1 //===-- X86BaseInfo.h - Top level definitions for X86 -------- --*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains small standalone helper functions and enum definitions for 10 // the X86 target useful for the compiler back-end and the MC libraries. 11 // As such, it deliberately does not include references to LLVM core 12 // code gen types, passes, etc.. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #ifndef LLVM_LIB_TARGET_X86_MCTARGETDESC_X86BASEINFO_H 17 #define LLVM_LIB_TARGET_X86_MCTARGETDESC_X86BASEINFO_H 18 19 #include "X86MCTargetDesc.h" 20 #include "llvm/MC/MCInstrDesc.h" 21 #include "llvm/Support/DataTypes.h" 22 #include "llvm/Support/ErrorHandling.h" 23 24 namespace llvm { 25 26 namespace X86 { 27 // Enums for memory operand decoding. Each memory operand is represented with 28 // a 5 operand sequence in the form: 29 // [BaseReg, ScaleAmt, IndexReg, Disp, Segment] 30 // These enums help decode this. 31 enum { 32 AddrBaseReg = 0, 33 AddrScaleAmt = 1, 34 AddrIndexReg = 2, 35 AddrDisp = 3, 36 37 /// AddrSegmentReg - The operand # of the segment in the memory operand. 38 AddrSegmentReg = 4, 39 40 /// AddrNumOperands - Total number of operands in a memory reference. 41 AddrNumOperands = 5 42 }; 43 44 /// AVX512 static rounding constants. These need to match the values in 45 /// avx512fintrin.h. 46 enum STATIC_ROUNDING { 47 TO_NEAREST_INT = 0, 48 TO_NEG_INF = 1, 49 TO_POS_INF = 2, 50 TO_ZERO = 3, 51 CUR_DIRECTION = 4, 52 NO_EXC = 8 53 }; 54 55 /// The constants to describe instr prefixes if there are 56 enum IPREFIXES { 57 IP_NO_PREFIX = 0, 58 IP_HAS_OP_SIZE = 1U << 0, 59 IP_HAS_AD_SIZE = 1U << 1, 60 IP_HAS_REPEAT_NE = 1U << 2, 61 IP_HAS_REPEAT = 1U << 3, 62 IP_HAS_LOCK = 1U << 4, 63 IP_HAS_NOTRACK = 1U << 5, 64 IP_USE_VEX = 1U << 6, 65 IP_USE_VEX2 = 1U << 7, 66 IP_USE_VEX3 = 1U << 8, 67 IP_USE_EVEX = 1U << 9, 68 IP_USE_DISP8 = 1U << 10, 69 IP_USE_DISP32 = 1U << 11, 70 }; 71 72 enum OperandType : unsigned { 73 /// AVX512 embedded rounding control. This should only have values 0-3. 74 OPERAND_ROUNDING_CONTROL = MCOI::OPERAND_FIRST_TARGET, 75 OPERAND_COND_CODE, 76 }; 77 78 // X86 specific condition code. These correspond to X86_*_COND in 79 // X86InstrInfo.td. They must be kept in synch. 80 enum CondCode { 81 COND_O = 0, 82 COND_NO = 1, 83 COND_B = 2, 84 COND_AE = 3, 85 COND_E = 4, 86 COND_NE = 5, 87 COND_BE = 6, 88 COND_A = 7, 89 COND_S = 8, 90 COND_NS = 9, 91 COND_P = 10, 92 COND_NP = 11, 93 COND_L = 12, 94 COND_GE = 13, 95 COND_LE = 14, 96 COND_G = 15, 97 LAST_VALID_COND = COND_G, 98 99 // Artificial condition codes. These are used by analyzeBranch 100 // to indicate a block terminated with two conditional branches that together 101 // form a compound condition. They occur in code using FCMP_OEQ or FCMP_UNE, 102 // which can't be represented on x86 with a single condition. These 103 // are never used in MachineInstrs and are inverses of one another. 104 COND_NE_OR_P, 105 COND_E_AND_NP, 106 107 COND_INVALID 108 }; 109 110 // The classification for the first instruction in macro fusion. 111 enum class FirstMacroFusionInstKind { 112 // TEST 113 Test, 114 // CMP 115 Cmp, 116 // AND 117 And, 118 // FIXME: Zen 3 support branch fusion for OR/XOR. 119 // ADD, SUB 120 AddSub, 121 // INC, DEC 122 IncDec, 123 // Not valid as a first macro fusion instruction 124 Invalid 125 }; 126 127 enum class SecondMacroFusionInstKind { 128 // JA, JB and variants. 129 AB, 130 // JE, JL, JG and variants. 131 ELG, 132 // JS, JP, JO and variants 133 SPO, 134 // Not a fusible jump. 135 Invalid, 136 }; 137 138 /// \returns the type of the first instruction in macro-fusion. 139 inline FirstMacroFusionInstKind classifyFirstOpcodeInMacroFusion(unsigned Opcode)140 classifyFirstOpcodeInMacroFusion(unsigned Opcode) { 141 switch (Opcode) { 142 default: 143 return FirstMacroFusionInstKind::Invalid; 144 // TEST 145 case X86::TEST16i16: 146 case X86::TEST16mr: 147 case X86::TEST16ri: 148 case X86::TEST16rr: 149 case X86::TEST32i32: 150 case X86::TEST32mr: 151 case X86::TEST32ri: 152 case X86::TEST32rr: 153 case X86::TEST64i32: 154 case X86::TEST64mr: 155 case X86::TEST64ri32: 156 case X86::TEST64rr: 157 case X86::TEST8i8: 158 case X86::TEST8mr: 159 case X86::TEST8ri: 160 case X86::TEST8rr: 161 return FirstMacroFusionInstKind::Test; 162 case X86::AND16i16: 163 case X86::AND16ri: 164 case X86::AND16ri8: 165 case X86::AND16rm: 166 case X86::AND16rr: 167 case X86::AND16rr_REV: 168 case X86::AND32i32: 169 case X86::AND32ri: 170 case X86::AND32ri8: 171 case X86::AND32rm: 172 case X86::AND32rr: 173 case X86::AND32rr_REV: 174 case X86::AND64i32: 175 case X86::AND64ri32: 176 case X86::AND64ri8: 177 case X86::AND64rm: 178 case X86::AND64rr: 179 case X86::AND64rr_REV: 180 case X86::AND8i8: 181 case X86::AND8ri: 182 case X86::AND8ri8: 183 case X86::AND8rm: 184 case X86::AND8rr: 185 case X86::AND8rr_REV: 186 return FirstMacroFusionInstKind::And; 187 // FIXME: Zen 3 support branch fusion for OR/XOR. 188 // CMP 189 case X86::CMP16i16: 190 case X86::CMP16mr: 191 case X86::CMP16ri: 192 case X86::CMP16ri8: 193 case X86::CMP16rm: 194 case X86::CMP16rr: 195 case X86::CMP16rr_REV: 196 case X86::CMP32i32: 197 case X86::CMP32mr: 198 case X86::CMP32ri: 199 case X86::CMP32ri8: 200 case X86::CMP32rm: 201 case X86::CMP32rr: 202 case X86::CMP32rr_REV: 203 case X86::CMP64i32: 204 case X86::CMP64mr: 205 case X86::CMP64ri32: 206 case X86::CMP64ri8: 207 case X86::CMP64rm: 208 case X86::CMP64rr: 209 case X86::CMP64rr_REV: 210 case X86::CMP8i8: 211 case X86::CMP8mr: 212 