1 /*
2 * QEMU CPU model
3 *
4 * Copyright (c) 2012 SUSE LINUX Products GmbH
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
19 */
20 #ifndef QEMU_CPU_H
21 #define QEMU_CPU_H
22
23 #include "hw/qdev-core.h"
24 #include "disas/dis-asm.h"
25 #include "exec/breakpoint.h"
26 #include "exec/hwaddr.h"
27 #include "exec/vaddr.h"
28 #include "exec/memattrs.h"
29 #include "exec/mmu-access-type.h"
30 #include "exec/tlb-common.h"
31 #include "qapi/qapi-types-machine.h"
32 #include "qapi/qapi-types-run-state.h"
33 #include "qemu/bitmap.h"
34 #include "qemu/rcu_queue.h"
35 #include "qemu/queue.h"
36 #include "qemu/lockcnt.h"
37 #include "qemu/thread.h"
38 #include "qom/object.h"
39
40 typedef int (*WriteCoreDumpFunction)(const void *buf, size_t size,
41 void *opaque);
42
43 /**
44 * SECTION:cpu
45 * @section_id: QEMU-cpu
46 * @title: CPU Class
47 * @short_description: Base class for all CPUs
48 */
49
50 #define TYPE_CPU "cpu"
51
52 /* Since this macro is used a lot in hot code paths and in conjunction with
53 * FooCPU *foo_env_get_cpu(), we deviate from usual QOM practice by using
54 * an unchecked cast.
55 */
56 #define CPU(obj) ((CPUState *)(obj))
57
58 /*
59 * The class checkers bring in CPU_GET_CLASS() which is potentially
60 * expensive given the eventual call to
61 * object_class_dynamic_cast_assert(). Because of this the CPUState
62 * has a cached value for the class in cs->cc which is set up in
63 * cpu_exec_realizefn() for use in hot code paths.
64 */
65 typedef struct CPUClass CPUClass;
66 DECLARE_CLASS_CHECKERS(CPUClass, CPU,
67 TYPE_CPU)
68
69 /**
70 * OBJECT_DECLARE_CPU_TYPE:
71 * @CpuInstanceType: instance struct name
72 * @CpuClassType: class struct name
73 * @CPU_MODULE_OBJ_NAME: the CPU name in uppercase with underscore separators
74 *
75 * This macro is typically used in "cpu-qom.h" header file, and will:
76 *
77 * - create the typedefs for the CPU object and class structs
78 * - register the type for use with g_autoptr
79 * - provide three standard type cast functions
80 *
81 * The object struct and class struct need to be declared manually.
82 */
83 #define OBJECT_DECLARE_CPU_TYPE(CpuInstanceType, CpuClassType, CPU_MODULE_OBJ_NAME) \
84 typedef struct ArchCPU CpuInstanceType; \
85 OBJECT_DECLARE_TYPE(ArchCPU, CpuClassType, CPU_MODULE_OBJ_NAME);
86
87 typedef struct CPUWatchpoint CPUWatchpoint;
88
89 /* see physmem.c */
90 struct CPUAddressSpace;
91
92 /* see accel/tcg/tb-jmp-cache.h */
93 struct CPUJumpCache;
94
95 /* see accel-cpu.h */
96 struct AccelCPUClass;
97
98 /* see sysemu-cpu-ops.h */
99 struct SysemuCPUOps;
100
101 /**
102 * CPUClass:
103 * @class_by_name: Callback to map -cpu command line model name to an
104 * instantiatable CPU type.
105 * @parse_features: Callback to parse command line arguments.
106 * @reset_dump_flags: #CPUDumpFlags to use for reset logging.
107 * @has_work: Callback for checking if there is work to do.
108 * @mmu_index: Callback for choosing softmmu mmu index;
109 * may be used internally by memory_rw_debug without TCG.
110 * @memory_rw_debug: Callback for GDB memory access.
111 * @dump_state: Callback for dumping state.
112 * @query_cpu_fast:
113 * Fill in target specific information for the "query-cpus-fast"
114 * QAPI call.
115 * @get_arch_id: Callback for getting architecture-dependent CPU ID.
116 * @set_pc: Callback for setting the Program Counter register. This
117 * should have the semantics used by the target architecture when
118 * setting the PC from a source such as an ELF file entry point;
119 * for example on Arm it will also set the Thumb mode bit based
120 * on the least significant bit of the new PC value.
121 * If the target behaviour here is anything other than "set
122 * the PC register to the value passed in" then the target must
123 * also implement the synchronize_from_tb hook.
124 * @get_pc: Callback for getting the Program Counter register.
125 * As above, with the semantics of the target architecture.
126 * @gdb_read_register: Callback for letting GDB read a register.
127 * @gdb_write_register: Callback for letting GDB write a register.
128 * @gdb_adjust_breakpoint: Callback for adjusting the address of a
129 * breakpoint. Used by AVR to handle a gdb mis-feature with
130 * its Harvard architecture split code and data.
131 * @gdb_num_core_regs: Number of core registers accessible to GDB or 0 to infer
132 * from @gdb_core_xml_file.
133 * @gdb_core_xml_file: File name for core registers GDB XML description.
134 * @gdb_stop_before_watchpoint: Indicates whether GDB expects the CPU to stop
135 * before the insn which triggers a watchpoint rather than after it.
136 * @gdb_arch_name: Optional callback that returns the architecture name known
137 * to GDB. The caller must free the returned string with g_free.
138 * @disas_set_info: Setup architecture specific components of disassembly info
139 * @adjust_watchpoint_address: Perform a target-specific adjustment to an
140 * address before attempting to match it against watchpoints.
141 * @deprecation_note: If this CPUClass is deprecated, this field provides
142 * related information.
