1 // Copyright 2008, Google Inc.
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
13 // distribution.
14 // * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
17 //
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29
30
31 #include "gtest/internal/gtest-port.h"
32
33 #include <limits.h>
34 #include <stdio.h>
35 #include <stdlib.h>
36 #include <string.h>
37 #include <fstream>
38 #include <memory>
39
40 #if GTEST_OS_WINDOWS
41 # include <windows.h>
42 # include <io.h>
43 # include <sys/stat.h>
44 # include <map> // Used in ThreadLocal.
45 # ifdef _MSC_VER
46 # include <crtdbg.h>
47 # endif // _MSC_VER
48 #else
49 # include <unistd.h>
50 #endif // GTEST_OS_WINDOWS
51
52 #if GTEST_OS_MAC
53 # include <mach/mach_init.h>
54 # include <mach/task.h>
55 # include <mach/vm_map.h>
56 #endif // GTEST_OS_MAC
57
58 #if GTEST_OS_DRAGONFLY || GTEST_OS_FREEBSD || GTEST_OS_GNU_KFREEBSD || \
59 GTEST_OS_NETBSD || GTEST_OS_OPENBSD
60 # include <sys/sysctl.h>
61 # if GTEST_OS_DRAGONFLY || GTEST_OS_FREEBSD || GTEST_OS_GNU_KFREEBSD
62 # include <sys/user.h>
63 # endif
64 #endif
65
66 #if GTEST_OS_QNX
67 # include <devctl.h>
68 # include <fcntl.h>
69 # include <sys/procfs.h>
70 #endif // GTEST_OS_QNX
71
72 #if GTEST_OS_AIX
73 # include <procinfo.h>
74 # include <sys/types.h>
75 #endif // GTEST_OS_AIX
76
77 #if GTEST_OS_FUCHSIA
78 # include <zircon/process.h>
79 # include <zircon/syscalls.h>
80 #endif // GTEST_OS_FUCHSIA
81
82 #include "gtest/gtest-spi.h"
83 #include "gtest/gtest-message.h"
84 #include "gtest/internal/gtest-internal.h"
85 #include "gtest/internal/gtest-string.h"
86 #include "src/gtest-internal-inl.h"
87
88 namespace testing {
89 namespace internal {
90
91 #if defined(_MSC_VER) || defined(__BORLANDC__)
92 // MSVC and C++Builder do not provide a definition of STDERR_FILENO.
93 const int kStdOutFileno = 1;
94 const int kStdErrFileno = 2;
95 #else
96 const int kStdOutFileno = STDOUT_FILENO;
97 const int kStdErrFileno = STDERR_FILENO;
98 #endif // _MSC_VER
99
100 #if GTEST_OS_LINUX
101
102 namespace {
103 template <typename T>
ReadProcFileField(const std::string & filename,int field)104 T ReadProcFileField(const std::string& filename, int field) {
105 std::string dummy;
106 std::ifstream file(filename.c_str());
107 while (field-- > 0) {
108 file >> dummy;
109 }
110 T output = 0;
111 file >> output;
112 return output;
113 }
114 } // namespace
115
116 // Returns the number of active threads, or 0 when there is an error.
GetThreadCount()117 size_t GetThreadCount() {
118 const std::string filename =
119 (Message() << "/proc/" << getpid() << "/stat").GetString();
120 return ReadProcFileField<size_t>(filename, 19);
121 }
122
123 #elif GTEST_OS_MAC
124
GetThreadCount()125 size_t GetThreadCount() {
126 const task_t task = mach_task_self();
127 mach_msg_type_number_t thread_count;
128 thread_act_array_t thread_list;
129 const kern_return_t status = task_threads(task, &thread_list, &thread_count);
130 if (status == KERN_SUCCESS) {
131 // task_threads allocates resources in thread_list and we need to free them
132 // to avoid leaks.
133 vm_deallocate(task,
134 reinterpret_cast<vm_address_t>(thread_list),
135 sizeof(thread_t) * thread_count);
136 return static_cast<size_t>(thread_count);
137 } else {
138 return 0;
139 }
140 }
141
142 #elif GTEST_OS_DRAGONFLY || GTEST_OS_FREEBSD || GTEST_OS_GNU_KFREEBSD || \
143 GTEST_OS_NETBSD
144
145 #if GTEST_OS_NETBSD
146 #undef KERN_PROC
147 #define KERN_PROC KERN_PROC2
148 #define kinfo_proc kinfo_proc2
149 #endif
150
151 #if GTEST_OS_DRAGONFLY
152 #define KP_NLWP(kp) (kp.kp_nthreads)
153 #elif GTEST_OS_FREEBSD || GTEST_OS_GNU_KFREEBSD
154 #define KP_NLWP(kp) (kp.ki_numthreads)
155 #elif GTEST_OS_NETBSD
156 #define KP_NLWP(kp) (kp.p_nlwps)
157 #endif
158
159 // Returns the number of threads running in the process, or 0 to indicate that
160 // we cannot detect it.
GetThreadCount()161 size_t GetThreadCount() {
162 int mib[] = {
163 CTL_KERN,
164 KERN_PROC,
165 KERN_PROC_PID,
166 getpid(),
167 #if GTEST_OS_NETBSD
168 sizeof(struct kinfo_proc),
169 1,
170 #endif
171 };
172 u_int miblen = sizeof(mib) / sizeof(mib[0]);
173 struct kinfo_proc info;
174 size_t size = sizeof(info);
175 if (sysctl(mib, miblen, &info, &size, NULL, 0)) {
176 return 0;
177 }
178 return static_cast<size_t>(KP_NLWP(info));
179 }
180 #elif GTEST_OS_OPENBSD
181
182 // Returns the number of threads running in the process, or 0 to indicate that
183 // we cannot detect it.
GetThreadCount()184 size_t GetThreadCount() {
185 int mib[] = {
186 CTL_KERN,
187 KERN_PROC,
188 KERN_PROC_PID | KERN_PROC_SHOW_THREADS,
189 getpid(),
190 sizeof(struct kinfo_proc),
191 0,
192 };
193 u_int miblen = sizeof(mib) / sizeof(mib[0]);
194
195 // get number of structs
196 size_t size;
197 if (sysctl(mib, miblen, NULL, &size, NULL, 0)) {
198 return 0;
199 }
200 mib[5] = size / mib[4];
201
202 // populate array of structs
203 struct kinfo_proc info[mib[5]];
204 if (sysctl(mib, miblen, &info, &size, NULL, 0)) {
205 return 0;
206 }
207
208 // exclude empty members
209 int nthreads = 0;
210 for (int i = 0; i < size / mib[4]; i++) {
211 if (info[i].p_tid != -1)
212 nthreads++;
213 }
214 return nthreads;
215 }
216
217 #elif GTEST_OS_QNX
218
219 // Returns the number of threads running in the process, or 0 to indicate that
220 // we cannot detect it.
