallVector<ParsedType, 2> DynamicExceptions;
5519 SmallVector<SourceRange, 2> DynamicExceptionRanges;
5520 Expr *NoexceptExpr = nullptr;
5521
5522 if (FTI.getExceptionSpecType() == EST_Dynamic) {
5523 // FIXME: It's rather inefficient to have to split into two vectors
5524 // here.
5525 unsigned N = FTI.getNumExceptions();
5526 DynamicExceptions.reserve(N);
5527 DynamicExceptionRanges.reserve(N);
5528 for (unsigned I = 0; I != N; ++I) {
5529 DynamicExceptions.push_back(FTI.Exceptions[I].Ty);
5530 DynamicExceptionRanges.push_back(FTI.Exceptions[I].Range);
5531 }
5532 } else if (isComputedNoexcept(FTI.getExceptionSpecType())) {
5533 NoexceptExpr = FTI.NoexceptExpr;
5534 }
5535
5536 S.checkExceptionSpecification(D.isFunctionDeclarationContext(),
5537 FTI.getExceptionSpecType(),
5538 DynamicExceptions,
5539 DynamicExceptionRanges,
5540 NoexceptExpr,
5541 Exceptions,
5542 EPI.ExceptionSpec);
5543
5544 // FIXME: Set address space from attrs for C++ mode here.
5545 // OpenCLCPlusPlus: A class member function has an address space.
5546 auto IsClassMember = [&]() {
5547 return (!state.getDeclarator().getCXXScopeSpec().isEmpty() &&
5548 state.getDeclarator()
5549 .getCXXScopeSpec()
5550 .getScopeRep()
5551 ->getKind() == NestedNameSpecifier::TypeSpec) ||
5552 state.getDeclarator().getContext() ==
5553 DeclaratorContext::Member ||
5554 state.getDeclarator().getContext() ==
5555 DeclaratorContext::LambdaExpr;
5556 };
5557
5558 if (state.getSema().getLangOpts().OpenCLCPlusPlus && IsClassMember()) {
5559 LangAS ASIdx = LangAS::Default;
5560 // Take address space attr if any and mark as invalid to avoid adding
5561 // them later while creating QualType.
5562 if (FTI.MethodQualifiers)
5563 for (ParsedAttr &attr : FTI.MethodQualifiers->getAttributes()) {
5564 LangAS ASIdxNew = attr.asOpenCLLangAS();
5565 if (DiagnoseMultipleAddrSpaceAttributes(S, ASIdx, ASIdxNew,
5566 attr.getLoc()))
5567 D.setInvalidType(true);
5568 else
5569 ASIdx = ASIdxNew;
5570 }
5571 // If a class member function's address space is not set, set it to
5572 // __generic.
5573 LangAS AS =
5574 (ASIdx == LangAS::Default ? S.getDefaultCXXMethodAddrSpace()
5575 : ASIdx);
5576 EPI.TypeQuals.addAddressSpace(AS);
5577 }
5578 T = Context.getFunctionType(T, ParamTys, EPI);
5579 }
5580 break;
5581 }
5582 case DeclaratorChunk::MemberPointer: {
5583 // The scope spec must refer to a class, or be dependent.
5584 CXXScopeSpec &SS = DeclType.Mem.Scope();
5585 QualType ClsType;
5586
5587 // Handle pointer nullability.
5588 inferPointerNullability(SimplePointerKind::MemberPointer, DeclType.Loc,
5589 DeclType.EndLoc, DeclType.getAttrs(),
5590 state.getDeclarator().getAttributePool());
5591
5592 if (SS.isInvalid()) {
5593 // Avoid emitting extra errors if we already errored on the scope.
5594 D.setInvalidType(true);
5595 } else if (S.isDependentScopeSpecifier(SS) ||
5596 isa_and_nonnull<CXXRecordDecl>(S.computeDeclContext(SS))) {
5597 NestedNameSpecifier *NNS = SS.getScopeRep();
5598 NestedNameSpecifier *NNSPrefix = NNS->getPrefix();
5599 switch (NNS->getKind()) {
5600 case NestedNameSpecifier::Identifier:
5601 ClsType = Context.getDependentNameType(ETK_None, NNSPrefix,
5602 NNS->getAsIdentifier());
5603 break;
5604
5605 case NestedNameSpecifier::Namespace:
5606 case NestedNameSpecifier::NamespaceAlias:
5607 case NestedNameSpecifier::Global:
5608 case NestedNameSpecifier::Super:
5609 llvm_unreachable("Nested-name-specifier must name a type");
5610
5611 case NestedNameSpecifier::TypeSpec:
5612 case NestedNameSpecifier::TypeSpecWithTemplate:
5613 ClsType = QualType(NNS->getAsType(), 0);
5614 // Note: if the NNS has a prefix and ClsType is a nondependent
5615 // TemplateSpecializationType, then the NNS prefix is NOT included
5616 // in ClsType; hence we wrap ClsType into an ElaboratedType.
5617 // NOTE: in particular, no wrap occurs if ClsType already is an
5618 // Elaborated, DependentName, or DependentTemplateSpecialization.
5619 if (isa<TemplateSpecializationType>(NNS->getAsType()))
5620 ClsType = Context.getElaboratedType(ETK_None, NNSPrefix, ClsType);
5621 break;
5622 }
5623 } else {
5624 S.Diag(DeclType.Mem.Scope().getBeginLoc(),
5625 diag::err_illegal_decl_mempointer_in_nonclass)
5626 << (D.getIdentifier() ? D.getIdentifier()->getName() : "type name")
5627 << DeclType.Mem.Scope().getRange();
5628 D.setInvalidType(true);
5629 }
5630
5631 if (!ClsType.isNull())
5632 T = S.BuildMemberPointerType(T, ClsType, DeclType.Loc,
5633 D.getIdentifier());
5634 if (T.isNull()) {
5635 T = Context.IntTy;
5636 D.setInvalidType(true);
5637 } else if (DeclType.Mem.TypeQuals) {
5638 T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Mem.TypeQuals);
5639 }
5640 break;
5641 }
5642
5643 case DeclaratorChunk::Pipe: {
5644 T = S.BuildReadPipeType(T, DeclType.Loc);
5645 processTypeAttrs(state, T, TAL_DeclSpec,
5646 D.getMutableDeclSpec().getAttributes());
5647 break;
5648 }
5649 }
5650
5651 if (T.isNull()) {
5652 D.setInvalidType(true);
5653 T = Context.IntTy;
5654 }
5655
5656 // See if there are any attributes on this declarator chunk.
5657 processTypeAttrs(state, T, TAL_DeclChunk, DeclType.getAttrs());
5658
5659 if (DeclType.Kind != DeclaratorChunk::Paren) {
5660 if (ExpectNoDerefChunk && !IsNoDerefableChunk(DeclType))
5661 S.Diag(DeclType.Loc, diag::warn_noderef_on_non_pointer_or_array);
5662
5663 ExpectNoDerefChunk = state.didParseNoDeref();
5664 }
5665 }
5666
5667 if (ExpectNoDerefChunk)
5668 S.Diag(state.getDeclarator().getBeginLoc(),
5669 diag::warn_noderef_on_non_pointer_or_array);
5670
5671 // GNU warning -Wstrict-prototypes
5672 // Warn if a function declaration or definition is without a prototype.
5673 // This warning is issued for all kinds of unprototyped function
5674 // declarations (i.e. function type typedef, function pointer etc.)
5675 // C99 6.7.5.3p14:
5676 // The empty list in a function declarator that is not part of a definition
5677 // of that function specifies that no information about the number or types
5678 // of the parameters is supplied.
5679 // See ActOnFinishFunctionBody() and MergeFunctionDecl() for handling of
5680 // function declarations whose behavior changes in C2x.
5681 if (!LangOpts.requiresStrictPrototypes()) {
5682 bool IsBlock = false;
5683 for (const DeclaratorChunk &DeclType : D.type_objects()) {
5684 switch (DeclType.Kind) {
5685 case DeclaratorChunk::BlockPointer:
5686 IsBlock = true;
5687 break;
5688 case DeclaratorChunk::Function: {
5689 const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
5690 // We suppress the warning when there's no LParen location, as this
5691 // indicates the declaration was an implicit declaration, which gets
5692 // warned about separately via -Wimplicit-function-declaration. We also
5693 // suppress the warning when we know the function has a prototype.
5694 if (!FTI.hasPrototype && FTI.NumParams == 0 && !FTI.isVariadic &&
5695 FTI.getLParenLoc().isValid())
5696 S.Diag(DeclType.Loc, diag::warn_strict_prototypes)
5697 << IsBlock
5698 << FixItHint::CreateInsertion(FTI.getRParenLoc(), "void");
5699 IsBlock = false;
5700 break;
5701 }
5702 default:
5703 break;
5704 }
5705 }
5706 }
5707
5708 assert(!T.isNull() && "T must not be null after this point");
5709
5710 if (LangOpts.CPlusPlus && T->isFunctionType()) {
5711 const FunctionProtoType *FnTy = T->getAs<FunctionProtoType>();
5712 assert(FnTy && "Why oh why is there not a FunctionProtoType here?");
5713
5714 // C++ 8.3.5p4:
5715 // A cv-qualifier-seq shall only be part of the function type
5716 // for a nonstatic member function, the function type to which a pointer
5717 // to member refers, or the top-level function type of a function typedef
5718 // declaration.
5719 //
5720 // Core issue 547 also allows cv-qualifiers on function types that are
5721 // top-level template type arguments.
5722 enum { NonMember, Member, DeductionGuide } Kind = NonMember;
5723 if (D.getName().getKind() == UnqualifiedIdKind::IK_DeductionGuideName)
5724 Kind = DeductionGuide;
5725 else if (!D.getCXXScopeSpec().isSet()) {
5726 if ((D.getContext() == DeclaratorContext::Member ||
5727 D.getContext() == DeclaratorContext::LambdaExpr) &&
5728 !D.getDeclSpec().isFriendSpecified())
5729 Kind = Member;
5730 } else {
5731 DeclContext *DC = S.computeDeclContext(D.getCXXScopeSpec());
5732 if (!DC || DC->isRecord())
5733 Kind = Member;
5734 }
5735
5736 // C++11 [dcl.fct]p6 (w/DR1417):
5737 // An attempt to specify a function type with a cv-qualifier-seq or a
5738 // ref-qualifier (including by typedef-name) is ill-formed unless it is:
5739 // - the function type for a non-static member function,
5740 // - the function type to which a pointer to member refers,
5741 // - the top-level function type of a function typedef declaration or
5742 // alias-declaration,
5743 // - the type-id in the default argument of a type-parameter, or
5744 // - the type-id of a template-argument for a type-parameter
5745 //
5746 // FIXME: Checking this here is insufficient. We accept-invalid on:
5747 //
5748 // template<typename T> struct S { void f(T); };
5749 // S<int() const> s;
5750 //
5751 // ... for instance.
5752 if (IsQualifiedFunction &&
5753 !(Kind == Member &&
5754 D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static) &&
5755 !IsTypedefName && D.getContext() != DeclaratorContext::TemplateArg &&
5756 D.getContext() != DeclaratorContext::TemplateTypeArg) {
5757 SourceLocation Loc = D.getBeginLoc();
5758 SourceRange RemovalRange;
5759 unsigned I;
5760 if (D.isFunctionDeclarator(I)) {
5761 SmallVector<SourceLocation, 4> RemovalLocs;
5762 const DeclaratorChunk &Chunk = D.getTypeObject(I);
5763 assert(Chunk.Kind == DeclaratorChunk::Function);
5764
5765 if (Chunk.Fun.hasRefQualifier())
5766 RemovalLocs.push_back(Chunk.Fun.getRefQualifierLoc());
5767
5768 if (Chunk.Fun.hasMethodTypeQualifiers())
5769 Chunk.Fun.MethodQualifiers->forEachQualifier(
5770 [&](DeclSpec::TQ TypeQual, StringRef QualName,
5771 SourceLocation SL) { RemovalLocs.push_back(SL); });
5772
5773 if (!RemovalLocs.empty()) {
5774 llvm::sort(RemovalLocs,
5775 BeforeThanCompare<SourceLocation>(S.getSourceManager()));
5776 RemovalRange = SourceRange(RemovalLocs.front(), RemovalLocs.back());
5777 Loc = RemovalLocs.front();
5778 }
5779 }
5780
5781 S.Diag(Loc, diag::err_invalid_qualified_function_type)
5782 << Kind << D.isFunctionDeclarator() << T
5783 << getFunctionQualifiersAsString(FnTy)
5784 << FixItHint::CreateRemoval(RemovalRange);
5785
5786 // Strip the cv-qualifiers and ref-qualifiers from the type.
5787 FunctionProtoType::ExtProtoInfo EPI = FnTy->getExtProtoInfo();
5788 EPI.TypeQuals.removeCVRQualifiers();
5789 EPI.RefQualifier = RQ_None;
5790
5791 T = Context.getFunctionType(FnTy->getReturnType(), FnTy->getParamTypes(),
5792 EPI);
5793 // Rebuild any parens around the identifier in the function type.
5794 for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
5795 if (D.getTypeObject(i).Kind != DeclaratorChunk::Paren)
5796 break;
5797 T = S.BuildParenType(T);
5798 }
5799 }
5800 }
5801
5802 // Apply any undistributed attributes from the declaration or declarator.
5803 ParsedAttributesView NonSlidingAttrs;
5804 for (ParsedAttr &AL : D.getDeclarationAttributes()) {
5805 if (!AL.slidesFromDeclToDeclSpecLegacyBehavior()) {
5806 NonSlidingAttrs.addAtEnd(&AL);
5807 }
5808 }
5809 processTypeAttrs(state, T, TAL_DeclName, NonSlidingAttrs);
5810 processTypeAttrs(state, T, TAL_DeclName, D.getAttributes());
5811
5812 // Diagnose any ignored type attributes.
5813 state.diagnoseIgnoredTypeAttrs(T);
5814
5815 // C++0x [dcl.constexpr]p9:
5816 // A constexpr specifier used in an object declaration declares the object
5817 // as const.
5818 if (D.getDeclSpec().getConstexprSpecifier() == ConstexprSpecKind::Constexpr &&
5819 T->isObjectType())
5820 T.addConst();
5821
5822 // C++2a [dcl.fct]p4:
5823 // A parameter with volatile-qualified type is deprecated
5824 if (T.isVolatileQualified() && S.getLangOpts().CPlusPlus20 &&
5825 (D.getContext() == DeclaratorContext::Prototype ||
5826 D.getContext() == DeclaratorContext::LambdaExprParameter))
5827 S.Diag(D.getIdentifierLoc(), diag::warn_deprecated_volatile_param) << T;
5828
5829 // If there was an ellipsis in the declarator, the declaration declares a
5830 // parameter pack whose type may be a pack expansion type.
5831 if (D.hasEllipsis()) {
5832 // C++0x [dcl.fct]p13:
5833 // A declarator-id or abstract-declarator containing an ellipsis shall
5834 // only be used in a parameter-declaration. Such a parameter-declaration
5835 // is a parameter pack (14.5.3). [...]
5836 switch (D.getContext()) {
5837 case DeclaratorContext::Prototype:
5838 case DeclaratorContext::LambdaExprParameter:
5839 case DeclaratorContext::RequiresExpr:
5840 // C++0x [dcl.fct]p13:
5841 // [...] When it is part of a parameter-declaration-clause, the
5842 // parameter pack is a function parameter pack (14.5.3). The type T
5843 // of the declarator-id of the function parameter pack shall contain
5844 // a template parameter pack; each template parameter pack in T is
5845 // expanded by the function parameter pack.
5846 //
5847 // We represent function parameter packs as function parameters whose
5848 // type is a pack expansion.
5849 if (!T->containsUnexpandedParameterPack() &&
5850 (!LangOpts.CPlusPlus20 || !T->getContainedAutoType())) {
5851 S.Diag(D.getEllipsisLoc(),
5852 diag::err_function_parameter_pack_without_parameter_packs)
5853 << T << D.getSourceRange();
5854 D.setEllipsisLoc(SourceLocation());
5855 } else {
5856 T = Context.getPackExpansionType(T, std::nullopt,
5857 /*ExpectPackInType=*/false);
5858 }
5859 break;
5860 case DeclaratorContext::TemplateParam:
5861 // C++0x [temp.param]p15:
5862 // If a template-parameter is a [...] is a parameter-declaration that
5863 // declares a parameter pack (8.3.5), then the template-parameter is a
5864 // template parameter pack (14.5.3).
5865 //
5866 // Note: core issue 778 clarifies that, if there are any unexpanded
5867 // parameter packs in the type of the non-type template parameter, then
5868 // it expands those parameter packs.
5869 if (T->containsUnexpandedParameterPack())
5870 T = Context.getPackExpansionType(T, std::nullopt);
5871 else
5872 S.Diag(D.getEllipsisLoc(),
5873 LangOpts.CPlusPlus11
5874 ? diag::warn_cxx98_compat_variadic_templates
5875 : diag::ext_variadic_templates);
5876 break;
5877
5878 case DeclaratorContext::File:
5879 case DeclaratorContext::KNRTypeList:
5880 case DeclaratorContext::ObjCParameter: // FIXME: special diagnostic here?
5881 case DeclaratorContext::ObjCResult: // FIXME: special diagnostic here?
5882 case DeclaratorContext::TypeName:
5883 case DeclaratorContext::FunctionalCast:
5884 case DeclaratorContext::CXXNew:
5885 case DeclaratorContext::AliasDecl:
5886 case DeclaratorContext::AliasTemplate:
5887 case DeclaratorContext::Member:
5888 case DeclaratorContext::Block:
5889 case DeclaratorContext::ForInit:
5890 case DeclaratorContext::SelectionInit:
5891 case DeclaratorContext::Condition:
5892 case DeclaratorContext::CXXCatch:
5893 case DeclaratorContext::ObjCCatch:
5894 case DeclaratorContext::BlockLiteral:
5895 case DeclaratorContext::LambdaExpr:
5896 case DeclaratorContext::ConversionId:
5897 case DeclaratorContext::TrailingReturn:
5898 case DeclaratorContext::TrailingReturnVar:
5899 case DeclaratorContext::TemplateArg:
5900 case DeclaratorContext::TemplateTypeArg:
5901 case DeclaratorContext::Association:
5902 // FIXME: We may want to allow parameter packs in block-literal contexts
5903 // in the future.
5904 S.Diag(D.getEllipsisLoc(),
5905 diag::err_ellipsis_in_declarator_not_parameter);
5906 D.setEllipsisLoc(SourceLocation());
5907 break;
5908 }
5909 }
5910
5911 assert(!T.isNull() && "T must not be null at the end of this function");
5912 if (D.isInvalidType())
5913 return Context.getTrivialTypeSourceInfo(T);
5914
5915 return GetTypeSourceInfoForDeclarator(state, T, TInfo);
5916 }
5917
5918 /// GetTypeForDeclarator - Convert the type for the specified
5919 /// declarator to Type instances.
5920 ///
5921 /// The result of this call will never be null, but the associated
5922 /// type may be a null type if there's an unrecoverable error.
GetTypeForDeclarator(Declarator & D,Scope * S)5923 TypeSourceInfo *Sema::GetTypeForDeclarator(Declarator &D, Scope *S) {
5924 // Determine the type of the declarator. Not all forms of declarator
5925 // have a type.
5926
5927 TypeProcessingState state(*this, D);
5928
5929 TypeSourceInfo *ReturnTypeInfo = nullptr;
5930 QualType T = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
5931 if (D.isPrototypeContext() && getLangOpts().ObjCAutoRefCount)
5932 inferARCWriteback(state, T);
5933
5934 return GetFullTypeForDeclarator(state, T, ReturnTypeInfo);
5935 }
5936
transferARCOwnershipToDeclSpec(Sema & S,QualType & declSpecTy,Qualifiers::ObjCLifetime ownership)5937 static void transferARCOwnershipToDeclSpec(Sema &S,
5938 QualType &declSpecTy,
5939 Qualifiers::ObjCLifetime ownership) {
5940 if (declSpecTy->isObjCRetainableType() &&
5941 declSpecTy.getObjCLifetime() == Qualifiers::OCL_None) {
5942 Qualifiers qs;
5943 qs.addObjCLifetime(ownership);
5944 declSpecTy = S.Context.getQualifiedType(declSpecTy, qs);
5945 }
5946 }
5947
transferARCOwnershipToDeclaratorChunk(TypeProcessingState & state,Qualifiers::ObjCLifetime ownership,unsigned chunkIndex)5948 static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
5949 Qualifiers::ObjCLifetime ownership,
5950 unsigned chunkIndex) {
5951 Sema &S = state.getSema();
5952 Declarator &D = state.getDeclarator();
5953
5954 // Look for an explicit lifetime attribute.
5955 DeclaratorChunk &chunk = D.getTypeObject(chunkIndex);
5956 if (chunk.getAttrs().hasAttribute(ParsedAttr::AT_ObjCOwnership))
5957 return;
5958
5959 const char *attrStr = nullptr;
5960 switch (ownership) {
5961 case Qualifiers::OCL_None: llvm_unreachable("no ownership!");
5962 case Qualifiers::OCL_ExplicitNone: attrStr = "none"; break;
5963 case Qualifiers::OCL_Strong: attrStr = "strong"; break;
5964 case Qualifiers::OCL_Weak: attrStr = "weak"; break;
5965 case Qualifiers::OCL_Autoreleasing: attrStr = "autoreleasing"; break;
5966 }
5967
5968 IdentifierLoc *Arg = new (S.Context) IdentifierLoc;
5969 Arg->Ident = &S.Context.Idents.get(attrStr);
5970 Arg->Loc = SourceLocation();
5971
5972 ArgsUnion Args(Arg);
5973
5974 // If there wasn't one, add one (with an invalid source location
5975 // so that we don't make an AttributedType for it).
5976 ParsedAttr *attr = D.getAttributePool().create(
5977 &S.Context.Idents.get("objc_ownership"), SourceLocation(),
5978 /*scope*/ nullptr, SourceLocation(),
5979 /*args*/ &Args, 1, ParsedAttr::AS_GNU);
5980 chunk.getAttrs().addAtEnd(attr);
5981 // TODO: mark whether we did this inference?
5982 }
5983
5984 /// Used for transferring ownership in casts resulting in l-values.
transferARCOwnership(TypeProcessingState & state,QualType & declSpecTy,Qualifiers::ObjCLifetime ownership)5985 static void transferARCOwnership(TypeProcessingState &state,
5986 QualType &declSpecTy,
5987 Qualifiers::ObjCLifetime ownership) {
5988 Sema &S = state.getSema();
5989 Declarator &D = state.getDeclarator();
5990
5991 int inner = -1;
5992 bool hasIndirection = false;
5993 for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
5994 DeclaratorChunk &chunk = D.getTypeObject(i);
5995 switch (chunk.Kind) {
5996 case DeclaratorChunk::Paren:
5997 // Ignore parens.