143 *
144 * Represents a CPU family or model.
145 */
146 struct CPUClass {
147 /*< private >*/
148 DeviceClass parent_class;
149 /*< public >*/
150
151 ObjectClass *(*class_by_name)(const char *cpu_model);
152 void (*parse_features)(const char *typename, char *str, Error **errp);
153
154 bool (*has_work)(CPUState *cpu);
155 int (*mmu_index)(CPUState *cpu, bool ifetch);
156 int (*memory_rw_debug)(CPUState *cpu, vaddr addr,
157 uint8_t *buf, int len, bool is_write);
158 void (*dump_state)(CPUState *cpu, FILE *, int flags);
159 void (*query_cpu_fast)(CPUState *cpu, CpuInfoFast *value);
160 int64_t (*get_arch_id)(CPUState *cpu);
161 bool (*cpu_persistent_status)(CPUState *cpu);
162 bool (*cpu_enabled_status)(CPUState *cpu);
163 void (*set_pc)(CPUState *cpu, vaddr value);
164 vaddr (*get_pc)(CPUState *cpu);
165 int (*gdb_read_register)(CPUState *cpu, GByteArray *buf, int reg);
166 int (*gdb_write_register)(CPUState *cpu, uint8_t *buf, int reg);
167 vaddr (*gdb_adjust_breakpoint)(CPUState *cpu, vaddr addr);
168
169 const char *gdb_core_xml_file;
170 const gchar * (*gdb_arch_name)(CPUState *cpu);
171
172 void (*disas_set_info)(CPUState *cpu, disassemble_info *info);
173
174 const char *deprecation_note;
175 struct AccelCPUClass *accel_cpu;
176
177 /* when system emulation is not available, this pointer is NULL */
178 const struct SysemuCPUOps *sysemu_ops;
179
180 /* when TCG is not available, this pointer is NULL */
181 const TCGCPUOps *tcg_ops;
182
183 /*
184 * if not NULL, this is called in order for the CPUClass to initialize
185 * class data that depends on the accelerator, see accel/accel-common.c.
186 */
187 void (*init_accel_cpu)(struct AccelCPUClass *accel_cpu, CPUClass *cc);
188
189 /*
190 * Keep non-pointer data at the end to minimize holes.
191 */
192 int reset_dump_flags;
193 int gdb_num_core_regs;
194 bool gdb_stop_before_watchpoint;
195 };
196
197 /*
198 * Fix the number of mmu modes to 16, which is also the maximum
199 * supported by the softmmu tlb api.
200 */
201 #define NB_MMU_MODES 16
202
203 /* Use a fully associative victim tlb of 8 entries. */
204 #define CPU_VTLB_SIZE 8
205
206 /*
207 * The full TLB entry, which is not accessed by generated TCG code,
208 * so the layout is not as critical as that of CPUTLBEntry. This is
209 * also why we don't want to combine the two structs.
210 */
211 struct CPUTLBEntryFull {
212 /*
213 * @xlat_section contains:
214 * - in the lower TARGET_PAGE_BITS, a physical section number
215 * - with the lower TARGET_PAGE_BITS masked off, an offset which
216 * must be added to the virtual address to obtain:
217 * + the ram_addr_t of the target RAM (if the physical section
218 * number is PHYS_SECTION_NOTDIRTY or PHYS_SECTION_ROM)
219 * + the offset within the target MemoryRegion (otherwise)
220 */
221 hwaddr xlat_section;
222
223 /*
224 * @phys_addr contains the physical address in the address space
225 * given by cpu_asidx_from_attrs(cpu, @attrs).
226 */
227 hwaddr phys_addr;
228
229 /* @attrs contains the memory transaction attributes for the page. */
230 MemTxAttrs attrs;
231
232 /* @prot contains the complete protections for the page. */
233 uint8_t prot;
234
235 /* @lg_page_size contains the log2 of the page size. */
236 uint8_t lg_page_size;
237
238 /* Additional tlb flags requested by tlb_fill. */
239 uint8_t tlb_fill_flags;
240
241 /*
242 * Additional tlb flags for use by the slow path. If non-zero,
243 * the corresponding CPUTLBEntry comparator must have TLB_FORCE_SLOW.
244 */
245 uint8_t slow_flags[MMU_ACCESS_COUNT];
246
247 /*
248 * Allow target-specific additions to this structure.
249 * This may be used to cache items from the guest cpu
250 * page tables for later use by the implementation.
251 */
252 union {
253 /*
254 * Cache the attrs and shareability fields from the page table entry.
255 *
256 * For ARMMMUIdx_Stage2*, pte_attrs is the S2 descriptor bits [5:2].
257 * Otherwise, pte_attrs is the same as the MAIR_EL1 8-bit format.
258 * For shareability and guarded, as in the SH and GP fields respectively
259 * of the VMSAv8-64 PTEs.
260 */
261 struct {
262 uint8_t pte_attrs;
263 uint8_t shareability;
264 bool guarded;
265 } arm;
266 } extra;
267 };
268
269 /*
270 * Data elements that are per MMU mode, minus the bits accessed by
271 * the TCG fast path.
272 */
273 typedef struct CPUTLBDesc {
274 /*
275 * Describe a region covering all of the large pages allocated
276 * into the tlb. When any page within this region is flushed,
277 * we must flush the entire tlb. The region is matched if
278 * (addr & large_page_mask) == large_page_addr.