case X86::CMP8ri: 213 case X86::CMP8ri8: 214 case X86::CMP8rm: 215 case X86::CMP8rr: 216 case X86::CMP8rr_REV: 217 return FirstMacroFusionInstKind::Cmp; 218 // ADD 219 case X86::ADD16i16: 220 case X86::ADD16ri: 221 case X86::ADD16ri8: 222 case X86::ADD16rm: 223 case X86::ADD16rr: 224 case X86::ADD16rr_REV: 225 case X86::ADD32i32: 226 case X86::ADD32ri: 227 case X86::ADD32ri8: 228 case X86::ADD32rm: 229 case X86::ADD32rr: 230 case X86::ADD32rr_REV: 231 case X86::ADD64i32: 232 case X86::ADD64ri32: 233 case X86::ADD64ri8: 234 case X86::ADD64rm: 235 case X86::ADD64rr: 236 case X86::ADD64rr_REV: 237 case X86::ADD8i8: 238 case X86::ADD8ri: 239 case X86::ADD8ri8: 240 case X86::ADD8rm: 241 case X86::ADD8rr: 242 case X86::ADD8rr_REV: 243 // SUB 244 case X86::SUB16i16: 245 case X86::SUB16ri: 246 case X86::SUB16ri8: 247 case X86::SUB16rm: 248 case X86::SUB16rr: 249 case X86::SUB16rr_REV: 250 case X86::SUB32i32: 251 case X86::SUB32ri: 252 case X86::SUB32ri8: 253 case X86::SUB32rm: 254 case X86::SUB32rr: 255 case X86::SUB32rr_REV: 256 case X86::SUB64i32: 257 case X86::SUB64ri32: 258 case X86::SUB64ri8: 259 case X86::SUB64rm: 260 case X86::SUB64rr: 261 case X86::SUB64rr_REV: 262 case X86::SUB8i8: 263 case X86::SUB8ri: 264 case X86::SUB8ri8: 265 case X86::SUB8rm: 266 case X86::SUB8rr: 267 case X86::SUB8rr_REV: 268 return FirstMacroFusionInstKind::AddSub; 269 // INC 270 case X86::INC16r: 271 case X86::INC16r_alt: 272 case X86::INC32r: 273 case X86::INC32r_alt: 274 case X86::INC64r: 275 case X86::INC8r: 276 // DEC 277 case X86::DEC16r: 278 case X86::DEC16r_alt: 279 case X86::DEC32r: 280 case X86::DEC32r_alt: 281 case X86::DEC64r: 282 case X86::DEC8r: 283 return FirstMacroFusionInstKind::IncDec; 284 } 285 } 286 287 /// \returns the type of the second instruction in macro-fusion. 288 inline SecondMacroFusionInstKind classifySecondCondCodeInMacroFusion(X86::CondCode CC)289 classifySecondCondCodeInMacroFusion(X86::CondCode CC) { 290 if (CC == X86::COND_INVALID) 291 return SecondMacroFusionInstKind::Invalid; 292 293 switch (CC) { 294 default: 295 return SecondMacroFusionInstKind::Invalid; 296 // JE,JZ 297 case X86::COND_E: 298 // JNE,JNZ 299 case X86::COND_NE: 300 // JL,JNGE 301 case X86::COND_L: 302 // JLE,JNG 303 case X86::COND_LE: 304 // JG,JNLE 305 case X86::COND_G: 306 // JGE,JNL 307 case X86::COND_GE: 308 return SecondMacroFusionInstKind::ELG; 309 // JB,JC 310 case X86::COND_B: 311 // JNA,JBE 312 case X86::COND_BE: 313 // JA,JNBE 314 case X86::COND_A: 315 // JAE,JNC,JNB 316 case X86::COND_AE: 317 return SecondMacroFusionInstKind::AB; 318 // JS 319 case X86::COND_S: 320 // JNS 321 case X86::COND_NS: 322 // JP,JPE 323 case X86::COND_P: 324 // JNP,JPO 325 case X86::COND_NP: 326 // JO 327 case X86::COND_O: 328 // JNO 329 case X86::COND_NO: 330 return SecondMacroFusionInstKind::SPO; 331 } 332 } 333 334 /// \param FirstKind kind of the first instruction in macro fusion. 335 /// \param SecondKind kind of the second instruction in macro fusion. 336 /// 337 /// \returns true if the two instruction can be macro fused. isMacroFused(FirstMacroFusionInstKind FirstKind,SecondMacroFusionInstKind SecondKind)338 inline bool isMacroFused(FirstMacroFusionInstKind FirstKind, 339 SecondMacroFusionInstKind SecondKind) { 340 switch (FirstKind) { 341 case X86::FirstMacroFusionInstKind::Test: 342 case X86::FirstMacroFusionInstKind::And: 343 return true; 344 case X86::FirstMacroFusionInstKind::Cmp: 345 case X86::FirstMacroFusionInstKind::AddSub: 346 return SecondKind == X86::SecondMacroFusionInstKind::AB || 347 SecondKind == X86::SecondMacroFusionInstKind::ELG; 348 case X86::FirstMacroFusionInstKind::IncDec: 349 return SecondKind == X86::SecondMacroFusionInstKind::ELG; 350 case X86::FirstMacroFusionInstKind::Invalid: 351 return false; 352 } 353 llvm_unreachable("unknown fusion type"); 354 } 355 356 /// Defines the possible values of the branch boundary alignment mask. 357 enum AlignBranchBoundaryKind : uint8_t { 358 AlignBranchNone = 0, 359 AlignBranchFused = 1U << 0, 360 AlignBranchJcc = 1U << 1, 361 AlignBranchJmp = 1U << 2, 362 AlignBranchCall = 1U << 3, 363 AlignBranchRet = 1U << 4, 364 AlignBranchIndirect = 1U << 5 365 }; 366 367 /// Defines the encoding values for segment override prefix. 368 enum EncodingOfSegmentOverridePrefix : uint8_t { 369 CS_Encoding = 0x2E, 370 DS_Encoding = 0x3E, 371 ES_Encoding = 0x26, 372 FS_Encoding = 0x64, 373 GS_Encoding = 0x65, 374 SS_Encoding = 0x36 375 }; 376 377 /// Given a segment register, return the encoding of the segment override 378 /// prefix for it. 379 inline EncodingOfSegmentOverridePrefix getSegmentOverridePrefixForReg(unsigned Reg)380 getSegmentOverridePrefixForReg(unsigned Reg) { 381 switch (Reg) { 382 default: 383 llvm_unreachable("Unknown segment register!"); 384 case X86::CS: 385 return CS_Encoding; 386 case X86::DS: 387 return DS_Encoding; 388 case X86::ES: 389 return ES_Encoding; 390 case X86::FS: 391 return FS_Encoding; 392 case X86::GS: 393 return GS_Encoding; 394 case X86::SS: 395 return SS_Encoding; 396 } 397 } 398 399 } // end namespace X86; 400 401 /// X86II - This namespace holds all of the target specific flags that 402 /// instruction info tracks. 403 /// 404 namespace X86II { 405 /// Target Operand Flag enum. 406 enum TOF { 407 //===------------------------------------------------------------------===// 408 // X86 Specific MachineOperand flags. 