GetThreadCount()221 size_t GetThreadCount() {
222 const int fd = open("/proc/self/as", O_RDONLY);
223 if (fd < 0) {
224 return 0;
225 }
226 procfs_info process_info;
227 const int status =
228 devctl(fd, DCMD_PROC_INFO, &process_info, sizeof(process_info), nullptr);
229 close(fd);
230 if (status == EOK) {
231 return static_cast<size_t>(process_info.num_threads);
232 } else {
233 return 0;
234 }
235 }
236
237 #elif GTEST_OS_AIX
238
GetThreadCount()239 size_t GetThreadCount() {
240 struct procentry64 entry;
241 pid_t pid = getpid();
242 int status = getprocs64(&entry, sizeof(entry), nullptr, 0, &pid, 1);
243 if (status == 1) {
244 return entry.pi_thcount;
245 } else {
246 return 0;
247 }
248 }
249
250 #elif GTEST_OS_FUCHSIA
251
GetThreadCount()252 size_t GetThreadCount() {
253 int dummy_buffer;
254 size_t avail;
255 zx_status_t status = zx_object_get_info(
256 zx_process_self(),
257 ZX_INFO_PROCESS_THREADS,
258 &dummy_buffer,
259 0,
260 nullptr,
261 &avail);
262 if (status == ZX_OK) {
263 return avail;
264 } else {
265 return 0;
266 }
267 }
268
269 #else
270
GetThreadCount()271 size_t GetThreadCount() {
272 // There's no portable way to detect the number of threads, so we just
273 // return 0 to indicate that we cannot detect it.
274 return 0;
275 }
276
277 #endif // GTEST_OS_LINUX
278
279 #if GTEST_IS_THREADSAFE && GTEST_OS_WINDOWS
280
SleepMilliseconds(int n)281 void SleepMilliseconds(int n) {
282 ::Sleep(static_cast<DWORD>(n));
283 }
284
AutoHandle()285 AutoHandle::AutoHandle()
286 : handle_(INVALID_HANDLE_VALUE) {}
287
AutoHandle(Handle handle)288 AutoHandle::AutoHandle(Handle handle)
289 : handle_(handle) {}
290
~AutoHandle()291 AutoHandle::~AutoHandle() {
292 Reset();
293 }
294
Get() const295 AutoHandle::Handle AutoHandle::Get() const {
296 return handle_;
297 }
298
Reset()299 void AutoHandle::Reset() {
300 Reset(INVALID_HANDLE_VALUE);
301 }
302
Reset(HANDLE handle)303 void AutoHandle::Reset(HANDLE handle) {
304 // Resetting with the same handle we already own is invalid.
305 if (handle_ != handle) {
306 if (IsCloseable()) {
307 ::CloseHandle(handle_);
308 }
309 handle_ = handle;
310 } else {
311 GTEST_CHECK_(!IsCloseable())
312 << "Resetting a valid handle to itself is likely a programmer error "
313 "and thus not allowed.";
314 }
315 }
316
IsCloseable() const317 bool AutoHandle::IsCloseable() const {
318 // Different Windows APIs may use either of these values to represent an
319 // invalid handle.
320 return handle_ != nullptr && handle_ != INVALID_HANDLE_VALUE;
321 }
322
Notification()323 Notification::Notification()
324 : event_(::CreateEvent(nullptr, // Default security attributes.
325 TRUE, // Do not reset automatically.
326 FALSE, // Initially unset.
327 nullptr)) { // Anonymous event.
328 GTEST_CHECK_(event_.Get() != nullptr);
329 }
330
Notify()331 void Notification::Notify() {
332 GTEST_CHECK_(::SetEvent(event_.Get()) != FALSE);
333 }
334
WaitForNotification()335 void Notification::WaitForNotification() {
336 GTEST_CHECK_(
337 ::WaitForSingleObject(event_.Get(), INFINITE) == WAIT_OBJECT_0);
338 }
339
Mutex()340 Mutex::Mutex()
341 : owner_thread_id_(0),
342 type_(kDynamic),
343 critical_section_init_phase_(0),
344 critical_section_(new CRITICAL_SECTION) {
345 ::InitializeCriticalSection(critical_section_);
346 }
347
~Mutex()348 Mutex::~Mutex() {
349 // Static mutexes are leaked intentionally. It is not thread-safe to try
350 // to clean them up.
351 if (type_ == kDynamic) {
352 ::DeleteCriticalSection(critical_section_);
353 delete critical_section_;
354 critical_section_ = nullptr;
355 }
356 }
357
Lock()358 void Mutex::Lock() {
359 ThreadSafeLazyInit();
360 ::EnterCriticalSection(critical_section_);
361 owner_thread_id_ = ::GetCurrentThreadId();
362 }
363
Unlock()364 void Mutex::Unlock() {
365 ThreadSafeLazyInit();
366 // We don't protect writing to owner_thread_id_ here, as it's the
367 // caller's responsibility to ensure that the current thread holds the
368 // mutex when this is called.
369 owner_thread_id_ = 0;
370 ::LeaveCriticalSection(critical_section_);
371 }
372
373 // Does nothing if the current thread holds the mutex. Otherwise, crashes
374 // with high probability.
AssertHeld()375 void Mutex::AssertHeld() {
376 ThreadSafeLazyInit();
377 GTEST_CHECK_(owner_thread_id_ == ::GetCurrentThreadId())
378 << "The current thread is not holding the mutex @" << this;
379 }
380
381 namespace {
382
383 #ifdef _MSC_VER
384 // Use the RAII idiom to flag mem allocs that are intentionally never
385 // deallocated. The motivation is to silence the false positive mem leaks
386 // that are reported by the debug version of MS's CRT which can only detect
387 // if an alloc is missing a matching deallocation.
388 // Example:
389 // MemoryIsNotDeallocated memory_is_not_deallocated;
390 // critical_section_ = new CRITICAL_SECTION;
391 //
392 class MemoryIsNotDeallocated
393 {
394 public:
MemoryIsNotDeallocated()395 MemoryIsNotDeallocated() : old_crtdbg_flag_(0) {
396 old_crtdbg_flag_ = _CrtSetDbgFlag(_CRTDBG_REPORT_FLAG);
397 // Set heap allocation block type to _IGNORE_BLOCK so that MS debug CRT
398 // doesn't report mem leak if there's no matching deallocation.
399 _CrtSetDbgFlag(old_crtdbg_flag_ & ~_CRTDBG_ALLOC_MEM_DF);
400 }
401
~MemoryIsNotDeallocated()402 ~MemoryIsNotDeallocated() {
403 // Restore the original _CRTDBG_ALLOC_MEM_DF flag
404 _CrtSetDbgFlag(old_crtdbg_flag_);
405 }
406
407 private:
408 int old_crtdbg_flag_;
409
410 GTEST_DISALLOW_COPY_AND_ASSIGN_(MemoryIsNotDeallocated);
411 };
412 #endif // _MSC_VER
413
414 } // namespace
415
416 // Initializes owner_thread_id_ and critical_section_ in static mutexes.
ThreadSafeLazyInit()417 void Mutex::ThreadSafeLazyInit() {
418 // Dynamic mutexes are initialized in the constructor.
419 if (type_ == kStatic) {
420 switch (
421 ::InterlockedCompareExchange(&critical_section_init_phase_, 1L, 0L)) {
422 case 0:
423 // If critical_section_init_phase_ was 0 before the exchange, we
424 // are the first to test it and need to perform the initialization.
425 owner_thread_id_ = 0;
426 {
427 // Use RAII to flag that following mem alloc is never deallocated.