279 */
280 vaddr large_page_addr;
281 vaddr large_page_mask;
282 /* host time (in ns) at the beginning of the time window */
283 int64_t window_begin_ns;
284 /* maximum number of entries observed in the window */
285 size_t window_max_entries;
286 size_t n_used_entries;
287 /* The next index to use in the tlb victim table. */
288 size_t vindex;
289 /* The tlb victim table, in two parts. */
290 CPUTLBEntry vtable[CPU_VTLB_SIZE];
291 CPUTLBEntryFull vfulltlb[CPU_VTLB_SIZE];
292 CPUTLBEntryFull *fulltlb;
293 } CPUTLBDesc;
294
295 /*
296 * Data elements that are shared between all MMU modes.
297 */
298 typedef struct CPUTLBCommon {
299 /* Serialize updates to f.table and d.vtable, and others as noted. */
300 QemuSpin lock;
301 /*
302 * Within dirty, for each bit N, modifications have been made to
303 * mmu_idx N since the last time that mmu_idx was flushed.
304 * Protected by tlb_c.lock.
305 */
306 uint16_t dirty;
307 /*
308 * Statistics. These are not lock protected, but are read and
309 * written atomically. This allows the monitor to print a snapshot
310 * of the stats without interfering with the cpu.
311 */
312 size_t full_flush_count;
313 size_t part_flush_count;
314 size_t elide_flush_count;
315 } CPUTLBCommon;
316
317 /*
318 * The entire softmmu tlb, for all MMU modes.
319 * The meaning of each of the MMU modes is defined in the target code.
320 * Since this is placed within CPUNegativeOffsetState, the smallest
321 * negative offsets are at the end of the struct.
322 */
323 typedef struct CPUTLB {
324 #ifdef CONFIG_TCG
325 CPUTLBCommon c;
326 CPUTLBDesc d[NB_MMU_MODES];
327 CPUTLBDescFast f[NB_MMU_MODES];
328 #endif
329 } CPUTLB;
330
331 /*
332 * Low 16 bits: number of cycles left, used only in icount mode.
333 * High 16 bits: Set to -1 to force TCG to stop executing linked TBs
334 * for this CPU and return to its top level loop (even in non-icount mode).
335 * This allows a single read-compare-cbranch-write sequence to test
336 * for both decrementer underflow and exceptions.
337 */
338 typedef union IcountDecr {
339 uint32_t u32;
340 struct {
341 #if HOST_BIG_ENDIAN
342 uint16_t high;
343 uint16_t low;
344 #else
345 uint16_t low;
346 uint16_t high;
347 #endif
348 } u16;
349 } IcountDecr;
350
351 /**
352 * CPUNegativeOffsetState: Elements of CPUState most efficiently accessed
353 * from CPUArchState, via small negative offsets.
354 * @can_do_io: True if memory-mapped IO is allowed.
355 * @plugin_mem_cbs: active plugin memory callbacks
356 * @plugin_mem_value_low: 64 lower bits of latest accessed mem value.
357 * @plugin_mem_value_high: 64 higher bits of latest accessed mem value.
358 */
359 typedef struct CPUNegativeOffsetState {
360 CPUTLB tlb;
361 #ifdef CONFIG_PLUGIN
362 /*
363 * The callback pointer are accessed via TCG (see gen_empty_mem_helper).
364 */
365 GArray *plugin_mem_cbs;
366 uint64_t plugin_mem_value_low;
367 uint64_t plugin_mem_value_high;
368 #endif
369 IcountDecr icount_decr;
370 bool can_do_io;
371 } CPUNegativeOffsetState;
372
373 struct KVMState;
374 struct kvm_run;
375
376 /* work queue */
377
378 /* The union type allows passing of 64 bit target pointers on 32 bit
379 * hosts in a single parameter
380 */
381 typedef union {
382 int host_int;
383 unsigned long host_ulong;
384 void *host_ptr;
385 vaddr target_ptr;
386 } run_on_cpu_data;
387
388 #define RUN_ON_CPU_HOST_PTR(p) ((run_on_cpu_data){.host_ptr = (p)})
389 #define RUN_ON_CPU_HOST_INT(i) ((run_on_cpu_data){.host_int = (i)})
390 #define RUN_ON_CPU_HOST_ULONG(ul) ((run_on_cpu_data){.host_ulong = (ul)})
391 #define RUN_ON_CPU_TARGET_PTR(v) ((run_on_cpu_data){.target_ptr = (v)})
392 #define RUN_ON_CPU_NULL RUN_ON_CPU_HOST_PTR(NULL)
393
394 typedef void (*run_on_cpu_func)(CPUState *cpu, run_on_cpu_data data);
395
396 struct qemu_work_item;
397
398 #define CPU_UNSET_NUMA_NODE_ID -1
399
400 /**
401 * struct CPUState - common state of one CPU core or thread.
402 *
403 * @cpu_index: CPU index (informative).
404 * @cluster_index: Identifies which cluster this CPU is in.
405 * For boards which don't define clusters or for "loose" CPUs not assigned
406 * to a cluster this will be UNASSIGNED_CLUSTER_INDEX; otherwise it will
407 * be the same as the cluster-id property of the CPU object's TYPE_CPU_CLUSTER
408 * QOM parent.
409 * Under TCG this value is propagated to @tcg_cflags.
410 * See TranslationBlock::TCG CF_CLUSTER_MASK.
411 * @tcg_cflags: Pre-computed cflags for this cpu.
412 * @nr_cores: Number of cores within this CPU package.
413 * @nr_threads: Number of threads within this CPU core.
414 * @thread: Host thread details, only live once @created is #true
415 * @sem: WIN32 only semaphore used only for qtest
416 * @thread_id: native thread id of vCPU, only live once @created is #true
417 * @running: #true if CPU is currently running (lockless).
418 * @has_waiter: #true if a CPU is currently waiting for the cpu_exec_end;
419 * valid under cpu_list_lock.
420 * @created: Indicates whether the CPU thread has been successfully created.
