1 /* Definitions for the Blackfin port.
2    Copyright (C) 2005  Free Software Foundation, Inc.
3    Contributed by Analog Devices.
4 
5    This file is part of GCC.
6 
7    GCC is free software; you can redistribute it and/or modify it
8    under the terms of the GNU General Public License as published
9    by the Free Software Foundation; either version 2, or (at your
10    option) any later version.
11 
12    GCC is distributed in the hope that it will be useful, but WITHOUT
13    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14    or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
15    License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with GCC; see the file COPYING.  If not, write to
19    the Free Software Foundation, 51 Franklin Street, Fifth Floor,
20    Boston, MA 02110-1301, USA.  */
21 
22 #ifndef _BFIN_CONFIG
23 #define _BFIN_CONFIG
24 
25 #define OBJECT_FORMAT_ELF
26 
27 #define BRT 1
28 #define BRF 0
29 
30 /* Print subsidiary information on the compiler version in use.  */
31 #define TARGET_VERSION fprintf (stderr, " (BlackFin bfin)")
32 
33 /* Run-time compilation parameters selecting different hardware subsets.  */
34 
35 extern int target_flags;
36 
37 /* Predefinition in the preprocessor for this target machine */
38 #ifndef TARGET_CPU_CPP_BUILTINS
39 #define TARGET_CPU_CPP_BUILTINS()               \
40   do                                            \
41     {                                           \
42       builtin_define ("bfin");                  \
43       builtin_define ("BFIN");                  \
44       if (flag_pic)				\
45 	{					\
46 	  builtin_define ("__PIC__");		\
47 	  builtin_define ("__pic__");		\
48 	}					\
49       if (TARGET_ID_SHARED_LIBRARY)		\
50 	builtin_define ("__ID_SHARED_LIB__");	\
51     }                                           \
52   while (0)
53 #endif
54 
55 /* Generate DSP instructions, like DSP halfword loads */
56 #define TARGET_DSP			(1)
57 
58 #define TARGET_DEFAULT (MASK_SPECLD_ANOMALY | MASK_CSYNC_ANOMALY)
59 
60 /* Maximum number of library ids we permit */
61 #define MAX_LIBRARY_ID 255
62 
63 extern const char *bfin_library_id_string;
64 
65 /* Sometimes certain combinations of command options do not make
66    sense on a particular target machine.  You can define a macro
67    `OVERRIDE_OPTIONS' to take account of this.  This macro, if
68    defined, is executed once just after all the command options have
69    been parsed.
70 
71    Don't use this macro to turn on various extra optimizations for
72    `-O'.  That is what `OPTIMIZATION_OPTIONS' is for.  */
73 
74 #define OVERRIDE_OPTIONS override_options ()
75 
76 #define FUNCTION_MODE    SImode
77 #define Pmode            SImode
78 
79 /* store-condition-codes instructions store 0 for false
80    This is the value stored for true.  */
81 #define STORE_FLAG_VALUE 1
82 
83 /* Define this if pushing a word on the stack
84    makes the stack pointer a smaller address.  */
85 #define STACK_GROWS_DOWNWARD
86 
87 #define STACK_PUSH_CODE PRE_DEC
88 
89 /* Define this to nonzero if the nominal address of the stack frame
90    is at the high-address end of the local variables;
91    that is, each additional local variable allocated
92    goes at a more negative offset in the frame.  */
93 #define FRAME_GROWS_DOWNWARD 1
94 
95 /* We define a dummy ARGP register; the parameters start at offset 0 from
96    it. */
97 #define FIRST_PARM_OFFSET(DECL) 0
98 
99 /* Offset within stack frame to start allocating local variables at.
100    If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
101    first local allocated.  Otherwise, it is the offset to the BEGINNING
102    of the first local allocated.  */
103 #define STARTING_FRAME_OFFSET 0
104 
105 /* Register to use for pushing function arguments.  */
106 #define STACK_POINTER_REGNUM REG_P6
107 
108 /* Base register for access to local variables of the function.  */
109 #define FRAME_POINTER_REGNUM REG_P7
110 
111 /* A dummy register that will be eliminated to either FP or SP.  */
112 #define ARG_POINTER_REGNUM REG_ARGP
113 
114 /* `PIC_OFFSET_TABLE_REGNUM'
115      The register number of the register used to address a table of
116      static data addresses in memory.  In some cases this register is
117      defined by a processor's "application binary interface" (ABI).
118      When this macro is defined, RTL is generated for this register
119      once, as with the stack pointer and frame pointer registers.  If
120      this macro is not defined, it is up to the machine-dependent files
121      to allocate such a register (if necessary). */
122 #define PIC_OFFSET_TABLE_REGNUM (REG_P5)
123 
124 /* A static chain register for nested functions.  We need to use a
125    call-clobbered register for this.  */
126 #define STATIC_CHAIN_REGNUM REG_P2
127 
128 /* Define this if functions should assume that stack space has been
129    allocated for arguments even when their values are passed in
130    registers.
131 
132    The value of this macro is the size, in bytes, of the area reserved for
133    arguments passed in registers.
134 
135    This space can either be allocated by the caller or be a part of the
136    machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE'
137    says which.  */
138 #define FIXED_STACK_AREA 12
139 #define REG_PARM_STACK_SPACE(FNDECL) FIXED_STACK_AREA
140 
141 /* Define this if the above stack space is to be considered part of the
142  * space allocated by the caller.  */
143 #define OUTGOING_REG_PARM_STACK_SPACE
144 
145 /* Define this if the maximum size of all the outgoing args is to be
146    accumulated and pushed during the prologue.  The amount can be
147    found in the variable current_function_outgoing_args_size. */
148 #define ACCUMULATE_OUTGOING_ARGS 1
149 
150 /* Value should be nonzero if functions must have frame pointers.
151    Zero means the frame pointer need not be set up (and parms
152    may be accessed via the stack pointer) in functions that seem suitable.
153    This is computed in `reload', in reload1.c.
154 */
155 #define FRAME_POINTER_REQUIRED (bfin_frame_pointer_required ())
156 
157 #define PARM_BOUNDRY            32
158 
159 #define STACK_BOUNDRY           32
160 
161 /*#define DATA_ALIGNMENT(TYPE, BASIC-ALIGN) for arrays.. */
162 
163 /* Make strings word-aligned so strcpy from constants will be faster.  */
164 #define CONSTANT_ALIGNMENT(EXP, ALIGN)  \
165   (TREE_CODE (EXP) == STRING_CST        \
166    && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
167 
168 #define TRAMPOLINE_SIZE 18
169 #define TRAMPOLINE_TEMPLATE(FILE)                                       \
170   fprintf(FILE, "\t.dd\t0x0000e109\n"); /* p1.l = fn low */		\
171   fprintf(FILE, "\t.dd\t0x0000e149\n"); /* p1.h = fn high */;		\
172   fprintf(FILE, "\t.dd\t0x0000e10a\n"); /* p2.l = sc low */;		\
173   fprintf(FILE, "\t.dd\t0x0000e14a\n"); /* p2.h = sc high */;		\
174   fprintf(FILE, "\t.dw\t0x0051\n"); /* jump (p1)*/
175 
176 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
177   initialize_trampoline (TRAMP, FNADDR, CXT)
178 
179 /* Definitions for register eliminations.