428 #ifdef _MSC_VER
429 MemoryIsNotDeallocated memory_is_not_deallocated;
430 #endif // _MSC_VER
431 critical_section_ = new CRITICAL_SECTION;
432 }
433 ::InitializeCriticalSection(critical_section_);
434 // Updates the critical_section_init_phase_ to 2 to signal
435 // initialization complete.
436 GTEST_CHECK_(::InterlockedCompareExchange(
437 &critical_section_init_phase_, 2L, 1L) ==
438 1L);
439 break;
440 case 1:
441 // Somebody else is already initializing the mutex; spin until they
442 // are done.
443 while (::InterlockedCompareExchange(&critical_section_init_phase_,
444 2L,
445 2L) != 2L) {
446 // Possibly yields the rest of the thread's time slice to other
447 // threads.
448 ::Sleep(0);
449 }
450 break;
451
452 case 2:
453 break; // The mutex is already initialized and ready for use.
454
455 default:
456 GTEST_CHECK_(false)
457 << "Unexpected value of critical_section_init_phase_ "
458 << "while initializing a static mutex.";
459 }
460 }
461 }
462
463 namespace {
464
465 class ThreadWithParamSupport : public ThreadWithParamBase {
466 public:
CreateThread(Runnable * runnable,Notification * thread_can_start)467 static HANDLE CreateThread(Runnable* runnable,
468 Notification* thread_can_start) {
469 ThreadMainParam* param = new ThreadMainParam(runnable, thread_can_start);
470 DWORD thread_id;
471 HANDLE thread_handle = ::CreateThread(
472 nullptr, // Default security.
473 0, // Default stack size.
474 &ThreadWithParamSupport::ThreadMain,
475 param, // Parameter to ThreadMainStatic
476 0x0, // Default creation flags.
477 &thread_id); // Need a valid pointer for the call to work under Win98.
478 GTEST_CHECK_(thread_handle != nullptr)
479 << "CreateThread failed with error " << ::GetLastError() << ".";
480 if (thread_handle == nullptr) {
481 delete param;
482 }
483 return thread_handle;
484 }
485
486 private:
487 struct ThreadMainParam {
ThreadMainParamtesting::internal::__anon45d187590311::ThreadWithParamSupport::ThreadMainParam488 ThreadMainParam(Runnable* runnable, Notification* thread_can_start)
489 : runnable_(runnable),
490 thread_can_start_(thread_can_start) {
491 }
492 std::unique_ptr<Runnable> runnable_;
493 // Does not own.
494 Notification* thread_can_start_;
495 };
496
ThreadMain(void * ptr)497 static DWORD WINAPI ThreadMain(void* ptr) {
498 // Transfers ownership.
499 std::unique_ptr<ThreadMainParam> param(static_cast<ThreadMainParam*>(ptr));
500 if (param->thread_can_start_ != nullptr)
501 param->thread_can_start_->WaitForNotification();
502 param->runnable_->Run();
503 return 0;
504 }
505
506 // Prohibit instantiation.
507 ThreadWithParamSupport();
508
509 GTEST_DISALLOW_COPY_AND_ASSIGN_(ThreadWithParamSupport);
510 };
511
512 } // namespace
513
ThreadWithParamBase(Runnable * runnable,Notification * thread_can_start)514 ThreadWithParamBase::ThreadWithParamBase(Runnable *runnable,
515 Notification* thread_can_start)
516 : thread_(ThreadWithParamSupport::CreateThread(runnable,
517 thread_can_start)) {
518 }
519
~ThreadWithParamBase()520 ThreadWithParamBase::~ThreadWithParamBase() {
521 Join();
522 }
523
Join()524 void ThreadWithParamBase::Join() {
525 GTEST_CHECK_(::WaitForSingleObject(thread_.Get(), INFINITE) == WAIT_OBJECT_0)
526 << "Failed to join the thread with error " << ::GetLastError() << ".";
527 }
528
529 // Maps a thread to a set of ThreadIdToThreadLocals that have values
530 // instantiated on that thread and notifies them when the thread exits. A
531 // ThreadLocal instance is expected to persist until all threads it has
532 // values on have terminated.
533 class ThreadLocalRegistryImpl {
534 public:
535 // Registers thread_local_instance as having value on the current thread.
536 // Returns a value that can be used to identify the thread from other threads.
GetValueOnCurrentThread(const ThreadLocalBase * thread_local_instance)537 static ThreadLocalValueHolderBase* GetValueOnCurrentThread(
538 const ThreadLocalBase* thread_local_instance) {
539 DWORD current_thread = ::GetCurrentThreadId();
540 MutexLock lock(&mutex_);
541 ThreadIdToThreadLocals* const thread_to_thread_locals =
542 GetThreadLocalsMapLocked();
543 ThreadIdToThreadLocals::iterator thread_local_pos =
544 thread_to_thread_locals->find(current_thread);
545 if (thread_local_pos == thread_to_thread_locals->end()) {
546 thread_local_pos = thread_to_thread_locals->insert(
547 std::make_pair(current_thread, ThreadLocalValues())).first;
548 StartWatcherThreadFor(current_thread);
549 }
550 ThreadLocalValues& thread_local_values = thread_local_pos->second;
551 ThreadLocalValues::iterator value_pos =
552 thread_local_values.find(thread_local_instance);
553 if (value_pos == thread_local_values.end()) {
554 value_pos =
555 thread_local_values
556 .insert(std::make_pair(
557 thread_local_instance,
558 std::shared_ptr<ThreadLocalValueHolderBase>(
559 thread_local_instance->NewValueForCurrentThread())))
560 .first;
561 }
562 return value_pos->second.get();
563 }
564
OnThreadLocalDestroyed(const ThreadLocalBase * thread_local_instance)565 static void OnThreadLocalDestroyed(
566 const ThreadLocalBase* thread_local_instance) {
567 std::vector<std::shared_ptr<ThreadLocalValueHolderBase> > value_holders;
568 // Clean up the ThreadLocalValues data structure while holding the lock, but
569 // defer the destruction of the ThreadLocalValueHolderBases.
570 {
571 MutexLock lock(&mutex_);
572 ThreadIdToThreadLocals* const thread_to_thread_locals =
573 GetThreadLocalsMapLocked();
574 for (ThreadIdToThreadLocals::iterator it =
575 thread_to_thread_locals->begin();
576 it != thread_to_thread_locals->end();
577 ++it) {
578 ThreadLocalValues& thread_local_values = it->second;
579 ThreadLocalValues::iterator value_pos =
580 thread_local_values.find(thread_local_instance);
581 if (value_pos != thread_local_values.end()) {
582 value_holders.push_back(value_pos->second);
583 thread_local_values.erase(value_pos);
584 // This 'if' can only be successful at most once, so theoretically we
585 // could break out of the loop here, but we don't bother doing so.
586 }
587 }
588 }
589 // Outside the lock, let the destructor for 'value_holders' deallocate the
590 // ThreadLocalValueHolderBases.
591 }
592
OnThreadExit(DWORD thread_id)593 static void OnThreadExit(DWORD thread_id) {
594 GTEST_CHECK_(thread_id != 0) << ::GetLastError();
595 std::vector<std::shared_ptr<ThreadLocalValueHolderBase> > value_holders;
596 // Clean up the ThreadIdToThreadLocals data structure while holding the
597 // lock, but defer the destruction of the ThreadLocalValueHolderBases.