5998 break;
5999
6000 case DeclaratorChunk::Array:
6001 case DeclaratorChunk::Reference:
6002 case DeclaratorChunk::Pointer:
6003 if (inner != -1)
6004 hasIndirection = true;
6005 inner = i;
6006 break;
6007
6008 case DeclaratorChunk::BlockPointer:
6009 if (inner != -1)
6010 transferARCOwnershipToDeclaratorChunk(state, ownership, i);
6011 return;
6012
6013 case DeclaratorChunk::Function:
6014 case DeclaratorChunk::MemberPointer:
6015 case DeclaratorChunk::Pipe:
6016 return;
6017 }
6018 }
6019
6020 if (inner == -1)
6021 return;
6022
6023 DeclaratorChunk &chunk = D.getTypeObject(inner);
6024 if (chunk.Kind == DeclaratorChunk::Pointer) {
6025 if (declSpecTy->isObjCRetainableType())
6026 return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
6027 if (declSpecTy->isObjCObjectType() && hasIndirection)
6028 return transferARCOwnershipToDeclaratorChunk(state, ownership, inner);
6029 } else {
6030 assert(chunk.Kind == DeclaratorChunk::Array ||
6031 chunk.Kind == DeclaratorChunk::Reference);
6032 return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
6033 }
6034 }
6035
GetTypeForDeclaratorCast(Declarator & D,QualType FromTy)6036 TypeSourceInfo *Sema::GetTypeForDeclaratorCast(Declarator &D, QualType FromTy) {
6037 TypeProcessingState state(*this, D);
6038
6039 TypeSourceInfo *ReturnTypeInfo = nullptr;
6040 QualType declSpecTy = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
6041
6042 if (getLangOpts().ObjC) {
6043 Qualifiers::ObjCLifetime ownership = Context.getInnerObjCOwnership(FromTy);
6044 if (ownership != Qualifiers::OCL_None)
6045 transferARCOwnership(state, declSpecTy, ownership);
6046 }
6047
6048 return GetFullTypeForDeclarator(state, declSpecTy, ReturnTypeInfo);
6049 }
6050
fillAttributedTypeLoc(AttributedTypeLoc TL,TypeProcessingState & State)6051 static void fillAttributedTypeLoc(AttributedTypeLoc TL,
6052 TypeProcessingState &State) {
6053 TL.setAttr(State.takeAttrForAttributedType(TL.getTypePtr()));
6054 }
6055
fillMatrixTypeLoc(MatrixTypeLoc MTL,const ParsedAttributesView & Attrs)6056 static void fillMatrixTypeLoc(MatrixTypeLoc MTL,
6057 const ParsedAttributesView &Attrs) {
6058 for (const ParsedAttr &AL : Attrs) {
6059 if (AL.getKind() == ParsedAttr::AT_MatrixType) {
6060 MTL.setAttrNameLoc(AL.getLoc());
6061 MTL.setAttrRowOperand(AL.getArgAsExpr(0));
6062 MTL.setAttrColumnOperand(AL.getArgAsExpr(1));
6063 MTL.setAttrOperandParensRange(SourceRange());
6064 return;
6065 }
6066 }
6067
6068 llvm_unreachable("no matrix_type attribute found at the expected location!");
6069 }
6070
6071 namespace {
6072 class TypeSpecLocFiller : public TypeLocVisitor<TypeSpecLocFiller> {
6073 Sema &SemaRef;
6074 ASTContext &Context;
6075 TypeProcessingState &State;
6076 const DeclSpec &DS;
6077
6078 public:
TypeSpecLocFiller(Sema & S,ASTContext & Context,TypeProcessingState & State,const DeclSpec & DS)6079 TypeSpecLocFiller(Sema &S, ASTContext &Context, TypeProcessingState &State,
6080 const DeclSpec &DS)
6081 : SemaRef(S), Context(Context), State(State), DS(DS) {}
6082
VisitAttributedTypeLoc(AttributedTypeLoc TL)6083 void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
6084 Visit(TL.getModifiedLoc());
6085 fillAttributedTypeLoc(TL, State);
6086 }
VisitBTFTagAttributedTypeLoc(BTFTagAttributedTypeLoc TL)6087 void VisitBTFTagAttributedTypeLoc(BTFTagAttributedTypeLoc TL) {
6088 Visit(TL.getWrappedLoc());
6089 }
VisitMacroQualifiedTypeLoc(MacroQualifiedTypeLoc TL)6090 void VisitMacroQualifiedTypeLoc(MacroQualifiedTypeLoc TL) {
6091 Visit(TL.getInnerLoc());
6092 TL.setExpansionLoc(
6093 State.getExpansionLocForMacroQualifiedType(TL.getTypePtr()));
6094 }
VisitQualifiedTypeLoc(QualifiedTypeLoc TL)6095 void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
6096 Visit(TL.getUnqualifiedLoc());
6097 }
6098 // Allow to fill pointee's type locations, e.g.,
6099 // int __attr * __attr * __attr *p;
VisitPointerTypeLoc(PointerTypeLoc TL)6100 void VisitPointerTypeLoc(PointerTypeLoc TL) { Visit(TL.getNextTypeLoc()); }
VisitTypedefTypeLoc(TypedefTypeLoc TL)6101 void VisitTypedefTypeLoc(TypedefTypeLoc TL) {
6102 TL.setNameLoc(DS.getTypeSpecTypeLoc());
6103 }
VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL)6104 void VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL) {
6105 TL.setNameLoc(DS.getTypeSpecTypeLoc());
6106 // FIXME. We should have DS.getTypeSpecTypeEndLoc(). But, it requires
6107 // addition field. What we have is good enough for display of location
6108 // of 'fixit' on interface name.
6109 TL.setNameEndLoc(DS.getEndLoc());
6110 }
VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL)6111 void VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL) {
6112 TypeSourceInfo *RepTInfo = nullptr;
6113 Sema::GetTypeFromParser(DS.getRepAsType(), &RepTInfo);
6114 TL.copy(RepTInfo->getTypeLoc());
6115 }
VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL)6116 void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
6117 TypeSourceInfo *RepTInfo = nullptr;
6118 Sema::GetTypeFromParser(DS.getRepAsType(), &RepTInfo);
6119 TL.copy(RepTInfo->getTypeLoc());
6120 }
VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc TL)6121 void VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc TL) {
6122 TypeSourceInfo *TInfo = nullptr;
6123 Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
6124
6125 // If we got no declarator info from previous Sema routines,
6126 // just fill with the typespec loc.
6127 if (!TInfo) {
6128 TL.initialize(Context, DS.getTypeSpecTypeNameLoc());
6129 return;
6130 }
6131
6132 TypeLoc OldTL = TInfo->getTypeLoc();
6133 if (TInfo->getType()->getAs<ElaboratedType>()) {
6134 ElaboratedTypeLoc ElabTL = OldTL.castAs<ElaboratedTypeLoc>();
6135 TemplateSpecializationTypeLoc NamedTL = ElabTL.getNamedTypeLoc()
6136 .castAs<TemplateSpecializationTypeLoc>();
6137 TL.copy(NamedTL);
6138 } else {
6139 TL.copy(OldTL.castAs<TemplateSpecializationTypeLoc>());
6140 assert(TL.getRAngleLoc() == OldTL.castAs<TemplateSpecializationTypeLoc>().getRAngleLoc());
6141 }
6142
6143 }
VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL)6144 void VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL) {
6145 assert(DS.getTypeSpecType() == DeclSpec::TST_typeofExpr ||
6146 DS.getTypeSpecType() == DeclSpec::TST_typeof_unqualExpr);
6147 TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
6148 TL.setParensRange(DS.getTypeofParensRange());
6149 }
VisitTypeOfTypeLoc(TypeOfTypeLoc TL)6150 void VisitTypeOfTypeLoc(TypeOfTypeLoc TL) {
6151 assert(DS.getTypeSpecType() == DeclSpec::TST_typeofType ||
6152 DS.getTypeSpecType() == DeclSpec::TST_typeof_unqualType);
6153 TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
6154 TL.setParensRange(DS.getTypeofParensRange());
6155 assert(DS.getRepAsType());
6156 TypeSourceInfo *TInfo = nullptr;
6157 Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
6158 TL.setUnmodifiedTInfo(TInfo);
6159 }
VisitDecltypeTypeLoc(DecltypeTypeLoc TL)6160 void VisitDecltypeTypeLoc(DecltypeTypeLoc TL) {
6161 assert(DS.getTypeSpecType() == DeclSpec::TST_decltype);
6162 TL.setDecltypeLoc(DS.getTypeSpecTypeLoc());
6163 TL.setRParenLoc(DS.getTypeofParensRange().getEnd());
6164 }
VisitUnaryTransformTypeLoc(UnaryTransformTypeLoc TL)6165 void VisitUnaryTransformTypeLoc(UnaryTransformTypeLoc TL) {
6166 assert(DS.isTransformTypeTrait(DS.getTypeSpecType()));
6167 TL.setKWLoc(DS.getTypeSpecTypeLoc());
6168 TL.setParensRange(DS.getTypeofParensRange());
6169 assert(DS.getRepAsType());
6170 TypeSourceInfo *TInfo = nullptr;
6171 Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
6172 TL.setUnderlyingTInfo(TInfo);
6173 }
VisitBuiltinTypeLoc(BuiltinTypeLoc TL)6174 void VisitBuiltinTypeLoc(BuiltinTypeLoc TL) {
6175 // By default, use the source location of the type specifier.
6176 TL.setBuiltinLoc(DS.getTypeSpecTypeLoc());
6177 if (TL.needsExtraLocalData()) {
6178 // Set info for the written builtin specifiers.
6179 TL.getWrittenBuiltinSpecs() = DS.getWrittenBuiltinSpecs();
6180 // Try to have a meaningful source location.
6181 if (TL.getWrittenSignSpec() != TypeSpecifierSign::Unspecified)
6182 TL.expandBuiltinRange(DS.getTypeSpecSignLoc());
6183 if (TL.getWrittenWidthSpec() != TypeSpecifierWidth::Unspecified)
6184 TL.expandBuiltinRange(DS.getTypeSpecWidthRange());
6185 }
6186 }
VisitElaboratedTypeLoc(ElaboratedTypeLoc TL)6187 void VisitElaboratedTypeLoc(ElaboratedTypeLoc TL) {
6188 if (DS.getTypeSpecType() == TST_typename) {
6189 TypeSourceInfo *TInfo = nullptr;
6190 Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
6191 if (TInfo)
6192 if (auto ETL = TInfo->getTypeLoc().getAs<ElaboratedTypeLoc>()) {
6193 TL.copy(ETL);
6194 return;
6195 }
6196 }
6197 const ElaboratedType *T = TL.getTypePtr();
6198 TL.setElaboratedKeywordLoc(T->getKeyword() != ETK_None
6199 ? DS.getTypeSpecTypeLoc()
6200 : SourceLocation());
6201 const CXXScopeSpec& SS = DS.getTypeSpecScope();
6202 TL.setQualifierLoc(SS.getWithLocInContext(Context));
6203 Visit(TL.getNextTypeLoc().getUnqualifiedLoc());
6204 }
VisitDependentNameTypeLoc(DependentNameTypeLoc TL)6205 void VisitDependentNameTypeLoc(DependentNameTypeLoc TL) {
6206 assert(DS.getTypeSpecType() == TST_typename);
6207 TypeSourceInfo *TInfo = nullptr;
6208 Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
6209 assert(TInfo);
6210 TL.copy(TInfo->getTypeLoc().castAs<DependentNameTypeLoc>());
6211 }
VisitDependentTemplateSpecializationTypeLoc(DependentTemplateSpecializationTypeLoc TL)6212 void VisitDependentTemplateSpecializationTypeLoc(
6213 DependentTemplateSpecializationTypeLoc TL) {
6214 assert(DS.getTypeSpecType() == TST_typename);
6215 TypeSourceInfo *TInfo = nullptr;
6216 Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
6217 assert(TInfo);
6218 TL.copy(
6219 TInfo->getTypeLoc().castAs<DependentTemplateSpecializationTypeLoc>());
6220 }
VisitAutoTypeLoc(AutoTypeLoc TL)6221 void VisitAutoTypeLoc(AutoTypeLoc TL) {
6222 assert(DS.getTypeSpecType() == TST_auto ||
6223 DS.getTypeSpecType() == TST_decltype_auto ||
6224 DS.getTypeSpecType() == TST_auto_type ||
6225 DS.getTypeSpecType() == TST_unspecified);
6226 TL.setNameLoc(DS.getTypeSpecTypeLoc());
6227 if (DS.getTypeSpecType() == TST_decltype_auto)
6228 TL.setRParenLoc(DS.getTypeofParensRange().getEnd());
6229 if (!DS.isConstrainedAuto())
6230 return;
6231 TemplateIdAnnotation *TemplateId = DS.getRepAsTemplateId();
6232 if (!TemplateId)
6233 return;
6234 if (DS.getTypeSpecScope().isNotEmpty())
6235 TL.setNestedNameSpecifierLoc(
6236 DS.getTypeSpecScope().getWithLocInContext(Context));
6237 else
6238 TL.setNestedNameSpecifierLoc(NestedNameSpecifierLoc());
6239 TL.setTemplateKWLoc(TemplateId->TemplateKWLoc);
6240 TL.setConceptNameLoc(TemplateId->TemplateNameLoc);
6241 TL.setFoundDecl(nullptr);
6242 TL.setLAngleLoc(TemplateId->LAngleLoc);
6243 TL.setRAngleLoc(TemplateId->RAngleLoc);
6244 if (TemplateId->NumArgs == 0)
6245 return;
6246 TemplateArgumentListInfo TemplateArgsInfo;
6247 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
6248 TemplateId->NumArgs);
6249 SemaRef.translateTemplateArguments(TemplateArgsPtr, TemplateArgsInfo);
6250 for (unsigned I = 0; I < TemplateId->NumArgs; ++I)
6251 TL.setArgLocInfo(I, TemplateArgsInfo.arguments()[I].getLocInfo());
6252 }
VisitTagTypeLoc(TagTypeLoc TL)6253 void VisitTagTypeLoc(TagTypeLoc TL) {
6254 TL.setNameLoc(DS.getTypeSpecTypeNameLoc());
6255 }
VisitAtomicTypeLoc(AtomicTypeLoc TL)6256 void VisitAtomicTypeLoc(AtomicTypeLoc TL) {
6257 // An AtomicTypeLoc can come from either an _Atomic(...) type specifier
6258 // or an _Atomic qualifier.
6259 if (DS.getTypeSpecType() == DeclSpec::TST_atomic) {
6260 TL.setKWLoc(DS.getTypeSpecTypeLoc());
6261 TL.setParensRange(DS.getTypeofParensRange());
6262
6263 TypeSourceInfo *TInfo = nullptr;
6264 Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
6265 assert(TInfo);
6266 TL.getValueLoc().initializeFullCopy(TInfo->getTypeLoc());
6267 } else {
6268 TL.setKWLoc(DS.getAtomicSpecLoc());
6269 // No parens, to indicate this was spelled as an _Atomic qualifier.
6270 TL.setParensRange(SourceRange());
6271 Visit(TL.getValueLoc());
6272 }
6273 }
6274
VisitPipeTypeLoc(PipeTypeLoc TL)6275 void VisitPipeTypeLoc(PipeTypeLoc TL) {
6276 TL.setKWLoc(DS.getTypeSpecTypeLoc());
6277
6278 TypeSourceInfo *TInfo = nullptr;
6279 Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
6280 TL.getValueLoc().initializeFullCopy(TInfo->getTypeLoc());
6281 }
6282
VisitExtIntTypeLoc(BitIntTypeLoc TL)6283 void VisitExtIntTypeLoc(BitIntTypeLoc TL) {
6284 TL.setNameLoc(DS.getTypeSpecTypeLoc());
6285 }
6286
VisitDependentExtIntTypeLoc(DependentBitIntTypeLoc TL)6287 void VisitDependentExtIntTypeLoc(DependentBitIntTypeLoc TL) {
6288 TL.setNameLoc(DS.getTypeSpecTypeLoc());
6289 }
6290
VisitTypeLoc(TypeLoc TL)6291 void VisitTypeLoc(TypeLoc TL) {
6292 // FIXME: add other typespec types and change this to an assert.
6293 TL.initialize(Context, DS.getTypeSpecTypeLoc());
6294 }
6295 };
6296
6297 class DeclaratorLocFiller : public TypeLocVisitor<DeclaratorLocFiller> {
6298 ASTContext &Context;
6299 TypeProcessingState &State;
6300 const DeclaratorChunk &Chunk;
6301
6302 public:
DeclaratorLocFiller(ASTContext & Context,TypeProcessingState & State,const DeclaratorChunk & Chunk)6303 DeclaratorLocFiller(ASTContext &Context, TypeProcessingState &State,
6304 const DeclaratorChunk &Chunk)
6305 : Context(Context), State(State), Chunk(Chunk) {}
6306
VisitQualifiedTypeLoc(QualifiedTypeLoc TL)6307 void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
6308 llvm_unreachable("qualified type locs not expected here!");
6309 }
VisitDecayedTypeLoc(DecayedTypeLoc TL)6310 void VisitDecayedTypeLoc(DecayedTypeLoc TL) {
6311 llvm_unreachable("decayed type locs not expected here!");
6312 }
6313
VisitAttributedTypeLoc(AttributedTypeLoc TL)6314 void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
6315 fillAttributedTypeLoc(TL, State);
6316 }
VisitBTFTagAttributedTypeLoc(BTFTagAttributedTypeLoc TL)6317 void VisitBTFTagAttributedTypeLoc(BTFTagAttributedTypeLoc TL) {
6318 // nothing
6319 }
VisitAdjustedTypeLoc(AdjustedTypeLoc TL)6320 void VisitAdjustedTypeLoc(AdjustedTypeLoc TL) {
6321 // nothing
6322 }
VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL)6323 void VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL) {
6324 assert(Chunk.Kind == DeclaratorChunk::BlockPointer);
6325 TL.setCaretLoc(Chunk.Loc);
6326 }
VisitPointerTypeLoc(PointerTypeLoc TL)6327 void VisitPointerTypeLoc(PointerTypeLoc TL) {
6328 assert(Chunk.Kind == DeclaratorChunk::Pointer);
6329 TL.setStarLoc(Chunk.Loc);
6330 }
VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL)6331 void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
6332 assert(Chunk.Kind == DeclaratorChunk::Pointer);
6333 TL.setStarLoc(Chunk.Loc);
6334 }
VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL)6335 void VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL) {
6336 assert(Chunk.Kind == DeclaratorChunk::MemberPointer);
6337 const CXXScopeSpec& SS = Chunk.Mem.Scope();
6338 NestedNameSpecifierLoc NNSLoc = SS.getWithLocInContext(Context);
6339
6340 const Type* ClsTy = TL.getClass();
6341 QualType ClsQT = QualType(ClsTy, 0);
6342 TypeSourceInfo *ClsTInfo = Context.CreateTypeSourceInfo(ClsQT, 0);
6343 // Now copy source location info into the type loc component.
6344 TypeLoc ClsTL = ClsTInfo->getTypeLoc();
6345 switch (NNSLoc.getNestedNameSpecifier()->getKind()) {
6346 case NestedNameSpecifier::Identifier:
6347 assert(isa<DependentNameType>(ClsTy) && "Unexpected TypeLoc");
6348 {
6349 DependentNameTypeLoc DNTLoc = ClsTL.castAs<DependentNameTypeLoc>();
6350 DNTLoc.setElaboratedKeywordLoc(SourceLocation());
6351 DNTLoc.setQualifierLoc(NNSLoc.getPrefix());
6352 DNTLoc.setNameLoc(NNSLoc.getLocalBeginLoc());
6353 }
6354 break;
6355
6356 case NestedNameSpecifier::TypeSpec:
6357 case NestedNameSpecifier::TypeSpecWithTemplate:
6358 if (isa<ElaboratedType>(ClsTy)) {
6359 ElaboratedTypeLoc ETLoc = ClsTL.castAs<ElaboratedTypeLoc>();
6360 ETLoc.setElaboratedKeywordLoc(SourceLocation());
6361 ETLoc.setQualifierLoc(NNSLoc.getPrefix());
6362 TypeLoc NamedTL = ETLoc.getNamedTypeLoc();
6363 NamedTL.initializeFullCopy(NNSLoc.getTypeLoc());
6364 } else {
6365 ClsTL.initializeFullCopy(NNSLoc.getTypeLoc());
6366 }
6367 break;
6368
6369 case NestedNameSpecifier::Namespace:
6370 case NestedNameSpecifier::NamespaceAlias:
6371 case NestedNameSpecifier::Global:
6372 case NestedNameSpecifier::Super:
6373 llvm_unreachable("Nested-name-specifier must name a type");
6374 }
6375
6376 // Finally fill in MemberPointerLocInfo fields.
6377 TL.setStarLoc(Chunk.Mem.StarLoc);
6378 TL.setClassTInfo(ClsTInfo);
6379 }
VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL)6380 void VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL) {
6381 assert(Chunk.Kind == DeclaratorChunk::Reference);
6382 // 'Amp' is misleading: this might have been originally
6383 /// spelled with AmpAmp.
6384 TL.setAmpLoc(Chunk.Loc);
6385 }
VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL)6386 void VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL) {
6387 assert(Chunk.Kind == DeclaratorChunk::Reference);
6388 assert(!Chunk.Ref.LValueRef);
6389 TL.setAmpAmpLoc(Chunk.Loc);
6390 }
VisitArrayTypeLoc(ArrayTypeLoc TL)6391 void VisitArrayTypeLoc(ArrayTypeLoc TL) {
6392 assert(Chunk.Kind == DeclaratorChunk::Array);
6393 TL.setLBracketLoc(Chunk.Loc);
6394 TL.setRBracketLoc(Chunk.EndLoc);
6395 TL.setSizeExpr(static_cast<Expr*>(Chunk.Arr.NumElts));
6396 }
VisitFunctionTypeLoc(FunctionTypeLoc TL)6397 void VisitFunctionTypeLoc(FunctionTypeLoc TL) {
6398 assert(Chunk.Kind == DeclaratorChunk::Function);
6399 TL.setLocalRangeBegin(Chunk.Loc);
6400 TL.setLocalRangeEnd(Chunk.EndLoc);
6401
6402 const DeclaratorChunk::FunctionTypeInfo &FTI = Chunk.Fun;
6403 TL.setLParenLoc(FTI.getLParenLoc());
6404 TL.setRParenLoc(FTI.getRParenLoc());
6405 for (unsigned i = 0, e = TL.getNumParams(), tpi = 0; i != e; ++i) {
6406 ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
6407 TL.setParam(tpi++, Param);
6408 }
6409 TL.setExceptionSpecRange(FTI.getExceptionSpecRange());
6410 }
VisitParenTypeLoc(ParenTypeLoc TL)6411 void VisitParenTypeLoc(ParenTypeLoc TL) {
6412 assert(Chunk.Kind == DeclaratorChunk::Paren);
6413 TL.setLParenLoc(Chunk.Loc);
6414 TL.setRParenLoc(Chunk.EndLoc);
6415 }
VisitPipeTypeLoc(PipeTypeLoc TL)6416 void VisitPipeTypeLoc(PipeTypeLoc TL) {
6417 assert(Chunk.Kind == DeclaratorChunk::Pipe);
6418 TL.setKWLoc(Chunk.Loc);
6419 }
VisitBitIntTypeLoc(BitIntTypeLoc TL)6420 void VisitBitIntTypeLoc(BitIntTypeLoc TL) {
6421 TL.setNameLoc(Chunk.Loc);
6422 }
VisitMacroQualifiedTypeLoc(MacroQualifiedTypeLoc TL)6423 void VisitMacroQualifiedTypeLoc(MacroQualifiedTypeLoc TL) {
6424 TL.setExpansionLoc(Chunk.Loc);
6425 }
VisitVectorTypeLoc(VectorTypeLoc TL)6426 void VisitVectorTypeLoc(VectorTypeLoc TL) { TL.setNameLoc(Chunk.Loc); }
VisitDependentVectorTypeLoc(DependentVectorTypeLoc TL)6427 void VisitDependentVectorTypeLoc(DependentVectorTypeLoc TL) {
6428 TL.setNameLoc(Chunk.Loc);
6429 }
VisitExtVectorTypeLoc(ExtVectorTypeLoc TL)6430 void VisitExtVectorTypeLoc(ExtVectorTypeLoc TL) {
6431 TL.setNameLoc(Chunk.Loc);
6432 }
6433 void
VisitDependentSizedExtVectorTypeLoc(DependentSizedExtVectorTypeLoc TL)6434 VisitDependentSizedExtVectorTypeLoc(DependentSizedExtVectorTypeLoc TL) {
6435 TL.setNameLoc(Chunk.Loc);
6436 }
VisitMatrixTypeLoc(MatrixTypeLoc TL)6437 void VisitMatrixTypeLoc(MatrixTypeLoc TL) {
6438 fillMatrixTypeLoc(TL, Chunk.getAttrs());
6439 }
6440
VisitTypeLoc(TypeLoc TL)6441 void VisitTypeLoc(TypeLoc TL) {
6442 llvm_unreachable("unsupported TypeLoc kind in declarator!");
6443 }
6444 };
6445 } // end anonymous namespace
6446
fillAtomicQualLoc(AtomicTypeLoc ATL,const DeclaratorChunk & Chunk)6447 static void fillAtomicQualLoc(AtomicTypeLoc ATL, const DeclaratorChunk &Chunk) {
6448 SourceLocation Loc;
6449 switch (Chunk.Kind) {
6450 case DeclaratorChunk::Function:
6451 case DeclaratorChunk::Array:
6452 case DeclaratorChunk::Paren:
6453 case DeclaratorChunk::Pipe:
6454 llvm_unreachable("cannot be _Atomic qualified");
6455
6456 case DeclaratorChunk::Pointer:
6457 Loc = Chunk.Ptr.AtomicQualLoc;
6458 break;
6459
6460 case DeclaratorChunk::BlockPointer:
6461 case DeclaratorChunk::Reference:
6462 case DeclaratorChunk::MemberPointer:
6463 // FIXME: Provide a source location for the _Atomic keyword.