409 410 MO_NO_FLAG, 411 412 /// MO_GOT_ABSOLUTE_ADDRESS - On a symbol operand, this represents a 413 /// relocation of: 414 /// SYMBOL_LABEL + [. - PICBASELABEL] 415 MO_GOT_ABSOLUTE_ADDRESS, 416 417 /// MO_PIC_BASE_OFFSET - On a symbol operand this indicates that the 418 /// immediate should get the value of the symbol minus the PIC base label: 419 /// SYMBOL_LABEL - PICBASELABEL 420 MO_PIC_BASE_OFFSET, 421 422 /// MO_GOT - On a symbol operand this indicates that the immediate is the 423 /// offset to the GOT entry for the symbol name from the base of the GOT. 424 /// 425 /// See the X86-64 ELF ABI supplement for more details. 426 /// SYMBOL_LABEL @GOT 427 MO_GOT, 428 429 /// MO_GOTOFF - On a symbol operand this indicates that the immediate is 430 /// the offset to the location of the symbol name from the base of the GOT. 431 /// 432 /// See the X86-64 ELF ABI supplement for more details. 433 /// SYMBOL_LABEL @GOTOFF 434 MO_GOTOFF, 435 436 /// MO_GOTPCREL - On a symbol operand this indicates that the immediate is 437 /// offset to the GOT entry for the symbol name from the current code 438 /// location. 439 /// 440 /// See the X86-64 ELF ABI supplement for more details. 441 /// SYMBOL_LABEL @GOTPCREL 442 MO_GOTPCREL, 443 444 /// MO_GOTPCREL_NORELAX - Same as MO_GOTPCREL except that R_X86_64_GOTPCREL 445 /// relocations are guaranteed to be emitted by the integrated assembler 446 /// instead of the relaxable R_X86_64[_REX]_GOTPCRELX relocations. 447 MO_GOTPCREL_NORELAX, 448 449 /// MO_PLT - On a symbol operand this indicates that the immediate is 450 /// offset to the PLT entry of symbol name from the current code location. 451 /// 452 /// See the X86-64 ELF ABI supplement for more details. 453 /// SYMBOL_LABEL @PLT 454 MO_PLT, 455 456 /// MO_TLSGD - On a symbol operand this indicates that the immediate is 457 /// the offset of the GOT entry with the TLS index structure that contains 458 /// the module number and variable offset for the symbol. Used in the 459 /// general dynamic TLS access model. 460 /// 461 /// See 'ELF Handling for Thread-Local Storage' for more details. 462 /// SYMBOL_LABEL @TLSGD 463 MO_TLSGD, 464 465 /// MO_TLSLD - On a symbol operand this indicates that the immediate is 466 /// the offset of the GOT entry with the TLS index for the module that 467 /// contains the symbol. When this index is passed to a call to 468 /// __tls_get_addr, the function will return the base address of the TLS 469 /// block for the symbol. Used in the x86-64 local dynamic TLS access model. 470 /// 471 /// See 'ELF Handling for Thread-Local Storage' for more details. 472 /// SYMBOL_LABEL @TLSLD 473 MO_TLSLD, 474 475 /// MO_TLSLDM - On a symbol operand this indicates that the immediate is 476 /// the offset of the GOT entry with the TLS index for the module that 477 /// contains the symbol. When this index is passed to a call to 478 /// ___tls_get_addr, the function will return the base address of the TLS 479 /// block for the symbol. Used in the IA32 local dynamic TLS access model. 480 /// 481 /// See 'ELF Handling for Thread-Local Storage' for more details. 482 /// SYMBOL_LABEL @TLSLDM 483 MO_TLSLDM, 484 485 /// MO_GOTTPOFF - On a symbol operand this indicates that the immediate is 486 /// the offset of the GOT entry with the thread-pointer offset for the 487 /// symbol. Used in the x86-64 initial exec TLS access model. 488 /// 489 /// See 'ELF Handling for Thread-Local Storage' for more details. 490 /// SYMBOL_LABEL @GOTTPOFF 491 MO_GOTTPOFF, 492 493 /// MO_INDNTPOFF - On a symbol operand this indicates that the immediate is 494 /// the absolute address of the GOT entry with the negative thread-pointer 495 /// offset for the symbol. Used in the non-PIC IA32 initial exec TLS access 496 /// model. 497 /// 498 /// See 'ELF Handling for Thread-Local Storage' for more details. 499 /// SYMBOL_LABEL @INDNTPOFF 500 MO_INDNTPOFF, 501 502 /// MO_TPOFF - On a symbol operand this indicates that the immediate is 503 /// the thread-pointer offset for the symbol. Used in the x86-64 local 504 /// exec TLS access model. 505 /// 506 /// See 'ELF Handling for Thread-Local Storage' for more details. 507 /// SYMBOL_LABEL @TPOFF 508 MO_TPOFF, 509 510 /// MO_DTPOFF - On a symbol operand this indicates that the immediate is 511 /// the offset of the GOT entry with the TLS offset of the symbol. Used 512 /// in the local dynamic TLS access model. 513 /// 514 /// See 'ELF Handling for Thread-Local Storage' for more details. 515 /// SYMBOL_LABEL @DTPOFF 516 MO_DTPOFF, 517 518 /// MO_NTPOFF - On a symbol operand this indicates that the immediate is 519 /// the negative thread-pointer offset for the symbol. Used in the IA32 520 /// local exec TLS access model. 521 /// 522 /// See 'ELF Handling for Thread-Local Storage' for more details. 523 /// SYMBOL_LABEL @NTPOFF 524 MO_NTPOFF, 525 526 /// MO_GOTNTPOFF - On a symbol operand this indicates that the immediate is 527 /// the offset of the GOT entry with the negative thread-pointer offset for 528 /// the symbol. Used in the PIC IA32 initial exec TLS access model. 529 /// 530 /// See 'ELF Handling for Thread-Local Storage' for more details. 531 /// SYMBOL_LABEL @GOTNTPOFF 532 MO_GOTNTPOFF, 533 534 /// MO_DLLIMPORT - On a symbol operand "FOO", this indicates that the 535 /// reference is actually to the "__imp_FOO" symbol. This is used for 536 /// dllimport linkage on windows. 