180 
181    This is an array of structures.  Each structure initializes one pair
182    of eliminable registers.  The "from" register number is given first,
183    followed by "to".  Eliminations of the same "from" register are listed
184    in order of preference.
185 
186    There are two registers that can always be eliminated on the i386.
187    The frame pointer and the arg pointer can be replaced by either the
188    hard frame pointer or to the stack pointer, depending upon the
189    circumstances.  The hard frame pointer is not used before reload and
190    so it is not eligible for elimination.  */
191 
192 #define ELIMINABLE_REGS				\
193 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM},	\
194  { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM},	\
195  { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}	\
196 
197 /* Given FROM and TO register numbers, say whether this elimination is
198    allowed.  Frame pointer elimination is automatically handled.
199 
200    All other eliminations are valid.  */
201 
202 #define CAN_ELIMINATE(FROM, TO) \
203   ((TO) == STACK_POINTER_REGNUM ? ! frame_pointer_needed : 1)
204 
205 /* Define the offset between two registers, one to be eliminated, and the other
206    its replacement, at the start of a routine.  */
207 
208 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
209   ((OFFSET) = bfin_initial_elimination_offset ((FROM), (TO)))
210 
211 /* This processor has
212    8 data register for doing arithmetic
213    8  pointer register for doing addressing, including
214       1  stack pointer P6
215       1  frame pointer P7
216    4 sets of indexing registers (I0-3, B0-3, L0-3, M0-3)
217    1  condition code flag register CC
218    5  return address registers RETS/I/X/N/E
219    1  arithmetic status register (ASTAT).  */
220 
221 #define FIRST_PSEUDO_REGISTER 44
222 
223 #define PREG_P(X) (REG_P (X) && REGNO (X) >= REG_P0 && REGNO (X) <= REG_P7)
224 #define ADDRESS_REGNO_P(X) ((X) >= REG_P0 && (X) <= REG_M3)
225 #define D_REGNO_P(X) ((X) <= REG_R7)
226 
227 #define REGISTER_NAMES { \
228   "R0", "R1", "R2", "R3", "R4", "R5", "R6", "R7", \
229   "P0", "P1", "P2", "P3", "P4", "P5", "SP", "FP", \
230   "I0", "I1", "I2", "I3", "B0", "B1", "B2", "B3", \
231   "L0", "L1", "L2", "L3", "M0", "M1", "M2", "M3", \
232   "A0", "A1", \
233   "CC", \
234   "RETS", "RETI", "RETX", "RETN", "RETE", "ASTAT", "SEQSTAT", "USP", \
235   "ARGP" \
236 }
237 
238 #define SHORT_REGISTER_NAMES { \
239 	"R0.L",	"R1.L",	"R2.L",	"R3.L", "R4.L", "R5.L", "R6.L", "R7.L", \
240 	"P0.L",	"P1.L",	"P2.L",	"P3.L", "P4.L", "P5.L", "SP.L", "FP.L", \
241 	"I0.L",	"I1.L", "I2.L",	"I3.L",	"B0.L",	"B1.L",	"B2.L",	"B3.L", \
242 	"L0.L",	"L1.L",	"L2.L",	"L3.L",	"M0.L",	"M1.L",	"M2.L",	"M3.L", }
243 
244 #define HIGH_REGISTER_NAMES { \
245 	"R0.H",	"R1.H",	"R2.H",	"R3.H", "R4.H", "R5.H", "R6.H", "R7.H", \
246 	"P0.H",	"P1.H",	"P2.H",	"P3.H", "P4.H", "P5.H", "SP.H", "FP.H", \
247 	"I0.H",	"I1.H",	"I2.H",	"I3.H",	"B0.H",	"B1.H",	"B2.H",	"B3.H", \
248 	"L0.H",	"L1.H",	"L2.H",	"L3.H",	"M0.H",	"M1.H",	"M2.H",	"M3.H", }
249 
250 #define DREGS_PAIR_NAMES { \
251   "R1:0.p", 0, "R3:2.p", 0, "R5:4.p", 0, "R7:6.p", 0,  }
252 
253 #define BYTE_REGISTER_NAMES { \
254   "R0.B", "R1.B", "R2.B", "R3.B", "R4.B", "R5.B", "R6.B", "R7.B",  }
255 
256 
257 /* 1 for registers that have pervasive standard uses
258    and are not available for the register allocator.  */
259 
260 #define FIXED_REGISTERS \
261 /*r0 r1 r2 r3 r4 r5 r6 r7   p0 p1 p2 p3 p4 p5 p6 p7 */ \
262 { 0, 0, 0, 0, 0, 0, 0, 0,   0, 0, 0, 0, 0, 0, 1, 0,    \
263 /*i0 i1 i2 i3 b0 b1 b2 b3   l0 l1 l2 l3 m0 m1 m2 m3 */ \
264   0, 0, 0, 0, 0, 0, 0, 0,   1, 1, 1, 1, 0, 0, 0, 0,    \
265 /*a0 a1 cc rets/i/x/n/e     astat seqstat usp argp */ \
266   0, 0, 1, 1, 1, 1, 1, 1,   1, 1, 1, 1	 \
267 }
268 
269 /* 1 for registers not available across function calls.
270    These must include the FIXED_REGISTERS and also any
271    registers that can be used without being saved.
272    The latter must include the registers where values are returned
273    and the register where structure-value addresses are passed.