421 * @halt_cond: condition variable sleeping threads can wait on.
422 * @interrupt_request: Indicates a pending interrupt request.
423 * @halted: Nonzero if the CPU is in suspended state.
424 * @stop: Indicates a pending stop request.
425 * @stopped: Indicates the CPU has been artificially stopped.
426 * @unplug: Indicates a pending CPU unplug request.
427 * @crash_occurred: Indicates the OS reported a crash (panic) for this CPU
428 * @singlestep_enabled: Flags for single-stepping.
429 * @icount_extra: Instructions until next timer event.
430 * @cpu_ases: Pointer to array of CPUAddressSpaces (which define the
431 * AddressSpaces this CPU has)
432 * @num_ases: number of CPUAddressSpaces in @cpu_ases
433 * @as: Pointer to the first AddressSpace, for the convenience of targets which
434 * only have a single AddressSpace
435 * @gdb_regs: Additional GDB registers.
436 * @gdb_num_regs: Number of total registers accessible to GDB.
437 * @gdb_num_g_regs: Number of registers in GDB 'g' packets.
438 * @node: QTAILQ of CPUs sharing TB cache.
439 * @opaque: User data.
440 * @mem_io_pc: Host Program Counter at which the memory was accessed.
441 * @accel: Pointer to accelerator specific state.
442 * @kvm_fd: vCPU file descriptor for KVM.
443 * @work_mutex: Lock to prevent multiple access to @work_list.
444 * @work_list: List of pending asynchronous work.
445 * @plugin_state: per-CPU plugin state
446 * @ignore_memory_transaction_failures: Cached copy of the MachineState
447 * flag of the same name: allows the board to suppress calling of the
448 * CPU do_transaction_failed hook function.
449 * @kvm_dirty_gfns: Points to the KVM dirty ring for this CPU when KVM dirty
450 * ring is enabled.
451 * @kvm_fetch_index: Keeps the index that we last fetched from the per-vCPU
452 * dirty ring structure.
453 *
454 * @neg_align: The CPUState is the common part of a concrete ArchCPU
455 * which is allocated when an individual CPU instance is created. As
456 * such care is taken is ensure there is no gap between between
457 * CPUState and CPUArchState within ArchCPU.
458 *
459 * @neg: The architectural register state ("cpu_env") immediately follows
460 * CPUState in ArchCPU and is passed to TCG code. The @neg structure holds
461 * some common TCG CPU variables which are accessed with a negative offset
462 * from cpu_env.
463 */
464 struct CPUState {
465 /*< private >*/
466 DeviceState parent_obj;
467 /* cache to avoid expensive CPU_GET_CLASS */
468 CPUClass *cc;
469 /*< public >*/
470
471 int nr_cores;
472 int nr_threads;
473
474 struct QemuThread *thread;
475 #ifdef _WIN32
476 QemuSemaphore sem;
477 #endif
478 int thread_id;
479 bool running, has_waiter;
480 struct QemuCond *halt_cond;
481 bool thread_kicked;
482 bool created;
483 bool stop;
484 bool stopped;
485
486 /* Should CPU start in powered-off state? */
487 bool start_powered_off;
488
489 bool unplug;
490 bool crash_occurred;
491 bool exit_request;
492 int exclusive_context_count;
493 uint32_t cflags_next_tb;
494 /* updates protected by BQL */
495 uint32_t interrupt_request;
496 int singlestep_enabled;
497 int64_t icount_budget;
498 int64_t icount_extra;
499 uint64_t random_seed;
500 sigjmp_buf jmp_env;
501
502 QemuMutex work_mutex;
503 QSIMPLEQ_HEAD(, qemu_work_item) work_list;
504
505 struct CPUAddressSpace *cpu_ases;
506 int cpu_ases_count;
507 int num_ases;
508 AddressSpace *as;
509 MemoryRegion *memory;
510
511 struct CPUJumpCache *tb_jmp_cache;
512
513 GArray *gdb_regs;
514 int gdb_num_regs;
515 int gdb_num_g_regs;
516 QTAILQ_ENTRY(CPUState) node;
517
518 /* ice debug support */
519 QTAILQ_HEAD(, CPUBreakpoint) breakpoints;
520
521 QTAILQ_HEAD(, CPUWatchpoint) watchpoints;
522 CPUWatchpoint *watchpoint_hit;
523
524 void *opaque;
525
526 /* In order to avoid passing too many arguments to the MMIO helpers,
527 * we store some rarely used information in the CPU context.
528 */
529 uintptr_t mem_io_pc;
530
531 /* Only used in KVM */
532 int kvm_fd;
533 struct KVMState *kvm_state;
534 struct kvm_run *kvm_run;
535 struct kvm_dirty_gfn *kvm_dirty_gfns;
536 uint32_t kvm_fetch_index;
537 uint64_t dirty_pages;
538 int kvm_vcpu_stats_fd;
539 bool vcpu_dirty;
540
541 /* Use by accel-block: CPU is executing an ioctl() */
542 QemuLockCnt in_ioctl_lock;
543
544 #ifdef CONFIG_PLUGIN
545 CPUPluginState *plugin_state;
546 #endif
547
548 /* TODO Move common fields from CPUArchState here. */
549 int cpu_index;
550 int cluster_index;
551 uint32_t tcg_cflags;
552 uint32_t halted;
553 int32_t exception_index;
554
555 AccelCPUState *accel;
556
557 /* Used to keep track of an outstanding cpu throttle thread for migration
558 * autoconverge
559 */
560 bool throttle_thread_scheduled;
561
562 /*
563 * Sleep throttle_us_per_full microseconds once dirty ring is full
564 * if dirty page rate limit is enabled.