537 MO_DLLIMPORT, 538 539 /// MO_DARWIN_NONLAZY - On a symbol operand "FOO", this indicates that the 540 /// reference is actually to the "FOO$non_lazy_ptr" symbol, which is a 541 /// non-PIC-base-relative reference to a non-hidden dyld lazy pointer stub. 542 MO_DARWIN_NONLAZY, 543 544 /// MO_DARWIN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this indicates 545 /// that the reference is actually to "FOO$non_lazy_ptr - PICBASE", which is 546 /// a PIC-base-relative reference to a non-hidden dyld lazy pointer stub. 547 MO_DARWIN_NONLAZY_PIC_BASE, 548 549 /// MO_TLVP - On a symbol operand this indicates that the immediate is 550 /// some TLS offset. 551 /// 552 /// This is the TLS offset for the Darwin TLS mechanism. 553 MO_TLVP, 554 555 /// MO_TLVP_PIC_BASE - On a symbol operand this indicates that the immediate 556 /// is some TLS offset from the picbase. 557 /// 558 /// This is the 32-bit TLS offset for Darwin TLS in PIC mode. 559 MO_TLVP_PIC_BASE, 560 561 /// MO_SECREL - On a symbol operand this indicates that the immediate is 562 /// the offset from beginning of section. 563 /// 564 /// This is the TLS offset for the COFF/Windows TLS mechanism. 565 MO_SECREL, 566 567 /// MO_ABS8 - On a symbol operand this indicates that the symbol is known 568 /// to be an absolute symbol in range [0,128), so we can use the @ABS8 569 /// symbol modifier. 570 MO_ABS8, 571 572 /// MO_COFFSTUB - On a symbol operand "FOO", this indicates that the 573 /// reference is actually to the ".refptr.FOO" symbol. This is used for 574 /// stub symbols on windows. 575 MO_COFFSTUB, 576 }; 577 578 enum : uint64_t { 579 //===------------------------------------------------------------------===// 580 // Instruction encodings. These are the standard/most common forms for X86 581 // instructions. 582 // 583 584 // PseudoFrm - This represents an instruction that is a pseudo instruction 585 // or one that has not been implemented yet. It is illegal to code generate 586 // it, but tolerated for intermediate implementation stages. 587 Pseudo = 0, 588 589 /// Raw - This form is for instructions that don't have any operands, so 590 /// they are just a fixed opcode value, like 'leave'. 591 RawFrm = 1, 592 593 /// AddRegFrm - This form is used for instructions like 'push r32' that have 594 /// their one register operand added to their opcode. 595 AddRegFrm = 2, 596 597 /// RawFrmMemOffs - This form is for instructions that store an absolute 598 /// memory offset as an immediate with a possible segment override. 599 RawFrmMemOffs = 3, 600 601 /// RawFrmSrc - This form is for instructions that use the source index 602 /// register SI/ESI/RSI with a possible segment override. 603 RawFrmSrc = 4, 604 605 /// RawFrmDst - This form is for instructions that use the destination index 606 /// register DI/EDI/RDI. 607 RawFrmDst = 5, 608 609 /// RawFrmDstSrc - This form is for instructions that use the source index 610 /// register SI/ESI/RSI with a possible segment override, and also the 611 /// destination index register DI/EDI/RDI. 612 RawFrmDstSrc = 6, 613 614 /// RawFrmImm8 - This is used for the ENTER instruction, which has two 615 /// immediates, the first of which is a 16-bit immediate (specified by 616 /// the imm encoding) and the second is a 8-bit fixed value. 617 RawFrmImm8 = 7, 618 619 /// RawFrmImm16 - This is used for CALL FAR instructions, which have two 620 /// immediates, the first of which is a 16 or 32-bit immediate (specified by 621 /// the imm encoding) and the second is a 16-bit fixed value. In the AMD 622 /// manual, this operand is described as pntr16:32 and pntr16:16 623 RawFrmImm16 = 8, 624 625 /// AddCCFrm - This form is used for Jcc that encode the condition code 626 /// in the lower 4 bits of the opcode. 627 AddCCFrm = 9, 628 629 /// PrefixByte - This form is used for instructions that represent a prefix 630 /// byte like data16 or rep. 631 PrefixByte = 10, 632 633 /// MRMDestMem4VOp3CC - This form is used for instructions that use the Mod/RM 634 /// byte to specify a destination which in this case is memory and operand 3 635 /// with VEX.VVVV, and also encodes a condition code. 636 MRMDestMem4VOp3CC = 20, 637 638 /// MRM[0-7][rm] - These forms are used to represent instructions that use 639 /// a Mod/RM byte, and use the middle field to hold extended opcode 640 /// information. In the intel manual these are represented as /0, /1, ... 641 /// 642 643 // Instructions operate on a register Reg/Opcode operand not the r/m field. 644 MRMr0 = 21, 645 646 /// MRMSrcMem - But force to use the SIB field. 647 MRMSrcMemFSIB = 22, 648 649 /// MRMDestMem - But force to use the SIB field. 650 MRMDestMemFSIB = 23, 651 652 /// MRMDestMem - This form is used for instructions that use the Mod/RM byte 653 /// to specify a destination, which in this case is memory. 654 /// 655 MRMDestMem = 24, 656 657 /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte 658 /// to specify a source, which in this case is memory. 659 /// 660 MRMSrcMem = 25, 661 662 /// MRMSrcMem4VOp3 - This form is used for instructions that encode 663 /// operand 3 with VEX.VVVV and load from memory. 664 /// 665 MRMSrcMem4VOp3 = 26, 666 667 /// MRMSrcMemOp4 - This form is used for instructions that use the Mod/RM 668 /// byte to specify the fourth source, which in this case is memory. 669 /// 670 MRMSrcMemOp4 = 27, 671 672 /// MRMSrcMemCC - This form is used for instructions that use the Mod/RM 673 /// byte to specify the operands and also encodes a condition code. 674 /// 675 MRMSrcMemCC = 28, 676 677 /// MRMXm - This form is used for instructions that use the Mod/RM byte 678 /// to specify a memory source, but doesn't use the middle field. And has 679 /// a condition code. 680 /// 681 MRMXmCC = 30, 682 683 /// MRMXm - This form is used for instructions that use the Mod/RM byte 684 /// to specify a memory source, but doesn't use the middle field. 