1 //===- CloneFunction.cpp - Clone a function into another function ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the CloneFunctionInto interface, which is used as the
10 // low-level function cloner.  This is used by the CloneFunction and function
11 // inliner to do the dirty work of copying the body of a function around.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/ADT/SetVector.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/Analysis/DomTreeUpdater.h"
18 #include "llvm/Analysis/InstructionSimplify.h"
19 #include "llvm/Analysis/LoopInfo.h"
20 #include "llvm/IR/CFG.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/DebugInfo.h"
23 #include "llvm/IR/DerivedTypes.h"
24 #include "llvm/IR/Function.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/IntrinsicInst.h"
27 #include "llvm/IR/LLVMContext.h"
28 #include "llvm/IR/MDBuilder.h"
29 #include "llvm/IR/Metadata.h"
30 #include "llvm/IR/Module.h"
31 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
32 #include "llvm/Transforms/Utils/Cloning.h"
33 #include "llvm/Transforms/Utils/Local.h"
34 #include "llvm/Transforms/Utils/ValueMapper.h"
35 #include <map>
36 #include <optional>
37 using namespace llvm;
38 
39 #define DEBUG_TYPE "clone-function"
40 
41 /// See comments in Cloning.h.
CloneBasicBlock(const BasicBlock * BB,ValueToValueMapTy & VMap,const Twine & NameSuffix,Function * F,ClonedCodeInfo * CodeInfo,DebugInfoFinder * DIFinder)42 BasicBlock *llvm::CloneBasicBlock(const BasicBlock *BB, ValueToValueMapTy &VMap,
43                                   const Twine &NameSuffix, Function *F,
44                                   ClonedCodeInfo *CodeInfo,
45                                   DebugInfoFinder *DIFinder) {
46   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "", F);
47   if (BB->hasName())
48     NewBB->setName(BB->getName() + NameSuffix);
49 
50   bool hasCalls = false, hasDynamicAllocas = false, hasMemProfMetadata = false;
51   Module *TheModule = F ? F->getParent() : nullptr;
52 
53   // Loop over all instructions, and copy them over.
54   for (const Instruction &I : *BB) {
55     if (DIFinder && TheModule)
56       DIFinder->processInstruction(*TheModule, I);
57 
58     Instruction *NewInst = I.clone();
59     if (I.hasName())
60       NewInst->setName(I.getName() + NameSuffix);
61     NewInst->insertInto(NewBB, NewBB->end());
62     VMap[&I] = NewInst; // Add instruction map to value.
63 
64     if (isa<CallInst>(I) && !I.isDebugOrPseudoInst()) {
65       hasCalls = true;
66       hasMemProfMetadata |= I.hasMetadata(LLVMContext::MD_memprof);
67     }
68     if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
69       if (!AI->isStaticAlloca()) {
70         hasDynamicAllocas = true;
71       }
72     }
73   }
74 
75   if (CodeInfo) {
76     CodeInfo->ContainsCalls |= hasCalls;
77     CodeInfo->ContainsMemProfMetadata |= hasMemProfMetadata;
78     CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
79   }
80   return NewBB;
81 }
82 
83 // Clone OldFunc into NewFunc, transforming the old arguments into references to
84 // VMap values.
85 //
CloneFunctionInto(Function * NewFunc,const Function * OldFunc,ValueToValueMapTy & VMap,CloneFunctionChangeType Changes,SmallVectorImpl<ReturnInst * > & Returns,const char * NameSuffix,ClonedCodeInfo * CodeInfo,ValueMapTypeRemapper * TypeMapper,ValueMaterializer * Materializer)86 void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc,
87                              ValueToValueMapTy &VMap,
88                              CloneFunctionChangeType Changes,
89                              SmallVectorImpl<ReturnInst *> &Returns,
90                              const char *NameSuffix, ClonedCodeInfo *CodeInfo,
91                              ValueMapTypeRemapper *TypeMapper,
92                              ValueMaterializer *Materializer) {
93   assert(NameSuffix && "NameSuffix cannot be null!");
94 
95 #ifndef NDEBUG
96   for (const Argument &I : OldFunc->args())
97     assert(VMap.count(&I) && "No mapping from source argument specified!");
98 #endif
99 
100   bool ModuleLevelChanges = Changes > CloneFunctionChangeType::LocalChangesOnly;
101 
102   // Copy all attributes other than those stored in the AttributeList.  We need
103   // to remap the parameter indices of the AttributeList.
104   AttributeList NewAttrs = NewFunc->getAttributes();
105   NewFunc->copyAttributesFrom(OldFunc);
106   NewFunc->setAttributes(NewAttrs);
107 
108   const RemapFlags FuncGlobalRefFlags =
109       ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges;
110 
111   // Fix up the personality function that got copied over.