565 */
566 int64_t throttle_us_per_full;
567
568 bool ignore_memory_transaction_failures;
569
570 /* Used for user-only emulation of prctl(PR_SET_UNALIGN). */
571 bool prctl_unalign_sigbus;
572
573 /* track IOMMUs whose translations we've cached in the TCG TLB */
574 GArray *iommu_notifiers;
575
576 /*
577 * MUST BE LAST in order to minimize the displacement to CPUArchState.
578 */
579 char neg_align[-sizeof(CPUNegativeOffsetState) % 16] QEMU_ALIGNED(16);
580 CPUNegativeOffsetState neg;
581 };
582
583 /* Validate placement of CPUNegativeOffsetState. */
584 QEMU_BUILD_BUG_ON(offsetof(CPUState, neg) !=
585 sizeof(CPUState) - sizeof(CPUNegativeOffsetState));
586
cpu_env(CPUState * cpu)587 static inline CPUArchState *cpu_env(CPUState *cpu)
588 {
589 /* We validate that CPUArchState follows CPUState in cpu-all.h. */
590 return (CPUArchState *)(cpu + 1);
591 }
592
593 typedef QTAILQ_HEAD(CPUTailQ, CPUState) CPUTailQ;
594 extern CPUTailQ cpus_queue;
595
596 #define first_cpu QTAILQ_FIRST_RCU(&cpus_queue)
597 #define CPU_NEXT(cpu) QTAILQ_NEXT_RCU(cpu, node)
598 #define CPU_FOREACH(cpu) QTAILQ_FOREACH_RCU(cpu, &cpus_queue, node)
599 #define CPU_FOREACH_SAFE(cpu, next_cpu) \
600 QTAILQ_FOREACH_SAFE_RCU(cpu, &cpus_queue, node, next_cpu)
601
602 extern __thread CPUState *current_cpu;
603
604 /**
605 * qemu_tcg_mttcg_enabled:
606 * Check whether we are running MultiThread TCG or not.
607 *
608 * Returns: %true if we are in MTTCG mode %false otherwise.
609 */
610 extern bool mttcg_enabled;
611 #define qemu_tcg_mttcg_enabled() (mttcg_enabled)
612
613 /**
614 * cpu_paging_enabled:
615 * @cpu: The CPU whose state is to be inspected.
616 *
617 * Returns: %true if paging is enabled, %false otherwise.
618 */
619 bool cpu_paging_enabled(const CPUState *cpu);
620
621 /**
622 * cpu_get_memory_mapping:
623 * @cpu: The CPU whose memory mappings are to be obtained.
624 * @list: Where to write the memory mappings to.
625 * @errp: Pointer for reporting an #Error.
626 *
627 * Returns: %true on success, %false otherwise.
628 */
629 bool cpu_get_memory_mapping(CPUState *cpu, MemoryMappingList *list,
630 Error **errp);
631
632 #if !defined(CONFIG_USER_ONLY)
633
634 /**
635 * cpu_write_elf64_note:
636 * @f: pointer to a function that writes memory to a file
637 * @cpu: The CPU whose memory is to be dumped
638 * @cpuid: ID number of the CPU
639 * @opaque: pointer to the CPUState struct
640 */
641 int cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cpu,
642 int cpuid, void *opaque);
643
644 /**
645 * cpu_write_elf64_qemunote:
646 * @f: pointer to a function that writes memory to a file
647 * @cpu: The CPU whose memory is to be dumped
648 * @cpuid: ID number of the CPU
649 * @opaque: pointer to the CPUState struct
650 */
651 int cpu_write_elf64_qemunote(WriteCoreDumpFunction f, CPUState *cpu,
652 void *opaque);
653
654 /**
655 * cpu_write_elf32_note:
656 * @f: pointer to a function that writes memory to a file
657 * @cpu: The CPU whose memory is to be dumped
658 * @cpuid: ID number of the CPU
659 * @opaque: pointer to the CPUState struct
660 */
661 int cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cpu,
662 int cpuid, void *opaque);
663
664 /**
665 * cpu_write_elf32_qemunote:
666 * @f: pointer to a function that writes memory to a file
667 * @cpu: The CPU whose memory is to be dumped
668 * @cpuid: ID number of the CPU
669 * @opaque: pointer to the CPUState struct
670 */
671 int cpu_write_elf32_qemunote(WriteCoreDumpFunction f, CPUState *cpu,
672 void *opaque);
673
674 /**
675 * cpu_get_crash_info:
676 * @cpu: The CPU to get crash information for
677 *
678 * Gets the previously saved crash information.
679 * Caller is responsible for freeing the data.
680 */
681 GuestPanicInformation *cpu_get_crash_info(CPUState *cpu);
682
683 #endif /* !CONFIG_USER_ONLY */
684
685 /**
686 * CPUDumpFlags:
687 * @CPU_DUMP_CODE:
688 * @CPU_DUMP_FPU: dump FPU register state, not just integer
689 * @CPU_DUMP_CCOP: dump info about TCG QEMU's condition code optimization state
690 * @CPU_DUMP_VPU: dump VPU registers
691 */
692 enum CPUDumpFlags {
693 CPU_DUMP_CODE = 0x00010000,
694 CPU_DUMP_FPU = 0x00020000,
695 CPU_DUMP_CCOP = 0x00040000,
696 CPU_DUMP_VPU = 0x00080000,
697 };
698
699 /**
700 * cpu_dump_state:
701 * @cpu: The CPU whose state is to be dumped.
702 * @f: If non-null, dump to this stream, else to current print sink.
703 *
704 * Dumps CPU state.