6464 break;
6465 }
6466
6467 ATL.setKWLoc(Loc);
6468 ATL.setParensRange(SourceRange());
6469 }
6470
6471 static void
fillDependentAddressSpaceTypeLoc(DependentAddressSpaceTypeLoc DASTL,const ParsedAttributesView & Attrs)6472 fillDependentAddressSpaceTypeLoc(DependentAddressSpaceTypeLoc DASTL,
6473 const ParsedAttributesView &Attrs) {
6474 for (const ParsedAttr &AL : Attrs) {
6475 if (AL.getKind() == ParsedAttr::AT_AddressSpace) {
6476 DASTL.setAttrNameLoc(AL.getLoc());
6477 DASTL.setAttrExprOperand(AL.getArgAsExpr(0));
6478 DASTL.setAttrOperandParensRange(SourceRange());
6479 return;
6480 }
6481 }
6482
6483 llvm_unreachable(
6484 "no address_space attribute found at the expected location!");
6485 }
6486
6487 /// Create and instantiate a TypeSourceInfo with type source information.
6488 ///
6489 /// \param T QualType referring to the type as written in source code.
6490 ///
6491 /// \param ReturnTypeInfo For declarators whose return type does not show
6492 /// up in the normal place in the declaration specifiers (such as a C++
6493 /// conversion function), this pointer will refer to a type source information
6494 /// for that return type.
6495 static TypeSourceInfo *
GetTypeSourceInfoForDeclarator(TypeProcessingState & State,QualType T,TypeSourceInfo * ReturnTypeInfo)6496 GetTypeSourceInfoForDeclarator(TypeProcessingState &State,
6497 QualType T, TypeSourceInfo *ReturnTypeInfo) {
6498 Sema &S = State.getSema();
6499 Declarator &D = State.getDeclarator();
6500
6501 TypeSourceInfo *TInfo = S.Context.CreateTypeSourceInfo(T);
6502 UnqualTypeLoc CurrTL = TInfo->getTypeLoc().getUnqualifiedLoc();
6503
6504 // Handle parameter packs whose type is a pack expansion.
6505 if (isa<PackExpansionType>(T)) {
6506 CurrTL.castAs<PackExpansionTypeLoc>().setEllipsisLoc(D.getEllipsisLoc());
6507 CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
6508 }
6509
6510 for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
6511 // An AtomicTypeLoc might be produced by an atomic qualifier in this
6512 // declarator chunk.
6513 if (AtomicTypeLoc ATL = CurrTL.getAs<AtomicTypeLoc>()) {
6514 fillAtomicQualLoc(ATL, D.getTypeObject(i));
6515 CurrTL = ATL.getValueLoc().getUnqualifiedLoc();
6516 }
6517
6518 bool HasDesugaredTypeLoc = true;
6519 while (HasDesugaredTypeLoc) {
6520 switch (CurrTL.getTypeLocClass()) {
6521 case TypeLoc::MacroQualified: {
6522 auto TL = CurrTL.castAs<MacroQualifiedTypeLoc>();
6523 TL.setExpansionLoc(
6524 State.getExpansionLocForMacroQualifiedType(TL.getTypePtr()));
6525 CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc();
6526 break;
6527 }
6528
6529 case TypeLoc::Attributed: {
6530 auto TL = CurrTL.castAs<AttributedTypeLoc>();
6531 fillAttributedTypeLoc(TL, State);
6532 CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc();
6533 break;
6534 }
6535
6536 case TypeLoc::Adjusted:
6537 case TypeLoc::BTFTagAttributed: {
6538 CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
6539 break;
6540 }
6541
6542 case TypeLoc::DependentAddressSpace: {
6543 auto TL = CurrTL.castAs<DependentAddressSpaceTypeLoc>();
6544 fillDependentAddressSpaceTypeLoc(TL, D.getTypeObject(i).getAttrs());
6545 CurrTL = TL.getPointeeTypeLoc().getUnqualifiedLoc();
6546 break;
6547 }
6548
6549 default:
6550 HasDesugaredTypeLoc = false;
6551 break;
6552 }
6553 }
6554
6555 DeclaratorLocFiller(S.Context, State, D.getTypeObject(i)).Visit(CurrTL);
6556 CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
6557 }
6558
6559 // If we have different source information for the return type, use
6560 // that. This really only applies to C++ conversion functions.
6561 if (ReturnTypeInfo) {
6562 TypeLoc TL = ReturnTypeInfo->getTypeLoc();
6563 assert(TL.getFullDataSize() == CurrTL.getFullDataSize());
6564 memcpy(CurrTL.getOpaqueData(), TL.getOpaqueData(), TL.getFullDataSize());
6565 } else {
6566 TypeSpecLocFiller(S, S.Context, State, D.getDeclSpec()).Visit(CurrTL);
6567 }
6568
6569 return TInfo;
6570 }
6571
6572 /// Create a LocInfoType to hold the given QualType and TypeSourceInfo.
CreateParsedType(QualType T,TypeSourceInfo * TInfo)6573 ParsedType Sema::CreateParsedType(QualType T, TypeSourceInfo *TInfo) {
6574 // FIXME: LocInfoTypes are "transient", only needed for passing to/from Parser
6575 // and Sema during declaration parsing. Try deallocating/caching them when
6576 // it's appropriate, instead of allocating them and keeping them around.
6577 LocInfoType *LocT = (LocInfoType*)BumpAlloc.Allocate(sizeof(LocInfoType),
6578 TypeAlignment);
6579 new (LocT) LocInfoType(T, TInfo);
6580 assert(LocT->getTypeClass() != T->getTypeClass() &&
6581 "LocInfoType's TypeClass conflicts with an existing Type class");
6582 return ParsedType::make(QualType(LocT, 0));
6583 }
6584
getAsStringInternal(std::string & Str,const PrintingPolicy & Policy) const6585 void LocInfoType::getAsStringInternal(std::string &Str,
6586 const PrintingPolicy &Policy) const {
6587 llvm_unreachable("LocInfoType leaked into the type system; an opaque TypeTy*"
6588 " was used directly instead of getting the QualType through"
6589 " GetTypeFromParser");
6590 }
6591
ActOnTypeName(Scope * S,Declarator & D)6592 TypeResult Sema::ActOnTypeName(Scope *S, Declarator &D) {
6593 // C99 6.7.6: Type names have no identifier. This is already validated by
6594 // the parser.
6595 assert(D.getIdentifier() == nullptr &&
6596 "Type name should have no identifier!");
6597
6598 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6599 QualType T = TInfo->getType();
6600 if (D.isInvalidType())
6601 return true;
6602
6603 // Make sure there are no unused decl attributes on the declarator.
6604 // We don't want to do this for ObjC parameters because we're going
6605 // to apply them to the actual parameter declaration.
6606 // Likewise, we don't want to do this for alias declarations, because
6607 // we are actually going to build a declaration from this eventually.
6608 if (D.getContext() != DeclaratorContext::ObjCParameter &&
6609 D.getContext() != DeclaratorContext::AliasDecl &&
6610 D.getContext() != DeclaratorContext::AliasTemplate)
6611 checkUnusedDeclAttributes(D);
6612
6613 if (getLangOpts().CPlusPlus) {
6614 // Check that there are no default arguments (C++ only).
6615 CheckExtraCXXDefaultArguments(D);
6616 }
6617
6618 return CreateParsedType(T, TInfo);
6619 }
6620
ActOnObjCInstanceType(SourceLocation Loc)6621 ParsedType Sema::ActOnObjCInstanceType(SourceLocation Loc) {
6622 QualType T = Context.getObjCInstanceType();
6623 TypeSourceInfo *TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
6624 return CreateParsedType(T, TInfo);
6625 }
6626
6627 //===----------------------------------------------------------------------===//
6628 // Type Attribute Processing
6629 //===----------------------------------------------------------------------===//
6630
6631 /// Build an AddressSpace index from a constant expression and diagnose any
6632 /// errors related to invalid address_spaces. Returns true on successfully
6633 /// building an AddressSpace index.
BuildAddressSpaceIndex(Sema & S,LangAS & ASIdx,const Expr * AddrSpace,SourceLocation AttrLoc)6634 static bool BuildAddressSpaceIndex(Sema &S, LangAS &ASIdx,
6635 const Expr *AddrSpace,
6636 SourceLocation AttrLoc) {
6637 if (!AddrSpace->isValueDependent()) {
6638 std::optional<llvm::APSInt> OptAddrSpace =
6639 AddrSpace->getIntegerConstantExpr(S.Context);
6640 if (!OptAddrSpace) {
6641 S.Diag(AttrLoc, diag::err_attribute_argument_type)
6642 << "'address_space'" << AANT_ArgumentIntegerConstant
6643 << AddrSpace->getSourceRange();
6644 return false;
6645 }
6646 llvm::APSInt &addrSpace = *OptAddrSpace;
6647
6648 // Bounds checking.
6649 if (addrSpace.isSigned()) {
6650 if (addrSpace.isNegative()) {
6651 S.Diag(AttrLoc, diag::err_attribute_address_space_negative)
6652 << AddrSpace->getSourceRange();
6653 return false;
6654 }
6655 addrSpace.setIsSigned(false);
6656 }
6657
6658 llvm::APSInt max(addrSpace.getBitWidth());
6659 max =
6660 Qualifiers::MaxAddressSpace - (unsigned)LangAS::FirstTargetAddressSpace;
6661
6662 if (addrSpace > max) {
6663 S.Diag(AttrLoc, diag::err_attribute_address_space_too_high)
6664 << (unsigned)max.getZExtValue() << AddrSpace->getSourceRange();
6665 return false;
6666 }
6667
6668 ASIdx =
6669 getLangASFromTargetAS(static_cast<unsigned>(addrSpace.getZExtValue()));
6670 return true;
6671 }
6672
6673 // Default value for DependentAddressSpaceTypes
6674 ASIdx = LangAS::Default;
6675 return true;
6676 }
6677
6678 /// BuildAddressSpaceAttr - Builds a DependentAddressSpaceType if an expression
6679 /// is uninstantiated. If instantiated it will apply the appropriate address
6680 /// space to the type. This function allows dependent template variables to be
6681 /// used in conjunction with the address_space attribute
BuildAddressSpaceAttr(QualType & T,LangAS ASIdx,Expr * AddrSpace,SourceLocation AttrLoc)6682 QualType Sema::BuildAddressSpaceAttr(QualType &T, LangAS ASIdx, Expr *AddrSpace,
6683 SourceLocation AttrLoc) {
6684 if (!AddrSpace->isValueDependent()) {
6685 if (DiagnoseMultipleAddrSpaceAttributes(*this, T.getAddressSpace(), ASIdx,
6686 AttrLoc))
6687 return QualType();
6688
6689 return Context.getAddrSpaceQualType(T, ASIdx);
6690 }
6691
6692 // A check with similar intentions as checking if a type already has an
6693 // address space except for on a dependent types, basically if the
6694 // current type is already a DependentAddressSpaceType then its already
6695 // lined up to have another address space on it and we can't have
6696 // multiple address spaces on the one pointer indirection
6697 if (T->getAs<DependentAddressSpaceType>()) {
6698 Diag(AttrLoc, diag::err_attribute_address_multiple_qualifiers);
6699 return QualType();
6700 }
6701
6702 return Context.getDependentAddressSpaceType(T, AddrSpace, AttrLoc);
6703 }
6704
BuildAddressSpaceAttr(QualType & T,Expr * AddrSpace,SourceLocation AttrLoc)6705 QualType Sema::BuildAddressSpaceAttr(QualType &T, Expr *AddrSpace,
6706 SourceLocation AttrLoc) {
6707 LangAS ASIdx;
6708 if (!BuildAddressSpaceIndex(*this, ASIdx, AddrSpace, AttrLoc))
6709 return QualType();
6710 return BuildAddressSpaceAttr(T, ASIdx, AddrSpace, AttrLoc);
6711 }
6712
HandleBTFTypeTagAttribute(QualType & Type,const ParsedAttr & Attr,TypeProcessingState & State)6713 static void HandleBTFTypeTagAttribute(QualType &Type, const ParsedAttr &Attr,
6714 TypeProcessingState &State) {
6715 Sema &S = State.getSema();
6716
6717 // Check the number of attribute arguments.
6718 if (Attr.getNumArgs() != 1) {
6719 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
6720 << Attr << 1;
6721 Attr.setInvalid();
6722 return;
6723 }
6724
6725 // Ensure the argument is a string.
6726 auto *StrLiteral = dyn_cast<StringLiteral>(Attr.getArgAsExpr(0));
6727 if (!StrLiteral) {
6728 S.Diag(Attr.getLoc(), diag::err_attribute_argument_type)
6729 << Attr << AANT_ArgumentString;
6730 Attr.setInvalid();
6731 return;
6732 }
6733
6734 ASTContext &Ctx = S.Context;
6735 StringRef BTFTypeTag = StrLiteral->getString();
6736 Type = State.getBTFTagAttributedType(
6737 ::new (Ctx) BTFTypeTagAttr(Ctx, Attr, BTFTypeTag), Type);
6738 }
6739
6740 /// HandleAddressSpaceTypeAttribute - Process an address_space attribute on the
6741 /// specified type. The attribute contains 1 argument, the id of the address
6742 /// space for the type.
HandleAddressSpaceTypeAttribute(QualType & Type,const ParsedAttr & Attr,TypeProcessingState & State)6743 static void HandleAddressSpaceTypeAttribute(QualType &Type,
6744 const ParsedAttr &Attr,
6745 TypeProcessingState &State) {
6746 Sema &S = State.getSema();
6747
6748 // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "A function type shall not be
6749 // qualified by an address-space qualifier."
6750 if (Type->isFunctionType()) {
6751 S.Diag(Attr.getLoc(), diag::err_attribute_address_function_type);
6752 Attr.setInvalid();
6753 return;
6754 }
6755
6756 LangAS ASIdx;
6757 if (Attr.getKind() == ParsedAttr::AT_AddressSpace) {
6758
6759 // Check the attribute arguments.
6760 if (Attr.getNumArgs() != 1) {
6761 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Attr
6762 << 1;
6763 Attr.setInvalid();
6764 return;
6765 }
6766
6767 Expr *ASArgExpr = static_cast<Expr *>(Attr.getArgAsExpr(0));
6768 LangAS ASIdx;
6769 if (!BuildAddressSpaceIndex(S, ASIdx, ASArgExpr, Attr.getLoc())) {
6770 Attr.setInvalid();
6771 return;
6772 }
6773
6774 ASTContext &Ctx = S.Context;
6775 auto *ASAttr =
6776 ::new (Ctx) AddressSpaceAttr(Ctx, Attr, static_cast<unsigned>(ASIdx));
6777
6778 // If the expression is not value dependent (not templated), then we can
6779 // apply the address space qualifiers just to the equivalent type.
6780 // Otherwise, we make an AttributedType with the modified and equivalent
6781 // type the same, and wrap it in a DependentAddressSpaceType. When this
6782 // dependent type is resolved, the qualifier is added to the equivalent type
6783 // later.
6784 QualType T;
6785 if (!ASArgExpr->isValueDependent()) {
6786 QualType EquivType =
6787 S.BuildAddressSpaceAttr(Type, ASIdx, ASArgExpr, Attr.getLoc());
6788 if (EquivType.isNull()) {
6789 Attr.setInvalid();
6790 return;
6791 }
6792 T = State.getAttributedType(ASAttr, Type, EquivType);
6793 } else {
6794 T = State.getAttributedType(ASAttr, Type, Type);
6795 T = S.BuildAddressSpaceAttr(T, ASIdx, ASArgExpr, Attr.getLoc());
6796 }
6797
6798 if (!T.isNull())
6799 Type = T;
6800 else
6801 Attr.setInvalid();
6802 } else {
6803 // The keyword-based type attributes imply which address space to use.
6804 ASIdx = S.getLangOpts().SYCLIsDevice ? Attr.asSYCLLangAS()
6805 : Attr.asOpenCLLangAS();
6806 if (S.getLangOpts().HLSL)
6807 ASIdx = Attr.asHLSLLangAS();
6808
6809 if (ASIdx == LangAS::Default)
6810 llvm_unreachable("Invalid address space");
6811
6812 if (DiagnoseMultipleAddrSpaceAttributes(S, Type.getAddressSpace(), ASIdx,
6813 Attr.getLoc())) {
6814 Attr.setInvalid();
6815 return;
6816 }
6817
6818 Type = S.Context.getAddrSpaceQualType(Type, ASIdx);
6819 }
6820 }
6821
6822 /// handleObjCOwnershipTypeAttr - Process an objc_ownership
6823 /// attribute on the specified type.
6824 ///
6825 /// Returns 'true' if the attribute was handled.
handleObjCOwnershipTypeAttr(TypeProcessingState & state,ParsedAttr & attr,QualType & type)6826 static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
6827 ParsedAttr &attr, QualType &type) {
6828 bool NonObjCPointer = false;
6829
6830 if (!type->isDependentType() && !type->isUndeducedType()) {
6831 if (const PointerType *ptr = type->getAs<PointerType>()) {
6832 QualType pointee = ptr->getPointeeType();
6833 if (pointee->isObjCRetainableType() || pointee->isPointerType())
6834 return false;
6835 // It is important not to lose the source info that there was an attribute
6836 // applied to non-objc pointer. We will create an attributed type but
6837 // its type will be the same as the original type.
6838 NonObjCPointer = true;
6839 } else if (!type->isObjCRetainableType()) {
6840 return false;
6841 }
6842
6843 // Don't accept an ownership attribute in the declspec if it would
6844 // just be the return type of a block pointer.
6845 if (state.isProcessingDeclSpec()) {
6846 Declarator &D = state.getDeclarator();
6847 if (maybeMovePastReturnType(D, D.getNumTypeObjects(),
6848 /*onlyBlockPointers=*/true))
6849 return false;
6850 }
6851 }
6852
6853 Sema &S = state.getSema();
6854 SourceLocation AttrLoc = attr.getLoc();
6855 if (AttrLoc.isMacroID())
6856 AttrLoc =
6857 S.getSourceManager().getImmediateExpansionRange(AttrLoc).getBegin();
6858
6859 if (!attr.isArgIdent(0)) {
6860 S.Diag(AttrLoc, diag::err_attribute_argument_type) << attr
6861 << AANT_ArgumentString;
6862 attr.setInvalid();
6863 return true;
6864 }
6865
6866 IdentifierInfo *II = attr.getArgAsIdent(0)->Ident;
6867 Qualifiers::ObjCLifetime lifetime;
6868 if (II->isStr("none"))
6869 lifetime = Qualifiers::OCL_ExplicitNone;
6870 else if (II->isStr("strong"))
6871 lifetime = Qualifiers::OCL_Strong;
6872 else if (II->isStr("weak"))
6873 lifetime = Qualifiers::OCL_Weak;
6874 else if (II->isStr("autoreleasing"))
6875 lifetime = Qualifiers::OCL_Autoreleasing;
6876 else {
6877 S.Diag(AttrLoc, diag::warn_attribute_type_not_supported) << attr << II;
6878 attr.setInvalid();
6879 return true;
6880 }
6881
6882 // Just ignore lifetime attributes other than __weak and __unsafe_unretained
6883 // outside of ARC mode.
6884 if (!S.getLangOpts().ObjCAutoRefCount &&
6885 lifetime != Qualifiers::OCL_Weak &&
6886 lifetime != Qualifiers::OCL_ExplicitNone) {
6887 return true;
6888 }
6889
6890 SplitQualType underlyingType = type.split();
6891
6892 // Check for redundant/conflicting ownership qualifiers.
6893 if (Qualifiers::ObjCLifetime previousLifetime
6894 = type.getQualifiers().getObjCLifetime()) {
6895 // If it's written directly, that's an error.
6896 if (S.Context.hasDirectOwnershipQualifier(type)) {
6897 S.Diag(AttrLoc, diag::err_attr_objc_ownership_redundant)
6898 << type;
6899 return true;
6900 }
6901
6902 // Otherwise, if the qualifiers actually conflict, pull sugar off
6903 // and remove the ObjCLifetime qualifiers.
6904 if (previousLifetime != lifetime) {
6905 // It's possible to have multiple local ObjCLifetime qualifiers. We
6906 // can't stop after we reach a type that is directly qualified.
6907 const Type *prevTy = nullptr;
6908 while (!prevTy || prevTy != underlyingType.Ty) {
6909 prevTy = underlyingType.Ty;
6910 underlyingType = underlyingType.getSingleStepDesugaredType();
6911 }
6912 underlyingType.Quals.removeObjCLifetime();
6913 }
6914 }
6915
6916 underlyingType.Quals.addObjCLifetime(lifetime);
6917
6918 if (NonObjCPointer) {
6919 StringRef name = attr.getAttrName()->getName();
6920 switch (lifetime) {
6921 case Qualifiers::OCL_None:
6922 case Qualifiers::OCL_ExplicitNone:
6923 break;
6924 case Qualifiers::OCL_Strong: name = "__strong"; break;
6925 case Qualifiers::OCL_Weak: name = "__weak"; break;
6926 case Qualifiers::OCL_Autoreleasing: name = "__autoreleasing"; break;
6927 }
6928 S.Diag(AttrLoc, diag::warn_type_attribute_wrong_type) << name
6929 << TDS_ObjCObjOrBlock << type;
6930 }
6931
6932 // Don't actually add the __unsafe_unretained qualifier in non-ARC files,
6933 // because having both 'T' and '__unsafe_unretained T' exist in the type
6934 // system causes unfortunate widespread consistency problems. (For example,
6935 // they're not considered compatible types, and we mangle them identicially
6936 // as template arguments.) These problems are all individually fixable,
6937 // but it's easier to just not add the qualifier and instead sniff it out
6938 // in specific places using isObjCInertUnsafeUnretainedType().
6939 //
6940 // Doing this does means we miss some trivial consistency checks that
6941 // would've triggered in ARC, but that's better than trying to solve all
6942 // the coexistence problems with __unsafe_unretained.
6943 if (!S.getLangOpts().ObjCAutoRefCount &&
6944 lifetime == Qualifiers::OCL_ExplicitNone) {
6945 type = state.getAttributedType(
6946 createSimpleAttr<ObjCInertUnsafeUnretainedAttr>(S.Context, attr),
6947 type, type);
6948 return true;
6949 }
6950
6951 QualType origType = type;
6952 if (!NonObjCPointer)
6953 type = S.Context.getQualifiedType(underlyingType);
6954
6955 // If we have a valid source location for the attribute, use an
6956 // AttributedType instead.
6957 if (AttrLoc.isValid()) {
6958 type = state.getAttributedType(::new (S.Context)
6959 ObjCOwnershipAttr(S.Context, attr, II),
6960 origType, type);
6961 }
6962
6963 auto diagnoseOrDelay = [](Sema &S, SourceLocation loc,
6964 unsigned diagnostic, QualType type) {
6965 if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
6966 S.DelayedDiagnostics.add(
6967 sema::DelayedDiagnostic::makeForbiddenType(
6968 S.getSourceManager().getExpansionLoc(loc),
6969 diagnostic, type, /*ignored*/ 0));
6970 } else {
6971 S.Diag(loc, diagnostic);
6972 }
6973 };
6974
6975 // Sometimes, __weak isn't allowed.
6976 if (lifetime == Qualifiers::OCL_Weak &&
6977 !S.getLangOpts().ObjCWeak && !NonObjCPointer) {
6978
6979 // Use a specialized diagnostic if the runtime just doesn't support them.