598 {
599 MutexLock lock(&mutex_);
600 ThreadIdToThreadLocals* const thread_to_thread_locals =
601 GetThreadLocalsMapLocked();
602 ThreadIdToThreadLocals::iterator thread_local_pos =
603 thread_to_thread_locals->find(thread_id);
604 if (thread_local_pos != thread_to_thread_locals->end()) {
605 ThreadLocalValues& thread_local_values = thread_local_pos->second;
606 for (ThreadLocalValues::iterator value_pos =
607 thread_local_values.begin();
608 value_pos != thread_local_values.end();
609 ++value_pos) {
610 value_holders.push_back(value_pos->second);
611 }
612 thread_to_thread_locals->erase(thread_local_pos);
613 }
614 }
615 // Outside the lock, let the destructor for 'value_holders' deallocate the
616 // ThreadLocalValueHolderBases.
617 }
618
619 private:
620 // In a particular thread, maps a ThreadLocal object to its value.
621 typedef std::map<const ThreadLocalBase*,
622 std::shared_ptr<ThreadLocalValueHolderBase> >
623 ThreadLocalValues;
624 // Stores all ThreadIdToThreadLocals having values in a thread, indexed by
625 // thread's ID.
626 typedef std::map<DWORD, ThreadLocalValues> ThreadIdToThreadLocals;
627
628 // Holds the thread id and thread handle that we pass from
629 // StartWatcherThreadFor to WatcherThreadFunc.
630 typedef std::pair<DWORD, HANDLE> ThreadIdAndHandle;
631
StartWatcherThreadFor(DWORD thread_id)632 static void StartWatcherThreadFor(DWORD thread_id) {
633 // The returned handle will be kept in thread_map and closed by
634 // watcher_thread in WatcherThreadFunc.
635 HANDLE thread = ::OpenThread(SYNCHRONIZE | THREAD_QUERY_INFORMATION,
636 FALSE,
637 thread_id);
638 GTEST_CHECK_(thread != nullptr);
639 // We need to pass a valid thread ID pointer into CreateThread for it
640 // to work correctly under Win98.
641 DWORD watcher_thread_id;
642 HANDLE watcher_thread = ::CreateThread(
643 nullptr, // Default security.
644 0, // Default stack size
645 &ThreadLocalRegistryImpl::WatcherThreadFunc,
646 reinterpret_cast<LPVOID>(new ThreadIdAndHandle(thread_id, thread)),
647 CREATE_SUSPENDED, &watcher_thread_id);
648 GTEST_CHECK_(watcher_thread != nullptr);
649 // Give the watcher thread the same priority as ours to avoid being
650 // blocked by it.
651 ::SetThreadPriority(watcher_thread,
652 ::GetThreadPriority(::GetCurrentThread()));
653 ::ResumeThread(watcher_thread);
654 ::CloseHandle(watcher_thread);
655 }
656
657 // Monitors exit from a given thread and notifies those
658 // ThreadIdToThreadLocals about thread termination.
WatcherThreadFunc(LPVOID param)659 static DWORD WINAPI WatcherThreadFunc(LPVOID param) {
660 const ThreadIdAndHandle* tah =
661 reinterpret_cast<const ThreadIdAndHandle*>(param);
662 GTEST_CHECK_(
663 ::WaitForSingleObject(tah->second, INFINITE) == WAIT_OBJECT_0);
664 OnThreadExit(tah->first);
665 ::CloseHandle(tah->second);
666 delete tah;
667 return 0;
668 }
669
670 // Returns map of thread local instances.
GetThreadLocalsMapLocked()671 static ThreadIdToThreadLocals* GetThreadLocalsMapLocked() {
672 mutex_.AssertHeld();
673 #ifdef _MSC_VER
674 MemoryIsNotDeallocated memory_is_not_deallocated;
675 #endif // _MSC_VER
676 static ThreadIdToThreadLocals* map = new ThreadIdToThreadLocals();
677 return map;
678 }
679
680 // Protects access to GetThreadLocalsMapLocked() and its return value.
681 static Mutex mutex_;
682 // Protects access to GetThreadMapLocked() and its return value.
683 static Mutex thread_map_mutex_;
684 };
685
686 Mutex ThreadLocalRegistryImpl::mutex_(Mutex::kStaticMutex);
687 Mutex ThreadLocalRegistryImpl::thread_map_mutex_(Mutex::kStaticMutex);
688
GetValueOnCurrentThread(const ThreadLocalBase * thread_local_instance)689 ThreadLocalValueHolderBase* ThreadLocalRegistry::GetValueOnCurrentThread(
690 const ThreadLocalBase* thread_local_instance) {
691 return ThreadLocalRegistryImpl::GetValueOnCurrentThread(
692 thread_local_instance);
693 }
694
OnThreadLocalDestroyed(const ThreadLocalBase * thread_local_instance)695 void ThreadLocalRegistry::OnThreadLocalDestroyed(
696 const ThreadLocalBase* thread_local_instance) {
697 ThreadLocalRegistryImpl::OnThreadLocalDestroyed(thread_local_instance);
698 }
699
700 #endif // GTEST_IS_THREADSAFE && GTEST_OS_WINDOWS
701
702 #if GTEST_USES_POSIX_RE
703
704 // Implements RE. Currently only needed for death tests.
705
~RE()706 RE::~RE() {
707 if (is_valid_) {
708 // regfree'ing an invalid regex might crash because the content
709 // of the regex is undefined. Since the regex's are essentially
710 // the same, one cannot be valid (or invalid) without the other
711 // being so too.
712 regfree(&partial_regex_);
713 regfree(&full_regex_);
714 }
715 free(const_cast<char*>(pattern_));
716 }
717
718 // Returns true if and only if regular expression re matches the entire str.
FullMatch(const char * str,const RE & re)719 bool RE::FullMatch(const char* str, const RE& re) {
720 if (!re.is_valid_) return false;
721
722 regmatch_t match;
723 return regexec(&re.full_regex_, str, 1, &match, 0) == 0;
724 }
725
726 // Returns true if and only if regular expression re matches a substring of
727 // str (including str itself).
PartialMatch(const char * str,const RE & re)728 bool RE::PartialMatch(const char* str, const RE& re) {
729 if (!re.is_valid_) return false;
730
731 regmatch_t match;
732 return regexec(&re.partial_regex_, str, 1, &match, 0) == 0;
733 }
734
735 // Initializes an RE from its string representation.
Init(const char * regex)736 void RE::Init(const char* regex) {
737 pattern_ = posix::StrDup(regex);
738
739 // Reserves enough bytes to hold the regular expression used for a
740 // full match.
741 const size_t full_regex_len = strlen(regex) + 10;
742 char* const full_pattern = new char[full_regex_len];
743
744 snprintf(full_pattern, full_regex_len, "^(%s)$", regex);
745 is_valid_ = regcomp(&full_regex_, full_pattern, REG_EXTENDED) == 0;
746 // We want to call regcomp(&partial_regex_, ...) even if the
747 // previous expression returns false. Otherwise partial_regex_ may
748 // not be properly initialized can may cause trouble when it's
749 // freed.