274    Aside from that, you can include as many other registers as you like.  */
275 
276 #define CALL_USED_REGISTERS \
277 /*r0 r1 r2 r3 r4 r5 r6 r7   p0 p1 p2 p3 p4 p5 p6 p7 */ \
278 { 1, 1, 1, 1, 0, 0, 0, 0,   1, 1, 1, 0, 0, 0, 1, 0, \
279 /*i0 i1 i2 i3 b0 b1 b2 b3   l0 l1 l2 l3 m0 m1 m2 m3 */ \
280   1, 1, 1, 1, 1, 1, 1, 1,   1, 1, 1, 1, 1, 1, 1, 1,   \
281 /*a0 a1 cc rets/i/x/n/e     astat seqstat usp argp */ \
282   1, 1, 1, 1, 1, 1, 1, 1,   1, 1, 1, 1	 \
283 }
284 
285 /* Order in which to allocate registers.  Each register must be
286    listed once, even those in FIXED_REGISTERS.  List frame pointer
287    late and fixed registers last.  Note that, in general, we prefer
288    registers listed in CALL_USED_REGISTERS, keeping the others
289    available for storage of persistent values. */
290 
291 #define REG_ALLOC_ORDER \
292 { REG_R0, REG_R1, REG_R2, REG_R3, REG_R7, REG_R6, REG_R5, REG_R4, \
293   REG_P2, REG_P1, REG_P0, REG_P5, REG_P4, REG_P3, REG_P6, REG_P7, \
294   REG_A0, REG_A1, \
295   REG_I0, REG_I1, REG_I2, REG_I3, REG_B0, REG_B1, REG_B2, REG_B3, \
296   REG_L0, REG_L1, REG_L2, REG_L3, REG_M0, REG_M1, REG_M2, REG_M3, \
297   REG_RETS, REG_RETI, REG_RETX, REG_RETN, REG_RETE,		  \
298   REG_ASTAT, REG_SEQSTAT, REG_USP, 				  \
299   REG_CC, REG_ARGP						  \
300 }
301 
302 /* Macro to conditionally modify fixed_regs/call_used_regs.  */
303 #define CONDITIONAL_REGISTER_USAGE			\
304   {							\
305     conditional_register_usage();                       \
306     if (flag_pic)					\
307       {							\
308 	fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1;	\
309 	call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1;	\
310       }							\
311   }
312 
313 /* Define the classes of registers for register constraints in the
314    machine description.  Also define ranges of constants.
315 
316    One of the classes must always be named ALL_REGS and include all hard regs.
317    If there is more than one class, another class must be named NO_REGS
318    and contain no registers.
319 
320    The name GENERAL_REGS must be the name of a class (or an alias for
321    another name such as ALL_REGS).  This is the class of registers
322    that is allowed by "g" or "r" in a register constraint.
323    Also, registers outside this class are allocated only when
324    instructions express preferences for them.
325 
326    The classes must be numbered in nondecreasing order; that is,
327    a larger-numbered class must never be contained completely
328    in a smaller-numbered class.
329 
330    For any two classes, it is very desirable that there be another
331    class that represents their union. */
332 
333 
334 enum reg_class
335 {
336   NO_REGS,
337   IREGS,
338   BREGS,
339   LREGS,
340   MREGS,
341   CIRCREGS, /* Circular buffering registers, Ix, Bx, Lx together form.  See Automatic Circular Buffering.  */
342   DAGREGS,
343   EVEN_AREGS,
344   ODD_AREGS,
345   AREGS,
346   CCREGS,
347   EVEN_DREGS,
348   ODD_DREGS,
349   DREGS,
350   PREGS_CLOBBERED,
351   PREGS,
352   DPREGS,
353   MOST_REGS,
354   PROLOGUE_REGS,
355   NON_A_CC_REGS,
356   ALL_REGS, LIM_REG_CLASSES
357 };
358 
359 #define N_REG_CLASSES ((int)LIM_REG_CLASSES)
360 
361 #define GENERAL_REGS DPREGS
362 
363 /* Give names of register classes as strings for dump file.   */
364 
365 #define REG_CLASS_NAMES \
366 {  "NO_REGS",		\
367    "IREGS",		\
368    "BREGS",		\
369    "LREGS",		\
370    "MREGS",		\
371    "CIRCREGS",		\
372    "DAGREGS",		\
373    "EVEN_AREGS",	\
374    "ODD_AREGS",		\
375    "AREGS",		\
376    "CCREGS",		\
377    "EVEN_DREGS",	\
378    "ODD_DREGS",		\
379    "DREGS",		\
380    "PREGS_CLOBBERED",	\
381    "PREGS",		\
382    "DPREGS",		\
383    "MOST_REGS",		\
384    "PROLOGUE_REGS",	\
385    "NON_A_CC_REGS",	\
386    "ALL_REGS" }
387 
388 /* An initializer containing the contents of the register classes, as integers
389    which are bit masks.  The Nth integer specifies the contents of class N.
390    The way the integer MASK is interpreted is that register R is in the class
391    if `MASK & (1 << R)' is 1.
392 
393    When the machine has more than 32 registers, an integer does not suffice.
394    Then the integers are replaced by sub-initializers, braced groupings
395    containing several integers.  Each sub-initializer must be suitable as an
396    initializer for the type `HARD_REG_SET' which is defined in
397    `hard-reg-set.h'.  */
398 
399 /* NOTE: DSP registers, IREGS - AREGS, are not GENERAL_REGS.  We use
400    MOST_REGS as the union of DPREGS and DAGREGS.  */
401 
402 #define REG_CLASS_CONTENTS \
403     /* 31 - 0       63-32   */ \
404 {   { 0x00000000,    0 },		/* NO_REGS */	\
405     { 0x000f0000,    0 },		/* IREGS */	\
406     { 0x00f00000,    0 },		/* BREGS */		\
407     { 0x0f000000,    0 },		/* LREGS */	\
408     { 0xf0000000,    0 },		/* MREGS */   \
409     { 0x0fff0000,    0 },		/* CIRCREGS */   \
410     { 0xffff0000,    0 },		/* DAGREGS */   \
411     { 0x00000000,    0x1 },		/* EVEN_AREGS */   \
412     { 0x00000000,    0x2 },		/* ODD_AREGS */   \
413     { 0x00000000,    0x3 },		/* AREGS */   \
414     { 0x00000000,    0x4 },		/* CCREGS */  \
415     { 0x00000055,    0 },		/* EVEN_DREGS */   \
416     { 0x000000aa,    0 },		/* ODD_DREGS */   \
417     { 0x000000ff,    0 },		/* DREGS */   \
418     { 0x00004700,    0x800 },		/* PREGS_CLOBBERED */   \
419     { 0x0000ff00,    0x800 },		/* PREGS */   \
420     { 0x0000ffff,    0x800 },		/* DPREGS */   \
421     { 0xffffffff,    0x800 },		/* MOST_REGS */\
422     { 0x00000000,    0x7f8 },		/* PROLOGUE_REGS */\