112   if (OldFunc->hasPersonalityFn())
113     NewFunc->setPersonalityFn(MapValue(OldFunc->getPersonalityFn(), VMap,
114                                        FuncGlobalRefFlags, TypeMapper,
115                                        Materializer));
116 
117   if (OldFunc->hasPrefixData()) {
118     NewFunc->setPrefixData(MapValue(OldFunc->getPrefixData(), VMap,
119                                     FuncGlobalRefFlags, TypeMapper,
120                                     Materializer));
121   }
122 
123   if (OldFunc->hasPrologueData()) {
124     NewFunc->setPrologueData(MapValue(OldFunc->getPrologueData(), VMap,
125                                       FuncGlobalRefFlags, TypeMapper,
126                                       Materializer));
127   }
128 
129   SmallVector<AttributeSet, 4> NewArgAttrs(NewFunc->arg_size());
130   AttributeList OldAttrs = OldFunc->getAttributes();
131 
132   // Clone any argument attributes that are present in the VMap.
133   for (const Argument &OldArg : OldFunc->args()) {
134     if (Argument *NewArg = dyn_cast<Argument>(VMap[&OldArg])) {
135       NewArgAttrs[NewArg->getArgNo()] =
136           OldAttrs.getParamAttrs(OldArg.getArgNo());
137     }
138   }
139 
140   NewFunc->setAttributes(
141       AttributeList::get(NewFunc->getContext(), OldAttrs.getFnAttrs(),
142                          OldAttrs.getRetAttrs(), NewArgAttrs));
143 
144   // Everything else beyond this point deals with function instructions,
145   // so if we are dealing with a function declaration, we're done.
146   if (OldFunc->isDeclaration())
147     return;
148 
149   // When we remap instructions within the same module, we want to avoid
150   // duplicating inlined DISubprograms, so record all subprograms we find as we
151   // duplicate instructions and then freeze them in the MD map. We also record
152   // information about dbg.value and dbg.declare to avoid duplicating the
153   // types.
154   std::optional<DebugInfoFinder> DIFinder;
155 
156   // Track the subprogram attachment that needs to be cloned to fine-tune the
157   // mapping within the same module.
158   DISubprogram *SPClonedWithinModule = nullptr;
159   if (Changes < CloneFunctionChangeType::DifferentModule) {
160     assert((NewFunc->getParent() == nullptr ||
161             NewFunc->getParent() == OldFunc->getParent()) &&
162            "Expected NewFunc to have the same parent, or no parent");
163 
164     // Need to find subprograms, types, and compile units.
165     DIFinder.emplace();
166 
167     SPClonedWithinModule = OldFunc->getSubprogram();
168     if (SPClonedWithinModule)
169       DIFinder->processSubprogram(SPClonedWithinModule);
170   } else {
171     assert((NewFunc->getParent() == nullptr ||
172             NewFunc->getParent() != OldFunc->getParent()) &&
173            "Expected NewFunc to have different parents, or no parent");
174 
175     if (Changes == CloneFunctionChangeType::DifferentModule) {
176       assert(NewFunc->getParent() &&
177              "Need parent of new function to maintain debug info invariants");
178 
179       // Need to find all the compile units.
180       DIFinder.emplace();
181     }
182   }
183 
184   // Loop over all of the basic blocks in the function, cloning them as
185   // appropriate.  Note that we save BE this way in order to handle cloning of
186   // recursive functions into themselves.
187   for (const BasicBlock &BB : *OldFunc) {
188 
189     // Create a new basic block and copy instructions into it!
190     BasicBlock *CBB = CloneBasicBlock(&BB, VMap, NameSuffix, NewFunc, CodeInfo,
191                                       DIFinder ? &*DIFinder : nullptr);
192 
193     // Add basic block mapping.
194     VMap[&BB] = CBB;
195 
196     // It is only legal to clone a function if a block address within that
197     // function is never referenced outside of the function.  Given that, we
198     // want to map block addresses from the old function to block addresses in
199     // the clone. (This is different from the generic ValueMapper
200     // implementation, which generates an invalid blockaddress when
201     // cloning a function.)
202     if (BB.hasAddressTaken()) {
203       Constant *OldBBAddr = BlockAddress::get(const_cast<Function *>(OldFunc),
204                                               const_cast<BasicBlock *>(&BB));
205       VMap[OldBBAddr] = BlockAddress::get(NewFunc, CBB);
206     }
207 
208     // Note return instructions for the caller.