6980 unsigned diagnostic =
6981 (S.getLangOpts().ObjCWeakRuntime ? diag::err_arc_weak_disabled
6982 : diag::err_arc_weak_no_runtime);
6983
6984 // In any case, delay the diagnostic until we know what we're parsing.
6985 diagnoseOrDelay(S, AttrLoc, diagnostic, type);
6986
6987 attr.setInvalid();
6988 return true;
6989 }
6990
6991 // Forbid __weak for class objects marked as
6992 // objc_arc_weak_reference_unavailable
6993 if (lifetime == Qualifiers::OCL_Weak) {
6994 if (const ObjCObjectPointerType *ObjT =
6995 type->getAs<ObjCObjectPointerType>()) {
6996 if (ObjCInterfaceDecl *Class = ObjT->getInterfaceDecl()) {
6997 if (Class->isArcWeakrefUnavailable()) {
6998 S.Diag(AttrLoc, diag::err_arc_unsupported_weak_class);
6999 S.Diag(ObjT->getInterfaceDecl()->getLocation(),
7000 diag::note_class_declared);
7001 }
7002 }
7003 }
7004 }
7005
7006 return true;
7007 }
7008
7009 /// handleObjCGCTypeAttr - Process the __attribute__((objc_gc)) type
7010 /// attribute on the specified type. Returns true to indicate that
7011 /// the attribute was handled, false to indicate that the type does
7012 /// not permit the attribute.
handleObjCGCTypeAttr(TypeProcessingState & state,ParsedAttr & attr,QualType & type)7013 static bool handleObjCGCTypeAttr(TypeProcessingState &state, ParsedAttr &attr,
7014 QualType &type) {
7015 Sema &S = state.getSema();
7016
7017 // Delay if this isn't some kind of pointer.
7018 if (!type->isPointerType() &&
7019 !type->isObjCObjectPointerType() &&
7020 !type->isBlockPointerType())
7021 return false;
7022
7023 if (type.getObjCGCAttr() != Qualifiers::GCNone) {
7024 S.Diag(attr.getLoc(), diag::err_attribute_multiple_objc_gc);
7025 attr.setInvalid();
7026 return true;
7027 }
7028
7029 // Check the attribute arguments.
7030 if (!attr.isArgIdent(0)) {
7031 S.Diag(attr.getLoc(), diag::err_attribute_argument_type)
7032 << attr << AANT_ArgumentString;
7033 attr.setInvalid();
7034 return true;
7035 }
7036 Qualifiers::GC GCAttr;
7037 if (attr.getNumArgs() > 1) {
7038 S.Diag(attr.getLoc(), diag::err_attribute_wrong_number_arguments) << attr
7039 << 1;
7040 attr.setInvalid();
7041 return true;
7042 }
7043
7044 IdentifierInfo *II = attr.getArgAsIdent(0)->Ident;
7045 if (II->isStr("weak"))
7046 GCAttr = Qualifiers::Weak;
7047 else if (II->isStr("strong"))
7048 GCAttr = Qualifiers::Strong;
7049 else {
7050 S.Diag(attr.getLoc(), diag::warn_attribute_type_not_supported)
7051 << attr << II;
7052 attr.setInvalid();
7053 return true;
7054 }
7055
7056 QualType origType = type;
7057 type = S.Context.getObjCGCQualType(origType, GCAttr);
7058
7059 // Make an attributed type to preserve the source information.
7060 if (attr.getLoc().isValid())
7061 type = state.getAttributedType(
7062 ::new (S.Context) ObjCGCAttr(S.Context, attr, II), origType, type);
7063
7064 return true;
7065 }
7066
7067 namespace {
7068 /// A helper class to unwrap a type down to a function for the
7069 /// purposes of applying attributes there.
7070 ///
7071 /// Use:
7072 /// FunctionTypeUnwrapper unwrapped(SemaRef, T);
7073 /// if (unwrapped.isFunctionType()) {
7074 /// const FunctionType *fn = unwrapped.get();
7075 /// // change fn somehow
7076 /// T = unwrapped.wrap(fn);
7077 /// }
7078 struct FunctionTypeUnwrapper {
7079 enum WrapKind {
7080 Desugar,
7081 Attributed,
7082 Parens,
7083 Array,
7084 Pointer,
7085 BlockPointer,
7086 Reference,
7087 MemberPointer,
7088 MacroQualified,
7089 };
7090
7091 QualType Original;
7092 const FunctionType *Fn;
7093 SmallVector<unsigned char /*WrapKind*/, 8> Stack;
7094
FunctionTypeUnwrapper__anon67e5bf641311::FunctionTypeUnwrapper7095 FunctionTypeUnwrapper(Sema &S, QualType T) : Original(T) {
7096 while (true) {
7097 const Type *Ty = T.getTypePtr();
7098 if (isa<FunctionType>(Ty)) {
7099 Fn = cast<FunctionType>(Ty);
7100 return;
7101 } else if (isa<ParenType>(Ty)) {
7102 T = cast<ParenType>(Ty)->getInnerType();
7103 Stack.push_back(Parens);
7104 } else if (isa<ConstantArrayType>(Ty) || isa<VariableArrayType>(Ty) ||
7105 isa<IncompleteArrayType>(Ty)) {
7106 T = cast<ArrayType>(Ty)->getElementType();
7107 Stack.push_back(Array);
7108 } else if (isa<PointerType>(Ty)) {
7109 T = cast<PointerType>(Ty)->getPointeeType();
7110 Stack.push_back(Pointer);
7111 } else if (isa<BlockPointerType>(Ty)) {
7112 T = cast<BlockPointerType>(Ty)->getPointeeType();
7113 Stack.push_back(BlockPointer);
7114 } else if (isa<MemberPointerType>(Ty)) {
7115 T = cast<MemberPointerType>(Ty)->getPointeeType();
7116 Stack.push_back(MemberPointer);
7117 } else if (isa<ReferenceType>(Ty)) {
7118 T = cast<ReferenceType>(Ty)->getPointeeType();
7119 Stack.push_back(Reference);
7120 } else if (isa<AttributedType>(Ty)) {
7121 T = cast<AttributedType>(Ty)->getEquivalentType();
7122 Stack.push_back(Attributed);
7123 } else if (isa<MacroQualifiedType>(Ty)) {
7124 T = cast<MacroQualifiedType>(Ty)->getUnderlyingType();
7125 Stack.push_back(MacroQualified);
7126 } else {
7127 const Type *DTy = Ty->getUnqualifiedDesugaredType();
7128 if (Ty == DTy) {
7129 Fn = nullptr;
7130 return;
7131 }
7132
7133 T = QualType(DTy, 0);
7134 Stack.push_back(Desugar);
7135 }
7136 }
7137 }
7138
isFunctionType__anon67e5bf641311::FunctionTypeUnwrapper7139 bool isFunctionType() const { return (Fn != nullptr); }
get__anon67e5bf641311::FunctionTypeUnwrapper7140 const FunctionType *get() const { return Fn; }
7141
wrap__anon67e5bf641311::FunctionTypeUnwrapper7142 QualType wrap(Sema &S, const FunctionType *New) {
7143 // If T wasn't modified from the unwrapped type, do nothing.
7144 if (New == get()) return Original;
7145
7146 Fn = New;
7147 return wrap(S.Context, Original, 0);
7148 }
7149
7150 private:
wrap__anon67e5bf641311::FunctionTypeUnwrapper7151 QualType wrap(ASTContext &C, QualType Old, unsigned I) {
7152 if (I == Stack.size())
7153 return C.getQualifiedType(Fn, Old.getQualifiers());
7154
7155 // Build up the inner type, applying the qualifiers from the old
7156 // type to the new type.
7157 SplitQualType SplitOld = Old.split();
7158
7159 // As a special case, tail-recurse if there are no qualifiers.
7160 if (SplitOld.Quals.empty())
7161 return wrap(C, SplitOld.Ty, I);
7162 return C.getQualifiedType(wrap(C, SplitOld.Ty, I), SplitOld.Quals);
7163 }
7164
wrap__anon67e5bf641311::FunctionTypeUnwrapper7165 QualType wrap(ASTContext &C, const Type *Old, unsigned I) {
7166 if (I == Stack.size()) return QualType(Fn, 0);
7167
7168 switch (static_cast<WrapKind>(Stack[I++])) {
7169 case Desugar:
7170 // This is the point at which we potentially lose source
7171 // information.
7172 return wrap(C, Old->getUnqualifiedDesugaredType(), I);
7173
7174 case Attributed:
7175 return wrap(C, cast<AttributedType>(Old)->getEquivalentType(), I);
7176
7177 case Parens: {
7178 QualType New = wrap(C, cast<ParenType>(Old)->getInnerType(), I);
7179 return C.getParenType(New);
7180 }
7181
7182 case MacroQualified:
7183 return wrap(C, cast<MacroQualifiedType>(Old)->getUnderlyingType(), I);
7184
7185 case Array: {
7186 if (const auto *CAT = dyn_cast<ConstantArrayType>(Old)) {
7187 QualType New = wrap(C, CAT->getElementType(), I);
7188 return C.getConstantArrayType(New, CAT->getSize(), CAT->getSizeExpr(),
7189 CAT->getSizeModifier(),
7190 CAT->getIndexTypeCVRQualifiers());
7191 }
7192
7193 if (const auto *VAT = dyn_cast<VariableArrayType>(Old)) {
7194 QualType New = wrap(C, VAT->getElementType(), I);
7195 return C.getVariableArrayType(
7196 New, VAT->getSizeExpr(), VAT->getSizeModifier(),
7197 VAT->getIndexTypeCVRQualifiers(), VAT->getBracketsRange());
7198 }
7199
7200 const auto *IAT = cast<IncompleteArrayType>(Old);
7201 QualType New = wrap(C, IAT->getElementType(), I);
7202 return C.getIncompleteArrayType(New, IAT->getSizeModifier(),
7203 IAT->getIndexTypeCVRQualifiers());
7204 }
7205
7206 case Pointer: {
7207 QualType New = wrap(C, cast<PointerType>(Old)->getPointeeType(), I);
7208 return C.getPointerType(New);
7209 }
7210
7211 case BlockPointer: {
7212 QualType New = wrap(C, cast<BlockPointerType>(Old)->getPointeeType(),I);
7213 return C.getBlockPointerType(New);
7214 }
7215
7216 case MemberPointer: {
7217 const MemberPointerType *OldMPT = cast<MemberPointerType>(Old);
7218 QualType New = wrap(C, OldMPT->getPointeeType(), I);
7219 return C.getMemberPointerType(New, OldMPT->getClass());
7220 }
7221
7222 case Reference: {
7223 const ReferenceType *OldRef = cast<ReferenceType>(Old);
7224 QualType New = wrap(C, OldRef->getPointeeType(), I);
7225 if (isa<LValueReferenceType>(OldRef))
7226 return C.getLValueReferenceType(New, OldRef->isSpelledAsLValue());
7227 else
7228 return C.getRValueReferenceType(New);
7229 }
7230 }
7231
7232 llvm_unreachable("unknown wrapping kind");
7233 }
7234 };
7235 } // end anonymous namespace
7236
handleMSPointerTypeQualifierAttr(TypeProcessingState & State,ParsedAttr & PAttr,QualType & Type)7237 static bool handleMSPointerTypeQualifierAttr(TypeProcessingState &State,
7238 ParsedAttr &PAttr, QualType &Type) {
7239 Sema &S = State.getSema();
7240
7241 Attr *A;
7242 switch (PAttr.getKind()) {
7243 default: llvm_unreachable("Unknown attribute kind");
7244 case ParsedAttr::AT_Ptr32:
7245 A = createSimpleAttr<Ptr32Attr>(S.Context, PAttr);
7246 break;
7247 case ParsedAttr::AT_Ptr64:
7248 A = createSimpleAttr<Ptr64Attr>(S.Context, PAttr);
7249 break;
7250 case ParsedAttr::AT_SPtr:
7251 A = createSimpleAttr<SPtrAttr>(S.Context, PAttr);
7252 break;
7253 case ParsedAttr::AT_UPtr:
7254 A = createSimpleAttr<UPtrAttr>(S.Context, PAttr);
7255 break;
7256 }
7257
7258 std::bitset<attr::LastAttr> Attrs;
7259 QualType Desugared = Type;
7260 for (;;) {
7261 if (const TypedefType *TT = dyn_cast<TypedefType>(Desugared)) {
7262 Desugared = TT->desugar();
7263 continue;
7264 } else if (const ElaboratedType *ET = dyn_cast<ElaboratedType>(Desugared)) {
7265 Desugared = ET->desugar();
7266 continue;
7267 }
7268 const AttributedType *AT = dyn_cast<AttributedType>(Desugared);
7269 if (!AT)
7270 break;
7271 Attrs[AT->getAttrKind()] = true;
7272 Desugared = AT->getModifiedType();
7273 }
7274
7275 // You cannot specify duplicate type attributes, so if the attribute has
7276 // already been applied, flag it.
7277 attr::Kind NewAttrKind = A->getKind();
7278 if (Attrs[NewAttrKind]) {
7279 S.Diag(PAttr.getLoc(), diag::warn_duplicate_attribute_exact) << PAttr;
7280 return true;
7281 }
7282 Attrs[NewAttrKind] = true;
7283
7284 // You cannot have both __sptr and __uptr on the same type, nor can you
7285 // have __ptr32 and __ptr64.
7286 if (Attrs[attr::Ptr32] && Attrs[attr::Ptr64]) {
7287 S.Diag(PAttr.getLoc(), diag::err_attributes_are_not_compatible)
7288 << "'__ptr32'"
7289 << "'__ptr64'";
7290 return true;
7291 } else if (Attrs[attr::SPtr] && Attrs[attr::UPtr]) {
7292 S.Diag(PAttr.getLoc(), diag::err_attributes_are_not_compatible)
7293 << "'__sptr'"
7294 << "'__uptr'";
7295 return true;
7296 }
7297
7298 // Check the raw (i.e., desugared) Canonical type to see if it
7299 // is a pointer type.
7300 if (!isa<PointerType>(Desugared)) {
7301 // Pointer type qualifiers can only operate on pointer types, but not
7302 // pointer-to-member types.
7303 if (Type->isMemberPointerType())
7304 S.Diag(PAttr.getLoc(), diag::err_attribute_no_member_pointers) << PAttr;
7305 else
7306 S.Diag(PAttr.getLoc(), diag::err_attribute_pointers_only) << PAttr << 0;
7307 return true;
7308 }
7309
7310 // Add address space to type based on its attributes.
7311 LangAS ASIdx = LangAS::Default;
7312 uint64_t PtrWidth =
7313 S.Context.getTargetInfo().getPointerWidth(LangAS::Default);
7314 if (PtrWidth == 32) {
7315 if (Attrs[attr::Ptr64])
7316 ASIdx = LangAS::ptr64;
7317 else if (Attrs[attr::UPtr])
7318 ASIdx = LangAS::ptr32_uptr;
7319 } else if (PtrWidth == 64 && Attrs[attr::Ptr32]) {
7320 if (Attrs[attr::UPtr])
7321 ASIdx = LangAS::ptr32_uptr;
7322 else
7323 ASIdx = LangAS::ptr32_sptr;
7324 }
7325
7326 QualType Pointee = Type->getPointeeType();
7327 if (ASIdx != LangAS::Default)
7328 Pointee = S.Context.getAddrSpaceQualType(
7329 S.Context.removeAddrSpaceQualType(Pointee), ASIdx);
7330 Type = State.getAttributedType(A, Type, S.Context.getPointerType(Pointee));
7331 return false;
7332 }
7333
7334 /// Map a nullability attribute kind to a nullability kind.
mapNullabilityAttrKind(ParsedAttr::Kind kind)7335 static NullabilityKind mapNullabilityAttrKind(ParsedAttr::Kind kind) {
7336 switch (kind) {
7337 case ParsedAttr::AT_TypeNonNull:
7338 return NullabilityKind::NonNull;
7339
7340 case ParsedAttr::AT_TypeNullable:
7341 return NullabilityKind::Nullable;
7342
7343 case ParsedAttr::AT_TypeNullableResult:
7344 return NullabilityKind::NullableResult;
7345
7346 case ParsedAttr::AT_TypeNullUnspecified:
7347 return NullabilityKind::Unspecified;
7348
7349 default:
7350 llvm_unreachable("not a nullability attribute kind");
7351 }
7352 }
7353
7354 /// Applies a nullability type specifier to the given type, if possible.
7355 ///
7356 /// \param state The type processing state.
7357 ///
7358 /// \param type The type to which the nullability specifier will be
7359 /// added. On success, this type will be updated appropriately.
7360 ///
7361 /// \param attr The attribute as written on the type.
7362 ///
7363 /// \param allowOnArrayType Whether to accept nullability specifiers on an
7364 /// array type (e.g., because it will decay to a pointer).
7365 ///
7366 /// \returns true if a problem has been diagnosed, false on success.
checkNullabilityTypeSpecifier(TypeProcessingState & state,QualType & type,ParsedAttr & attr,bool allowOnArrayType)7367 static bool checkNullabilityTypeSpecifier(TypeProcessingState &state,
7368 QualType &type,
7369 ParsedAttr &attr,
7370 bool allowOnArrayType) {
7371 Sema &S = state.getSema();
7372
7373 NullabilityKind nullability = mapNullabilityAttrKind(attr.getKind());
7374 SourceLocation nullabilityLoc = attr.getLoc();
7375 bool isContextSensitive = attr.isContextSensitiveKeywordAttribute();
7376
7377 recordNullabilitySeen(S, nullabilityLoc);
7378
7379 // Check for existing nullability attributes on the type.
7380 QualType desugared = type;
7381 while (auto attributed = dyn_cast<AttributedType>(desugared.getTypePtr())) {
7382 // Check whether there is already a null
7383 if (auto existingNullability = attributed->getImmediateNullability()) {
7384 // Duplicated nullability.
7385 if (nullability == *existingNullability) {
7386 S.Diag(nullabilityLoc, diag::warn_nullability_duplicate)
7387 << DiagNullabilityKind(nullability, isContextSensitive)
7388 << FixItHint::CreateRemoval(nullabilityLoc);
7389
7390 break;
7391 }
7392
7393 // Conflicting nullability.
7394 S.Diag(nullabilityLoc, diag::err_nullability_conflicting)
7395 << DiagNullabilityKind(nullability, isContextSensitive)
7396 << DiagNullabilityKind(*existingNullability, false);
7397 return true;
7398 }
7399
7400 desugared = attributed->getModifiedType();
7401 }
7402
7403 // If there is already a different nullability specifier, complain.
7404 // This (unlike the code above) looks through typedefs that might
7405 // have nullability specifiers on them, which means we cannot
7406 // provide a useful Fix-It.
7407 if (auto existingNullability = desugared->getNullability()) {
7408 if (nullability != *existingNullability) {
7409 S.Diag(nullabilityLoc, diag::err_nullability_conflicting)
7410 << DiagNullabilityKind(nullability, isContextSensitive)
7411 << DiagNullabilityKind(*existingNullability, false);
7412
7413 // Try to find the typedef with the existing nullability specifier.
7414 if (auto typedefType = desugared->getAs<TypedefType>()) {
7415 TypedefNameDecl *typedefDecl = typedefType->getDecl();
7416 QualType underlyingType = typedefDecl->getUnderlyingType();
7417 if (auto typedefNullability
7418 = AttributedType::stripOuterNullability(underlyingType)) {
7419 if (*typedefNullability == *existingNullability) {
7420 S.Diag(typedefDecl->getLocation(), diag::note_nullability_here)
7421 << DiagNullabilityKind(*existingNullability, false);
7422 }
7423 }
7424 }
7425
7426 return true;
7427 }
7428 }
7429
7430 // If this definitely isn't a pointer type, reject the specifier.
7431 if (!desugared->canHaveNullability() &&
7432 !(allowOnArrayType && desugared->isArrayType())) {
7433 S.Diag(nullabilityLoc, diag::err_nullability_nonpointer)
7434 << DiagNullabilityKind(nullability, isContextSensitive) << type;
7435 return true;
7436 }
7437
7438 // For the context-sensitive keywords/Objective-C property
7439 // attributes, require that the type be a single-level pointer.
7440 if (isContextSensitive) {
7441 // Make sure that the pointee isn't itself a pointer type.
7442 const Type *pointeeType = nullptr;
7443 if (desugared->isArrayType())
7444 pointeeType = desugared->getArrayElementTypeNoTypeQual();
7445 else if (desugared->isAnyPointerType())
7446 pointeeType = desugared->getPointeeType().getTypePtr();
7447
7448 if (pointeeType && (pointeeType->isAnyPointerType() ||
7449 pointeeType->isObjCObjectPointerType() ||
7450 pointeeType->isMemberPointerType())) {
7451 S.Diag(nullabilityLoc, diag::err_nullability_cs_multilevel)
7452 << DiagNullabilityKind(nullability, true)
7453 << type;
7454 S.Diag(nullabilityLoc, diag::note_nullability_type_specifier)
7455 << DiagNullabilityKind(nullability, false)
7456 << type
7457 << FixItHint::CreateReplacement(nullabilityLoc,
7458 getNullabilitySpelling(nullability));
7459 return true;
7460 }
7461 }
7462
7463 // Form the attributed type.
7464 type = state.getAttributedType(
7465 createNullabilityAttr(S.Context, attr, nullability), type, type);
7466 return false;
7467 }
7468
7469 /// Check the application of the Objective-C '__kindof' qualifier to
7470 /// the given type.
checkObjCKindOfType(TypeProcessingState & state,QualType & type,ParsedAttr & attr)7471 static bool checkObjCKindOfType(TypeProcessingState &state, QualType &type,
7472 ParsedAttr &attr) {
7473 Sema &S = state.getSema();
7474
7475 if (isa<ObjCTypeParamType>(type)) {
7476 // Build the attributed type to record where __kindof occurred.
7477 type = state.getAttributedType(
7478 createSimpleAttr<ObjCKindOfAttr>(S.Context, attr), type, type);
7479 return false;
7480 }
7481
7482 // Find out if it's an Objective-C object or object pointer type;
7483 const ObjCObjectPointerType *ptrType = type->getAs<ObjCObjectPointerType>();
7484 const ObjCObjectType *objType = ptrType ? ptrType->getObjectType()
7485 : type->getAs<ObjCObjectType>();
7486
7487 // If not, we can't apply __kindof.
7488 if (!objType) {
7489 // FIXME: Handle dependent types that aren't yet object types.
7490 S.Diag(attr.getLoc(), diag::err_objc_kindof_nonobject)
7491 << type;
7492 return true;
7493 }
7494
7495 // Rebuild the "equivalent" type, which pushes __kindof down into
7496 // the object type.
7497 // There is no need to apply kindof on an unqualified id type.
7498 QualType equivType = S.Context.getObjCObjectType(
7499 objType->getBaseType(), objType->getTypeArgsAsWritten(),
7500 objType->getProtocols(),
7501 /*isKindOf=*/objType->isObjCUnqualifiedId() ? false : true);
7502
7503 // If we started with an object pointer type, rebuild it.
7504 if (ptrType) {
7505 equivType = S.Context.getObjCObjectPointerType(equivType);
7506 if (auto nullability = type->getNullability()) {
7507 // We create a nullability attribute from the __kindof attribute.
7508 // Make sure that will make sense.
7509 assert(attr.getAttributeSpellingListIndex() == 0 &&
7510 "multiple spellings for __kindof?");
7511 Attr *A = createNullabilityAttr(S.Context, attr, *nullability);
7512 A->setImplicit(true);
7513 equivType = state.getAttributedType(A, equivType, equivType);
7514 }
7515 }
7516
7517 // Build the attributed type to record where __kindof occurred.
7518 type = state.getAttributedType(
7519 createSimpleAttr<ObjCKindOfAttr>(S.Context, attr), type, equivType);
7520 return false;
7521 }
7522
7523 /// Distribute a nullability type attribute that cannot be applied to
7524 /// the type specifier to a pointer, block pointer, or member pointer
7525 /// declarator, complaining if necessary.