423     { 0xffffffff,    0xff8 },		/* NON_A_CC_REGS */\
424     { 0xffffffff,    0xfff }}		/* ALL_REGS */
425 
426 #define BASE_REG_CLASS          PREGS
427 #define INDEX_REG_CLASS         PREGS
428 
429 #define REGNO_OK_FOR_BASE_STRICT_P(X) (REGNO_REG_CLASS (X) == BASE_REG_CLASS)
430 #define REGNO_OK_FOR_BASE_NONSTRICT_P(X)  \
431  (((X) >= FIRST_PSEUDO_REGISTER) || REGNO_REG_CLASS (X) == BASE_REG_CLASS)
432 
433 #ifdef REG_OK_STRICT
434 #define REGNO_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_STRICT_P (X)
435 #else
436 #define REGNO_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_NONSTRICT_P (X)
437 #endif
438 
439 #define REG_OK_FOR_BASE_P(X)    (REG_P (X) && REGNO_OK_FOR_BASE_P (REGNO (X)))
440 #define REG_OK_FOR_INDEX_P(X)   0
441 #define REGNO_OK_FOR_INDEX_P(X)   0
442 
443 /* Get reg_class from a letter such as appears in the machine description.  */
444 
445 #define REG_CLASS_FROM_LETTER(LETTER)	\
446   ((LETTER) == 'a' ? PREGS :            \
447    (LETTER) == 'd' ? DREGS : 		\
448    (LETTER) == 'z' ? PREGS_CLOBBERED :	\
449    (LETTER) == 'D' ? EVEN_DREGS : 	\
450    (LETTER) == 'W' ? ODD_DREGS : 	\
451    (LETTER) == 'e' ? AREGS : 		\
452    (LETTER) == 'A' ? EVEN_AREGS : 	\
453    (LETTER) == 'B' ? ODD_AREGS : 	\
454    (LETTER) == 'b' ? IREGS :            \
455    (LETTER) == 'B' ? BREGS :            \
456    (LETTER) == 'f' ? MREGS : 		\
457    (LETTER) == 'c' ? CIRCREGS :         \
458    (LETTER) == 'C' ? CCREGS : 		\
459    (LETTER) == 'x' ? MOST_REGS :	\
460    (LETTER) == 'y' ? PROLOGUE_REGS :	\
461    (LETTER) == 'w' ? NON_A_CC_REGS :	\
462    NO_REGS)
463 
464 /* The same information, inverted:
465    Return the class number of the smallest class containing
466    reg number REGNO.  This could be a conditional expression
467    or could index an array.  */
468 
469 #define REGNO_REG_CLASS(REGNO) \
470  ((REGNO) < REG_P0 ? DREGS				\
471  : (REGNO) < REG_I0 ? PREGS				\
472  : (REGNO) == REG_ARGP ? BASE_REG_CLASS			\
473  : (REGNO) >= REG_I0 && (REGNO) <= REG_I3 ? IREGS	\
474  : (REGNO) >= REG_L0 && (REGNO) <= REG_L3 ? LREGS	\
475  : (REGNO) >= REG_B0 && (REGNO) <= REG_B3 ? BREGS	\
476  : (REGNO) >= REG_M0 && (REGNO) <= REG_M3 ? MREGS	\
477  : (REGNO) == REG_A0 || (REGNO) == REG_A1 ? AREGS	\
478  : (REGNO) == REG_CC ? CCREGS				\
479  : (REGNO) >= REG_RETS ? PROLOGUE_REGS			\
480  : NO_REGS)
481 
482 /* When defined, the compiler allows registers explicitly used in the
483    rtl to be used as spill registers but prevents the compiler from
484    extending the lifetime of these registers. */
485 #define SMALL_REGISTER_CLASSES 1
486 
487 #define CLASS_LIKELY_SPILLED_P(CLASS) \
488     ((CLASS) == PREGS_CLOBBERED \
489      || (CLASS) == PROLOGUE_REGS \
490      || (CLASS) == CCREGS)
491 
492 /* Do not allow to store a value in REG_CC for any mode */
493 /* Do not allow to store value in pregs if mode is not SI*/
494 #define HARD_REGNO_MODE_OK(REGNO, MODE) hard_regno_mode_ok((REGNO), (MODE))
495 
496 /* Return the maximum number of consecutive registers
497    needed to represent mode MODE in a register of class CLASS.  */
498 #define CLASS_MAX_NREGS(CLASS, MODE)	\
499   ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
500 
501 #define HARD_REGNO_NREGS(REGNO, MODE) \
502 ((MODE) == PDImode && ((REGNO) == REG_A0 || (REGNO) == REG_A1) \
503  ? 1 : CLASS_MAX_NREGS (GENERAL_REGS, MODE))
504 
505 /* A C expression that is nonzero if hard register TO can be
506    considered for use as a rename register for FROM register */
507 #define HARD_REGNO_RENAME_OK(FROM, TO) bfin_hard_regno_rename_ok (FROM, TO)
508 
509 /* A C expression that is nonzero if it is desirable to choose
510    register allocation so as to avoid move instructions between a
511    value of mode MODE1 and a value of mode MODE2.
512 
513    If `HARD_REGNO_MODE_OK (R, MODE1)' and `HARD_REGNO_MODE_OK (R,
514    MODE2)' are ever different for any R, then `MODES_TIEABLE_P (MODE1,
515    MODE2)' must be zero. */
516 #define MODES_TIEABLE_P(MODE1, MODE2) ((MODE1) == (MODE2))
517 
518 /* `PREFERRED_RELOAD_CLASS (X, CLASS)'
519    A C expression that places additional restrictions on the register
520    class to use when it is necessary to copy value X into a register
521    in class CLASS.  The value is a register class; perhaps CLASS, or
522    perhaps another, smaller class.  */
523 #define PREFERRED_RELOAD_CLASS(X, CLASS) (CLASS)
524 
525 #define  SECONDARY_OUTPUT_RELOAD_CLASS(class,mode,x) \
526     secondary_output_reload_class(class,mode,x)
527 #define  SECONDARY_INPUT_RELOAD_CLASS(class,mode,x)  \
528     secondary_input_reload_class(class,mode,x)
529 
530 /* Function Calling Conventions. */
531 
532 /* The type of the current function; normal functions are of type
533    SUBROUTINE.  */
534 typedef enum {
535   SUBROUTINE, INTERRUPT_HANDLER, EXCPT_HANDLER, NMI_HANDLER
536 } e_funkind;
537 
538 #define FUNCTION_ARG_REGISTERS { REG_R0, REG_R1, REG_R2, -1 }
539 
540 /* Flags for the call/call_value rtl operations set up by function_arg */
541 #define CALL_NORMAL		0x00000000	/* no special processing */
542 #define CALL_LONG		0x00000001	/* always call indirect */
543 #define CALL_SHORT		0x00000002	/* always call by symbol */
544 
545 typedef struct {
546   int words;			/* # words passed so far */
547   int nregs;			/* # registers available for passing */
548   int *arg_regs;		/* array of register -1 terminated */
549   int call_cookie;		/* Do special things for this call */
550 } CUMULATIVE_ARGS;
551 
552 /* Define where to put the arguments to a function.