685 /// 686 MRMXm = 31, 687 688 // Next, instructions that operate on a memory r/m operand... 689 MRM0m = 32, MRM1m = 33, MRM2m = 34, MRM3m = 35, // Format /0 /1 /2 /3 690 MRM4m = 36, MRM5m = 37, MRM6m = 38, MRM7m = 39, // Format /4 /5 /6 /7 691 692 /// MRMDestReg - This form is used for instructions that use the Mod/RM byte 693 /// to specify a destination, which in this case is a register. 694 /// 695 MRMDestReg = 40, 696 697 /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte 698 /// to specify a source, which in this case is a register. 699 /// 700 MRMSrcReg = 41, 701 702 /// MRMSrcReg4VOp3 - This form is used for instructions that encode 703 /// operand 3 with VEX.VVVV and do not load from memory. 704 /// 705 MRMSrcReg4VOp3 = 42, 706 707 /// MRMSrcRegOp4 - This form is used for instructions that use the Mod/RM 708 /// byte to specify the fourth source, which in this case is a register. 709 /// 710 MRMSrcRegOp4 = 43, 711 712 /// MRMSrcRegCC - This form is used for instructions that use the Mod/RM 713 /// byte to specify the operands and also encodes a condition code 714 /// 715 MRMSrcRegCC = 44, 716 717 /// MRMXCCr - This form is used for instructions that use the Mod/RM byte 718 /// to specify a register source, but doesn't use the middle field. And has 719 /// a condition code. 720 /// 721 MRMXrCC = 46, 722 723 /// MRMXr - This form is used for instructions that use the Mod/RM byte 724 /// to specify a register source, but doesn't use the middle field. 725 /// 726 MRMXr = 47, 727 728 // Instructions that operate on a register r/m operand... 729 MRM0r = 48, MRM1r = 49, MRM2r = 50, MRM3r = 51, // Format /0 /1 /2 /3 730 MRM4r = 52, MRM5r = 53, MRM6r = 54, MRM7r = 55, // Format /4 /5 /6 /7 731 732 // Instructions that operate that have mod=11 and an opcode but ignore r/m. 733 MRM0X = 56, MRM1X = 57, MRM2X = 58, MRM3X = 59, // Format /0 /1 /2 /3 734 MRM4X = 60, MRM5X = 61, MRM6X = 62, MRM7X = 63, // Format /4 /5 /6 /7 735 736 /// MRM_XX - A mod/rm byte of exactly 0xXX. 737 MRM_C0 = 64, MRM_C1 = 65, MRM_C2 = 66, MRM_C3 = 67, 738 MRM_C4 = 68, MRM_C5 = 69, MRM_C6 = 70, MRM_C7 = 71, 739 MRM_C8 = 72, MRM_C9 = 73, MRM_CA = 74, MRM_CB = 75, 740 MRM_CC = 76, MRM_CD = 77, MRM_CE = 78, MRM_CF = 79, 741 MRM_D0 = 80, MRM_D1 = 81, MRM_D2 = 82, MRM_D3 = 83, 742 MRM_D4 = 84, MRM_D5 = 85, MRM_D6 = 86, MRM_D7 = 87, 743 MRM_D8 = 88, MRM_D9 = 89, MRM_DA = 90, MRM_DB = 91, 744 MRM_DC = 92, MRM_DD = 93, MRM_DE = 94, MRM_DF = 95, 745 MRM_E0 = 96, MRM_E1 = 97, MRM_E2 = 98, MRM_E3 = 99, 746 MRM_E4 = 100, MRM_E5 = 101, MRM_E6 = 102, MRM_E7 = 103, 747 MRM_E8 = 104, MRM_E9 = 105, MRM_EA = 106, MRM_EB = 107, 748 MRM_EC = 108, MRM_ED = 109, MRM_EE = 110, MRM_EF = 111, 749 MRM_F0 = 112, MRM_F1 = 113, MRM_F2 = 114, MRM_F3 = 115, 750 MRM_F4 = 116, MRM_F5 = 117, MRM_F6 = 118, MRM_F7 = 119, 751 MRM_F8 = 120, MRM_F9 = 121, MRM_FA = 122, MRM_FB = 123, 752 MRM_FC = 124, MRM_FD = 125, MRM_FE = 126, MRM_FF = 127, 753 754 FormMask = 127, 755 756 //===------------------------------------------------------------------===// 757 // Actual flags... 758 759 // OpSize - OpSizeFixed implies instruction never needs a 0x66 prefix. 760 // OpSize16 means this is a 16-bit instruction and needs 0x66 prefix in 761 // 32-bit mode. OpSize32 means this is a 32-bit instruction needs a 0x66 762 // prefix in 16-bit mode. 763 OpSizeShift = 7, 764 OpSizeMask = 0x3 << OpSizeShift, 765 766 OpSizeFixed = 0 << OpSizeShift, 767 OpSize16 = 1 << OpSizeShift, 768 OpSize32 = 2 << OpSizeShift, 769 770 // AsSize - AdSizeX implies this instruction determines its need of 0x67 771 // prefix from a normal ModRM memory operand. The other types indicate that 772 // an operand is encoded with a specific width and a prefix is needed if 773 // it differs from the current mode. 774 AdSizeShift = OpSizeShift + 2, 775 AdSizeMask = 0x3 << AdSizeShift, 776 777 AdSizeX = 0 << AdSizeShift, 778 AdSize16 = 1 << AdSizeShift, 779 AdSize32 = 2 << AdSizeShift, 780 AdSize64 = 3 << AdSizeShift, 781 782 //===------------------------------------------------------------------===// 783 // OpPrefix - There are several prefix bytes that are used as opcode 784 // extensions. These are 0x66, 0xF3, and 0xF2. If this field is 0 there is 785 // no prefix. 786 // 787 OpPrefixShift = AdSizeShift + 2, 788 OpPrefixMask = 0x3 << OpPrefixShift, 789 790 // PD - Prefix code for packed double precision vector floating point 791 // operations performed in the SSE registers. 792 PD = 1 << OpPrefixShift, 793 794 // XS, XD - These prefix codes are for single and double precision scalar 795 // floating point operations performed in the SSE registers. 796 XS = 2 << OpPrefixShift, XD = 3 << OpPrefixShift, 797 798 //===------------------------------------------------------------------===// 799 // OpMap - This field determines which opcode map this instruction 800 // belongs to. i.e. one-byte, two-byte, 0x0f 0x38, 0x0f 0x3a, etc. 801 // 802 OpMapShift = OpPrefixShift + 2, 803 OpMapMask = 0xF << OpMapShift, 804 805 // OB - OneByte - Set if this instruction has a one byte opcode. 806 OB = 0 << OpMapShift, 807 808 // TB - TwoByte - Set if this instruction has a two byte opcode, which 809 // starts with a 0x0F byte before the real opcode. 810 TB = 1 << OpMapShift, 811 812 // T8, TA - Prefix after the 0x0F prefix. 813 T8 = 2 << OpMapShift, TA = 3 << OpMapShift, 814 815 // XOP8 - Prefix to include use of imm byte. 816 XOP8 = 4 << OpMapShift, 817 818 // XOP9 - Prefix to exclude use of imm byte. 819 XOP9 = 5 << OpMapShift, 820 821 // XOPA - Prefix to encode 0xA in VEX.MMMM of XOP instructions. 