750 //
751 // Some implementation of POSIX regex (e.g. on at least some
752 // versions of Cygwin) doesn't accept the empty string as a valid
753 // regex. We change it to an equivalent form "()" to be safe.
754 if (is_valid_) {
755 const char* const partial_regex = (*regex == '\0') ? "()" : regex;
756 is_valid_ = regcomp(&partial_regex_, partial_regex, REG_EXTENDED) == 0;
757 }
758 EXPECT_TRUE(is_valid_)
759 << "Regular expression \"" << regex
760 << "\" is not a valid POSIX Extended regular expression.";
761
762 delete[] full_pattern;
763 }
764
765 #elif GTEST_USES_SIMPLE_RE
766
767 // Returns true if and only if ch appears anywhere in str (excluding the
768 // terminating '\0' character).
IsInSet(char ch,const char * str)769 bool IsInSet(char ch, const char* str) {
770 return ch != '\0' && strchr(str, ch) != nullptr;
771 }
772
773 // Returns true if and only if ch belongs to the given classification.
774 // Unlike similar functions in <ctype.h>, these aren't affected by the
775 // current locale.
IsAsciiDigit(char ch)776 bool IsAsciiDigit(char ch) { return '0' <= ch && ch <= '9'; }
IsAsciiPunct(char ch)777 bool IsAsciiPunct(char ch) {
778 return IsInSet(ch, "^-!\"#$%&'()*+,./:;<=>?@[\\]_`{|}~");
779 }
IsRepeat(char ch)780 bool IsRepeat(char ch) { return IsInSet(ch, "?*+"); }
IsAsciiWhiteSpace(char ch)781 bool IsAsciiWhiteSpace(char ch) { return IsInSet(ch, " \f\n\r\t\v"); }
IsAsciiWordChar(char ch)782 bool IsAsciiWordChar(char ch) {
783 return ('a' <= ch && ch <= 'z') || ('A' <= ch && ch <= 'Z') ||
784 ('0' <= ch && ch <= '9') || ch == '_';
785 }
786
787 // Returns true if and only if "\\c" is a supported escape sequence.
IsValidEscape(char c)788 bool IsValidEscape(char c) {
789 return (IsAsciiPunct(c) || IsInSet(c, "dDfnrsStvwW"));
790 }
791
792 // Returns true if and only if the given atom (specified by escaped and
793 // pattern) matches ch. The result is undefined if the atom is invalid.
AtomMatchesChar(bool escaped,char pattern_char,char ch)794 bool AtomMatchesChar(bool escaped, char pattern_char, char ch) {
795 if (escaped) { // "\\p" where p is pattern_char.
796 switch (pattern_char) {
797 case 'd': return IsAsciiDigit(ch);
798 case 'D': return !IsAsciiDigit(ch);
799 case 'f': return ch == '\f';
800 case 'n': return ch == '\n';
801 case 'r': return ch == '\r';
802 case 's': return IsAsciiWhiteSpace(ch);
803 case 'S': return !IsAsciiWhiteSpace(ch);
804 case 't': return ch == '\t';
805 case 'v': return ch == '\v';
806 case 'w': return IsAsciiWordChar(ch);
807 case 'W': return !IsAsciiWordChar(ch);
808 }
809 return IsAsciiPunct(pattern_char) && pattern_char == ch;
810 }
811
812 return (pattern_char == '.' && ch != '\n') || pattern_char == ch;
813 }
814
815 // Helper function used by ValidateRegex() to format error messages.
FormatRegexSyntaxError(const char * regex,int index)816 static std::string FormatRegexSyntaxError(const char* regex, int index) {
817 return (Message() << "Syntax error at index " << index
818 << " in simple regular expression \"" << regex << "\": ").GetString();
819 }
820
821 // Generates non-fatal failures and returns false if regex is invalid;
822 // otherwise returns true.
ValidateRegex(const char * regex)823 bool ValidateRegex(const char* regex) {
824 if (regex == nullptr) {
825 ADD_FAILURE() << "NULL is not a valid simple regular expression.";
826 return false;
827 }
828
829 bool is_valid = true;
830
831 // True if and only if ?, *, or + can follow the previous atom.
832 bool prev_repeatable = false;
833 for (int i = 0; regex[i]; i++) {
834 if (regex[i] == '\\') { // An escape sequence
835 i++;
836 if (regex[i] == '\0') {
837 ADD_FAILURE() << FormatRegexSyntaxError(regex, i - 1)
838 << "'\\' cannot appear at the end.";
839 return false;
840 }
841
842 if (!IsValidEscape(regex[i])) {
843 ADD_FAILURE() << FormatRegexSyntaxError(regex, i - 1)
844 << "invalid escape sequence \"\\" << regex[i] << "\".";
845 is_valid = false;
846 }
847 prev_repeatable = true;
848 } else { // Not an escape sequence.
849 const char ch = regex[i];
850
851 if (ch == '^' && i > 0) {
852 ADD_FAILURE() << FormatRegexSyntaxError(regex, i)
853 << "'^' can only appear at the beginning.";
854 is_valid = false;
855 } else if (ch == '$' && regex[i + 1] != '\0') {
856 ADD_FAILURE() << FormatRegexSyntaxError(regex, i)
857 << "'$' can only appear at the end.";
858 is_valid = false;
859 } else if (IsInSet(ch, "()[]{}|")) {
860 ADD_FAILURE() << FormatRegexSyntaxError(regex, i)
861 << "'" << ch << "' is unsupported.";
862 is_valid = false;
863 } else if (IsRepeat(ch) && !prev_repeatable) {
864 ADD_FAILURE() << FormatRegexSyntaxError(regex, i)
865 << "'" << ch << "' can only follow a repeatable token.";
866 is_valid = false;
867 }
868
869 prev_repeatable = !IsInSet(ch, "^$?*+");
870 }
871 }
872
873 return is_valid;
874 }
875
876 // Matches a repeated regex atom followed by a valid simple regular
877 // expression. The regex atom is defined as c if escaped is false,
878 // or \c otherwise. repeat is the repetition meta character (?, *,
879 // or +). The behavior is undefined if str contains too many
880 // characters to be indexable by size_t, in which case the test will
881 // probably time out anyway. We are fine with this limitation as
882 // std::string has it too.
MatchRepetitionAndRegexAtHead(bool escaped,char c,char repeat,const char * regex,const char * str)883 bool MatchRepetitionAndRegexAtHead(
884 bool escaped, char c, char repeat, const char* regex,
885 const char* str) {
886 const size_t min_count = (repeat == '+') ? 1 : 0;
887 const size_t max_count = (repeat == '?') ? 1 :
888 static_cast<size_t>(-1) - 1;
889 // We cannot call numeric_limits::max() as it conflicts with the
890 // max() macro on Windows.
891
892 for (size_t i = 0; i <= max_count; ++i) {
893 // We know that the atom matches each of the first i characters in str.
894 if (i >= min_count && MatchRegexAtHead(regex, str + i)) {
895 // We have enough matches at the head, and the tail matches too.
896 // Since we only care about *whether* the pattern matches str
897 // (as opposed to *how* it matches), there is no need to find a
898 // greedy match.