553    Value is zero to push the argument on the stack,
554    or a hard register in which to store the argument.
555 
556    MODE is the argument's machine mode.
557    TYPE is the data type of the argument (as a tree).
558     This is null for libcalls where that information may
559     not be available.
560    CUM is a variable of type CUMULATIVE_ARGS which gives info about
561     the preceding args and about the function being called.
562    NAMED is nonzero if this argument is a named parameter
563     (otherwise it is an extra parameter matching an ellipsis).  */
564 
565 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
566   (function_arg (&CUM, MODE, TYPE, NAMED))
567 
568 #define FUNCTION_ARG_REGNO_P(REGNO) function_arg_regno_p (REGNO)
569 
570 
571 /* Initialize a variable CUM of type CUMULATIVE_ARGS
572    for a call to a function whose data type is FNTYPE.
573    For a library call, FNTYPE is 0.  */
574 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT, N_NAMED_ARGS)	\
575   (init_cumulative_args (&CUM, FNTYPE, LIBNAME))
576 
577 /* Update the data in CUM to advance over an argument
578    of mode MODE and data type TYPE.
579    (TYPE is null for libcalls where that information may not be available.)  */
580 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED)	\
581   (function_arg_advance (&CUM, MODE, TYPE, NAMED))
582 
583 #define RETURN_POPS_ARGS(FDECL, FUNTYPE, STKSIZE) 0
584 
585 /* Define how to find the value returned by a function.
586    VALTYPE is the data type of the value (as a tree).
587    If the precise function being called is known, FUNC is its FUNCTION_DECL;
588    otherwise, FUNC is 0.
589 */
590 
591 #define VALUE_REGNO(MODE) (REG_R0)
592 
593 #define FUNCTION_VALUE(VALTYPE, FUNC)		\
594   gen_rtx_REG (TYPE_MODE (VALTYPE),		\
595 	       VALUE_REGNO(TYPE_MODE(VALTYPE)))
596 
597 /* Define how to find the value returned by a library function
598    assuming the value has mode MODE.  */
599 
600 #define LIBCALL_VALUE(MODE)  gen_rtx_REG (MODE, VALUE_REGNO(MODE))
601 
602 #define FUNCTION_VALUE_REGNO_P(N) ((N) == REG_R0)
603 
604 #define DEFAULT_PCC_STRUCT_RETURN 0
605 #define RETURN_IN_MEMORY(TYPE) bfin_return_in_memory(TYPE)
606 
607 /* Before the prologue, the return address is in the RETS register.  */
608 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, REG_RETS)
609 
610 #define RETURN_ADDR_RTX(COUNT, FRAME) bfin_return_addr_rtx (COUNT)
611 
612 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (REG_RETS)
613 
614 /* Call instructions don't modify the stack pointer on the Blackfin.  */
615 #define INCOMING_FRAME_SP_OFFSET 0
616 
617 /* Describe how we implement __builtin_eh_return.  */
618 #define EH_RETURN_DATA_REGNO(N)	((N) < 2 ? (N) : INVALID_REGNUM)
619 #define EH_RETURN_STACKADJ_RTX	gen_rtx_REG (Pmode, REG_P2)
620 #define EH_RETURN_HANDLER_RTX \
621     gen_rtx_MEM (Pmode, plus_constant (frame_pointer_rtx, UNITS_PER_WORD))
622 
623 /* Addressing Modes */
624 
625 /* Recognize any constant value that is a valid address.  */
626 #define CONSTANT_ADDRESS_P(X)	(CONSTANT_P (X))
627 
628 /* Nonzero if the constant value X is a legitimate general operand.
629    symbol_ref are not legitimate and will be put into constant pool.
630    See force_const_mem().
631    If -mno-pool, all constants are legitimate.
632  */
633 #define LEGITIMATE_CONSTANT_P(x) 1
634 
635 /*   A number, the maximum number of registers that can appear in a
636      valid memory address.  Note that it is up to you to specify a
637      value equal to the maximum number that `GO_IF_LEGITIMATE_ADDRESS'
638      would ever accept. */
639 #define MAX_REGS_PER_ADDRESS 1
640 
641 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
642    that is a valid memory address for an instruction.
643    The MODE argument is the machine mode for the MEM expression
644    that wants to use this address.
645 
646    Blackfin addressing modes are as follows:
647 
648       [preg]
649       [preg + imm16]
650 
651       B [ Preg + uimm15 ]
652       W [ Preg + uimm16m2 ]
653       [ Preg + uimm17m4 ]
654 
655       [preg++]
656       [preg--]
657       [--sp]
658 */
659 
660 #define LEGITIMATE_MODE_FOR_AUTOINC_P(MODE) \
661       (GET_MODE_SIZE (MODE) <= 4 || (MODE) == PDImode)
662 
663 #ifdef REG_OK_STRICT
664 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, WIN)		\
665   do {							\
666     if (bfin_legitimate_address_p (MODE, X, 1))		\
667       goto WIN;						\
668   } while (0);
669 #else
670 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, WIN)		\
671   do {							\
672     if (bfin_legitimate_address_p (MODE, X, 0))		\
673       goto WIN;						\
674   } while (0);
675 #endif
676 
677 /* Try machine-dependent ways of modifying an illegitimate address
678    to be legitimate.  If we find one, return the new, valid address.
679    This macro is used in only one place: `memory_address' in explow.c.
680 
681    OLDX is the address as it was before break_out_memory_refs was called.
682    In some cases it is useful to look at this to decide what needs to be done.
683 
684    MODE and WIN are passed so that this macro can use
685    GO_IF_LEGITIMATE_ADDRESS.
686 
687    It is always safe for this macro to do nothing.  It exists to recognize
688    opportunities to optimize the output.
689  */
690 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN)    \
691 do {					       \
692    rtx _q = legitimize_address(X, OLDX, MODE); \
693    if (_q) { X = _q; goto WIN; }	       \
694 } while (0)
695 
696 #define HAVE_POST_INCREMENT 1
697 #define HAVE_POST_DECREMENT 1
698 #define HAVE_PRE_DECREMENT  1
699 
700 /* `LEGITIMATE_PIC_OPERAND_P (X)'
701      A C expression that is nonzero if X is a legitimate immediate
702      operand on the target machine when generating position independent
703      code.  You can assume that X satisfies `CONSTANT_P', so you need
704      not check this.  You can also assume FLAG_PIC is true, so you need
705      not check it either.  You need not define this macro if all
706      constants (including `SYMBOL_REF') can be immediate operands when
707      generating position independent code. */
708 #define LEGITIMATE_PIC_OPERAND_P(X) ! SYMBOLIC_CONST (X)
709 
710 #define SYMBOLIC_CONST(X)	\
711 (GET_CODE (X) == SYMBOL_REF						\
712  || GET_CODE (X) == LABEL_REF						\
713  || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
714 
715 /*
716      A C statement or compound statement with a conditional `goto
717      LABEL;' executed if memory address X (an RTX) can have different
718      meanings depending on the machine mode of the memory reference it
719      is used for or if the address is valid for some modes but not
720      others.