7526 ///
7527 /// \returns true if the nullability annotation was distributed, false
7528 /// otherwise.
distributeNullabilityTypeAttr(TypeProcessingState & state,QualType type,ParsedAttr & attr)7529 static bool distributeNullabilityTypeAttr(TypeProcessingState &state,
7530 QualType type, ParsedAttr &attr) {
7531 Declarator &declarator = state.getDeclarator();
7532
7533 /// Attempt to move the attribute to the specified chunk.
7534 auto moveToChunk = [&](DeclaratorChunk &chunk, bool inFunction) -> bool {
7535 // If there is already a nullability attribute there, don't add
7536 // one.
7537 if (hasNullabilityAttr(chunk.getAttrs()))
7538 return false;
7539
7540 // Complain about the nullability qualifier being in the wrong
7541 // place.
7542 enum {
7543 PK_Pointer,
7544 PK_BlockPointer,
7545 PK_MemberPointer,
7546 PK_FunctionPointer,
7547 PK_MemberFunctionPointer,
7548 } pointerKind
7549 = chunk.Kind == DeclaratorChunk::Pointer ? (inFunction ? PK_FunctionPointer
7550 : PK_Pointer)
7551 : chunk.Kind == DeclaratorChunk::BlockPointer ? PK_BlockPointer
7552 : inFunction? PK_MemberFunctionPointer : PK_MemberPointer;
7553
7554 auto diag = state.getSema().Diag(attr.getLoc(),
7555 diag::warn_nullability_declspec)
7556 << DiagNullabilityKind(mapNullabilityAttrKind(attr.getKind()),
7557 attr.isContextSensitiveKeywordAttribute())
7558 << type
7559 << static_cast<unsigned>(pointerKind);
7560
7561 // FIXME: MemberPointer chunks don't carry the location of the *.
7562 if (chunk.Kind != DeclaratorChunk::MemberPointer) {
7563 diag << FixItHint::CreateRemoval(attr.getLoc())
7564 << FixItHint::CreateInsertion(
7565 state.getSema().getPreprocessor().getLocForEndOfToken(
7566 chunk.Loc),
7567 " " + attr.getAttrName()->getName().str() + " ");
7568 }
7569
7570 moveAttrFromListToList(attr, state.getCurrentAttributes(),
7571 chunk.getAttrs());
7572 return true;
7573 };
7574
7575 // Move it to the outermost pointer, member pointer, or block
7576 // pointer declarator.
7577 for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
7578 DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
7579 switch (chunk.Kind) {
7580 case DeclaratorChunk::Pointer:
7581 case DeclaratorChunk::BlockPointer:
7582 case DeclaratorChunk::MemberPointer:
7583 return moveToChunk(chunk, false);
7584
7585 case DeclaratorChunk::Paren:
7586 case DeclaratorChunk::Array:
7587 continue;
7588
7589 case DeclaratorChunk::Function:
7590 // Try to move past the return type to a function/block/member
7591 // function pointer.
7592 if (DeclaratorChunk *dest = maybeMovePastReturnType(
7593 declarator, i,
7594 /*onlyBlockPointers=*/false)) {
7595 return moveToChunk(*dest, true);
7596 }
7597
7598 return false;
7599
7600 // Don't walk through these.
7601 case DeclaratorChunk::Reference:
7602 case DeclaratorChunk::Pipe:
7603 return false;
7604 }
7605 }
7606
7607 return false;
7608 }
7609
getCCTypeAttr(ASTContext & Ctx,ParsedAttr & Attr)7610 static Attr *getCCTypeAttr(ASTContext &Ctx, ParsedAttr &Attr) {
7611 assert(!Attr.isInvalid());
7612 switch (Attr.getKind()) {
7613 default:
7614 llvm_unreachable("not a calling convention attribute");
7615 case ParsedAttr::AT_CDecl:
7616 return createSimpleAttr<CDeclAttr>(Ctx, Attr);
7617 case ParsedAttr::AT_FastCall:
7618 return createSimpleAttr<FastCallAttr>(Ctx, Attr);
7619 case ParsedAttr::AT_StdCall:
7620 return createSimpleAttr<StdCallAttr>(Ctx, Attr);
7621 case ParsedAttr::AT_ThisCall:
7622 return createSimpleAttr<ThisCallAttr>(Ctx, Attr);
7623 case ParsedAttr::AT_RegCall:
7624 return createSimpleAttr<RegCallAttr>(Ctx, Attr);
7625 case ParsedAttr::AT_Pascal:
7626 return createSimpleAttr<PascalAttr>(Ctx, Attr);
7627 case ParsedAttr::AT_SwiftCall:
7628 return createSimpleAttr<SwiftCallAttr>(Ctx, Attr);
7629 case ParsedAttr::AT_SwiftAsyncCall:
7630 return createSimpleAttr<SwiftAsyncCallAttr>(Ctx, Attr);
7631 case ParsedAttr::AT_VectorCall:
7632 return createSimpleAttr<VectorCallAttr>(Ctx, Attr);
7633 case ParsedAttr::AT_AArch64VectorPcs:
7634 return createSimpleAttr<AArch64VectorPcsAttr>(Ctx, Attr);
7635 case ParsedAttr::AT_AArch64SVEPcs:
7636 return createSimpleAttr<AArch64SVEPcsAttr>(Ctx, Attr);
7637 case ParsedAttr::AT_AMDGPUKernelCall:
7638 return createSimpleAttr<AMDGPUKernelCallAttr>(Ctx, Attr);
7639 case ParsedAttr::AT_Pcs: {
7640 // The attribute may have had a fixit applied where we treated an
7641 // identifier as a string literal. The contents of the string are valid,
7642 // but the form may not be.
7643 StringRef Str;
7644 if (Attr.isArgExpr(0))
7645 Str = cast<StringLiteral>(Attr.getArgAsExpr(0))->getString();
7646 else
7647 Str = Attr.getArgAsIdent(0)->Ident->getName();
7648 PcsAttr::PCSType Type;
7649 if (!PcsAttr::ConvertStrToPCSType(Str, Type))
7650 llvm_unreachable("already validated the attribute");
7651 return ::new (Ctx) PcsAttr(Ctx, Attr, Type);
7652 }
7653 case ParsedAttr::AT_IntelOclBicc:
7654 return createSimpleAttr<IntelOclBiccAttr>(Ctx, Attr);
7655 case ParsedAttr::AT_MSABI:
7656 return createSimpleAttr<MSABIAttr>(Ctx, Attr);
7657 case ParsedAttr::AT_SysVABI:
7658 return createSimpleAttr<SysVABIAttr>(Ctx, Attr);
7659 case ParsedAttr::AT_PreserveMost:
7660 return createSimpleAttr<PreserveMostAttr>(Ctx, Attr);
7661 case ParsedAttr::AT_PreserveAll:
7662 return createSimpleAttr<PreserveAllAttr>(Ctx, Attr);
7663 }
7664 llvm_unreachable("unexpected attribute kind!");
7665 }
7666
7667 /// Process an individual function attribute. Returns true to
7668 /// indicate that the attribute was handled, false if it wasn't.
handleFunctionTypeAttr(TypeProcessingState & state,ParsedAttr & attr,QualType & type)7669 static bool handleFunctionTypeAttr(TypeProcessingState &state, ParsedAttr &attr,
7670 QualType &type) {
7671 Sema &S = state.getSema();
7672
7673 FunctionTypeUnwrapper unwrapped(S, type);
7674
7675 if (attr.getKind() == ParsedAttr::AT_NoReturn) {
7676 if (S.CheckAttrNoArgs(attr))
7677 return true;
7678
7679 // Delay if this is not a function type.
7680 if (!unwrapped.isFunctionType())
7681 return false;
7682
7683 // Otherwise we can process right away.
7684 FunctionType::ExtInfo EI = unwrapped.get()->getExtInfo().withNoReturn(true);
7685 type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
7686 return true;
7687 }
7688
7689 if (attr.getKind() == ParsedAttr::AT_CmseNSCall) {
7690 // Delay if this is not a function type.
7691 if (!unwrapped.isFunctionType())
7692 return false;
7693
7694 // Ignore if we don't have CMSE enabled.
7695 if (!S.getLangOpts().Cmse) {
7696 S.Diag(attr.getLoc(), diag::warn_attribute_ignored) << attr;
7697 attr.setInvalid();
7698 return true;
7699 }
7700
7701 // Otherwise we can process right away.
7702 FunctionType::ExtInfo EI =
7703 unwrapped.get()->getExtInfo().withCmseNSCall(true);
7704 type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
7705 return true;
7706 }
7707
7708 // ns_returns_retained is not always a type attribute, but if we got
7709 // here, we're treating it as one right now.
7710 if (attr.getKind() == ParsedAttr::AT_NSReturnsRetained) {
7711 if (attr.getNumArgs()) return true;
7712
7713 // Delay if this is not a function type.
7714 if (!unwrapped.isFunctionType())
7715 return false;
7716
7717 // Check whether the return type is reasonable.
7718 if (S.checkNSReturnsRetainedReturnType(attr.getLoc(),
7719 unwrapped.get()->getReturnType()))
7720 return true;
7721
7722 // Only actually change the underlying type in ARC builds.
7723 QualType origType = type;
7724 if (state.getSema().getLangOpts().ObjCAutoRefCount) {
7725 FunctionType::ExtInfo EI
7726 = unwrapped.get()->getExtInfo().withProducesResult(true);
7727 type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
7728 }
7729 type = state.getAttributedType(
7730 createSimpleAttr<NSReturnsRetainedAttr>(S.Context, attr),
7731 origType, type);
7732 return true;
7733 }
7734
7735 if (attr.getKind() == ParsedAttr::AT_AnyX86NoCallerSavedRegisters) {
7736 if (S.CheckAttrTarget(attr) || S.CheckAttrNoArgs(attr))
7737 return true;
7738
7739 // Delay if this is not a function type.
7740 if (!unwrapped.isFunctionType())
7741 return false;
7742
7743 FunctionType::ExtInfo EI =
7744 unwrapped.get()->getExtInfo().withNoCallerSavedRegs(true);
7745 type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
7746 return true;
7747 }
7748
7749 if (attr.getKind() == ParsedAttr::AT_AnyX86NoCfCheck) {
7750 if (!S.getLangOpts().CFProtectionBranch) {
7751 S.Diag(attr.getLoc(), diag::warn_nocf_check_attribute_ignored);
7752 attr.setInvalid();
7753 return true;
7754 }
7755
7756 if (S.CheckAttrTarget(attr) || S.CheckAttrNoArgs(attr))
7757 return true;
7758
7759 // If this is not a function type, warning will be asserted by subject
7760 // check.
7761 if (!unwrapped.isFunctionType())
7762 return true;
7763
7764 FunctionType::ExtInfo EI =
7765 unwrapped.get()->getExtInfo().withNoCfCheck(true);
7766 type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
7767 return true;
7768 }
7769
7770 if (attr.getKind() == ParsedAttr::AT_Regparm) {
7771 unsigned value;
7772 if (S.CheckRegparmAttr(attr, value))
7773 return true;
7774
7775 // Delay if this is not a function type.
7776 if (!unwrapped.isFunctionType())
7777 return false;
7778
7779 // Diagnose regparm with fastcall.
7780 const FunctionType *fn = unwrapped.get();
7781 CallingConv CC = fn->getCallConv();
7782 if (CC == CC_X86FastCall) {
7783 S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
7784 << FunctionType::getNameForCallConv(CC)
7785 << "regparm";
7786 attr.setInvalid();
7787 return true;
7788 }
7789
7790 FunctionType::ExtInfo EI =
7791 unwrapped.get()->getExtInfo().withRegParm(value);
7792 type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
7793 return true;
7794 }
7795
7796 if (attr.getKind() == ParsedAttr::AT_NoThrow) {
7797 // Delay if this is not a function type.
7798 if (!unwrapped.isFunctionType())
7799 return false;
7800
7801 if (S.CheckAttrNoArgs(attr)) {
7802 attr.setInvalid();
7803 return true;
7804 }
7805
7806 // Otherwise we can process right away.
7807 auto *Proto = unwrapped.get()->castAs<FunctionProtoType>();
7808
7809 // MSVC ignores nothrow if it is in conflict with an explicit exception
7810 // specification.
7811 if (Proto->hasExceptionSpec()) {
7812 switch (Proto->getExceptionSpecType()) {
7813 case EST_None:
7814 llvm_unreachable("This doesn't have an exception spec!");
7815
7816 case EST_DynamicNone:
7817 case EST_BasicNoexcept:
7818 case EST_NoexceptTrue:
7819 case EST_NoThrow:
7820 // Exception spec doesn't conflict with nothrow, so don't warn.
7821 [[fallthrough]];
7822 case EST_Unparsed:
7823 case EST_Uninstantiated:
7824 case EST_DependentNoexcept:
7825 case EST_Unevaluated:
7826 // We don't have enough information to properly determine if there is a
7827 // conflict, so suppress the warning.
7828 break;
7829 case EST_Dynamic:
7830 case EST_MSAny:
7831 case EST_NoexceptFalse:
7832 S.Diag(attr.getLoc(), diag::warn_nothrow_attribute_ignored);
7833 break;
7834 }
7835 return true;
7836 }
7837
7838 type = unwrapped.wrap(
7839 S, S.Context
7840 .getFunctionTypeWithExceptionSpec(
7841 QualType{Proto, 0},
7842 FunctionProtoType::ExceptionSpecInfo{EST_NoThrow})
7843 ->getAs<FunctionType>());
7844 return true;
7845 }
7846
7847 // Delay if the type didn't work out to a function.
7848 if (!unwrapped.isFunctionType()) return false;
7849
7850 // Otherwise, a calling convention.
7851 CallingConv CC;
7852 if (S.CheckCallingConvAttr(attr, CC))
7853 return true;
7854
7855 const FunctionType *fn = unwrapped.get();
7856 CallingConv CCOld = fn->getCallConv();
7857 Attr *CCAttr = getCCTypeAttr(S.Context, attr);
7858
7859 if (CCOld != CC) {
7860 // Error out on when there's already an attribute on the type
7861 // and the CCs don't match.
7862 if (S.getCallingConvAttributedType(type)) {
7863 S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
7864 << FunctionType::getNameForCallConv(CC)
7865 << FunctionType::getNameForCallConv(CCOld);
7866 attr.setInvalid();
7867 return true;
7868 }
7869 }
7870
7871 // Diagnose use of variadic functions with calling conventions that
7872 // don't support them (e.g. because they're callee-cleanup).
7873 // We delay warning about this on unprototyped function declarations
7874 // until after redeclaration checking, just in case we pick up a
7875 // prototype that way. And apparently we also "delay" warning about
7876 // unprototyped function types in general, despite not necessarily having
7877 // much ability to diagnose it later.
7878 if (!supportsVariadicCall(CC)) {
7879 const FunctionProtoType *FnP = dyn_cast<FunctionProtoType>(fn);
7880 if (FnP && FnP->isVariadic()) {
7881 // stdcall and fastcall are ignored with a warning for GCC and MS
7882 // compatibility.
7883 if (CC == CC_X86StdCall || CC == CC_X86FastCall)
7884 return S.Diag(attr.getLoc(), diag::warn_cconv_unsupported)
7885 << FunctionType::getNameForCallConv(CC)
7886 << (int)Sema::CallingConventionIgnoredReason::VariadicFunction;
7887
7888 attr.setInvalid();
7889 return S.Diag(attr.getLoc(), diag::err_cconv_varargs)
7890 << FunctionType::getNameForCallConv(CC);
7891 }
7892 }
7893
7894 // Also diagnose fastcall with regparm.
7895 if (CC == CC_X86FastCall && fn->getHasRegParm()) {
7896 S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
7897 << "regparm" << FunctionType::getNameForCallConv(CC_X86FastCall);
7898 attr.setInvalid();
7899 return true;
7900 }
7901
7902 // Modify the CC from the wrapped function type, wrap it all back, and then
7903 // wrap the whole thing in an AttributedType as written. The modified type
7904 // might have a different CC if we ignored the attribute.
7905 QualType Equivalent;
7906 if (CCOld == CC) {
7907 Equivalent = type;
7908 } else {
7909 auto EI = unwrapped.get()->getExtInfo().withCallingConv(CC);
7910 Equivalent =
7911 unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
7912 }
7913 type = state.getAttributedType(CCAttr, type, Equivalent);
7914 return true;
7915 }
7916
hasExplicitCallingConv(QualType T)7917 bool Sema::hasExplicitCallingConv(QualType T) {
7918 const AttributedType *AT;
7919
7920 // Stop if we'd be stripping off a typedef sugar node to reach the
7921 // AttributedType.
7922 while ((AT = T->getAs<AttributedType>()) &&
7923 AT->getAs<TypedefType>() == T->getAs<TypedefType>()) {
7924 if (AT->isCallingConv())
7925 return true;
7926 T = AT->getModifiedType();
7927 }
7928 return false;
7929 }
7930
adjustMemberFunctionCC(QualType & T,bool IsStatic,bool IsCtorOrDtor,SourceLocation Loc)7931 void Sema::adjustMemberFunctionCC(QualType &T, bool IsStatic, bool IsCtorOrDtor,
7932 SourceLocation Loc) {
7933 FunctionTypeUnwrapper Unwrapped(*this, T);
7934 const FunctionType *FT = Unwrapped.get();
7935 bool IsVariadic = (isa<FunctionProtoType>(FT) &&
7936 cast<FunctionProtoType>(FT)->isVariadic());
7937 CallingConv CurCC = FT->getCallConv();
7938 CallingConv ToCC = Context.getDefaultCallingConvention(IsVariadic, !IsStatic);
7939
7940 if (CurCC == ToCC)
7941 return;
7942
7943 // MS compiler ignores explicit calling convention attributes on structors. We
7944 // should do the same.
7945 if (Context.getTargetInfo().getCXXABI().isMicrosoft() && IsCtorOrDtor) {
7946 // Issue a warning on ignored calling convention -- except of __stdcall.
7947 // Again, this is what MS compiler does.
7948 if (CurCC != CC_X86StdCall)
7949 Diag(Loc, diag::warn_cconv_unsupported)
7950 << FunctionType::getNameForCallConv(CurCC)
7951 << (int)Sema::CallingConventionIgnoredReason::ConstructorDestructor;
7952 // Default adjustment.
7953 } else {
7954 // Only adjust types with the default convention. For example, on Windows
7955 // we should adjust a __cdecl type to __thiscall for instance methods, and a
7956 // __thiscall type to __cdecl for static methods.
7957 CallingConv DefaultCC =
7958 Context.getDefaultCallingConvention(IsVariadic, IsStatic);
7959
7960 if (CurCC != DefaultCC)
7961 return;
7962
7963 if (hasExplicitCallingConv(T))
7964 return;
7965 }
7966
7967 FT = Context.adjustFunctionType(FT, FT->getExtInfo().withCallingConv(ToCC));
7968 QualType Wrapped = Unwrapped.wrap(*this, FT);
7969 T = Context.getAdjustedType(T, Wrapped);
7970 }
7971
7972 /// HandleVectorSizeAttribute - this attribute is only applicable to integral
7973 /// and float scalars, although arrays, pointers, and function return values are
7974 /// allowed in conjunction with this construct. Aggregates with this attribute
7975 /// are invalid, even if they are of the same size as a corresponding scalar.
7976 /// The raw attribute should contain precisely 1 argument, the vector size for
7977 /// the variable, measured in bytes. If curType and rawAttr are well formed,
7978 /// this routine will return a new vector type.
HandleVectorSizeAttr(QualType & CurType,const ParsedAttr & Attr,Sema & S)7979 static void HandleVectorSizeAttr(QualType &CurType, const ParsedAttr &Attr,
7980 Sema &S) {
7981 // Check the attribute arguments.
7982 if (Attr.getNumArgs() != 1) {
7983 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Attr
7984 << 1;
7985 Attr.setInvalid();
7986 return;
7987 }
7988
7989 Expr *SizeExpr = Attr.getArgAsExpr(0);
7990 QualType T = S.BuildVectorType(CurType, SizeExpr, Attr.getLoc());
7991 if (!T.isNull())
7992 CurType = T;
7993 else
7994 Attr.setInvalid();
7995 }
7996
7997 /// Process the OpenCL-like ext_vector_type attribute when it occurs on
7998 /// a type.
HandleExtVectorTypeAttr(QualType & CurType,const ParsedAttr & Attr,Sema & S)7999 static void HandleExtVectorTypeAttr(QualType &CurType, const ParsedAttr &Attr,
8000 Sema &S) {
8001 // check the attribute arguments.
8002 if (Attr.getNumArgs() != 1) {
8003 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Attr
8004 << 1;
8005 return;
8006 }
8007
8008 Expr *SizeExpr = Attr.getArgAsExpr(0);
8009 QualType T = S.BuildExtVectorType(CurType, SizeExpr, Attr.getLoc());
8010 if (!T.isNull())
8011 CurType = T;
8012 }
8013
isPermittedNeonBaseType(QualType & Ty,VectorType::VectorKind VecKind,Sema & S)8014 static bool isPermittedNeonBaseType(QualType &Ty,
8015 VectorType::VectorKind VecKind, Sema &S) {
8016 const BuiltinType *BTy = Ty->getAs<BuiltinType>();
8017 if (!BTy)
8018 return false;
8019
8020 llvm::Triple Triple = S.Context.getTargetInfo().getTriple();
8021
8022 // Signed poly is mathematically wrong, but has been baked into some ABIs by
8023 // now.
8024 bool IsPolyUnsigned = Triple.getArch() == llvm::Triple::aarch64 ||
8025 Triple.getArch() == llvm::Triple::aarch64_32 ||
8026 Triple.getArch() == llvm::Triple::aarch64_be;
8027 if (VecKind == VectorType::NeonPolyVector) {
8028 if (IsPolyUnsigned) {
8029 // AArch64 polynomial vectors are unsigned.
8030 return BTy->getKind() == BuiltinType::UChar ||
8031 BTy->getKind() == BuiltinType::UShort ||
8032 BTy->getKind() == BuiltinType::ULong ||
8033 BTy->getKind() == BuiltinType::ULongLong;
8034 } else {
8035 // AArch32 polynomial vectors are signed.
8036 return BTy->getKind() == BuiltinType::SChar ||
8037 BTy->getKind() == BuiltinType::Short ||
8038 BTy->getKind() == BuiltinType::LongLong;
8039 }
8040 }
8041
8042 // Non-polynomial vector types: the usual suspects are allowed, as well as
8043 // float64_t on AArch64.
8044 if ((Triple.isArch64Bit() || Triple.getArch() == llvm::Triple::aarch64_32) &&
8045 BTy->getKind() == BuiltinType::Double)
8046 return true;
8047
8048 return BTy->getKind() == BuiltinType::SChar ||
8049 BTy->getKind() == BuiltinType::UChar ||
8050 BTy->getKind() == BuiltinType::Short ||
8051 BTy->getKind() == BuiltinType::UShort ||
8052 BTy->getKind() == BuiltinType::Int ||
8053 BTy->getKind() == BuiltinType::UInt ||
8054 BTy->getKind() == BuiltinType::Long ||
8055 BTy->getKind() == BuiltinType::ULong ||
8056 BTy->getKind() == BuiltinType::LongLong ||
8057 BTy->getKind() == BuiltinType::ULongLong ||
8058 BTy->getKind() == BuiltinType::Float ||
8059 BTy->getKind() == BuiltinType::Half ||
8060 BTy->getKind() == BuiltinType::BFloat16;
8061 }
8062
verifyValidIntegerConstantExpr(Sema & S,const ParsedAttr & Attr,llvm::APSInt & Result)8063 static bool verifyValidIntegerConstantExpr(Sema &S, const ParsedAttr &Attr,
8064 llvm::APSInt &Result) {
8065 const auto *AttrExpr = Attr.getArgAsExpr(0);
8066 if (!AttrExpr->isTypeDependent()) {
8067 if (std::optional<llvm::APSInt> Res =
8068 AttrExpr->getIntegerConstantExpr(S.Context)) {
8069 Result = *Res;
8070 return true;
8071 }
8072 }
8073 S.Diag(Attr.getLoc(), diag::err_attribute_argument_type)
8074 << Attr << AANT_ArgumentIntegerConstant << AttrExpr->getSourceRange();
8075 Attr.setInvalid();
8076 return false;
8077 }
8078
8079 /// HandleNeonVectorTypeAttr - The "neon_vector_type" and
8080 /// "neon_polyvector_type" attributes are used to create vector types that
8081 /// are mangled according to ARM's ABI. Otherwise, these types are identical
8082 /// to those created with the "vector_size" attribute. Unlike "vector_size"
8083 /// the argument to these Neon attributes is the number of vector elements,
8084 /// not the vector size in bytes. The vector width and element type must
8085 /// match one of the standard Neon vector types.