209     if (ReturnInst *RI = dyn_cast<ReturnInst>(CBB->getTerminator()))
210       Returns.push_back(RI);
211   }
212 
213   if (Changes < CloneFunctionChangeType::DifferentModule &&
214       DIFinder->subprogram_count() > 0) {
215     // Turn on module-level changes, since we need to clone (some of) the
216     // debug info metadata.
217     //
218     // FIXME: Metadata effectively owned by a function should be made
219     // local, and only that local metadata should be cloned.
220     ModuleLevelChanges = true;
221 
222     auto mapToSelfIfNew = [&VMap](MDNode *N) {
223       // Avoid clobbering an existing mapping.
224       (void)VMap.MD().try_emplace(N, N);
225     };
226 
227     // Avoid cloning types, compile units, and (other) subprograms.
228     SmallPtrSet<const DISubprogram *, 16> MappedToSelfSPs;
229     for (DISubprogram *ISP : DIFinder->subprograms()) {
230       if (ISP != SPClonedWithinModule) {
231         mapToSelfIfNew(ISP);
232         MappedToSelfSPs.insert(ISP);
233       }
234     }
235 
236     // If a subprogram isn't going to be cloned skip its lexical blocks as well.
237     for (DIScope *S : DIFinder->scopes()) {
238       auto *LScope = dyn_cast<DILocalScope>(S);
239       if (LScope && MappedToSelfSPs.count(LScope->getSubprogram()))
240         mapToSelfIfNew(S);
241     }
242 
243     for (DICompileUnit *CU : DIFinder->compile_units())
244       mapToSelfIfNew(CU);
245 
246     for (DIType *Type : DIFinder->types())
247       mapToSelfIfNew(Type);
248   } else {
249     assert(!SPClonedWithinModule &&
250            "Subprogram should be in DIFinder->subprogram_count()...");
251   }
252 
253   const auto RemapFlag = ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges;
254   // Duplicate the metadata that is attached to the cloned function.
255   // Subprograms/CUs/types that were already mapped to themselves won't be
256   // duplicated.
257   SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
258   OldFunc->getAllMetadata(MDs);
259   for (auto MD : MDs) {
260     NewFunc->addMetadata(MD.first, *MapMetadata(MD.second, VMap, RemapFlag,
261                                                 TypeMapper, Materializer));
262   }
263 
264   // Loop over all of the instructions in the new function, fixing up operand
265   // references as we go. This uses VMap to do all the hard work.
266   for (Function::iterator
267            BB = cast<BasicBlock>(VMap[&OldFunc->front()])->getIterator(),
268            BE = NewFunc->end();
269        BB != BE; ++BB)
270     // Loop over all instructions, fixing each one as we find it...
271     for (Instruction &II : *BB)
272       RemapInstruction(&II, VMap, RemapFlag, TypeMapper, Materializer);
273 
274   // Only update !llvm.dbg.cu for DifferentModule (not CloneModule). In the
275   // same module, the compile unit will already be listed (or not). When
276   // cloning a module, CloneModule() will handle creating the named metadata.
277   if (Changes != CloneFunctionChangeType::DifferentModule)
278     return;
279 
280   // Update !llvm.dbg.cu with compile units added to the new module if this
281   // function is being cloned in isolation.
282   //
283   // FIXME: This is making global / module-level changes, which doesn't seem
284   // like the right encapsulation  Consider dropping the requirement to update
285   // !llvm.dbg.cu (either obsoleting the node, or restricting it to
286   // non-discardable compile units) instead of discovering compile units by
287   // visiting the metadata attached to global values, which would allow this
288   // code to be deleted. Alternatively, perhaps give responsibility for this
289   // update to CloneFunctionInto's callers.
290   auto *NewModule = NewFunc->getParent();
291   auto *NMD = NewModule->getOrInsertNamedMetadata("llvm.dbg.cu");
292   // Avoid multiple insertions of the same DICompileUnit to NMD.
293   SmallPtrSet<const void *, 8> Visited;
294   for (auto *Operand : NMD->operands())
295     Visited.insert(Operand);
296   for (auto *Unit : DIFinder->compile_units()) {
297     MDNode *MappedUnit =
298         MapMetadata(Unit, VMap, RF_None, TypeMapper, Materializer);
299     if (Visited.insert(MappedUnit).second)
300       NMD->addOperand(MappedUnit);
301   }
302 }
303 
304 /// Return a copy of the specified function and add it to that function's
305 /// module.  Also, any references specified in the VMap are changed to refer to
306 /// their mapped value instead of the original one.  If any of the arguments to
307 /// the function are in the VMap, the arguments are deleted from the resultant
308 /// function.  The VMap is updated to include mappings from all of the
309 /// instructions and basicblocks in the function from their old to new values.