822 XOPA = 6 << OpMapShift, 823 824 /// ThreeDNow - This indicates that the instruction uses the 825 /// wacky 0x0F 0x0F prefix for 3DNow! instructions. The manual documents 826 /// this as having a 0x0F prefix with a 0x0F opcode, and each instruction 827 /// storing a classifier in the imm8 field. To simplify our implementation, 828 /// we handle this by storeing the classifier in the opcode field and using 829 /// this flag to indicate that the encoder should do the wacky 3DNow! thing. 830 ThreeDNow = 7 << OpMapShift, 831 832 // MAP5, MAP6 - Prefix after the 0x0F prefix. 833 T_MAP5 = 8 << OpMapShift, 834 T_MAP6 = 9 << OpMapShift, 835 836 //===------------------------------------------------------------------===// 837 // REX_W - REX prefixes are instruction prefixes used in 64-bit mode. 838 // They are used to specify GPRs and SSE registers, 64-bit operand size, 839 // etc. We only cares about REX.W and REX.R bits and only the former is 840 // statically determined. 841 // 842 REXShift = OpMapShift + 4, 843 REX_W = 1 << REXShift, 844 845 //===------------------------------------------------------------------===// 846 // This three-bit field describes the size of an immediate operand. Zero is 847 // unused so that we can tell if we forgot to set a value. 848 ImmShift = REXShift + 1, 849 ImmMask = 15 << ImmShift, 850 Imm8 = 1 << ImmShift, 851 Imm8PCRel = 2 << ImmShift, 852 Imm8Reg = 3 << ImmShift, 853 Imm16 = 4 << ImmShift, 854 Imm16PCRel = 5 << ImmShift, 855 Imm32 = 6 << ImmShift, 856 Imm32PCRel = 7 << ImmShift, 857 Imm32S = 8 << ImmShift, 858 Imm64 = 9 << ImmShift, 859 860 //===------------------------------------------------------------------===// 861 // FP Instruction Classification... Zero is non-fp instruction. 862 863 // FPTypeMask - Mask for all of the FP types... 864 FPTypeShift = ImmShift + 4, 865 FPTypeMask = 7 << FPTypeShift, 866 867 // NotFP - The default, set for instructions that do not use FP registers. 868 NotFP = 0 << FPTypeShift, 869 870 // ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0 871 ZeroArgFP = 1 << FPTypeShift, 872 873 // OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst 874 OneArgFP = 2 << FPTypeShift, 875 876 // OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a 877 // result back to ST(0). For example, fcos, fsqrt, etc. 878 // 879 OneArgFPRW = 3 << FPTypeShift, 880 881 // TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an 882 // explicit argument, storing the result to either ST(0) or the implicit 883 // argument. For example: fadd, fsub, fmul, etc... 884 TwoArgFP = 4 << FPTypeShift, 885 886 // CompareFP - 2 arg FP instructions which implicitly read ST(0) and an 887 // explicit argument, but have no destination. Example: fucom, fucomi, ... 888 CompareFP = 5 << FPTypeShift, 889 890 // CondMovFP - "2 operand" floating point conditional move instructions. 891 CondMovFP = 6 << FPTypeShift, 892 893 // SpecialFP - Special instruction forms. Dispatch by opcode explicitly. 894 SpecialFP = 7 << FPTypeShift, 895 896 // Lock prefix 897 LOCKShift = FPTypeShift + 3, 898 LOCK = 1 << LOCKShift, 899 900 // REP prefix 901 REPShift = LOCKShift + 1, 902 REP = 1 << REPShift, 903 904 // Execution domain for SSE instructions. 905 // 0 means normal, non-SSE instruction. 906 SSEDomainShift = REPShift + 1, 907 908 // Encoding 909 EncodingShift = SSEDomainShift + 2, 910 EncodingMask = 0x3 << EncodingShift, 911 912 // VEX - encoding using 0xC4/0xC5 913 VEX = 1 << EncodingShift, 914 915 /// XOP - Opcode prefix used by XOP instructions. 916 XOP = 2 << EncodingShift, 917 918 // VEX_EVEX - Specifies that this instruction use EVEX form which provides 919 // syntax support up to 32 512-bit register operands and up to 7 16-bit 920 // mask operands as well as source operand data swizzling/memory operand 921 // conversion, eviction hint, and rounding mode. 922 EVEX = 3 << EncodingShift, 923 924 // Opcode 925 OpcodeShift = EncodingShift + 2, 926 927 /// VEX_W - Has a opcode specific functionality, but is used in the same 928 /// way as REX_W is for regular SSE instructions. 929 VEX_WShift = OpcodeShift + 8, 930 VEX_W = 1ULL << VEX_WShift, 931 932 /// VEX_4V - Used to specify an additional AVX/SSE register. Several 2 933 /// address instructions in SSE are represented as 3 address ones in AVX 934 /// and the additional register is encoded in VEX_VVVV prefix. 935 VEX_4VShift = VEX_WShift + 1, 936 VEX_4V = 1ULL << VEX_4VShift, 937 938 /// VEX_L - Stands for a bit in the VEX opcode prefix meaning the current 939 /// instruction uses 256-bit wide registers. This is usually auto detected 940 /// if a VR256 register is used, but some AVX instructions also have this 941 /// field marked when using a f256 memory references. 942 VEX_LShift = VEX_4VShift + 1, 943 VEX_L = 1ULL << VEX_LShift, 944 945 // EVEX_K - Set if this instruction requires masking 946 EVEX_KShift = VEX_LShift + 1, 947 EVEX_K = 1ULL << EVEX_KShift, 948 949 // EVEX_Z - Set if this instruction has EVEX.Z field set. 950 EVEX_ZShift = EVEX_KShift + 1, 951 EVEX_Z = 1ULL << EVEX_ZShift, 952 953 // EVEX_L2 - Set if this instruction has EVEX.L' field set. 954 EVEX_L2Shift = EVEX_ZShift + 1, 955 EVEX_L2 = 1ULL << EVEX_L2Shift, 956 957 // EVEX_B - Set if this instruction has EVEX.B field set. 958 EVEX_BShift = EVEX_L2Shift + 1, 959 EVEX_B = 1ULL << EVEX_BShift, 960 961 // The scaling factor for the AVX512's 8-bit compressed displacement. 