705 */
706 void cpu_dump_state(CPUState *cpu, FILE *f, int flags);
707
708 #ifndef CONFIG_USER_ONLY
709 /**
710 * cpu_get_phys_page_attrs_debug:
711 * @cpu: The CPU to obtain the physical page address for.
712 * @addr: The virtual address.
713 * @attrs: Updated on return with the memory transaction attributes to use
714 * for this access.
715 *
716 * Obtains the physical page corresponding to a virtual one, together
717 * with the corresponding memory transaction attributes to use for the access.
718 * Use it only for debugging because no protection checks are done.
719 *
720 * Returns: Corresponding physical page address or -1 if no page found.
721 */
722 hwaddr cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
723 MemTxAttrs *attrs);
724
725 /**
726 * cpu_get_phys_page_debug:
727 * @cpu: The CPU to obtain the physical page address for.
728 * @addr: The virtual address.
729 *
730 * Obtains the physical page corresponding to a virtual one.
731 * Use it only for debugging because no protection checks are done.
732 *
733 * Returns: Corresponding physical page address or -1 if no page found.
734 */
735 hwaddr cpu_get_phys_page_debug(CPUState *cpu, vaddr addr);
736
737 /** cpu_asidx_from_attrs:
738 * @cpu: CPU
739 * @attrs: memory transaction attributes
740 *
741 * Returns the address space index specifying the CPU AddressSpace
742 * to use for a memory access with the given transaction attributes.
743 */
744 int cpu_asidx_from_attrs(CPUState *cpu, MemTxAttrs attrs);
745
746 /**
747 * cpu_virtio_is_big_endian:
748 * @cpu: CPU
749
750 * Returns %true if a CPU which supports runtime configurable endianness
751 * is currently big-endian.
752 */
753 bool cpu_virtio_is_big_endian(CPUState *cpu);
754
755 #endif /* CONFIG_USER_ONLY */
756
757 /**
758 * cpu_list_add:
759 * @cpu: The CPU to be added to the list of CPUs.
760 */
761 void cpu_list_add(CPUState *cpu);
762
763 /**
764 * cpu_list_remove:
765 * @cpu: The CPU to be removed from the list of CPUs.
766 */
767 void cpu_list_remove(CPUState *cpu);
768
769 /**
770 * cpu_reset:
771 * @cpu: The CPU whose state is to be reset.
772 */
773 void cpu_reset(CPUState *cpu);
774
775 /**
776 * cpu_class_by_name:
777 * @typename: The CPU base type.
778 * @cpu_model: The model string without any parameters.
779 *
780 * Looks up a concrete CPU #ObjectClass matching name @cpu_model.
781 *
782 * Returns: A concrete #CPUClass or %NULL if no matching class is found
783 * or if the matching class is abstract.
784 */
785 ObjectClass *cpu_class_by_name(const char *typename, const char *cpu_model);
786
787 /**
788 * cpu_model_from_type:
789 * @typename: The CPU type name
790 *
791 * Extract the CPU model name from the CPU type name. The
792 * CPU type name is either the combination of the CPU model
793 * name and suffix, or same to the CPU model name.
794 *
795 * Returns: CPU model name or NULL if the CPU class doesn't exist
796 * The user should g_free() the string once no longer needed.
797 */
798 char *cpu_model_from_type(const char *typename);
799
800 /**
801 * cpu_create:
802 * @typename: The CPU type.
803 *
804 * Instantiates a CPU and realizes the CPU.
805 *
806 * Returns: A #CPUState or %NULL if an error occurred.
807 */
808 CPUState *cpu_create(const char *typename);
809
810 /**
811 * parse_cpu_option:
812 * @cpu_option: The -cpu option including optional parameters.
813 *
814 * processes optional parameters and registers them as global properties
815 *
816 * Returns: type of CPU to create or prints error and terminates process
817 * if an error occurred.
818 */
819 const char *parse_cpu_option(const char *cpu_option);
820
821 /**
822 * cpu_has_work:
823 * @cpu: The vCPU to check.
824 *
825 * Checks whether the CPU has work to do.
826 *
827 * Returns: %true if the CPU has work, %false otherwise.
828 */
cpu_has_work(CPUState * cpu)829 static inline bool cpu_has_work(CPUState *cpu)
830 {
831 CPUClass *cc = CPU_GET_CLASS(cpu);
832
833 g_assert(cc->has_work);
834 return cc->has_work(cpu);
835 }
836
837 /**
838 * qemu_cpu_is_self:
839 * @cpu: The vCPU to check against.
840 *
841 * Checks whether the caller is executing on the vCPU thread.
842 *
843 * Returns: %true if called from @cpu's thread, %false otherwise.
844 */
845 bool qemu_cpu_is_self(CPUState *cpu);
846
847 /**
848 * qemu_cpu_kick:
849 * @cpu: The vCPU to kick.
850 *
851 * Kicks @cpu's thread.
852 */
853 void qemu_cpu_kick(CPUState *cpu);
854
855 /**
856 * cpu_is_stopped:
857 * @cpu: The CPU to check.
858 *
859 * Checks whether the CPU is stopped.
860 *
861 * Returns: %true if run state is not running or if artificially stopped;
862 * %false otherwise.
863 */
864 bool cpu_is_stopped(CPUState *cpu);
865
866 /**
867 * do_run_on_cpu:
868 * @cpu: The vCPU to run on.
869 * @func: The function to be executed.
870 * @data: Data to pass to the function.
871 * @mutex: Mutex to release while waiting for @func to run.
872 *
873 * Used internally in the implementation of run_on_cpu.
874 */
875 void do_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data,
876 QemuMutex *mutex);
877
878 /**
879 * run_on_cpu:
880 * @cpu: The vCPU to run on.
881 * @func: The function to be executed.
882 * @data: Data to pass to the function.