HandleNeonVectorTypeAttr(QualType & CurType,const ParsedAttr & Attr,Sema & S,VectorType::VectorKind VecKind)8086 static void HandleNeonVectorTypeAttr(QualType &CurType, const ParsedAttr &Attr,
8087 Sema &S, VectorType::VectorKind VecKind) {
8088 // Target must have NEON (or MVE, whose vectors are similar enough
8089 // not to need a separate attribute)
8090 if (!S.Context.getTargetInfo().hasFeature("neon") &&
8091 !S.Context.getTargetInfo().hasFeature("mve")) {
8092 S.Diag(Attr.getLoc(), diag::err_attribute_unsupported)
8093 << Attr << "'neon' or 'mve'";
8094 Attr.setInvalid();
8095 return;
8096 }
8097 // Check the attribute arguments.
8098 if (Attr.getNumArgs() != 1) {
8099 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Attr
8100 << 1;
8101 Attr.setInvalid();
8102 return;
8103 }
8104 // The number of elements must be an ICE.
8105 llvm::APSInt numEltsInt(32);
8106 if (!verifyValidIntegerConstantExpr(S, Attr, numEltsInt))
8107 return;
8108
8109 // Only certain element types are supported for Neon vectors.
8110 if (!isPermittedNeonBaseType(CurType, VecKind, S)) {
8111 S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) << CurType;
8112 Attr.setInvalid();
8113 return;
8114 }
8115
8116 // The total size of the vector must be 64 or 128 bits.
8117 unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType));
8118 unsigned numElts = static_cast<unsigned>(numEltsInt.getZExtValue());
8119 unsigned vecSize = typeSize * numElts;
8120 if (vecSize != 64 && vecSize != 128) {
8121 S.Diag(Attr.getLoc(), diag::err_attribute_bad_neon_vector_size) << CurType;
8122 Attr.setInvalid();
8123 return;
8124 }
8125
8126 CurType = S.Context.getVectorType(CurType, numElts, VecKind);
8127 }
8128
8129 /// HandleArmSveVectorBitsTypeAttr - The "arm_sve_vector_bits" attribute is
8130 /// used to create fixed-length versions of sizeless SVE types defined by
8131 /// the ACLE, such as svint32_t and svbool_t.
HandleArmSveVectorBitsTypeAttr(QualType & CurType,ParsedAttr & Attr,Sema & S)8132 static void HandleArmSveVectorBitsTypeAttr(QualType &CurType, ParsedAttr &Attr,
8133 Sema &S) {
8134 // Target must have SVE.
8135 if (!S.Context.getTargetInfo().hasFeature("sve")) {
8136 S.Diag(Attr.getLoc(), diag::err_attribute_unsupported) << Attr << "'sve'";
8137 Attr.setInvalid();
8138 return;
8139 }
8140
8141 // Attribute is unsupported if '-msve-vector-bits=<bits>' isn't specified, or
8142 // if <bits>+ syntax is used.
8143 if (!S.getLangOpts().VScaleMin ||
8144 S.getLangOpts().VScaleMin != S.getLangOpts().VScaleMax) {
8145 S.Diag(Attr.getLoc(), diag::err_attribute_arm_feature_sve_bits_unsupported)
8146 << Attr;
8147 Attr.setInvalid();
8148 return;
8149 }
8150
8151 // Check the attribute arguments.
8152 if (Attr.getNumArgs() != 1) {
8153 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
8154 << Attr << 1;
8155 Attr.setInvalid();
8156 return;
8157 }
8158
8159 // The vector size must be an integer constant expression.
8160 llvm::APSInt SveVectorSizeInBits(32);
8161 if (!verifyValidIntegerConstantExpr(S, Attr, SveVectorSizeInBits))
8162 return;
8163
8164 unsigned VecSize = static_cast<unsigned>(SveVectorSizeInBits.getZExtValue());
8165
8166 // The attribute vector size must match -msve-vector-bits.
8167 if (VecSize != S.getLangOpts().VScaleMin * 128) {
8168 S.Diag(Attr.getLoc(), diag::err_attribute_bad_sve_vector_size)
8169 << VecSize << S.getLangOpts().VScaleMin * 128;
8170 Attr.setInvalid();
8171 return;
8172 }
8173
8174 // Attribute can only be attached to a single SVE vector or predicate type.
8175 if (!CurType->isVLSTBuiltinType()) {
8176 S.Diag(Attr.getLoc(), diag::err_attribute_invalid_sve_type)
8177 << Attr << CurType;
8178 Attr.setInvalid();
8179 return;
8180 }
8181
8182 const auto *BT = CurType->castAs<BuiltinType>();
8183
8184 QualType EltType = CurType->getSveEltType(S.Context);
8185 unsigned TypeSize = S.Context.getTypeSize(EltType);
8186 VectorType::VectorKind VecKind = VectorType::SveFixedLengthDataVector;
8187 if (BT->getKind() == BuiltinType::SveBool) {
8188 // Predicates are represented as i8.
8189 VecSize /= S.Context.getCharWidth() * S.Context.getCharWidth();
8190 VecKind = VectorType::SveFixedLengthPredicateVector;
8191 } else
8192 VecSize /= TypeSize;
8193 CurType = S.Context.getVectorType(EltType, VecSize, VecKind);
8194 }
8195
HandleArmMveStrictPolymorphismAttr(TypeProcessingState & State,QualType & CurType,ParsedAttr & Attr)8196 static void HandleArmMveStrictPolymorphismAttr(TypeProcessingState &State,
8197 QualType &CurType,
8198 ParsedAttr &Attr) {
8199 const VectorType *VT = dyn_cast<VectorType>(CurType);
8200 if (!VT || VT->getVectorKind() != VectorType::NeonVector) {
8201 State.getSema().Diag(Attr.getLoc(),
8202 diag::err_attribute_arm_mve_polymorphism);
8203 Attr.setInvalid();
8204 return;
8205 }
8206
8207 CurType =
8208 State.getAttributedType(createSimpleAttr<ArmMveStrictPolymorphismAttr>(
8209 State.getSema().Context, Attr),
8210 CurType, CurType);
8211 }
8212
8213 /// Handle OpenCL Access Qualifier Attribute.
HandleOpenCLAccessAttr(QualType & CurType,const ParsedAttr & Attr,Sema & S)8214 static void HandleOpenCLAccessAttr(QualType &CurType, const ParsedAttr &Attr,
8215 Sema &S) {
8216 // OpenCL v2.0 s6.6 - Access qualifier can be used only for image and pipe type.
8217 if (!(CurType->isImageType() || CurType->isPipeType())) {
8218 S.Diag(Attr.getLoc(), diag::err_opencl_invalid_access_qualifier);
8219 Attr.setInvalid();
8220 return;
8221 }
8222
8223 if (const TypedefType* TypedefTy = CurType->getAs<TypedefType>()) {
8224 QualType BaseTy = TypedefTy->desugar();
8225
8226 std::string PrevAccessQual;
8227 if (BaseTy->isPipeType()) {
8228 if (TypedefTy->getDecl()->hasAttr<OpenCLAccessAttr>()) {
8229 OpenCLAccessAttr *Attr =
8230 TypedefTy->getDecl()->getAttr<OpenCLAccessAttr>();
8231 PrevAccessQual = Attr->getSpelling();
8232 } else {
8233 PrevAccessQual = "read_only";
8234 }
8235 } else if (const BuiltinType* ImgType = BaseTy->getAs<BuiltinType>()) {
8236
8237 switch (ImgType->getKind()) {
8238 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
8239 case BuiltinType::Id: \
8240 PrevAccessQual = #Access; \
8241 break;
8242 #include "clang/Basic/OpenCLImageTypes.def"
8243 default:
8244 llvm_unreachable("Unable to find corresponding image type.");
8245 }
8246 } else {
8247 llvm_unreachable("unexpected type");
8248 }
8249 StringRef AttrName = Attr.getAttrName()->getName();
8250 if (PrevAccessQual == AttrName.ltrim("_")) {
8251 // Duplicated qualifiers
8252 S.Diag(Attr.getLoc(), diag::warn_duplicate_declspec)
8253 << AttrName << Attr.getRange();
8254 } else {
8255 // Contradicting qualifiers
8256 S.Diag(Attr.getLoc(), diag::err_opencl_multiple_access_qualifiers);
8257 }
8258
8259 S.Diag(TypedefTy->getDecl()->getBeginLoc(),
8260 diag::note_opencl_typedef_access_qualifier) << PrevAccessQual;
8261 } else if (CurType->isPipeType()) {
8262 if (Attr.getSemanticSpelling() == OpenCLAccessAttr::Keyword_write_only) {
8263 QualType ElemType = CurType->castAs<PipeType>()->getElementType();
8264 CurType = S.Context.getWritePipeType(ElemType);
8265 }
8266 }
8267 }
8268
8269 /// HandleMatrixTypeAttr - "matrix_type" attribute, like ext_vector_type
HandleMatrixTypeAttr(QualType & CurType,const ParsedAttr & Attr,Sema & S)8270 static void HandleMatrixTypeAttr(QualType &CurType, const ParsedAttr &Attr,
8271 Sema &S) {
8272 if (!S.getLangOpts().MatrixTypes) {
8273 S.Diag(Attr.getLoc(), diag::err_builtin_matrix_disabled);
8274 return;
8275 }
8276
8277 if (Attr.getNumArgs() != 2) {
8278 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
8279 << Attr << 2;
8280 return;
8281 }
8282
8283 Expr *RowsExpr = Attr.getArgAsExpr(0);
8284 Expr *ColsExpr = Attr.getArgAsExpr(1);
8285 QualType T = S.BuildMatrixType(CurType, RowsExpr, ColsExpr, Attr.getLoc());
8286 if (!T.isNull())
8287 CurType = T;
8288 }
8289
HandleAnnotateTypeAttr(TypeProcessingState & State,QualType & CurType,const ParsedAttr & PA)8290 static void HandleAnnotateTypeAttr(TypeProcessingState &State,
8291 QualType &CurType, const ParsedAttr &PA) {
8292 Sema &S = State.getSema();
8293
8294 if (PA.getNumArgs() < 1) {
8295 S.Diag(PA.getLoc(), diag::err_attribute_too_few_arguments) << PA << 1;
8296 return;
8297 }
8298
8299 // Make sure that there is a string literal as the annotation's first
8300 // argument.
8301 StringRef Str;
8302 if (!S.checkStringLiteralArgumentAttr(PA, 0, Str))
8303 return;
8304
8305 llvm::SmallVector<Expr *, 4> Args;
8306 Args.reserve(PA.getNumArgs() - 1);
8307 for (unsigned Idx = 1; Idx < PA.getNumArgs(); Idx++) {
8308 assert(!PA.isArgIdent(Idx));
8309 Args.push_back(PA.getArgAsExpr(Idx));
8310 }
8311 if (!S.ConstantFoldAttrArgs(PA, Args))
8312 return;
8313 auto *AnnotateTypeAttr =
8314 AnnotateTypeAttr::Create(S.Context, Str, Args.data(), Args.size(), PA);
8315 CurType = State.getAttributedType(AnnotateTypeAttr, CurType, CurType);
8316 }
8317
HandleLifetimeBoundAttr(TypeProcessingState & State,QualType & CurType,ParsedAttr & Attr)8318 static void HandleLifetimeBoundAttr(TypeProcessingState &State,
8319 QualType &CurType,
8320 ParsedAttr &Attr) {
8321 if (State.getDeclarator().isDeclarationOfFunction()) {
8322 CurType = State.getAttributedType(
8323 createSimpleAttr<LifetimeBoundAttr>(State.getSema().Context, Attr),
8324 CurType, CurType);
8325 }
8326 }
8327
processTypeAttrs(TypeProcessingState & state,QualType & type,TypeAttrLocation TAL,const ParsedAttributesView & attrs)8328 static void processTypeAttrs(TypeProcessingState &state, QualType &type,
8329 TypeAttrLocation TAL,
8330 const ParsedAttributesView &attrs) {
8331
8332 state.setParsedNoDeref(false);
8333 if (attrs.empty())
8334 return;
8335
8336 // Scan through and apply attributes to this type where it makes sense. Some
8337 // attributes (such as __address_space__, __vector_size__, etc) apply to the
8338 // type, but others can be present in the type specifiers even though they
8339 // apply to the decl. Here we apply type attributes and ignore the rest.
8340
8341 // This loop modifies the list pretty frequently, but we still need to make
8342 // sure we visit every element once. Copy the attributes list, and iterate
8343 // over that.
8344 ParsedAttributesView AttrsCopy{attrs};
8345 for (ParsedAttr &attr : AttrsCopy) {
8346
8347 // Skip attributes that were marked to be invalid.
8348 if (attr.isInvalid())
8349 continue;
8350
8351 if (attr.isStandardAttributeSyntax()) {
8352 // [[gnu::...]] attributes are treated as declaration attributes, so may
8353 // not appertain to a DeclaratorChunk. If we handle them as type
8354 // attributes, accept them in that position and diagnose the GCC
8355 // incompatibility.
8356 if (attr.isGNUScope()) {
8357 bool IsTypeAttr = attr.isTypeAttr();
8358 if (TAL == TAL_DeclChunk) {
8359 state.getSema().Diag(attr.getLoc(),
8360 IsTypeAttr
8361 ? diag::warn_gcc_ignores_type_attr
8362 : diag::warn_cxx11_gnu_attribute_on_type)
8363 << attr;
8364 if (!IsTypeAttr)
8365 continue;
8366 }
8367 } else if (TAL != TAL_DeclSpec && TAL != TAL_DeclChunk &&
8368 !attr.isTypeAttr()) {
8369 // Otherwise, only consider type processing for a C++11 attribute if
8370 // - it has actually been applied to a type (decl-specifier-seq or
8371 // declarator chunk), or
8372 // - it is a type attribute, irrespective of where it was applied (so
8373 // that we can support the legacy behavior of some type attributes
8374 // that can be applied to the declaration name).
8375 continue;
8376 }
8377 }
8378
8379 // If this is an attribute we can handle, do so now,
8380 // otherwise, add it to the FnAttrs list for rechaining.
8381 switch (attr.getKind()) {
8382 default:
8383 // A [[]] attribute on a declarator chunk must appertain to a type.
8384 if (attr.isStandardAttributeSyntax() && TAL == TAL_DeclChunk) {
8385 state.getSema().Diag(attr.getLoc(), diag::err_attribute_not_type_attr)
8386 << attr;
8387 attr.setUsedAsTypeAttr();
8388 }
8389 break;
8390
8391 case ParsedAttr::UnknownAttribute:
8392 if (attr.isStandardAttributeSyntax()) {
8393 state.getSema().Diag(attr.getLoc(),
8394 diag::warn_unknown_attribute_ignored)
8395 << attr << attr.getRange();
8396 // Mark the attribute as invalid so we don't emit the same diagnostic
8397 // multiple times.
8398 attr.setInvalid();
8399 }
8400 break;
8401
8402 case ParsedAttr::IgnoredAttribute:
8403 break;
8404
8405 case ParsedAttr::AT_BTFTypeTag:
8406 HandleBTFTypeTagAttribute(type, attr, state);
8407 attr.setUsedAsTypeAttr();
8408 break;
8409
8410 case ParsedAttr::AT_MayAlias:
8411 // FIXME: This attribute needs to actually be handled, but if we ignore
8412 // it it breaks large amounts of Linux software.
8413 attr.setUsedAsTypeAttr();
8414 break;
8415 case ParsedAttr::AT_OpenCLPrivateAddressSpace:
8416 case ParsedAttr::AT_OpenCLGlobalAddressSpace:
8417 case ParsedAttr::AT_OpenCLGlobalDeviceAddressSpace:
8418 case ParsedAttr::AT_OpenCLGlobalHostAddressSpace:
8419 case ParsedAttr::AT_OpenCLLocalAddressSpace:
8420 case ParsedAttr::AT_OpenCLConstantAddressSpace:
8421 case ParsedAttr::AT_OpenCLGenericAddressSpace:
8422 case ParsedAttr::AT_HLSLGroupSharedAddressSpace:
8423 case ParsedAttr::AT_AddressSpace:
8424 HandleAddressSpaceTypeAttribute(type, attr, state);
8425 attr.setUsedAsTypeAttr();
8426 break;
8427 OBJC_POINTER_TYPE_ATTRS_CASELIST:
8428 if (!handleObjCPointerTypeAttr(state, attr, type))
8429 distributeObjCPointerTypeAttr(state, attr, type);
8430 attr.setUsedAsTypeAttr();
8431 break;
8432 case ParsedAttr::AT_VectorSize:
8433 HandleVectorSizeAttr(type, attr, state.getSema());
8434 attr.setUsedAsTypeAttr();
8435 break;
8436 case ParsedAttr::AT_ExtVectorType:
8437 HandleExtVectorTypeAttr(type, attr, state.getSema());
8438 attr.setUsedAsTypeAttr();
8439 break;
8440 case ParsedAttr::AT_NeonVectorType:
8441 HandleNeonVectorTypeAttr(type, attr, state.getSema(),
8442 VectorType::NeonVector);
8443 attr.setUsedAsTypeAttr();
8444 break;
8445 case ParsedAttr::AT_NeonPolyVectorType:
8446 HandleNeonVectorTypeAttr(type, attr, state.getSema(),
8447 VectorType::NeonPolyVector);
8448 attr.setUsedAsTypeAttr();
8449 break;
8450 case ParsedAttr::AT_ArmSveVectorBits:
8451 HandleArmSveVectorBitsTypeAttr(type, attr, state.getSema());
8452 attr.setUsedAsTypeAttr();
8453 break;
8454 case ParsedAttr::AT_ArmMveStrictPolymorphism: {
8455 HandleArmMveStrictPolymorphismAttr(state, type, attr);
8456 attr.setUsedAsTypeAttr();
8457 break;
8458 }
8459 case ParsedAttr::AT_OpenCLAccess:
8460 HandleOpenCLAccessAttr(type, attr, state.getSema());
8461 attr.setUsedAsTypeAttr();
8462 break;
8463 case ParsedAttr::AT_LifetimeBound:
8464 if (TAL == TAL_DeclChunk)
8465 HandleLifetimeBoundAttr(state, type, attr);
8466 break;
8467
8468 case ParsedAttr::AT_NoDeref: {
8469 // FIXME: `noderef` currently doesn't work correctly in [[]] syntax.
8470 // See https://github.com/llvm/llvm-project/issues/55790 for details.
8471 // For the time being, we simply emit a warning that the attribute is
8472 // ignored.
8473 if (attr.isStandardAttributeSyntax()) {
8474 state.getSema().Diag(attr.getLoc(), diag::warn_attribute_ignored)
8475 << attr;
8476 break;
8477 }
8478 ASTContext &Ctx = state.getSema().Context;
8479 type = state.getAttributedType(createSimpleAttr<NoDerefAttr>(Ctx, attr),
8480 type, type);
8481 attr.setUsedAsTypeAttr();
8482 state.setParsedNoDeref(true);
8483 break;
8484 }
8485
8486 case ParsedAttr::AT_MatrixType:
8487 HandleMatrixTypeAttr(type, attr, state.getSema());
8488 attr.setUsedAsTypeAttr();
8489 break;
8490
8491 MS_TYPE_ATTRS_CASELIST:
8492 if (!handleMSPointerTypeQualifierAttr(state, attr, type))
8493 attr.setUsedAsTypeAttr();
8494 break;
8495
8496
8497 NULLABILITY_TYPE_ATTRS_CASELIST:
8498 // Either add nullability here or try to distribute it. We
8499 // don't want to distribute the nullability specifier past any
8500 // dependent type, because that complicates the user model.
8501 if (type->canHaveNullability() || type->isDependentType() ||
8502 type->isArrayType() ||
8503 !distributeNullabilityTypeAttr(state, type, attr)) {
8504 unsigned endIndex;
8505 if (TAL == TAL_DeclChunk)
8506 endIndex = state.getCurrentChunkIndex();
8507 else
8508 endIndex = state.getDeclarator().getNumTypeObjects();
8509 bool allowOnArrayType =
8510 state.getDeclarator().isPrototypeContext() &&
8511 !hasOuterPointerLikeChunk(state.getDeclarator(), endIndex);
8512 if (checkNullabilityTypeSpecifier(
8513 state,
8514 type,
8515 attr,
8516 allowOnArrayType)) {
8517 attr.setInvalid();
8518 }
8519
8520 attr.setUsedAsTypeAttr();
8521 }
8522 break;
8523
8524 case ParsedAttr::AT_ObjCKindOf:
8525 // '__kindof' must be part of the decl-specifiers.
8526 switch (TAL) {
8527 case TAL_DeclSpec:
8528 break;
8529
8530 case TAL_DeclChunk:
8531 case TAL_DeclName:
8532 state.getSema().Diag(attr.getLoc(),
8533 diag::err_objc_kindof_wrong_position)
8534 << FixItHint::CreateRemoval(attr.getLoc())
8535 << FixItHint::CreateInsertion(
8536 state.getDeclarator().getDeclSpec().getBeginLoc(),
8537 "__kindof ");
8538 break;
8539 }
8540
8541 // Apply it regardless.
8542 if (checkObjCKindOfType(state, type, attr))
8543 attr.setInvalid();
8544 break;
8545
8546 case ParsedAttr::AT_NoThrow:
8547 // Exception Specifications aren't generally supported in C mode throughout
8548 // clang, so revert to attribute-based handling for C.
8549 if (!state.getSema().getLangOpts().CPlusPlus)
8550 break;
8551 [[fallthrough]];
8552 FUNCTION_TYPE_ATTRS_CASELIST:
8553 attr.setUsedAsTypeAttr();
8554
8555 // Attributes with standard syntax have strict rules for what they
8556 // appertain to and hence should not use the "distribution" logic below.
8557 if (attr.isStandardAttributeSyntax()) {
8558 if (!handleFunctionTypeAttr(state, attr, type)) {
8559 diagnoseBadTypeAttribute(state.getSema(), attr, type);
8560 attr.setInvalid();
8561 }
8562 break;
8563 }
8564
8565 // Never process function type attributes as part of the
8566 // declaration-specifiers.
8567 if (TAL == TAL_DeclSpec)
8568 distributeFunctionTypeAttrFromDeclSpec(state, attr, type);
8569
8570 // Otherwise, handle the possible delays.
8571 else if (!handleFunctionTypeAttr(state, attr, type))
8572 distributeFunctionTypeAttr(state, attr, type);
8573 break;
8574 case ParsedAttr::AT_AcquireHandle: {
8575 if (!type->isFunctionType())
8576 return;
8577
8578 if (attr.getNumArgs() != 1) {
8579 state.getSema().Diag(attr.getLoc(),
8580 diag::err_attribute_wrong_number_arguments)
8581 << attr << 1;
8582 attr.setInvalid();
8583 return;
8584 }
8585
8586 StringRef HandleType;
8587 if (!state.getSema().checkStringLiteralArgumentAttr(attr, 0, HandleType))
8588 return;
8589 type = state.getAttributedType(
8590 AcquireHandleAttr::Create(state.getSema().Context, HandleType, attr),
8591 type, type);
8592 attr.setUsedAsTypeAttr();
8593 break;
8594 }
8595 case ParsedAttr::AT_AnnotateType: {
8596 HandleAnnotateTypeAttr(state, type, attr);
8597 attr.setUsedAsTypeAttr();
8598 break;
8599 }
8600 }
8601
8602 // Handle attributes that are defined in a macro. We do not want this to be
8603 // applied to ObjC builtin attributes.