721 
722      Autoincrement and autodecrement addresses typically have
723      mode-dependent effects because the amount of the increment or
724      decrement is the size of the operand being addressed.  Some
725      machines have other mode-dependent addresses.  Many RISC machines
726      have no mode-dependent addresses.
727 
728      You may assume that ADDR is a valid address for the machine.
729 */
730 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)  \
731 do {                                              \
732  if (GET_CODE (ADDR) == POST_INC                  \
733      || GET_CODE (ADDR) == POST_DEC               \
734      || GET_CODE (ADDR) == PRE_DEC)               \
735    goto LABEL;					  \
736 } while (0)
737 
738 #define NOTICE_UPDATE_CC(EXPR, INSN) 0
739 
740 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
741    is done just by pretending it is already truncated.  */
742 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
743 
744 /* Max number of bytes we can move from memory to memory
745    in one reasonably fast instruction.  */
746 #define MOVE_MAX UNITS_PER_WORD
747 
748 
749 /* STORAGE LAYOUT: target machine storage layout
750    Define this macro as a C expression which is nonzero if accessing
751    less than a word of memory (i.e. a `char' or a `short') is no
752    faster than accessing a word of memory, i.e., if such access
753    require more than one instruction or if there is no difference in
754    cost between byte and (aligned) word loads.
755 
756    When this macro is not defined, the compiler will access a field by
757    finding the smallest containing object; when it is defined, a
758    fullword load will be used if alignment permits.  Unless bytes
759    accesses are faster than word accesses, using word accesses is
760    preferable since it may eliminate subsequent memory access if
761    subsequent accesses occur to other fields in the same word of the
762    structure, but to different bytes.  */
763 #define SLOW_BYTE_ACCESS  0
764 #define SLOW_SHORT_ACCESS 0
765 
766 /* Define this if most significant bit is lowest numbered
767    in instructions that operate on numbered bit-fields. */
768 #define BITS_BIG_ENDIAN  0
769 
770 /* Define this if most significant byte of a word is the lowest numbered.
771    We can't access bytes but if we could we would in the Big Endian order. */
772 #define BYTES_BIG_ENDIAN 0
773 
774 /* Define this if most significant word of a multiword number is numbered. */
775 #define WORDS_BIG_ENDIAN 0
776 
777 /* number of bits in an addressable storage unit */
778 #define BITS_PER_UNIT 8
779 
780 /* Width in bits of a "word", which is the contents of a machine register.
781    Note that this is not necessarily the width of data type `int';
782    if using 16-bit ints on a 68000, this would still be 32.
783    But on a machine with 16-bit registers, this would be 16.  */
784 #define BITS_PER_WORD 32
785 
786 /* Width of a word, in units (bytes).  */
787 #define UNITS_PER_WORD 4
788 
789 /* Width in bits of a pointer.
790    See also the macro `Pmode1' defined below.  */
791 #define POINTER_SIZE 32
792 
793 /* Allocation boundary (in *bits*) for storing pointers in memory.  */
794 #define POINTER_BOUNDARY 32
795 
796 /* Allocation boundary (in *bits*) for storing arguments in argument list.  */
797 #define PARM_BOUNDARY 32
798 
799 /* Boundary (in *bits*) on which stack pointer should be aligned.  */
800 #define STACK_BOUNDARY 32
801 
802 /* Allocation boundary (in *bits*) for the code of a function.  */
803 #define FUNCTION_BOUNDARY 32
804 
805 /* Alignment of field after `int : 0' in a structure.  */
806 #define EMPTY_FIELD_BOUNDARY BITS_PER_WORD
807 
808 /* No data type wants to be aligned rounder than this.  */
809 #define BIGGEST_ALIGNMENT 32
810 
811 /* Define this if move instructions will actually fail to work
812    when given unaligned data.  */
813 #define STRICT_ALIGNMENT 1
814 
815 /* (shell-command "rm c-decl.o stor-layout.o")
816  *  never define PCC_BITFIELD_TYPE_MATTERS
817  *  really cause some alignment problem
818  */
819 
820 #define UNITS_PER_FLOAT  ((FLOAT_TYPE_SIZE  + BITS_PER_UNIT - 1) / \
821 			   BITS_PER_UNIT)
822 
823 #define UNITS_PER_DOUBLE ((DOUBLE_TYPE_SIZE + BITS_PER_UNIT - 1) / \
824  			   BITS_PER_UNIT)
825 
826 
827 /* what is the 'type' of size_t */
828 #define SIZE_TYPE "long unsigned int"
829 
830 /* Define this as 1 if `char' should by default be signed; else as 0.  */
831 #define DEFAULT_SIGNED_CHAR 1
832 #define FLOAT_TYPE_SIZE BITS_PER_WORD
833 #define SHORT_TYPE_SIZE 16
834 #define CHAR_TYPE_SIZE	8
835 #define INT_TYPE_SIZE	32
836 #define LONG_TYPE_SIZE	32
837 #define LONG_LONG_TYPE_SIZE 64
838 
839 /* Note: Fix this to depend on target switch. -- lev */
840 
841 /* Note: Try to implement double and force long double. -- tonyko
842  * #define __DOUBLES_ARE_FLOATS__
843  * #define DOUBLE_TYPE_SIZE FLOAT_TYPE_SIZE
844  * #define LONG_DOUBLE_TYPE_SIZE DOUBLE_TYPE_SIZE
845  * #define DOUBLES_ARE_FLOATS 1
846  */
847 
848 #define DOUBLE_TYPE_SIZE	64
849 #define LONG_DOUBLE_TYPE_SIZE	64
850 
851 /* `PROMOTE_MODE (M, UNSIGNEDP, TYPE)'
852      A macro to update M and UNSIGNEDP when an object whose type is
853      TYPE and which has the specified mode and signedness is to be
854      stored in a register.  This macro is only called when TYPE is a
855      scalar type.
856 
857      On most RISC machines, which only have operations that operate on
858      a full register, define this macro to set M to `word_mode' if M is
859      an integer mode narrower than `BITS_PER_WORD'.  In most cases,
860      only integer modes should be widened because wider-precision
861      floating-point operations are usually more expensive than their
862      narrower counterparts.
863 
864      For most machines, the macro definition does not change UNSIGNEDP.
865      However, some machines, have instructions that preferentially
866      handle either signed or unsigned quantities of certain modes.  For
867      example, on the DEC Alpha, 32-bit loads from memory and 32-bit add
868      instructions sign-extend the result to 64 bits.  On such machines,
869      set UNSIGNEDP according to which kind of extension is more
870      efficient.