962 CD8_Scale_Shift = EVEX_BShift + 1, 963 CD8_Scale_Mask = 127ULL << CD8_Scale_Shift, 964 965 /// Explicitly specified rounding control 966 EVEX_RCShift = CD8_Scale_Shift + 7, 967 EVEX_RC = 1ULL << EVEX_RCShift, 968 969 // NOTRACK prefix 970 NoTrackShift = EVEX_RCShift + 1, 971 NOTRACK = 1ULL << NoTrackShift, 972 973 // Force VEX encoding 974 ExplicitVEXShift = NoTrackShift + 1, 975 ExplicitVEXPrefix = 1ULL << ExplicitVEXShift 976 }; 977 978 /// \returns true if the instruction with given opcode is a prefix. isPrefix(uint64_t TSFlags)979 inline bool isPrefix(uint64_t TSFlags) { 980 return (TSFlags & X86II::FormMask) == PrefixByte; 981 } 982 983 /// \returns true if the instruction with given opcode is a pseudo. isPseudo(uint64_t TSFlags)984 inline bool isPseudo(uint64_t TSFlags) { 985 return (TSFlags & X86II::FormMask) == Pseudo; 986 } 987 988 /// \returns the "base" X86 opcode for the specified machine 989 /// instruction. getBaseOpcodeFor(uint64_t TSFlags)990 inline uint8_t getBaseOpcodeFor(uint64_t TSFlags) { 991 return TSFlags >> X86II::OpcodeShift; 992 } 993 hasImm(uint64_t TSFlags)994 inline bool hasImm(uint64_t TSFlags) { 995 return (TSFlags & X86II::ImmMask) != 0; 996 } 997 998 /// Decode the "size of immediate" field from the TSFlags field of the 999 /// specified instruction. getSizeOfImm(uint64_t TSFlags)1000 inline unsigned getSizeOfImm(uint64_t TSFlags) { 1001 switch (TSFlags & X86II::ImmMask) { 1002 default: llvm_unreachable("Unknown immediate size"); 1003 case X86II::Imm8: 1004 case X86II::Imm8PCRel: 1005 case X86II::Imm8Reg: return 1; 1006 case X86II::Imm16: 1007 case X86II::Imm16PCRel: return 2; 1008 case X86II::Imm32: 1009 case X86II::Imm32S: 1010 case X86II::Imm32PCRel: return 4; 1011 case X86II::Imm64: return 8; 1012 } 1013 } 1014 1015 /// \returns true if the immediate of the specified instruction's TSFlags 1016 /// indicates that it is pc relative. isImmPCRel(uint64_t TSFlags)1017 inline bool isImmPCRel(uint64_t TSFlags) { 1018 switch (TSFlags & X86II::ImmMask) { 1019 default: llvm_unreachable("Unknown immediate size"); 1020 case X86II::Imm8PCRel: 1021 case X86II::Imm16PCRel: 1022 case X86II::Imm32PCRel: 1023 return true; 1024 case X86II::Imm8: 1025 case X86II::Imm8Reg: 1026 case X86II::Imm16: 1027 case X86II::Imm32: 1028 case X86II::Imm32S: 1029 case X86II::Imm64: 1030 return false; 1031 } 1032 } 1033 1034 /// \returns true if the immediate of the specified instruction's 1035 /// TSFlags indicates that it is signed. isImmSigned(uint64_t TSFlags)1036 inline bool isImmSigned(uint64_t TSFlags) { 1037 switch (TSFlags & X86II::ImmMask) { 1038 default: llvm_unreachable("Unknown immediate signedness"); 1039 case X86II::Imm32S: 1040 return true; 1041 case X86II::Imm8: 1042 case X86II::Imm8PCRel: 1043 case X86II::Imm8Reg: 1044 case X86II::Imm16: 1045 case X86II::Imm16PCRel: 1046 case X86II::Imm32: 1047 case X86II::Imm32PCRel: 1048 case X86II::Imm64: 1049 return false; 1050 } 1051 } 1052 1053 /// Compute whether all of the def operands are repeated in the uses and 1054 /// therefore should be skipped. 1055 /// This determines the start of the unique operand list. We need to determine 1056 /// if all of the defs have a corresponding tied operand in the uses. 1057 /// Unfortunately, the tied operand information is encoded in the uses not 1058 /// the defs so we have to use some heuristics to find which operands to 1059 /// query. getOperandBias(const MCInstrDesc & Desc)1060 inline unsigned getOperandBias(const MCInstrDesc& Desc) { 1061 unsigned NumDefs = Desc.getNumDefs(); 1062 unsigned NumOps = Desc.getNumOperands(); 1063 switch (NumDefs) { 1064 default: llvm_unreachable("Unexpected number of defs"); 1065 case 0: 1066 return 0; 1067 case 1: 1068 // Common two addr case. 1069 if (NumOps > 1 && Desc.getOperandConstraint(1, MCOI::TIED_TO) == 0) 1070 return 1; 1071 // Check for AVX-512 scatter which has a TIED_TO in the second to last 1072 // operand. 1073 if (NumOps == 8 && 1074 Desc.getOperandConstraint(6, MCOI::TIED_TO) == 0) 1075 return 1; 1076 return 0; 1077 case 2: 1078 // XCHG/XADD have two destinations and two sources. 1079 if (NumOps >= 4 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 && 1080 Desc.getOperandConstraint(3, MCOI::TIED_TO) == 1) 1081 return 2; 1082 // Check for gather. AVX-512 has the second tied operand early. AVX2 1083 // has it as the last op. 1084 if (NumOps == 9 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 && 1085 (Desc.getOperandConstraint(3, MCOI::TIED_TO) == 1 || 1086 Desc.getOperandConstraint(8, MCOI::TIED_TO) == 1)) 1087 return 2; 1088 return 0; 1089 } 1090 } 1091 1092 /// The function returns the MCInst operand # for the first field of the 1093 /// memory operand. If the instruction doesn't have a 1094 /// memory operand, this returns -1. 1095 /// 1096 /// Note that this ignores tied operands. If there is a tied register which 1097 /// is duplicated in the MCInst (e.g. "EAX = addl EAX, [mem]") it is only 1098 /// counted as one operand. 1099 /// getMemoryOperandNo(uint64_t TSFlags)1100 inline int getMemoryOperandNo(uint64_t TSFlags) { 1101 bool HasVEX_4V = TSFlags & X86II::VEX_4V; 1102 bool HasEVEX_K = TSFlags & X86II::EVEX_K; 1103 1104 switch (TSFlags & X86II::FormMask) { 1105 default: llvm_unreachable("Unknown FormMask value in getMemoryOperandNo!"); 1106 case X86II::Pseudo: 1107 case X86II::RawFrm: 1108 case X86II::AddRegFrm: 1109 case X86II::RawFrmImm8: 1110 case X86II::RawFrmImm16: 1111 case X86II::RawFrmMemOffs: 1112 case X86II::RawFrmSrc: 1113 case X86II::RawFrmDst: 1114 case X86II::RawFrmDstSrc: 1115 case X86II::AddCCFrm: 1116 case X86II::PrefixByte: 1117 return -1; 1118 case X86II::MRMDestMem: 1119 case X86II::MRMDestMemFSIB: 1120 return 0; 1121 case X86II::MRMSrcMem: 1122 case X86II::MRMSrcMemFSIB: 1123 // Start from 1, skip any registers encoded in VEX_VVVV or I8IMM, or a 1124 // mask register. 