8604 if (isa<AttributedType>(type) && attr.hasMacroIdentifier() &&
8605 !type.getQualifiers().hasObjCLifetime() &&
8606 !type.getQualifiers().hasObjCGCAttr() &&
8607 attr.getKind() != ParsedAttr::AT_ObjCGC &&
8608 attr.getKind() != ParsedAttr::AT_ObjCOwnership) {
8609 const IdentifierInfo *MacroII = attr.getMacroIdentifier();
8610 type = state.getSema().Context.getMacroQualifiedType(type, MacroII);
8611 state.setExpansionLocForMacroQualifiedType(
8612 cast<MacroQualifiedType>(type.getTypePtr()),
8613 attr.getMacroExpansionLoc());
8614 }
8615 }
8616 }
8617
completeExprArrayBound(Expr * E)8618 void Sema::completeExprArrayBound(Expr *E) {
8619 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
8620 if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
8621 if (isTemplateInstantiation(Var->getTemplateSpecializationKind())) {
8622 auto *Def = Var->getDefinition();
8623 if (!Def) {
8624 SourceLocation PointOfInstantiation = E->getExprLoc();
8625 runWithSufficientStackSpace(PointOfInstantiation, [&] {
8626 InstantiateVariableDefinition(PointOfInstantiation, Var);
8627 });
8628 Def = Var->getDefinition();
8629
8630 // If we don't already have a point of instantiation, and we managed
8631 // to instantiate a definition, this is the point of instantiation.
8632 // Otherwise, we don't request an end-of-TU instantiation, so this is
8633 // not a point of instantiation.
8634 // FIXME: Is this really the right behavior?
8635 if (Var->getPointOfInstantiation().isInvalid() && Def) {
8636 assert(Var->getTemplateSpecializationKind() ==
8637 TSK_ImplicitInstantiation &&
8638 "explicit instantiation with no point of instantiation");
8639 Var->setTemplateSpecializationKind(
8640 Var->getTemplateSpecializationKind(), PointOfInstantiation);
8641 }
8642 }
8643
8644 // Update the type to the definition's type both here and within the
8645 // expression.
8646 if (Def) {
8647 DRE->setDecl(Def);
8648 QualType T = Def->getType();
8649 DRE->setType(T);
8650 // FIXME: Update the type on all intervening expressions.
8651 E->setType(T);
8652 }
8653
8654 // We still go on to try to complete the type independently, as it
8655 // may also require instantiations or diagnostics if it remains
8656 // incomplete.
8657 }
8658 }
8659 }
8660 }
8661
getCompletedType(Expr * E)8662 QualType Sema::getCompletedType(Expr *E) {
8663 // Incomplete array types may be completed by the initializer attached to
8664 // their definitions. For static data members of class templates and for
8665 // variable templates, we need to instantiate the definition to get this
8666 // initializer and complete the type.
8667 if (E->getType()->isIncompleteArrayType())
8668 completeExprArrayBound(E);
8669
8670 // FIXME: Are there other cases which require instantiating something other
8671 // than the type to complete the type of an expression?
8672
8673 return E->getType();
8674 }
8675
8676 /// Ensure that the type of the given expression is complete.
8677 ///
8678 /// This routine checks whether the expression \p E has a complete type. If the
8679 /// expression refers to an instantiable construct, that instantiation is
8680 /// performed as needed to complete its type. Furthermore
8681 /// Sema::RequireCompleteType is called for the expression's type (or in the
8682 /// case of a reference type, the referred-to type).
8683 ///
8684 /// \param E The expression whose type is required to be complete.
8685 /// \param Kind Selects which completeness rules should be applied.
8686 /// \param Diagnoser The object that will emit a diagnostic if the type is
8687 /// incomplete.
8688 ///
8689 /// \returns \c true if the type of \p E is incomplete and diagnosed, \c false
8690 /// otherwise.
RequireCompleteExprType(Expr * E,CompleteTypeKind Kind,TypeDiagnoser & Diagnoser)8691 bool Sema::RequireCompleteExprType(Expr *E, CompleteTypeKind Kind,
8692 TypeDiagnoser &Diagnoser) {
8693 return RequireCompleteType(E->getExprLoc(), getCompletedType(E), Kind,
8694 Diagnoser);
8695 }
8696
RequireCompleteExprType(Expr * E,unsigned DiagID)8697 bool Sema::RequireCompleteExprType(Expr *E, unsigned DiagID) {
8698 BoundTypeDiagnoser<> Diagnoser(DiagID);
8699 return RequireCompleteExprType(E, CompleteTypeKind::Default, Diagnoser);
8700 }
8701
8702 /// Ensure that the type T is a complete type.
8703 ///
8704 /// This routine checks whether the type @p T is complete in any
8705 /// context where a complete type is required. If @p T is a complete
8706 /// type, returns false. If @p T is a class template specialization,
8707 /// this routine then attempts to perform class template
8708 /// instantiation. If instantiation fails, or if @p T is incomplete
8709 /// and cannot be completed, issues the diagnostic @p diag (giving it
8710 /// the type @p T) and returns true.
8711 ///
8712 /// @param Loc The location in the source that the incomplete type
8713 /// diagnostic should refer to.
8714 ///
8715 /// @param T The type that this routine is examining for completeness.
8716 ///
8717 /// @param Kind Selects which completeness rules should be applied.
8718 ///
8719 /// @returns @c true if @p T is incomplete and a diagnostic was emitted,
8720 /// @c false otherwise.
RequireCompleteType(SourceLocation Loc,QualType T,CompleteTypeKind Kind,TypeDiagnoser & Diagnoser)8721 bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
8722 CompleteTypeKind Kind,
8723 TypeDiagnoser &Diagnoser) {
8724 if (RequireCompleteTypeImpl(Loc, T, Kind, &Diagnoser))
8725 return true;
8726 if (const TagType *Tag = T->getAs<TagType>()) {
8727 if (!Tag->getDecl()->isCompleteDefinitionRequired()) {
8728 Tag->getDecl()->setCompleteDefinitionRequired();
8729 Consumer.HandleTagDeclRequiredDefinition(Tag->getDecl());
8730 }
8731 }
8732 return false;
8733 }
8734
hasStructuralCompatLayout(Decl * D,Decl * Suggested)8735 bool Sema::hasStructuralCompatLayout(Decl *D, Decl *Suggested) {
8736 llvm::DenseSet<std::pair<Decl *, Decl *>> NonEquivalentDecls;
8737 if (!Suggested)
8738 return false;
8739
8740 // FIXME: Add a specific mode for C11 6.2.7/1 in StructuralEquivalenceContext
8741 // and isolate from other C++ specific checks.
8742 StructuralEquivalenceContext Ctx(
8743 D->getASTContext(), Suggested->getASTContext(), NonEquivalentDecls,
8744 StructuralEquivalenceKind::Default,
8745 false /*StrictTypeSpelling*/, true /*Complain*/,
8746 true /*ErrorOnTagTypeMismatch*/);
8747 return Ctx.IsEquivalent(D, Suggested);
8748 }
8749
hasAcceptableDefinition(NamedDecl * D,NamedDecl ** Suggested,AcceptableKind Kind,bool OnlyNeedComplete)8750 bool Sema::hasAcceptableDefinition(NamedDecl *D, NamedDecl **Suggested,
8751 AcceptableKind Kind, bool OnlyNeedComplete) {
8752 // Easy case: if we don't have modules, all declarations are visible.
8753 if (!getLangOpts().Modules && !getLangOpts().ModulesLocalVisibility)
8754 return true;
8755
8756 // If this definition was instantiated from a template, map back to the
8757 // pattern from which it was instantiated.
8758 if (isa<TagDecl>(D) && cast<TagDecl>(D)->isBeingDefined()) {
8759 // We're in the middle of defining it; this definition should be treated
8760 // as visible.
8761 return true;
8762 } else if (auto *RD = dyn_cast<CXXRecordDecl>(D)) {
8763 if (auto *Pattern = RD->getTemplateInstantiationPattern())
8764 RD = Pattern;
8765 D = RD->getDefinition();
8766 } else if (auto *ED = dyn_cast<EnumDecl>(D)) {
8767 if (auto *Pattern = ED->getTemplateInstantiationPattern())
8768 ED = Pattern;
8769 if (OnlyNeedComplete && (ED->isFixed() || getLangOpts().MSVCCompat)) {
8770 // If the enum has a fixed underlying type, it may have been forward
8771 // declared. In -fms-compatibility, `enum Foo;` will also forward declare
8772 // the enum and assign it the underlying type of `int`. Since we're only
8773 // looking for a complete type (not a definition), any visible declaration
8774 // of it will do.
8775 *Suggested = nullptr;
8776 for (auto *Redecl : ED->redecls()) {
8777 if (isAcceptable(Redecl, Kind))
8778 return true;
8779 if (Redecl->isThisDeclarationADefinition() ||
8780 (Redecl->isCanonicalDecl() && !*Suggested))
8781 *Suggested = Redecl;
8782 }
8783
8784 return false;
8785 }
8786 D = ED->getDefinition();
8787 } else if (auto *FD = dyn_cast<FunctionDecl>(D)) {
8788 if (auto *Pattern = FD->getTemplateInstantiationPattern())
8789 FD = Pattern;
8790 D = FD->getDefinition();
8791 } else if (auto *VD = dyn_cast<VarDecl>(D)) {
8792 if (auto *Pattern = VD->getTemplateInstantiationPattern())
8793 VD = Pattern;
8794 D = VD->getDefinition();
8795 }
8796
8797 assert(D && "missing definition for pattern of instantiated definition");
8798
8799 *Suggested = D;
8800
8801 auto DefinitionIsAcceptable = [&] {
8802 // The (primary) definition might be in a visible module.
8803 if (isAcceptable(D, Kind))
8804 return true;
8805
8806 // A visible module might have a merged definition instead.
8807 if (D->isModulePrivate() ? hasMergedDefinitionInCurrentModule(D)
8808 : hasVisibleMergedDefinition(D)) {
8809 if (CodeSynthesisContexts.empty() &&
8810 !getLangOpts().ModulesLocalVisibility) {
8811 // Cache the fact that this definition is implicitly visible because
8812 // there is a visible merged definition.
8813 D->setVisibleDespiteOwningModule();
8814 }
8815 return true;
8816 }
8817
8818 return false;
8819 };
8820
8821 if (DefinitionIsAcceptable())
8822 return true;
8823
8824 // The external source may have additional definitions of this entity that are
8825 // visible, so complete the redeclaration chain now and ask again.
8826 if (auto *Source = Context.getExternalSource()) {
8827 Source->CompleteRedeclChain(D);
8828 return DefinitionIsAcceptable();
8829 }
8830
8831 return false;
8832 }
8833
8834 /// Determine whether there is any declaration of \p D that was ever a
8835 /// definition (perhaps before module merging) and is currently visible.
8836 /// \param D The definition of the entity.
8837 /// \param Suggested Filled in with the declaration that should be made visible
8838 /// in order to provide a definition of this entity.
8839 /// \param OnlyNeedComplete If \c true, we only need the type to be complete,
8840 /// not defined. This only matters for enums with a fixed underlying
8841 /// type, since in all other cases, a type is complete if and only if it
8842 /// is defined.
hasVisibleDefinition(NamedDecl * D,NamedDecl ** Suggested,bool OnlyNeedComplete)8843 bool Sema::hasVisibleDefinition(NamedDecl *D, NamedDecl **Suggested,
8844 bool OnlyNeedComplete) {
8845 return hasAcceptableDefinition(D, Suggested, Sema::AcceptableKind::Visible,
8846 OnlyNeedComplete);
8847 }
8848
8849 /// Determine whether there is any declaration of \p D that was ever a
8850 /// definition (perhaps before module merging) and is currently
8851 /// reachable.
8852 /// \param D The definition of the entity.
8853 /// \param Suggested Filled in with the declaration that should be made
8854 /// reachable
8855 /// in order to provide a definition of this entity.
8856 /// \param OnlyNeedComplete If \c true, we only need the type to be complete,
8857 /// not defined. This only matters for enums with a fixed underlying
8858 /// type, since in all other cases, a type is complete if and only if it
8859 /// is defined.
hasReachableDefinition(NamedDecl * D,NamedDecl ** Suggested,bool OnlyNeedComplete)8860 bool Sema::hasReachableDefinition(NamedDecl *D, NamedDecl **Suggested,
8861 bool OnlyNeedComplete) {
8862 return hasAcceptableDefinition(D, Suggested, Sema::AcceptableKind::Reachable,
8863 OnlyNeedComplete);
8864 }
8865
8866 /// Locks in the inheritance model for the given class and all of its bases.
assignInheritanceModel(Sema & S,CXXRecordDecl * RD)8867 static void assignInheritanceModel(Sema &S, CXXRecordDecl *RD) {
8868 RD = RD->getMostRecentNonInjectedDecl();
8869 if (!RD->hasAttr<MSInheritanceAttr>()) {
8870 MSInheritanceModel IM;
8871 bool BestCase = false;
8872 switch (S.MSPointerToMemberRepresentationMethod) {
8873 case LangOptions::PPTMK_BestCase:
8874 BestCase = true;
8875 IM = RD->calculateInheritanceModel();
8876 break;
8877 case LangOptions::PPTMK_FullGeneralitySingleInheritance:
8878 IM = MSInheritanceModel::Single;
8879 break;
8880 case LangOptions::PPTMK_FullGeneralityMultipleInheritance:
8881 IM = MSInheritanceModel::Multiple;
8882 break;
8883 case LangOptions::PPTMK_FullGeneralityVirtualInheritance:
8884 IM = MSInheritanceModel::Unspecified;
8885 break;
8886 }
8887
8888 SourceRange Loc = S.ImplicitMSInheritanceAttrLoc.isValid()
8889 ? S.ImplicitMSInheritanceAttrLoc
8890 : RD->getSourceRange();
8891 RD->addAttr(MSInheritanceAttr::CreateImplicit(
8892 S.getASTContext(), BestCase, Loc, AttributeCommonInfo::AS_Microsoft,
8893 MSInheritanceAttr::Spelling(IM)));
8894 S.Consumer.AssignInheritanceModel(RD);
8895 }
8896 }
8897
8898 /// The implementation of RequireCompleteType
RequireCompleteTypeImpl(SourceLocation Loc,QualType T,CompleteTypeKind Kind,TypeDiagnoser * Diagnoser)8899 bool Sema::RequireCompleteTypeImpl(SourceLocation Loc, QualType T,
8900 CompleteTypeKind Kind,
8901 TypeDiagnoser *Diagnoser) {
8902 // FIXME: Add this assertion to make sure we always get instantiation points.
8903 // assert(!Loc.isInvalid() && "Invalid location in RequireCompleteType");
8904 // FIXME: Add this assertion to help us flush out problems with
8905 // checking for dependent types and type-dependent expressions.
8906 //
8907 // assert(!T->isDependentType() &&
8908 // "Can't ask whether a dependent type is complete");
8909
8910 if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>()) {
8911 if (!MPTy->getClass()->isDependentType()) {
8912 if (getLangOpts().CompleteMemberPointers &&
8913 !MPTy->getClass()->getAsCXXRecordDecl()->isBeingDefined() &&
8914 RequireCompleteType(Loc, QualType(MPTy->getClass(), 0), Kind,
8915 diag::err_memptr_incomplete))
8916 return true;
8917
8918 // We lock in the inheritance model once somebody has asked us to ensure
8919 // that a pointer-to-member type is complete.
8920 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
8921 (void)isCompleteType(Loc, QualType(MPTy->getClass(), 0));
8922 assignInheritanceModel(*this, MPTy->getMostRecentCXXRecordDecl());
8923 }
8924 }
8925 }
8926
8927 NamedDecl *Def = nullptr;
8928 bool AcceptSizeless = (Kind == CompleteTypeKind::AcceptSizeless);
8929 bool Incomplete = (T->isIncompleteType(&Def) ||
8930 (!AcceptSizeless && T->isSizelessBuiltinType()));
8931
8932 // Check that any necessary explicit specializations are visible. For an
8933 // enum, we just need the declaration, so don't check this.
8934 if (Def && !isa<EnumDecl>(Def))
8935 checkSpecializationReachability(Loc, Def);
8936
8937 // If we have a complete type, we're done.
8938 if (!Incomplete) {
8939 NamedDecl *Suggested = nullptr;
8940 if (Def &&
8941 !hasReachableDefinition(Def, &Suggested, /*OnlyNeedComplete=*/true)) {
8942 // If the user is going to see an error here, recover by making the
8943 // definition visible.
8944 bool TreatAsComplete = Diagnoser && !isSFINAEContext();
8945 if (Diagnoser && Suggested)
8946 diagnoseMissingImport(Loc, Suggested, MissingImportKind::Definition,
8947 /*Recover*/ TreatAsComplete);
8948 return !TreatAsComplete;
8949 } else if (Def && !TemplateInstCallbacks.empty()) {
8950 CodeSynthesisContext TempInst;
8951 TempInst.Kind = CodeSynthesisContext::Memoization;
8952 TempInst.Template = Def;
8953 TempInst.Entity = Def;
8954 TempInst.PointOfInstantiation = Loc;
8955 atTemplateBegin(TemplateInstCallbacks, *this, TempInst);
8956 atTemplateEnd(TemplateInstCallbacks, *this, TempInst);
8957 }
8958
8959 return false;
8960 }
8961
8962 TagDecl *Tag = dyn_cast_or_null<TagDecl>(Def);
8963 ObjCInterfaceDecl *IFace = dyn_cast_or_null<ObjCInterfaceDecl>(Def);
8964
8965 // Give the external source a chance to provide a definition of the type.
8966 // This is kept separate from completing the redeclaration chain so that
8967 // external sources such as LLDB can avoid synthesizing a type definition
8968 // unless it's actually needed.
8969 if (Tag || IFace) {
8970 // Avoid diagnosing invalid decls as incomplete.
8971 if (Def->isInvalidDecl())
8972 return true;
8973
8974 // Give the external AST source a chance to complete the type.
8975 if (auto *Source = Context.getExternalSource()) {
8976 if (Tag && Tag->hasExternalLexicalStorage())
8977 Source->CompleteType(Tag);
8978 if (IFace && IFace->hasExternalLexicalStorage())
8979 Source->CompleteType(IFace);
8980 // If the external source completed the type, go through the motions
8981 // again to ensure we're allowed to use the completed type.
8982 if (!T->isIncompleteType())
8983 return RequireCompleteTypeImpl(Loc, T, Kind, Diagnoser);
8984 }
8985 }
8986
8987 // If we have a class template specialization or a class member of a
8988 // class template specialization, or an array with known size of such,
8989 // try to instantiate it.
8990 if (auto *RD = dyn_cast_or_null<CXXRecordDecl>(Tag)) {
8991 bool Instantiated = false;
8992 bool Diagnosed = false;
8993 if (RD->isDependentContext()) {
8994 // Don't try to instantiate a dependent class (eg, a member template of
8995 // an instantiated class template specialization).
8996 // FIXME: Can this ever happen?
8997 } else if (auto *ClassTemplateSpec =
8998 dyn_cast<ClassTemplateSpecializationDecl>(RD)) {
8999 if (ClassTemplateSpec->getSpecializationKind() == TSK_Undeclared) {
9000 runWithSufficientStackSpace(Loc, [&] {
9001 Diagnosed = InstantiateClassTemplateSpecialization(
9002 Loc, ClassTemplateSpec, TSK_ImplicitInstantiation,
9003 /*Complain=*/Diagnoser);
9004 });
9005 Instantiated = true;
9006 }
9007 } else {
9008 CXXRecordDecl *Pattern = RD->getInstantiatedFromMemberClass();
9009 if (!RD->isBeingDefined() && Pattern) {
9010 MemberSpecializationInfo *MSI = RD->getMemberSpecializationInfo();
9011 assert(MSI && "Missing member specialization information?");
9012 // This record was instantiated from a class within a template.
9013 if (MSI->getTemplateSpecializationKind() !=
9014 TSK_ExplicitSpecialization) {
9015 runWithSufficientStackSpace(Loc, [&] {
9016 Diagnosed = InstantiateClass(Loc, RD, Pattern,
9017 getTemplateInstantiationArgs(RD),
9018 TSK_ImplicitInstantiation,
9019 /*Complain=*/Diagnoser);
9020 });
9021 Instantiated = true;
9022 }
9023 }
9024 }
9025
9026 if (Instantiated) {
9027 // Instantiate* might have already complained that the template is not
9028 // defined, if we asked it to.
9029 if (Diagnoser && Diagnosed)
9030 return true;
9031 // If we instantiated a definition, check that it's usable, even if
9032 // instantiation produced an error, so that repeated calls to this
9033 // function give consistent answers.
9034 if (!T->isIncompleteType())
9035 return RequireCompleteTypeImpl(Loc, T, Kind, Diagnoser);
9036 }
9037 }
9038
9039 // FIXME: If we didn't instantiate a definition because of an explicit
9040 // specialization declaration, check that it's visible.
9041
9042 if (!Diagnoser)
9043 return true;
9044
9045 Diagnoser->diagnose(*this, Loc, T);
9046
9047 // If the type was a forward declaration of a class/struct/union
9048 // type, produce a note.
9049 if (Tag && !Tag->isInvalidDecl() && !Tag->getLocation().isInvalid())
9050 Diag(Tag->getLocation(),
9051 Tag->isBeingDefined() ? diag::note_type_being_defined
9052 : diag::note_forward_declaration)
9053 << Context.getTagDeclType(Tag);
9054
9055 // If the Objective-C class was a forward declaration, produce a note.
9056 if (IFace && !IFace->isInvalidDecl() && !IFace->getLocation().isInvalid())
9057 Diag(IFace->getLocation(), diag::note_forward_class);
9058
9059 // If we have external information that we can use to suggest a fix,
9060 // produce a note.
9061 if (ExternalSource)
9062 ExternalSource->MaybeDiagnoseMissingCompleteType(Loc, T);
9063
9064 return true;
9065 }
9066
RequireCompleteType(SourceLocation Loc,QualType T,CompleteTypeKind Kind,unsigned DiagID)9067 bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
9068 CompleteTypeKind Kind, unsigned DiagID) {
9069 BoundTypeDiagnoser<> Diagnoser(DiagID);
9070 return RequireCompleteType(Loc, T, Kind, Diagnoser);
9071 }
9072
9073 /// Get diagnostic %select index for tag kind for
9074 /// literal type diagnostic message.
9075 /// WARNING: Indexes apply to particular diagnostics only!
9076 ///
9077 /// \returns diagnostic %select index.
getLiteralDiagFromTagKind(TagTypeKind Tag)9078 static unsigned getLiteralDiagFromTagKind(TagTypeKind Tag) {
9079 switch (Tag) {
9080 case TTK_Struct: return 0;
9081 case TTK_Interface: return 1;
9082 case TTK_Class: return 2;
9083 default: llvm_unreachable("Invalid tag kind for literal type diagnostic!");
9084 }
9085 }
9086
9087 /// Ensure that the type T is a literal type.
9088 ///
9089 /// This routine checks whether the type @p T is a literal type. If @p T is an
9090 /// incomplete type, an attempt is made to complete it. If @p T is a literal
9091 /// type, or @p AllowIncompleteType is true and @p T is an incomplete type,
9092 /// returns false. Otherwise, this routine issues the diagnostic @p PD (giving
9093 /// it the type @p T), along with notes explaining why the type is not a
9094 /// literal type, and returns true.
9095 ///
9096 /// @param Loc The location in the source that the non-literal type
9097 /// diagnostic should refer to.
9098 ///
9099 /// @param T The type that this routine is examining for literalness.
9100 ///
9101 /// @param Diagnoser Emits a diagnostic if T is not a literal type.
9102 ///
9103 /// @returns @c true if @p T is not a literal type and a diagnostic was emitted,
9104 /// @c false otherwise.
RequireLiteralType(SourceLocation Loc,QualType T,TypeDiagnoser & Diagnoser)9105 bool Sema::RequireLiteralType(SourceLocation Loc, QualType T,
9106 TypeDiagnoser &Diagnoser) {
9107 assert(!T->isDependentType() && "type should not be dependent");
9108
9109 QualType ElemType = Context.getBaseElementType(T);
9110 if ((isCompleteType(Loc, ElemType) || ElemType->isVoidType()) &&
9111 T->isLiteralType(Context))
9112 return false;
9113
9114 Diagnoser.diagnose(*this, Loc, T);
9115
9116 if (T->isVariableArrayType())
9117 return true;
9118
9119 const RecordType *RT = ElemType->getAs<RecordType>();
9120 if (!RT)
9121 return true;
9122
9123 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
9124
9125 // A partially-defined class type can't be a literal type, because a literal
9126 // class type must have a trivial destructor (which can't be checked until
9127 // the class definition is complete).