871 
872      Do not define this macro if it would never modify M.*/
873 
874 #define BFIN_PROMOTE_MODE_P(MODE) \
875     (!TARGET_DSP && GET_MODE_CLASS (MODE) == MODE_INT	\
876       && GET_MODE_SIZE (MODE) < UNITS_PER_WORD)
877 
878 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE)     \
879   if (BFIN_PROMOTE_MODE_P(MODE))		\
880     {                                           \
881       if (MODE == QImode)                       \
882         UNSIGNEDP = 1;                          \
883       else if (MODE == HImode)                  \
884         UNSIGNEDP = 0;      			\
885       (MODE) = SImode;                          \
886     }
887 
888 /* Describing Relative Costs of Operations */
889 
890 /* Do not put function addr into constant pool */
891 #define NO_FUNCTION_CSE 1
892 
893 /* A C expression for the cost of moving data from a register in class FROM to
894    one in class TO.  The classes are expressed using the enumeration values
895    such as `GENERAL_REGS'.  A value of 2 is the default; other values are
896    interpreted relative to that.
897 
898    It is not required that the cost always equal 2 when FROM is the same as TO;
899    on some machines it is expensive to move between registers if they are not
900    general registers.  */
901 
902 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
903    bfin_register_move_cost ((MODE), (CLASS1), (CLASS2))
904 
905 /* A C expression for the cost of moving data of mode M between a
906    register and memory.  A value of 2 is the default; this cost is
907    relative to those in `REGISTER_MOVE_COST'.
908 
909    If moving between registers and memory is more expensive than
910    between two registers, you should define this macro to express the
911    relative cost.  */
912 
913 #define MEMORY_MOVE_COST(MODE, CLASS, IN)	\
914   bfin_memory_move_cost ((MODE), (CLASS), (IN))
915 
916 /* Specify the machine mode that this machine uses
917    for the index in the tablejump instruction.  */
918 #define CASE_VECTOR_MODE SImode
919 
920 #define JUMP_TABLES_IN_TEXT_SECTION flag_pic
921 
922 /* Define if operations between registers always perform the operation
923    on the full register even if a narrower mode is specified.
924 #define WORD_REGISTER_OPERATIONS
925 */
926 
927 #define CONST_18UBIT_IMM_P(VALUE) ((VALUE) >= 0 && (VALUE) <= 262140)
928 #define CONST_16BIT_IMM_P(VALUE) ((VALUE) >= -32768 && (VALUE) <= 32767)
929 #define CONST_16UBIT_IMM_P(VALUE) ((VALUE) >= 0 && (VALUE) <= 65535)
930 #define CONST_7BIT_IMM_P(VALUE) ((VALUE) >= -64 && (VALUE) <= 63)
931 #define CONST_7NBIT_IMM_P(VALUE) ((VALUE) >= -64 && (VALUE) <= 0)
932 #define CONST_5UBIT_IMM_P(VALUE) ((VALUE) >= 0 && (VALUE) <= 31)
933 #define CONST_4BIT_IMM_P(VALUE) ((VALUE) >= -8 && (VALUE) <= 7)
934 #define CONST_4UBIT_IMM_P(VALUE) ((VALUE) >= 0 && (VALUE) <= 15)
935 #define CONST_3BIT_IMM_P(VALUE) ((VALUE) >= -4 && (VALUE) <= 3)
936 #define CONST_3UBIT_IMM_P(VALUE) ((VALUE) >= 0 && (VALUE) <= 7)
937 
938 #define CONSTRAINT_LEN(C, STR)			\
939     ((C) == 'P' || (C) == 'M' || (C) == 'N' ? 2	\
940      : (C) == 'K' ? 3				\
941      : DEFAULT_CONSTRAINT_LEN ((C), (STR)))
942 
943 #define CONST_OK_FOR_P(VALUE, STR)    \
944     ((STR)[1] == '0' ? (VALUE) == 0   \
945      : (STR)[1] == '1' ? (VALUE) == 1 \
946      : (STR)[1] == '2' ? (VALUE) == 2 \
947      : (STR)[1] == '3' ? (VALUE) == 3 \
948      : (STR)[1] == '4' ? (VALUE) == 4 \
949      : 0)
950 
951 #define CONST_OK_FOR_K(VALUE, STR)			\
952     ((STR)[1] == 'u'					\
953      ? ((STR)[2] == '3' ? CONST_3UBIT_IMM_P (VALUE)	\
954 	: (STR)[2] == '4' ? CONST_4UBIT_IMM_P (VALUE)	\
955 	: (STR)[2] == '5' ? CONST_5UBIT_IMM_P (VALUE)	\
956 	: (STR)[2] == 'h' ? CONST_16UBIT_IMM_P (VALUE)	\
957 	: 0)						\
958      : (STR)[1] == 's'					\
959      ? ((STR)[2] == '3' ? CONST_3BIT_IMM_P (VALUE)	\
960 	: (STR)[2] == '4' ? CONST_4BIT_IMM_P (VALUE)	\
961 	: (STR)[2] == '7' ? CONST_7BIT_IMM_P (VALUE)	\
962 	: (STR)[2] == 'h' ? CONST_16BIT_IMM_P (VALUE)	\
963 	: 0)						\
964      : (STR)[1] == 'n'					\
965      ? ((STR)[2] == '7' ? CONST_7NBIT_IMM_P (VALUE)	\
966 	: 0)						\
967      : 0)
968 
969 #define CONST_OK_FOR_M(VALUE, STR)			\
970     ((STR)[1] == '1' ? (VALUE) == 255			\
971      : (STR)[1] == '2' ? (VALUE) == 65535		\
972      : 0)
973 
974 /* The letters I, J, K, L and M in a register constraint string
975    can be used to stand for particular ranges of immediate operands.