899 return true;
900 }
901 if (str[i] == '\0' || !AtomMatchesChar(escaped, c, str[i]))
902 return false;
903 }
904 return false;
905 }
906
907 // Returns true if and only if regex matches a prefix of str. regex must
908 // be a valid simple regular expression and not start with "^", or the
909 // result is undefined.
MatchRegexAtHead(const char * regex,const char * str)910 bool MatchRegexAtHead(const char* regex, const char* str) {
911 if (*regex == '\0') // An empty regex matches a prefix of anything.
912 return true;
913
914 // "$" only matches the end of a string. Note that regex being
915 // valid guarantees that there's nothing after "$" in it.
916 if (*regex == '$')
917 return *str == '\0';
918
919 // Is the first thing in regex an escape sequence?
920 const bool escaped = *regex == '\\';
921 if (escaped)
922 ++regex;
923 if (IsRepeat(regex[1])) {
924 // MatchRepetitionAndRegexAtHead() calls MatchRegexAtHead(), so
925 // here's an indirect recursion. It terminates as the regex gets
926 // shorter in each recursion.
927 return MatchRepetitionAndRegexAtHead(
928 escaped, regex[0], regex[1], regex + 2, str);
929 } else {
930 // regex isn't empty, isn't "$", and doesn't start with a
931 // repetition. We match the first atom of regex with the first
932 // character of str and recurse.
933 return (*str != '\0') && AtomMatchesChar(escaped, *regex, *str) &&
934 MatchRegexAtHead(regex + 1, str + 1);
935 }
936 }
937
938 // Returns true if and only if regex matches any substring of str. regex must
939 // be a valid simple regular expression, or the result is undefined.
940 //
941 // The algorithm is recursive, but the recursion depth doesn't exceed
942 // the regex length, so we won't need to worry about running out of
943 // stack space normally. In rare cases the time complexity can be
944 // exponential with respect to the regex length + the string length,
945 // but usually it's must faster (often close to linear).
MatchRegexAnywhere(const char * regex,const char * str)946 bool MatchRegexAnywhere(const char* regex, const char* str) {
947 if (regex == nullptr || str == nullptr) return false;
948
949 if (*regex == '^')
950 return MatchRegexAtHead(regex + 1, str);
951
952 // A successful match can be anywhere in str.
953 do {
954 if (MatchRegexAtHead(regex, str))
955 return true;
956 } while (*str++ != '\0');
957 return false;
958 }
959
960 // Implements the RE class.
961
~RE()962 RE::~RE() {
963 free(const_cast<char*>(pattern_));
964 free(const_cast<char*>(full_pattern_));
965 }
966
967 // Returns true if and only if regular expression re matches the entire str.
FullMatch(const char * str,const RE & re)968 bool RE::FullMatch(const char* str, const RE& re) {
969 return re.is_valid_ && MatchRegexAnywhere(re.full_pattern_, str);
970 }
971
972 // Returns true if and only if regular expression re matches a substring of
973 // str (including str itself).
PartialMatch(const char * str,const RE & re)974 bool RE::PartialMatch(const char* str, const RE& re) {
975 return re.is_valid_ && MatchRegexAnywhere(re.pattern_, str);
976 }
977
978 // Initializes an RE from its string representation.
Init(const char * regex)979 void RE::Init(const char* regex) {
980 pattern_ = full_pattern_ = nullptr;
981 if (regex != nullptr) {
982 pattern_ = posix::StrDup(regex);
983 }
984
985 is_valid_ = ValidateRegex(regex);
986 if (!is_valid_) {
987 // No need to calculate the full pattern when the regex is invalid.
988 return;
989 }
990
991 const size_t len = strlen(regex);
992 // Reserves enough bytes to hold the regular expression used for a
993 // full match: we need space to prepend a '^', append a '$', and
994 // terminate the string with '\0'.
995 char* buffer = static_cast<char*>(malloc(len + 3));
996 full_pattern_ = buffer;
997
998 if (*regex != '^')
999 *buffer++ = '^'; // Makes sure full_pattern_ starts with '^'.
1000
1001 // We don't use snprintf or strncpy, as they trigger a warning when
1002 // compiled with VC++ 8.0.
1003 memcpy(buffer, regex, len);
1004 buffer += len;
1005
1006 if (len == 0 || regex[len - 1] != '$')
1007 *buffer++ = '$'; // Makes sure full_pattern_ ends with '$'.
1008
1009 *buffer = '\0';
1010 }
1011
1012 #endif // GTEST_USES_POSIX_RE
1013
1014 const char kUnknownFile[] = "unknown file";
1015
1016 // Formats a source file path and a line number as they would appear
1017 // in an error message from the compiler used to compile this code.
FormatFileLocation(const char * file,int line)1018 GTEST_API_ ::std::string FormatFileLocation(const char* file, int line) {
1019 const std::string file_name(file == nullptr ? kUnknownFile : file);
1020
1021 if (line < 0) {
1022 return file_name + ":";
1023 }
1024 #ifdef _MSC_VER
1025 return file_name + "(" + StreamableToString(line) + "):";
1026 #else
1027 return file_name + ":" + StreamableToString(line) + ":";
1028 #endif // _MSC_VER
1029 }
1030
1031 // Formats a file location for compiler-independent XML output.
1032 // Although this function is not platform dependent, we put it next to
1033 // FormatFileLocation in order to contrast the two functions.
1034 // Note that FormatCompilerIndependentFileLocation() does NOT append colon
1035 // to the file location it produces, unlike FormatFileLocation().
FormatCompilerIndependentFileLocation(const char * file,int line)1036 GTEST_API_ ::std::string FormatCompilerIndependentFileLocation(
1037 const char* file, int line) {
1038 const std::string file_name(file == nullptr ? kUnknownFile : file);
1039
1040 if (line < 0)
1041 return file_name;
1042 else
1043 return file_name + ":" + StreamableToString(line);
1044 }
1045
GTestLog(GTestLogSeverity severity,const char * file,int line)1046 GTestLog::GTestLog(GTestLogSeverity severity, const char* file, int line)
1047 : severity_(severity) {
1048 const char* const marker =
1049 severity == GTEST_INFO ? "[ INFO ]" :
1050 severity == GTEST_WARNING ? "[WARNING]" :
1051 severity == GTEST_ERROR ? "[ ERROR ]" : "[ FATAL ]";
1052 GetStream() << ::std::endl << marker << " "
1053 << FormatFileLocation(file, line).c_str() << ": ";
1054 }
1055
1056 // Flushes the buffers and, if severity is GTEST_FATAL, aborts the program.
~GTestLog()1057 GTestLog::~GTestLog() {
1058 GetStream() << ::std::endl;
1059 if (severity_ == GTEST_FATAL) {
1060 fflush(stderr);
1061 posix::Abort();
1062 }
1063 }
1064
1065 // Disable Microsoft deprecation warnings for POSIX functions called from
1066 // this class (creat, dup, dup2, and close)
1067 GTEST_DISABLE_MSC_DEPRECATED_PUSH_()
1068
1069 #if GTEST_HAS_STREAM_REDIRECTION
1070
1071 // Object that captures an output stream (stdout/stderr).
1072 class CapturedStream {
1073 public:
1074 // The ctor redirects the stream to a temporary file.