9128 if (RequireCompleteType(Loc, ElemType, diag::note_non_literal_incomplete, T))
9129 return true;
9130
9131 // [expr.prim.lambda]p3:
9132 // This class type is [not] a literal type.
9133 if (RD->isLambda() && !getLangOpts().CPlusPlus17) {
9134 Diag(RD->getLocation(), diag::note_non_literal_lambda);
9135 return true;
9136 }
9137
9138 // If the class has virtual base classes, then it's not an aggregate, and
9139 // cannot have any constexpr constructors or a trivial default constructor,
9140 // so is non-literal. This is better to diagnose than the resulting absence
9141 // of constexpr constructors.
9142 if (RD->getNumVBases()) {
9143 Diag(RD->getLocation(), diag::note_non_literal_virtual_base)
9144 << getLiteralDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases();
9145 for (const auto &I : RD->vbases())
9146 Diag(I.getBeginLoc(), diag::note_constexpr_virtual_base_here)
9147 << I.getSourceRange();
9148 } else if (!RD->isAggregate() && !RD->hasConstexprNonCopyMoveConstructor() &&
9149 !RD->hasTrivialDefaultConstructor()) {
9150 Diag(RD->getLocation(), diag::note_non_literal_no_constexpr_ctors) << RD;
9151 } else if (RD->hasNonLiteralTypeFieldsOrBases()) {
9152 for (const auto &I : RD->bases()) {
9153 if (!I.getType()->isLiteralType(Context)) {
9154 Diag(I.getBeginLoc(), diag::note_non_literal_base_class)
9155 << RD << I.getType() << I.getSourceRange();
9156 return true;
9157 }
9158 }
9159 for (const auto *I : RD->fields()) {
9160 if (!I->getType()->isLiteralType(Context) ||
9161 I->getType().isVolatileQualified()) {
9162 Diag(I->getLocation(), diag::note_non_literal_field)
9163 << RD << I << I->getType()
9164 << I->getType().isVolatileQualified();
9165 return true;
9166 }
9167 }
9168 } else if (getLangOpts().CPlusPlus20 ? !RD->hasConstexprDestructor()
9169 : !RD->hasTrivialDestructor()) {
9170 // All fields and bases are of literal types, so have trivial or constexpr
9171 // destructors. If this class's destructor is non-trivial / non-constexpr,
9172 // it must be user-declared.
9173 CXXDestructorDecl *Dtor = RD->getDestructor();
9174 assert(Dtor && "class has literal fields and bases but no dtor?");
9175 if (!Dtor)
9176 return true;
9177
9178 if (getLangOpts().CPlusPlus20) {
9179 Diag(Dtor->getLocation(), diag::note_non_literal_non_constexpr_dtor)
9180 << RD;
9181 } else {
9182 Diag(Dtor->getLocation(), Dtor->isUserProvided()
9183 ? diag::note_non_literal_user_provided_dtor
9184 : diag::note_non_literal_nontrivial_dtor)
9185 << RD;
9186 if (!Dtor->isUserProvided())
9187 SpecialMemberIsTrivial(Dtor, CXXDestructor, TAH_IgnoreTrivialABI,
9188 /*Diagnose*/ true);
9189 }
9190 }
9191
9192 return true;
9193 }
9194
RequireLiteralType(SourceLocation Loc,QualType T,unsigned DiagID)9195 bool Sema::RequireLiteralType(SourceLocation Loc, QualType T, unsigned DiagID) {
9196 BoundTypeDiagnoser<> Diagnoser(DiagID);
9197 return RequireLiteralType(Loc, T, Diagnoser);
9198 }
9199
9200 /// Retrieve a version of the type 'T' that is elaborated by Keyword, qualified
9201 /// by the nested-name-specifier contained in SS, and that is (re)declared by
9202 /// OwnedTagDecl, which is nullptr if this is not a (re)declaration.
getElaboratedType(ElaboratedTypeKeyword Keyword,const CXXScopeSpec & SS,QualType T,TagDecl * OwnedTagDecl)9203 QualType Sema::getElaboratedType(ElaboratedTypeKeyword Keyword,
9204 const CXXScopeSpec &SS, QualType T,
9205 TagDecl *OwnedTagDecl) {
9206 if (T.isNull())
9207 return T;
9208 return Context.getElaboratedType(
9209 Keyword, SS.isValid() ? SS.getScopeRep() : nullptr, T, OwnedTagDecl);
9210 }
9211
BuildTypeofExprType(Expr * E,TypeOfKind Kind)9212 QualType Sema::BuildTypeofExprType(Expr *E, TypeOfKind Kind) {
9213 assert(!E->hasPlaceholderType() && "unexpected placeholder");
9214
9215 if (!getLangOpts().CPlusPlus && E->refersToBitField())
9216 Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield)
9217 << (Kind == TypeOfKind::Unqualified ? 3 : 2);
9218
9219 if (!E->isTypeDependent()) {
9220 QualType T = E->getType();
9221 if (const TagType *TT = T->getAs<TagType>())
9222 DiagnoseUseOfDecl(TT->getDecl(), E->getExprLoc());
9223 }
9224 return Context.getTypeOfExprType(E, Kind);
9225 }
9226
9227 /// getDecltypeForExpr - Given an expr, will return the decltype for
9228 /// that expression, according to the rules in C++11
9229 /// [dcl.type.simple]p4 and C++11 [expr.lambda.prim]p18.
getDecltypeForExpr(Expr * E)9230 QualType Sema::getDecltypeForExpr(Expr *E) {
9231 if (E->isTypeDependent())
9232 return Context.DependentTy;
9233
9234 Expr *IDExpr = E;
9235 if (auto *ImplCastExpr = dyn_cast<ImplicitCastExpr>(E))
9236 IDExpr = ImplCastExpr->getSubExpr();
9237
9238 // C++11 [dcl.type.simple]p4:
9239 // The type denoted by decltype(e) is defined as follows:
9240
9241 // C++20:
9242 // - if E is an unparenthesized id-expression naming a non-type
9243 // template-parameter (13.2), decltype(E) is the type of the
9244 // template-parameter after performing any necessary type deduction
9245 // Note that this does not pick up the implicit 'const' for a template
9246 // parameter object. This rule makes no difference before C++20 so we apply
9247 // it unconditionally.
9248 if (const auto *SNTTPE = dyn_cast<SubstNonTypeTemplateParmExpr>(IDExpr))
9249 return SNTTPE->getParameterType(Context);
9250
9251 // - if e is an unparenthesized id-expression or an unparenthesized class
9252 // member access (5.2.5), decltype(e) is the type of the entity named
9253 // by e. If there is no such entity, or if e names a set of overloaded
9254 // functions, the program is ill-formed;
9255 //
9256 // We apply the same rules for Objective-C ivar and property references.
9257 if (const auto *DRE = dyn_cast<DeclRefExpr>(IDExpr)) {
9258 const ValueDecl *VD = DRE->getDecl();
9259 QualType T = VD->getType();
9260 return isa<TemplateParamObjectDecl>(VD) ? T.getUnqualifiedType() : T;
9261 }
9262 if (const auto *ME = dyn_cast<MemberExpr>(IDExpr)) {
9263 if (const auto *VD = ME->getMemberDecl())
9264 if (isa<FieldDecl>(VD) || isa<VarDecl>(VD))
9265 return VD->getType();
9266 } else if (const auto *IR = dyn_cast<ObjCIvarRefExpr>(IDExpr)) {
9267 return IR->getDecl()->getType();
9268 } else if (const auto *PR = dyn_cast<ObjCPropertyRefExpr>(IDExpr)) {
9269 if (PR->isExplicitProperty())
9270 return PR->getExplicitProperty()->getType();
9271 } else if (const auto *PE = dyn_cast<PredefinedExpr>(IDExpr)) {
9272 return PE->getType();
9273 }
9274
9275 // C++11 [expr.lambda.prim]p18:
9276 // Every occurrence of decltype((x)) where x is a possibly
9277 // parenthesized id-expression that names an entity of automatic
9278 // storage duration is treated as if x were transformed into an
9279 // access to a corresponding data member of the closure type that
9280 // would have been declared if x were an odr-use of the denoted
9281 // entity.
9282 if (getCurLambda() && isa<ParenExpr>(IDExpr)) {
9283 if (auto *DRE = dyn_cast<DeclRefExpr>(IDExpr->IgnoreParens())) {
9284 if (auto *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
9285 QualType T = getCapturedDeclRefType(Var, DRE->getLocation());
9286 if (!T.isNull())
9287 return Context.getLValueReferenceType(T);
9288 }
9289 }
9290 }
9291
9292 return Context.getReferenceQualifiedType(E);
9293 }
9294
BuildDecltypeType(Expr * E,bool AsUnevaluated)9295 QualType Sema::BuildDecltypeType(Expr *E, bool AsUnevaluated) {
9296 assert(!E->hasPlaceholderType() && "unexpected placeholder");
9297
9298 if (AsUnevaluated && CodeSynthesisContexts.empty() &&
9299 !E->isInstantiationDependent() && E->HasSideEffects(Context, false)) {
9300 // The expression operand for decltype is in an unevaluated expression
9301 // context, so side effects could result in unintended consequences.
9302 // Exclude instantiation-dependent expressions, because 'decltype' is often
9303 // used to build SFINAE gadgets.
9304 Diag(E->getExprLoc(), diag::warn_side_effects_unevaluated_context);
9305 }
9306 return Context.getDecltypeType(E, getDecltypeForExpr(E));
9307 }
9308
GetEnumUnderlyingType(Sema & S,QualType BaseType,SourceLocation Loc)9309 static QualType GetEnumUnderlyingType(Sema &S, QualType BaseType,
9310 SourceLocation Loc) {
9311 assert(BaseType->isEnumeralType());
9312 EnumDecl *ED = BaseType->castAs<EnumType>()->getDecl();
9313 assert(ED && "EnumType has no EnumDecl");
9314
9315 S.DiagnoseUseOfDecl(ED, Loc);
9316
9317 QualType Underlying = ED->getIntegerType();
9318 assert(!Underlying.isNull());
9319
9320 return Underlying;
9321 }
9322
BuiltinEnumUnderlyingType(QualType BaseType,SourceLocation Loc)9323 QualType Sema::BuiltinEnumUnderlyingType(QualType BaseType,
9324 SourceLocation Loc) {
9325 if (!BaseType->isEnumeralType()) {
9326 Diag(Loc, diag::err_only_enums_have_underlying_types);
9327 return QualType();
9328 }
9329
9330 // The enum could be incomplete if we're parsing its definition or
9331 // recovering from an error.
9332 NamedDecl *FwdDecl = nullptr;
9333 if (BaseType->isIncompleteType(&FwdDecl)) {
9334 Diag(Loc, diag::err_underlying_type_of_incomplete_enum) << BaseType;
9335 Diag(FwdDecl->getLocation(), diag::note_forward_declaration) << FwdDecl;
9336 return QualType();
9337 }
9338
9339 return GetEnumUnderlyingType(*this, BaseType, Loc);
9340 }
9341
BuiltinAddPointer(QualType BaseType,SourceLocation Loc)9342 QualType Sema::BuiltinAddPointer(QualType BaseType, SourceLocation Loc) {
9343 QualType Pointer = BaseType.isReferenceable() || BaseType->isVoidType()
9344 ? BuildPointerType(BaseType.getNonReferenceType(), Loc,
9345 DeclarationName())
9346 : BaseType;
9347
9348 return Pointer.isNull() ? QualType() : Pointer;
9349 }
9350
BuiltinRemovePointer(QualType BaseType,SourceLocation Loc)9351 QualType Sema::BuiltinRemovePointer(QualType BaseType, SourceLocation Loc) {
9352 // We don't want block pointers or ObjectiveC's id type.
9353 if (!BaseType->isAnyPointerType() || BaseType->isObjCIdType())
9354 return BaseType;
9355
9356 return BaseType->getPointeeType();
9357 }
9358
BuiltinDecay(QualType BaseType,SourceLocation Loc)9359 QualType Sema::BuiltinDecay(QualType BaseType, SourceLocation Loc) {
9360 QualType Underlying = BaseType.getNonReferenceType();
9361 if (Underlying->isArrayType())
9362 return Context.getDecayedType(Underlying);
9363
9364 if (Underlying->isFunctionType())
9365 return BuiltinAddPointer(BaseType, Loc);
9366
9367 SplitQualType Split = Underlying.getSplitUnqualifiedType();
9368 // std::decay is supposed to produce 'std::remove_cv', but since 'restrict' is
9369 // in the same group of qualifiers as 'const' and 'volatile', we're extending
9370 // '__decay(T)' so that it removes all qualifiers.
9371 Split.Quals.removeCVRQualifiers();
9372 return Context.getQualifiedType(Split);
9373 }
9374
BuiltinAddReference(QualType BaseType,UTTKind UKind,SourceLocation Loc)9375 QualType Sema::BuiltinAddReference(QualType BaseType, UTTKind UKind,
9376 SourceLocation Loc) {
9377 assert(LangOpts.CPlusPlus);
9378 QualType Reference =
9379 BaseType.isReferenceable()
9380 ? BuildReferenceType(BaseType,
9381 UKind == UnaryTransformType::AddLvalueReference,
9382 Loc, DeclarationName())
9383 : BaseType;
9384 return Reference.isNull() ? QualType() : Reference;
9385 }
9386
BuiltinRemoveExtent(QualType BaseType,UTTKind UKind,SourceLocation Loc)9387 QualType Sema::BuiltinRemoveExtent(QualType BaseType, UTTKind UKind,
9388 SourceLocation Loc) {
9389 if (UKind == UnaryTransformType::RemoveAllExtents)
9390 return Context.getBaseElementType(BaseType);
9391
9392 if (const auto *AT = Context.getAsArrayType(BaseType))
9393 return AT->getElementType();
9394
9395 return BaseType;
9396 }
9397
BuiltinRemoveReference(QualType BaseType,UTTKind UKind,SourceLocation Loc)9398 QualType Sema::BuiltinRemoveReference(QualType BaseType, UTTKind UKind,
9399 SourceLocation Loc) {
9400 assert(LangOpts.CPlusPlus);
9401 QualType T = BaseType.getNonReferenceType();
9402 if (UKind == UTTKind::RemoveCVRef &&
9403 (T.isConstQualified() || T.isVolatileQualified())) {
9404 Qualifiers Quals;
9405 QualType Unqual = Context.getUnqualifiedArrayType(T, Quals);
9406 Quals.removeConst();
9407 Quals.removeVolatile();
9408 T = Context.getQualifiedType(Unqual, Quals);
9409 }
9410 return T;
9411 }
9412
BuiltinChangeCVRQualifiers(QualType BaseType,UTTKind UKind,SourceLocation Loc)9413 QualType Sema::BuiltinChangeCVRQualifiers(QualType BaseType, UTTKind UKind,
9414 SourceLocation Loc) {
9415 if ((BaseType->isReferenceType() && UKind != UTTKind::RemoveRestrict) ||
9416 BaseType->isFunctionType())
9417 return BaseType;
9418
9419 Qualifiers Quals;
9420 QualType Unqual = Context.getUnqualifiedArrayType(BaseType, Quals);
9421
9422 if (UKind == UTTKind::RemoveConst || UKind == UTTKind::RemoveCV)
9423 Quals.removeConst();
9424 if (UKind == UTTKind::RemoveVolatile || UKind == UTTKind::RemoveCV)
9425 Quals.removeVolatile();
9426 if (UKind == UTTKind::RemoveRestrict)
9427 Quals.removeRestrict();
9428
9429 return Context.getQualifiedType(Unqual, Quals);
9430 }
9431
ChangeIntegralSignedness(Sema & S,QualType BaseType,bool IsMakeSigned,SourceLocation Loc)9432 static QualType ChangeIntegralSignedness(Sema &S, QualType BaseType,
9433 bool IsMakeSigned,
9434 SourceLocation Loc) {
9435 if (BaseType->isEnumeralType()) {
9436 QualType Underlying = GetEnumUnderlyingType(S, BaseType, Loc);
9437 if (auto *BitInt = dyn_cast<BitIntType>(Underlying)) {
9438 unsigned int Bits = BitInt->getNumBits();
9439 if (Bits > 1)
9440 return S.Context.getBitIntType(!IsMakeSigned, Bits);
9441
9442 S.Diag(Loc, diag::err_make_signed_integral_only)
9443 << IsMakeSigned << /*_BitInt(1)*/ true << BaseType << 1 << Underlying;
9444 return QualType();
9445 }
9446 if (Underlying->isBooleanType()) {
9447 S.Diag(Loc, diag::err_make_signed_integral_only)
9448 << IsMakeSigned << /*_BitInt(1)*/ false << BaseType << 1
9449 << Underlying;
9450 return QualType();
9451 }
9452 }
9453
9454 bool Int128Unsupported = !S.Context.getTargetInfo().hasInt128Type();
9455 std::array<CanQualType *, 6> AllSignedIntegers = {
9456 &S.Context.SignedCharTy, &S.Context.ShortTy, &S.Context.IntTy,
9457 &S.Context.LongTy, &S.Context.LongLongTy, &S.Context.Int128Ty};
9458 ArrayRef<CanQualType *> AvailableSignedIntegers(
9459 AllSignedIntegers.data(), AllSignedIntegers.size() - Int128Unsupported);
9460 std::array<CanQualType *, 6> AllUnsignedIntegers = {
9461 &S.Context.UnsignedCharTy, &S.Context.UnsignedShortTy,
9462 &S.Context.UnsignedIntTy, &S.Context.UnsignedLongTy,
9463 &S.Context.UnsignedLongLongTy, &S.Context.UnsignedInt128Ty};
9464 ArrayRef<CanQualType *> AvailableUnsignedIntegers(AllUnsignedIntegers.data(),
9465 AllUnsignedIntegers.size() -
9466 Int128Unsupported);
9467 ArrayRef<CanQualType *> *Consider =
9468 IsMakeSigned ? &AvailableSignedIntegers : &AvailableUnsignedIntegers;
9469
9470 uint64_t BaseSize = S.Context.getTypeSize(BaseType);
9471 auto *Result =
9472 llvm::find_if(*Consider, [&S, BaseSize](const CanQual<Type> *T) {
9473 return BaseSize == S.Context.getTypeSize(T->getTypePtr());
9474 });
9475
9476 assert(Result != Consider->end());
9477 return QualType((*Result)->getTypePtr(), 0);
9478 }
9479
BuiltinChangeSignedness(QualType BaseType,UTTKind UKind,SourceLocation Loc)9480 QualType Sema::BuiltinChangeSignedness(QualType BaseType, UTTKind UKind,
9481 SourceLocation Loc) {
9482 bool IsMakeSigned = UKind == UnaryTransformType::MakeSigned;
9483 if ((!BaseType->isIntegerType() && !BaseType->isEnumeralType()) ||
9484 BaseType->isBooleanType() ||
9485 (BaseType->isBitIntType() &&
9486 BaseType->getAs<BitIntType>()->getNumBits() < 2)) {
9487 Diag(Loc, diag::err_make_signed_integral_only)
9488 << IsMakeSigned << BaseType->isBitIntType() << BaseType << 0;
9489 return QualType();
9490 }
9491
9492 bool IsNonIntIntegral =
9493 BaseType->isChar16Type() || BaseType->isChar32Type() ||
9494 BaseType->isWideCharType() || BaseType->isEnumeralType();
9495
9496 QualType Underlying =
9497 IsNonIntIntegral
9498 ? ChangeIntegralSignedness(*this, BaseType, IsMakeSigned, Loc)
9499 : IsMakeSigned ? Context.getCorrespondingSignedType(BaseType)
9500 : Context.getCorrespondingUnsignedType(BaseType);
9501 if (Underlying.isNull())
9502 return Underlying;
9503 return Context.getQualifiedType(Underlying, BaseType.getQualifiers());
9504 }
9505
BuildUnaryTransformType(QualType BaseType,UTTKind UKind,SourceLocation Loc)9506 QualType Sema::BuildUnaryTransformType(QualType BaseType, UTTKind UKind,
9507 SourceLocation Loc) {
9508 if (BaseType->isDependentType())
9509 return Context.getUnaryTransformType(BaseType, BaseType, UKind);
9510 QualType Result;
9511 switch (UKind) {
9512 case UnaryTransformType::EnumUnderlyingType: {
9513 Result = BuiltinEnumUnderlyingType(BaseType, Loc);
9514 break;
9515 }
9516 case UnaryTransformType::AddPointer: {
9517 Result = BuiltinAddPointer(BaseType, Loc);
9518 break;
9519 }
9520 case UnaryTransformType::RemovePointer: {
9521 Result = BuiltinRemovePointer(BaseType, Loc);
9522 break;
9523 }
9524 case UnaryTransformType::Decay: {
9525 Result = BuiltinDecay(BaseType, Loc);
9526 break;
9527 }
9528 case UnaryTransformType::AddLvalueReference:
9529 case UnaryTransformType::AddRvalueReference: {
9530 Result = BuiltinAddReference(BaseType, UKind, Loc);
9531 break;
9532 }
9533 case UnaryTransformType::RemoveAllExtents:
9534 case UnaryTransformType::RemoveExtent: {
9535 Result = BuiltinRemoveExtent(BaseType, UKind, Loc);
9536 break;
9537 }
9538 case UnaryTransformType::RemoveCVRef:
9539 case UnaryTransformType::RemoveReference: {
9540 Result = BuiltinRemoveReference(BaseType, UKind, Loc);
9541 break;
9542 }
9543 case UnaryTransformType::RemoveConst:
9544 case UnaryTransformType::RemoveCV:
9545 case UnaryTransformType::RemoveRestrict:
9546 case UnaryTransformType::RemoveVolatile: {
9547 Result = BuiltinChangeCVRQualifiers(BaseType, UKind, Loc);
9548 break;
9549 }
9550 case UnaryTransformType::MakeSigned:
9551 case UnaryTransformType::MakeUnsigned: {
9552 Result = BuiltinChangeSignedness(BaseType, UKind, Loc);
9553 break;
9554 }
9555 }
9556
9557 return !Result.isNull()
9558 ? Context.getUnaryTransformType(BaseType, Result, UKind)
9559 : Result;
9560 }
9561
BuildAtomicType(QualType T,SourceLocation Loc)9562 QualType Sema::BuildAtomicType(QualType T, SourceLocation Loc) {
9563 if (!isDependentOrGNUAutoType(T)) {
9564 // FIXME: It isn't entirely clear whether incomplete atomic types
9565 // are allowed or not; for simplicity, ban them for the moment.
9566 if (RequireCompleteType(Loc, T, diag::err_atomic_specifier_bad_type, 0))
9567 return QualType();
9568
9569 int DisallowedKind = -1;
9570 if (T->isArrayType())
9571 DisallowedKind = 1;
9572 else if (T->isFunctionType())
9573 DisallowedKind = 2;
9574 else if (T->isReferenceType())
9575 DisallowedKind = 3;
9576 else if (T->isAtomicType())
9577 DisallowedKind = 4;
9578 else if (T.hasQualifiers())
9579 DisallowedKind = 5;
9580 else if (T->isSizelessType())
9581 DisallowedKind = 6;
9582 else if (!T.isTriviallyCopyableType(Context))
9583 // Some other non-trivially-copyable type (probably a C++ class)
9584 DisallowedKind = 7;
9585 else if (T->isBitIntType())
9586 DisallowedKind = 8;
9587
9588 if (DisallowedKind != -1) {
9589 Diag(Loc, diag::err_atomic_specifier_bad_type) << DisallowedKind << T;
9590 return QualType();
9591 }
9592
9593 // FIXME: Do we need any handling for ARC here?
9594 }
9595
9596 // Build the pointer type.
9597 return Context.getAtomicType(T);
9598 }
9599