883 *
884 * Schedules the function @func for execution on the vCPU @cpu.
885 */
886 void run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
887
888 /**
889 * async_run_on_cpu:
890 * @cpu: The vCPU to run on.
891 * @func: The function to be executed.
892 * @data: Data to pass to the function.
893 *
894 * Schedules the function @func for execution on the vCPU @cpu asynchronously.
895 */
896 void async_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
897
898 /**
899 * async_safe_run_on_cpu:
900 * @cpu: The vCPU to run on.
901 * @func: The function to be executed.
902 * @data: Data to pass to the function.
903 *
904 * Schedules the function @func for execution on the vCPU @cpu asynchronously,
905 * while all other vCPUs are sleeping.
906 *
907 * Unlike run_on_cpu and async_run_on_cpu, the function is run outside the
908 * BQL.
909 */
910 void async_safe_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
911
912 /**
913 * cpu_in_exclusive_context()
914 * @cpu: The vCPU to check
915 *
916 * Returns true if @cpu is an exclusive context, for example running
917 * something which has previously been queued via async_safe_run_on_cpu().
918 */
cpu_in_exclusive_context(const CPUState * cpu)919 static inline bool cpu_in_exclusive_context(const CPUState *cpu)
920 {
921 return cpu->exclusive_context_count;
922 }
923
924 /**
925 * qemu_get_cpu:
926 * @index: The CPUState@cpu_index value of the CPU to obtain.
927 *
928 * Gets a CPU matching @index.
929 *
930 * Returns: The CPU or %NULL if there is no matching CPU.
931 */
932 CPUState *qemu_get_cpu(int index);
933
934 /**
935 * cpu_exists:
936 * @id: Guest-exposed CPU ID to lookup.
937 *
938 * Search for CPU with specified ID.
939 *
940 * Returns: %true - CPU is found, %false - CPU isn't found.
941 */
942 bool cpu_exists(int64_t id);
943
944 /**
945 * cpu_by_arch_id:
946 * @id: Guest-exposed CPU ID of the CPU to obtain.
947 *
948 * Get a CPU with matching @id.
949 *
950 * Returns: The CPU or %NULL if there is no matching CPU.
951 */
952 CPUState *cpu_by_arch_id(int64_t id);
953
954 /**
955 * cpu_interrupt:
956 * @cpu: The CPU to set an interrupt on.
957 * @mask: The interrupts to set.
958 *
959 * Invokes the interrupt handler.
960 */
961
962 void cpu_interrupt(CPUState *cpu, int mask);
963
964 /**
965 * cpu_set_pc:
966 * @cpu: The CPU to set the program counter for.
967 * @addr: Program counter value.
968 *
969 * Sets the program counter for a CPU.
970 */
cpu_set_pc(CPUState * cpu,vaddr addr)971 static inline void cpu_set_pc(CPUState *cpu, vaddr addr)
972 {
973 CPUClass *cc = CPU_GET_CLASS(cpu);
974
975 cc->set_pc(cpu, addr);
976 }
977
978 /**
979 * cpu_reset_interrupt:
980 * @cpu: The CPU to clear the interrupt on.
981 * @mask: The interrupt mask to clear.
982 *
983 * Resets interrupts on the vCPU @cpu.
984 */
985 void cpu_reset_interrupt(CPUState *cpu, int mask);
986
987 /**
988 * cpu_exit:
989 * @cpu: The CPU to exit.
990 *
991 * Requests the CPU @cpu to exit execution.
992 */
993 void cpu_exit(CPUState *cpu);
994
995 /**
996 * cpu_pause:
997 * @cpu: The CPU to pause.
998 *
999 * Pauses CPU, i.e. puts CPU into stopped state.
1000 */
1001 void cpu_pause(CPUState *cpu);
1002
1003 /**
1004 * cpu_resume:
1005 * @cpu: The CPU to resume.
1006 *
1007 * Resumes CPU, i.e. puts CPU into runnable state.
1008 */
1009 void cpu_resume(CPUState *cpu);
1010
1011 /**
1012 * cpu_remove_sync:
1013 * @cpu: The CPU to remove.
1014 *
1015 * Requests the CPU to be removed and waits till it is removed.
1016 */
1017 void cpu_remove_sync(CPUState *cpu);
1018
1019 /**
1020 * free_queued_cpu_work() - free all items on CPU work queue
1021 * @cpu: The CPU which work queue to free.
1022 */
1023 void free_queued_cpu_work(CPUState *cpu);
1024
1025 /**
1026 * process_queued_cpu_work() - process all items on CPU work queue
1027 * @cpu: The CPU which work queue to process.
1028 */
1029 void process_queued_cpu_work(CPUState *cpu);
1030
1031 /**
1032 * cpu_exec_start:
1033 * @cpu: The CPU for the current thread.
1034 *
1035 * Record that a CPU has started execution and can be interrupted with
1036 * cpu_exit.
1037 */
1038 void cpu_exec_start(CPUState *cpu);
1039
1040 /**
1041 * cpu_exec_end:
1042 * @cpu: The CPU for the current thread.
1043 *
1044 * Record that a CPU has stopped execution and exclusive sections
1045 * can be executed without interrupting it.
1046 */
1047 void cpu_exec_end(CPUState *cpu);
1048
1049 /**
1050 * start_exclusive:
1051 *
1052 * Wait for a concurrent exclusive section to end, and then start
1053 * a section of work that is run while other CPUs are not running
1054 * between cpu_exec_start and cpu_exec_end. CPUs that are running
1055 * cpu_exec are exited immediately. CPUs that call cpu_exec_start
1056 * during the exclusive section go to sleep until this CPU calls
1057 * end_exclusive.