CapturedStream(int fd)1075 explicit CapturedStream(int fd) : fd_(fd), uncaptured_fd_(dup(fd)) {
1076 # if GTEST_OS_WINDOWS
1077 char temp_dir_path[MAX_PATH + 1] = { '\0' }; // NOLINT
1078 char temp_file_path[MAX_PATH + 1] = { '\0' }; // NOLINT
1079
1080 ::GetTempPathA(sizeof(temp_dir_path), temp_dir_path);
1081 const UINT success = ::GetTempFileNameA(temp_dir_path,
1082 "gtest_redir",
1083 0, // Generate unique file name.
1084 temp_file_path);
1085 GTEST_CHECK_(success != 0)
1086 << "Unable to create a temporary file in " << temp_dir_path;
1087 const int captured_fd = creat(temp_file_path, _S_IREAD | _S_IWRITE);
1088 GTEST_CHECK_(captured_fd != -1) << "Unable to open temporary file "
1089 << temp_file_path;
1090 filename_ = temp_file_path;
1091 # else
1092 // There's no guarantee that a test has write access to the current
1093 // directory, so we create the temporary file in the /tmp directory
1094 // instead. We use /tmp on most systems, and /sdcard on Android.
1095 // That's because Android doesn't have /tmp.
1096 # if GTEST_OS_LINUX_ANDROID
1097 // Note: Android applications are expected to call the framework's
1098 // Context.getExternalStorageDirectory() method through JNI to get
1099 // the location of the world-writable SD Card directory. However,
1100 // this requires a Context handle, which cannot be retrieved
1101 // globally from native code. Doing so also precludes running the
1102 // code as part of a regular standalone executable, which doesn't
1103 // run in a Dalvik process (e.g. when running it through 'adb shell').
1104 //
1105 // The location /data/local/tmp is directly accessible from native code.
1106 // '/sdcard' and other variants cannot be relied on, as they are not
1107 // guaranteed to be mounted, or may have a delay in mounting.
1108 char name_template[] = "/data/local/tmp/gtest_captured_stream.XXXXXX";
1109 # else
1110 char name_template[] = "/tmp/captured_stream.XXXXXX";
1111 # endif // GTEST_OS_LINUX_ANDROID
1112 const int captured_fd = mkstemp(name_template);
1113 if (captured_fd == -1) {
1114 GTEST_LOG_(WARNING)
1115 << "Failed to create tmp file " << name_template
1116 << " for test; does the test have access to the /tmp directory?";
1117 }
1118 filename_ = name_template;
1119 # endif // GTEST_OS_WINDOWS
1120 fflush(nullptr);
1121 dup2(captured_fd, fd_);
1122 close(captured_fd);
1123 }
1124
~CapturedStream()1125 ~CapturedStream() {
1126 remove(filename_.c_str());
1127 }
1128
GetCapturedString()1129 std::string GetCapturedString() {
1130 if (uncaptured_fd_ != -1) {
1131 // Restores the original stream.
1132 fflush(nullptr);
1133 dup2(uncaptured_fd_, fd_);
1134 close(uncaptured_fd_);
1135 uncaptured_fd_ = -1;
1136 }
1137
1138 FILE* const file = posix::FOpen(filename_.c_str(), "r");
1139 if (file == nullptr) {
1140 GTEST_LOG_(FATAL) << "Failed to open tmp file " << filename_
1141 << " for capturing stream.";
1142 }
1143 const std::string content = ReadEntireFile(file);
1144 posix::FClose(file);
1145 return content;
1146 }
1147
1148 private:
1149 const int fd_; // A stream to capture.
1150 int uncaptured_fd_;
1151 // Name of the temporary file holding the stderr output.
1152 ::std::string filename_;
1153
1154 GTEST_DISALLOW_COPY_AND_ASSIGN_(CapturedStream);
1155 };
1156
1157 GTEST_DISABLE_MSC_DEPRECATED_POP_()
1158
1159 static CapturedStream* g_captured_stderr = nullptr;
1160 static CapturedStream* g_captured_stdout = nullptr;
1161
1162 // Starts capturing an output stream (stdout/stderr).
CaptureStream(int fd,const char * stream_name,CapturedStream ** stream)1163 static void CaptureStream(int fd, const char* stream_name,
1164 CapturedStream** stream) {
1165 if (*stream != nullptr) {
1166 GTEST_LOG_(FATAL) << "Only one " << stream_name
1167 << " capturer can exist at a time.";
1168 }
1169 *stream = new CapturedStream(fd);
1170 }
1171
1172 // Stops capturing the output stream and returns the captured string.
GetCapturedStream(CapturedStream ** captured_stream)1173 static std::string GetCapturedStream(CapturedStream** captured_stream) {
1174 const std::string content = (*captured_stream)->GetCapturedString();
1175
1176 delete *captured_stream;
1177 *captured_stream = nullptr;
1178
1179 return content;
1180 }
1181
1182 // Starts capturing stdout.
CaptureStdout()1183 void CaptureStdout() {
1184 CaptureStream(kStdOutFileno, "stdout", &g_captured_stdout);
1185 }
1186
1187 // Starts capturing stderr.
CaptureStderr()1188 void CaptureStderr() {
1189 CaptureStream(kStdErrFileno, "stderr", &g_captured_stderr);
1190 }
1191
1192 // Stops capturing stdout and returns the captured string.
GetCapturedStdout()1193 std::string GetCapturedStdout() {
1194 return GetCapturedStream(&g_captured_stdout);
1195 }
1196
1197 // Stops capturing stderr and returns the captured string.
GetCapturedStderr()1198 std::string GetCapturedStderr() {
1199 return GetCapturedStream(&g_captured_stderr);
1200 }
1201
1202 #endif // GTEST_HAS_STREAM_REDIRECTION
1203
1204
1205
1206
1207
GetFileSize(FILE * file)1208 size_t GetFileSize(FILE* file) {
1209 fseek(file, 0, SEEK_END);
1210 return static_cast<size_t>(ftell(file));
1211 }
1212
ReadEntireFile(FILE * file)1213 std::string ReadEntireFile(FILE* file) {
1214 const size_t file_size = GetFileSize(file);
1215 char* const buffer = new char[file_size];
1216
1217 size_t bytes_last_read = 0; // # of bytes read in the last fread()
1218 size_t bytes_read = 0; // # of bytes read so far
1219
1220 fseek(file, 0, SEEK_SET);
1221
1222 // Keeps reading the file until we cannot read further or the
1223 // pre-determined file size is reached.
1224 do {
1225 bytes_last_read = fread(buffer+bytes_read, 1, file_size-bytes_read, file);
1226 bytes_read += bytes_last_read;
1227 } while (bytes_last_read > 0 && bytes_read < file_size);
1228
1229 const std::string content(buffer, bytes_read);
1230 delete[] buffer;
1231
1232 return content;
1233 }
1234
1235 #if GTEST_HAS_DEATH_TEST
1236 static const std::vector<std::string>* g_injected_test_argvs =
1237 nullptr; // Owned.