1125 return 1 + HasVEX_4V + HasEVEX_K; 1126 case X86II::MRMSrcMem4VOp3: 1127 // Skip registers encoded in reg. 1128 return 1 + HasEVEX_K; 1129 case X86II::MRMSrcMemOp4: 1130 // Skip registers encoded in reg, VEX_VVVV, and I8IMM. 1131 return 3; 1132 case X86II::MRMSrcMemCC: 1133 case X86II::MRMDestMem4VOp3CC: 1134 // Start from 1, skip any registers encoded in VEX_VVVV or I8IMM, or a 1135 // mask register. 1136 return 1; 1137 case X86II::MRMDestReg: 1138 case X86II::MRMSrcReg: 1139 case X86II::MRMSrcReg4VOp3: 1140 case X86II::MRMSrcRegOp4: 1141 case X86II::MRMSrcRegCC: 1142 case X86II::MRMXrCC: 1143 case X86II::MRMr0: 1144 case X86II::MRMXr: 1145 case X86II::MRM0r: case X86II::MRM1r: 1146 case X86II::MRM2r: case X86II::MRM3r: 1147 case X86II::MRM4r: case X86II::MRM5r: 1148 case X86II::MRM6r: case X86II::MRM7r: 1149 return -1; 1150 case X86II::MRM0X: case X86II::MRM1X: 1151 case X86II::MRM2X: case X86II::MRM3X: 1152 case X86II::MRM4X: case X86II::MRM5X: 1153 case X86II::MRM6X: case X86II::MRM7X: 1154 return -1; 1155 case X86II::MRMXmCC: 1156 case X86II::MRMXm: 1157 case X86II::MRM0m: case X86II::MRM1m: 1158 case X86II::MRM2m: case X86II::MRM3m: 1159 case X86II::MRM4m: case X86II::MRM5m: 1160 case X86II::MRM6m: case X86II::MRM7m: 1161 // Start from 0, skip registers encoded in VEX_VVVV or a mask register. 1162 return 0 + HasVEX_4V + HasEVEX_K; 1163 case X86II::MRM_C0: case X86II::MRM_C1: case X86II::MRM_C2: 1164 case X86II::MRM_C3: case X86II::MRM_C4: case X86II::MRM_C5: 1165 case X86II::MRM_C6: case X86II::MRM_C7: case X86II::MRM_C8: 1166 case X86II::MRM_C9: case X86II::MRM_CA: case X86II::MRM_CB: 1167 case X86II::MRM_CC: case X86II::MRM_CD: case X86II::MRM_CE: 1168 case X86II::MRM_CF: case X86II::MRM_D0: case X86II::MRM_D1: 1169 case X86II::MRM_D2: case X86II::MRM_D3: case X86II::MRM_D4: 1170 case X86II::MRM_D5: case X86II::MRM_D6: case X86II::MRM_D7: 1171 case X86II::MRM_D8: case X86II::MRM_D9: case X86II::MRM_DA: 1172 case X86II::MRM_DB: case X86II::MRM_DC: case X86II::MRM_DD: 1173 case X86II::MRM_DE: case X86II::MRM_DF: case X86II::MRM_E0: 1174 case X86II::MRM_E1: case X86II::MRM_E2: case X86II::MRM_E3: 1175 case X86II::MRM_E4: case X86II::MRM_E5: case X86II::MRM_E6: 1176 case X86II::MRM_E7: case X86II::MRM_E8: case X86II::MRM_E9: 1177 case X86II::MRM_EA: case X86II::MRM_EB: case X86II::MRM_EC: 1178 case X86II::MRM_ED: case X86II::MRM_EE: case X86II::MRM_EF: 1179 case X86II::MRM_F0: case X86II::MRM_F1: case X86II::MRM_F2: 1180 case X86II::MRM_F3: case X86II::MRM_F4: case X86II::MRM_F5: 1181 case X86II::MRM_F6: case X86II::MRM_F7: case X86II::MRM_F8: 1182 case X86II::MRM_F9: case X86II::MRM_FA: case X86II::MRM_FB: 1183 case X86II::MRM_FC: case X86II::MRM_FD: case X86II::MRM_FE: 1184 case X86II::MRM_FF: 1185 return -1; 1186 } 1187 } 1188 1189 /// \returns true if the MachineOperand is a x86-64 extended (r8 or 1190 /// higher) register, e.g. r8, xmm8, xmm13, etc. isX86_64ExtendedReg(unsigned RegNo)1191 inline bool isX86_64ExtendedReg(unsigned RegNo) { 1192 if ((RegNo >= X86::XMM8 && RegNo <= X86::XMM31) || 1193 (RegNo >= X86::YMM8 && RegNo <= X86::YMM31) || 1194 (RegNo >= X86::ZMM8 && RegNo <= X86::ZMM31)) 1195 return true; 1196 1197 switch (RegNo) { 1198 default: break; 1199 case X86::R8: case X86::R9: case X86::R10: case X86::R11: 1200 case X86::R12: case X86::R13: case X86::R14: case X86::R15: 1201 case X86::R8D: case X86::R9D: case X86::R10D: case X86::R11D: 1202 case X86::R12D: case X86::R13D: case X86::R14D: case X86::R15D: 1203 case X86::R8W: case X86::R9W: case X86::R10W: case X86::R11W: 1204 case X86::R12W: case X86::R13W: case X86::R14W: case X86::R15W: 1205 case X86::R8B: case X86::R9B: case X86::R10B: case X86::R11B: 1206 case X86::R12B: case X86::R13B: case X86::R14B: case X86::R15B: 1207 case X86::CR8: case X86::CR9: case X86::CR10: case X86::CR11: 1208 case X86::CR12: case X86::CR13: case X86::CR14: case X86::CR15: 1209 case X86::DR8: case X86::DR9: case X86::DR10: case X86::DR11: 1210 case X86::DR12: case X86::DR13: case X86::DR14: case X86::DR15: 1211 return true; 1212 } 1213 return false; 1214 } 1215 1216 /// \returns true if the MemoryOperand is a 32 extended (zmm16 or higher) 1217 /// registers, e.g. zmm21, etc. is32ExtendedReg(unsigned RegNo)1218 static inline bool is32ExtendedReg(unsigned RegNo) { 1219 return ((RegNo >= X86::XMM16 && RegNo <= X86::XMM31) || 1220 (RegNo >= X86::YMM16 && RegNo <= X86::YMM31) || 1221 (RegNo >= X86::ZMM16 && RegNo <= X86::ZMM31)); 1222 } 1223 1224 isX86_64NonExtLowByteReg(unsigned reg)1225 inline bool isX86_64NonExtLowByteReg(unsigned reg) { 1226 return (reg == X86::SPL || reg == X86::BPL || 1227 reg == X86::SIL || reg == X86::DIL); 1228 } 1229 1230 /// \returns true if this is a masked instruction. isKMasked(uint64_t TSFlags)1231 inline bool isKMasked(uint64_t TSFlags) { 1232 return (TSFlags & X86II::EVEX_K) != 0; 1233 } 1234 1235 /// \returns true if this is a merge masked instruction. isKMergeMasked(uint64_t TSFlags)1236 inline bool isKMergeMasked(uint64_t TSFlags) { 1237 return isKMasked(TSFlags) && (TSFlags & X86II::EVEX_Z) == 0; 1238 } 1239 } 1240 1241 } // end namespace llvm; 1242 1243 #endif 1244