1058 */
1059 void start_exclusive(void);
1060
1061 /**
1062 * end_exclusive:
1063 *
1064 * Concludes an exclusive execution section started by start_exclusive.
1065 */
1066 void end_exclusive(void);
1067
1068 /**
1069 * qemu_init_vcpu:
1070 * @cpu: The vCPU to initialize.
1071 *
1072 * Initializes a vCPU.
1073 */
1074 void qemu_init_vcpu(CPUState *cpu);
1075
1076 #define SSTEP_ENABLE 0x1 /* Enable simulated HW single stepping */
1077 #define SSTEP_NOIRQ 0x2 /* Do not use IRQ while single stepping */
1078 #define SSTEP_NOTIMER 0x4 /* Do not Timers while single stepping */
1079
1080 /**
1081 * cpu_single_step:
1082 * @cpu: CPU to the flags for.
1083 * @enabled: Flags to enable.
1084 *
1085 * Enables or disables single-stepping for @cpu.
1086 */
1087 void cpu_single_step(CPUState *cpu, int enabled);
1088
1089 /* Breakpoint/watchpoint flags */
1090 #define BP_MEM_READ 0x01
1091 #define BP_MEM_WRITE 0x02
1092 #define BP_MEM_ACCESS (BP_MEM_READ | BP_MEM_WRITE)
1093 #define BP_STOP_BEFORE_ACCESS 0x04
1094 /* 0x08 currently unused */
1095 #define BP_GDB 0x10
1096 #define BP_CPU 0x20
1097 #define BP_ANY (BP_GDB | BP_CPU)
1098 #define BP_HIT_SHIFT 6
1099 #define BP_WATCHPOINT_HIT_READ (BP_MEM_READ << BP_HIT_SHIFT)
1100 #define BP_WATCHPOINT_HIT_WRITE (BP_MEM_WRITE << BP_HIT_SHIFT)
1101 #define BP_WATCHPOINT_HIT (BP_MEM_ACCESS << BP_HIT_SHIFT)
1102
1103 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
1104 CPUBreakpoint **breakpoint);
1105 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags);
1106 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint);
1107 void cpu_breakpoint_remove_all(CPUState *cpu, int mask);
1108
1109 /* Return true if PC matches an installed breakpoint. */
cpu_breakpoint_test(CPUState * cpu,vaddr pc,int mask)1110 static inline bool cpu_breakpoint_test(CPUState *cpu, vaddr pc, int mask)
1111 {
1112 CPUBreakpoint *bp;
1113
1114 if (unlikely(!QTAILQ_EMPTY(&cpu->breakpoints))) {
1115 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
1116 if (bp->pc == pc && (bp->flags & mask)) {
1117 return true;
1118 }
1119 }
1120 }
1121 return false;
1122 }
1123
1124 #if defined(CONFIG_USER_ONLY)
cpu_watchpoint_insert(CPUState * cpu,vaddr addr,vaddr len,int flags,CPUWatchpoint ** watchpoint)1125 static inline int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1126 int flags, CPUWatchpoint **watchpoint)
1127 {
1128 return -ENOSYS;
1129 }
1130
cpu_watchpoint_remove(CPUState * cpu,vaddr addr,vaddr len,int flags)1131 static inline int cpu_watchpoint_remove(CPUState *cpu, vaddr addr,
1132 vaddr len, int flags)
1133 {
1134 return -ENOSYS;
1135 }
1136
cpu_watchpoint_remove_by_ref(CPUState * cpu,CPUWatchpoint * wp)1137 static inline void cpu_watchpoint_remove_by_ref(CPUState *cpu,
1138 CPUWatchpoint *wp)
1139 {
1140 }
1141
cpu_watchpoint_remove_all(CPUState * cpu,int mask)1142 static inline void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
1143 {
1144 }
1145 #else
1146 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1147 int flags, CPUWatchpoint **watchpoint);
1148 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr,
1149 vaddr len, int flags);
1150 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint);
1151 void cpu_watchpoint_remove_all(CPUState *cpu, int mask);
1152 #endif
1153
1154 /**
1155 * cpu_get_address_space:
1156 * @cpu: CPU to get address space from
1157 * @asidx: index identifying which address space to get
1158 *
1159 * Return the requested address space of this CPU. @asidx
1160 * specifies which address space to read.
1161 */
1162 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx);
1163
1164 G_NORETURN void cpu_abort(CPUState *cpu, const char *fmt, ...)
1165 G_GNUC_PRINTF(2, 3);
1166
1167 /* $(top_srcdir)/cpu.c */
1168 void cpu_class_init_props(DeviceClass *dc);
1169 void cpu_exec_initfn(CPUState *cpu);
1170 bool cpu_exec_realizefn(CPUState *cpu, Error **errp);
1171 void cpu_exec_unrealizefn(CPUState *cpu);
1172 void cpu_exec_reset_hold(CPUState *cpu);
1173
1174 const char *target_name(void);
1175
1176 #ifdef COMPILING_PER_TARGET
1177
1178 #ifndef CONFIG_USER_ONLY
1179
1180 extern const VMStateDescription vmstate_cpu_common;
1181
1182 #define VMSTATE_CPU() { \
1183 .name = "parent_obj", \
1184 .size = sizeof(CPUState), \
1185 .vmsd = &vmstate_cpu_common, \
1186 .flags = VMS_STRUCT, \
1187 .offset = 0, \
1188 }
1189 #endif /* !CONFIG_USER_ONLY */
1190
1191 #endif /* COMPILING_PER_TARGET */
1192
1193 #define UNASSIGNED_CPU_INDEX -1
1194 #define UNASSIGNED_CLUSTER_INDEX -1
1195
1196 #endif
1197