1238
GetInjectableArgvs()1239 std::vector<std::string> GetInjectableArgvs() {
1240 if (g_injected_test_argvs != nullptr) {
1241 return *g_injected_test_argvs;
1242 }
1243 return GetArgvs();
1244 }
1245
SetInjectableArgvs(const std::vector<std::string> * new_argvs)1246 void SetInjectableArgvs(const std::vector<std::string>* new_argvs) {
1247 if (g_injected_test_argvs != new_argvs) delete g_injected_test_argvs;
1248 g_injected_test_argvs = new_argvs;
1249 }
1250
SetInjectableArgvs(const std::vector<std::string> & new_argvs)1251 void SetInjectableArgvs(const std::vector<std::string>& new_argvs) {
1252 SetInjectableArgvs(
1253 new std::vector<std::string>(new_argvs.begin(), new_argvs.end()));
1254 }
1255
ClearInjectableArgvs()1256 void ClearInjectableArgvs() {
1257 delete g_injected_test_argvs;
1258 g_injected_test_argvs = nullptr;
1259 }
1260 #endif // GTEST_HAS_DEATH_TEST
1261
1262 #if GTEST_OS_WINDOWS_MOBILE
1263 namespace posix {
Abort()1264 void Abort() {
1265 DebugBreak();
1266 TerminateProcess(GetCurrentProcess(), 1);
1267 }
1268 } // namespace posix
1269 #endif // GTEST_OS_WINDOWS_MOBILE
1270
1271 // Returns the name of the environment variable corresponding to the
1272 // given flag. For example, FlagToEnvVar("foo") will return
1273 // "GTEST_FOO" in the open-source version.
FlagToEnvVar(const char * flag)1274 static std::string FlagToEnvVar(const char* flag) {
1275 const std::string full_flag =
1276 (Message() << GTEST_FLAG_PREFIX_ << flag).GetString();
1277
1278 Message env_var;
1279 for (size_t i = 0; i != full_flag.length(); i++) {
1280 env_var << ToUpper(full_flag.c_str()[i]);
1281 }
1282
1283 return env_var.GetString();
1284 }
1285
1286 // Parses 'str' for a 32-bit signed integer. If successful, writes
1287 // the result to *value and returns true; otherwise leaves *value
1288 // unchanged and returns false.
ParseInt32(const Message & src_text,const char * str,Int32 * value)1289 bool ParseInt32(const Message& src_text, const char* str, Int32* value) {
1290 // Parses the environment variable as a decimal integer.
1291 char* end = nullptr;
1292 const long long_value = strtol(str, &end, 10); // NOLINT
1293
1294 // Has strtol() consumed all characters in the string?
1295 if (*end != '\0') {
1296 // No - an invalid character was encountered.
1297 Message msg;
1298 msg << "WARNING: " << src_text
1299 << " is expected to be a 32-bit integer, but actually"
1300 << " has value \"" << str << "\".\n";
1301 printf("%s", msg.GetString().c_str());
1302 fflush(stdout);
1303 return false;
1304 }
1305
1306 // Is the parsed value in the range of an Int32?
1307 const Int32 result = static_cast<Int32>(long_value);
1308 if (long_value == LONG_MAX || long_value == LONG_MIN ||
1309 // The parsed value overflows as a long. (strtol() returns
1310 // LONG_MAX or LONG_MIN when the input overflows.)
1311 result != long_value
1312 // The parsed value overflows as an Int32.
1313 ) {
1314 Message msg;
1315 msg << "WARNING: " << src_text
1316 << " is expected to be a 32-bit integer, but actually"
1317 << " has value " << str << ", which overflows.\n";
1318 printf("%s", msg.GetString().c_str());
1319 fflush(stdout);
1320 return false;
1321 }
1322
1323 *value = result;
1324 return true;
1325 }
1326
1327 // Reads and returns the Boolean environment variable corresponding to
1328 // the given flag; if it's not set, returns default_value.
1329 //
1330 // The value is considered true if and only if it's not "0".
BoolFromGTestEnv(const char * flag,bool default_value)1331 bool BoolFromGTestEnv(const char* flag, bool default_value) {
1332 #if defined(GTEST_GET_BOOL_FROM_ENV_)
1333 return GTEST_GET_BOOL_FROM_ENV_(flag, default_value);
1334 #else
1335 const std::string env_var = FlagToEnvVar(flag);
1336 const char* const string_value = posix::GetEnv(env_var.c_str());
1337 return string_value == nullptr ? default_value
1338 : strcmp(string_value, "0") != 0;
1339 #endif // defined(GTEST_GET_BOOL_FROM_ENV_)
1340 }
1341
1342 // Reads and returns a 32-bit integer stored in the environment
1343 // variable corresponding to the given flag; if it isn't set or
1344 // doesn't represent a valid 32-bit integer, returns default_value.
Int32FromGTestEnv(const char * flag,Int32 default_value)1345 Int32 Int32FromGTestEnv(const char* flag, Int32 default_value) {
1346 #if defined(GTEST_GET_INT32_FROM_ENV_)
1347 return GTEST_GET_INT32_FROM_ENV_(flag, default_value);
1348 #else
1349 const std::string env_var = FlagToEnvVar(flag);
1350 const char* const string_value = posix::GetEnv(env_var.c_str());
1351 if (string_value == nullptr) {
1352 // The environment variable is not set.
1353 return default_value;
1354 }
1355
1356 Int32 result = default_value;
1357 if (!ParseInt32(Message() << "Environment variable " << env_var,
1358 string_value, &result)) {
1359 printf("The default value %s is used.\n",
1360 (Message() << default_value).GetString().c_str());
1361 fflush(stdout);
1362 return default_value;
1363 }
1364
1365 return result;
1366 #endif // defined(GTEST_GET_INT32_FROM_ENV_)
1367 }
1368
1369 // As a special case for the 'output' flag, if GTEST_OUTPUT is not
1370 // set, we look for XML_OUTPUT_FILE, which is set by the Bazel build
1371 // system. The value of XML_OUTPUT_FILE is a filename without the
1372 // "xml:" prefix of GTEST_OUTPUT.
1373 // Note that this is meant to be called at the call site so it does
1374 // not check that the flag is 'output'
1375 // In essence this checks an env variable called XML_OUTPUT_FILE
1376 // and if it is set we prepend "xml:" to its value, if it not set we return ""
OutputFlagAlsoCheckEnvVar()1377 std::string OutputFlagAlsoCheckEnvVar(){
1378 std::string default_value_for_output_flag = "";
1379 const char* xml_output_file_env = posix::GetEnv("XML_OUTPUT_FILE");
1380 if (nullptr != xml_output_file_env) {
1381 default_value_for_output_flag = std::string("xml:") + xml_output_file_env;
1382 }
1383 return default_value_for_output_flag;
1384 }
1385
1386 // Reads and returns the string environment variable corresponding to
1387 // the given flag; if it's not set, returns default_value.
StringFromGTestEnv(const char * flag,const char * default_value)1388 const char* StringFromGTestEnv(const char* flag, const char* default_value) {
1389 #if defined(GTEST_GET_STRING_FROM_ENV_)
1390 return GTEST_GET_STRING_FROM_ENV_(flag, default_value);
1391 #else
1392 const std::string env_var = FlagToEnvVar(flag);
1393 const char* const value = posix::GetEnv(env_var.c_str());
1394 return value == nullptr ? default_value : value;
1395 #endif // defined(GTEST_GET_STRING_FROM_ENV_)
1396 }
1397
1398 } // namespace internal
1399 } // namespace testing
1400