976    This macro defines what the ranges are.
977    C is the letter, and VALUE is a constant value.
978    Return 1 if VALUE is in the range specified by C.
979 
980    bfin constant operands are as follows
981 
982      J   2**N       5bit imm scaled
983      Ks7 -64 .. 63  signed 7bit imm
984      Ku5 0..31      unsigned 5bit imm
985      Ks4 -8 .. 7    signed 4bit imm
986      Ks3 -4 .. 3    signed 3bit imm
987      Ku3 0 .. 7     unsigned 3bit imm
988      Pn  0, 1, 2    constants 0, 1 or 2, corresponding to n
989 */
990 #define CONST_OK_FOR_CONSTRAINT_P(VALUE, C, STR)		\
991   ((C) == 'J' ? (log2constp (VALUE))				\
992    : (C) == 'K' ? CONST_OK_FOR_K (VALUE, STR)			\
993    : (C) == 'L' ? log2constp (~(VALUE))				\
994    : (C) == 'M' ? CONST_OK_FOR_M (VALUE, STR)			\
995    : (C) == 'P' ? CONST_OK_FOR_P (VALUE, STR)			\
996    : 0)
997 
998      /*Constant Output Formats */
999 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C)	\
1000   ((C) == 'H' ? 1 : 0)
1001 
1002 #define EXTRA_CONSTRAINT(VALUE, D) \
1003     ((D) == 'Q' ? GET_CODE (VALUE) == SYMBOL_REF : 0)
1004 
1005 /* Switch into a generic section.  */
1006 #define TARGET_ASM_NAMED_SECTION  default_elf_asm_named_section
1007 
1008 #define PRINT_OPERAND(FILE, RTX, CODE)	 print_operand (FILE, RTX, CODE)
1009 #define PRINT_OPERAND_ADDRESS(FILE, RTX) print_address_operand (FILE, RTX)
1010 
1011 typedef enum sections {
1012     CODE_DIR,
1013     DATA_DIR,
1014     LAST_SECT_NM
1015 } SECT_ENUM_T;
1016 
1017 typedef enum directives {
1018     LONG_CONST_DIR,
1019     SHORT_CONST_DIR,
1020     BYTE_CONST_DIR,
1021     SPACE_DIR,
1022     INIT_DIR,
1023     LAST_DIR_NM
1024 } DIR_ENUM_T;
1025 
1026 #define TEXT_SECTION_ASM_OP ".text;"
1027 #define DATA_SECTION_ASM_OP ".data;"
1028 
1029 #define ASM_APP_ON  ""
1030 #define ASM_APP_OFF ""
1031 
1032 #define ASM_GLOBALIZE_LABEL1(FILE, NAME) \
1033   do {  fputs (".global ", FILE);		\
1034         assemble_name (FILE, NAME);	        \
1035         fputc (';',FILE);			\
1036         fputc ('\n',FILE);			\
1037       } while (0)
1038 
1039 #define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \
1040   do {					\
1041     fputs (".type ", FILE);           	\
1042     assemble_name (FILE, NAME);         \
1043     fputs (", STT_FUNC", FILE);         \
1044     fputc (';',FILE);                   \
1045     fputc ('\n',FILE);			\
1046     ASM_OUTPUT_LABEL(FILE, NAME);	\
1047   } while (0)
1048 
1049 #define ASM_OUTPUT_LABEL(FILE, NAME)    \
1050   do {  assemble_name (FILE, NAME);		\
1051         fputs (":\n",FILE);			\
1052       } while (0)
1053 
1054 #define ASM_OUTPUT_LABELREF(FILE,NAME) 	\
1055     do {  fprintf (FILE, "_%s", NAME); \
1056         } while (0)
1057 
1058 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE)    	\
1059 do { char __buf[256];					\
1060      fprintf (FILE, "\t.dd\t");				\
1061      ASM_GENERATE_INTERNAL_LABEL (__buf, "L", VALUE);	\
1062      assemble_name (FILE, __buf);			\
1063      fputc (';', FILE);					\
1064      fputc ('\n', FILE);				\
1065    } while (0)
1066 
1067 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1068     MY_ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL)
1069 
1070 #define MY_ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL)		\
1071     do {							\
1072 	char __buf[256];					\
1073 	fprintf (FILE, "\t.dd\t");				\
1074 	ASM_GENERATE_INTERNAL_LABEL (__buf, "L", VALUE);	\
1075 	assemble_name (FILE, __buf);				\
1076 	fputs (" - ", FILE);					\
1077 	ASM_GENERATE_INTERNAL_LABEL (__buf, "L", REL);		\
1078 	assemble_name (FILE, __buf);				\
1079 	fputc (';', FILE);					\
1080 	fputc ('\n', FILE);					\
1081     } while (0)
1082 
1083 #define ASM_OUTPUT_ALIGN(FILE,LOG) 				\
1084     do {							\
1085       if ((LOG) != 0)						\
1086 	fprintf (FILE, "\t.align %d\n", 1 << (LOG));		\
1087     } while (0)
1088 
1089 #define ASM_OUTPUT_SKIP(FILE,SIZE)		\
1090     do {					\
1091 	asm_output_skip (FILE, SIZE);		\
1092     } while (0)
1093 
1094 #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) 	\
1095 do { 						\
1096     data_section();				\
1097     if ((SIZE) >= (unsigned int) 4 ) ASM_OUTPUT_ALIGN(FILE,2);	\
1098     ASM_OUTPUT_SIZE_DIRECTIVE (FILE, NAME, SIZE);		\
1099     ASM_OUTPUT_LABEL (FILE, NAME);				\
1100     fprintf (FILE, "%s %ld;\n", ASM_SPACE,			\
1101 	     (ROUNDED) > (unsigned int) 1 ? (ROUNDED) : 1);	\
1102 } while (0)
1103 
1104 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED)	\
1105      do {						\
1106 	ASM_GLOBALIZE_LABEL1(FILE,NAME); 		\
1107         ASM_OUTPUT_LOCAL (FILE, NAME, SIZE, ROUNDED); } while(0)
1108 
1109 #define ASM_COMMENT_START "//"
1110 
1111 #define FUNCTION_PROFILER(FILE, LABELNO) \
1112   do {\
1113     fprintf (FILE, "\tP1.l =LP$%d; P1.h =LP$%d; call mcount;\n", \
1114        LABELNO, LABELNO);\
1115   } while(0)
1116 
1117 #define ASM_OUTPUT_REG_PUSH(FILE, REGNO) fprintf (FILE, "[SP--] = %s;\n", reg_names[REGNO])
1118 #define ASM_OUTPUT_REG_POP(FILE, REGNO)  fprintf (FILE, "%s = [SP++];\n", reg_names[REGNO])
1119 
1120 extern struct rtx_def *bfin_compare_op0, *bfin_compare_op1;
1121 extern struct rtx_def *bfin_cc_rtx, *bfin_rets_rtx;
1122 
1123 /* This works for GAS and some other assemblers.  */
1124 #define SET_ASM_OP              ".set "
1125 
1126 /* Don't know how to order these.  UNALIGNED_WORD_ASM_OP is in
1127    dwarf2.out. */
1128 #define UNALIGNED_WORD_ASM_OP ".4byte"
1129 
1130 /* DBX register number for a given compiler register number */
1131 #define DBX_REGISTER_NUMBER(REGNO)  (REGNO)
1132 
1133 #define SIZE_ASM_OP     "\t.size\t"
1134 
1135 #endif /*  _BFIN_CONFIG */
1136