310 ///
CloneFunction(Function * F,ValueToValueMapTy & VMap,ClonedCodeInfo * CodeInfo)311 Function *llvm::CloneFunction(Function *F, ValueToValueMapTy &VMap,
312                               ClonedCodeInfo *CodeInfo) {
313   std::vector<Type *> ArgTypes;
314 
315   // The user might be deleting arguments to the function by specifying them in
316   // the VMap.  If so, we need to not add the arguments to the arg ty vector
317   //
318   for (const Argument &I : F->args())
319     if (VMap.count(&I) == 0) // Haven't mapped the argument to anything yet?
320       ArgTypes.push_back(I.getType());
321 
322   // Create a new function type...
323   FunctionType *FTy =
324       FunctionType::get(F->getFunctionType()->getReturnType(), ArgTypes,
325                         F->getFunctionType()->isVarArg());
326 
327   // Create the new function...
328   Function *NewF = Function::Create(FTy, F->getLinkage(), F->getAddressSpace(),
329                                     F->getName(), F->getParent());
330 
331   // Loop over the arguments, copying the names of the mapped arguments over...
332   Function::arg_iterator DestI = NewF->arg_begin();
333   for (const Argument &I : F->args())
334     if (VMap.count(&I) == 0) {     // Is this argument preserved?
335       DestI->setName(I.getName()); // Copy the name over...
336       VMap[&I] = &*DestI++;        // Add mapping to VMap
337     }
338 
339   SmallVector<ReturnInst *, 8> Returns; // Ignore returns cloned.
340   CloneFunctionInto(NewF, F, VMap, CloneFunctionChangeType::LocalChangesOnly,
341                     Returns, "", CodeInfo);
342 
343   return NewF;
344 }
345 
346 namespace {
347 /// This is a private class used to implement CloneAndPruneFunctionInto.
348 struct PruningFunctionCloner {
349   Function *NewFunc;
350   const Function *OldFunc;
351   ValueToValueMapTy &VMap;
352   bool ModuleLevelChanges;
353   const char *NameSuffix;
354   ClonedCodeInfo *CodeInfo;
355   bool HostFuncIsStrictFP;
356 
357   Instruction *cloneInstruction(BasicBlock::const_iterator II);
358 
359 public:
PruningFunctionCloner__anon926c1d320211::PruningFunctionCloner360   PruningFunctionCloner(Function *newFunc, const Function *oldFunc,
361                         ValueToValueMapTy &valueMap, bool moduleLevelChanges,
362                         const char *nameSuffix, ClonedCodeInfo *codeInfo)
363       : NewFunc(newFunc), OldFunc(oldFunc), VMap(valueMap),
364         ModuleLevelChanges(moduleLevelChanges), NameSuffix(nameSuffix),
365         CodeInfo(codeInfo) {
366     HostFuncIsStrictFP =
367         newFunc->getAttributes().hasFnAttr(Attribute::StrictFP);
368   }
369 
370   /// The specified block is found to be reachable, clone it and
371   /// anything that it can reach.
372   void CloneBlock(const BasicBlock *BB, BasicBlock::const_iterator StartingInst,
373                   std::vector<const BasicBlock *> &ToClone);
374 };
375 } // namespace
376 
hasRoundingModeOperand(Intrinsic::ID CIID)377 static bool hasRoundingModeOperand(Intrinsic::ID CIID) {
378   switch (CIID) {
379 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
380   case Intrinsic::INTRINSIC:                                                   \
381     return ROUND_MODE == 1;
382 #define FUNCTION INSTRUCTION
383 #include "llvm/IR/ConstrainedOps.def"
384   default:
385     llvm_unreachable("Unexpected constrained intrinsic id");
386   }
387 }
388 
389 Instruction *
cloneInstruction(BasicBlock::const_iterator II)390 PruningFunctionCloner::cloneInstruction(BasicBlock::const_iterator II) {
391   const Instruction &OldInst = *II;
392   Instruction *NewInst = nullptr;
393   if (HostFuncIsStrictFP) {
394     Intrinsic::ID CIID = getConstrainedIntrinsicID(OldInst);
395     if (CIID != Intrinsic::not_intrinsic) {
396       // Instead of cloning the instruction, a call to constrained intrinsic
397       // should be created.
398       // Assume the first arguments of constrained intrinsics are the same as
399       // the operands of original instruction.
400 
401       // Determine overloaded types of the intrinsic.
402       SmallVector<Type *, 2> TParams;
403       SmallVector<Intrinsic::IITDescriptor, 8> Descriptor;
404       getIntrinsicInfoTableEntries(CIID, Descriptor);
405       for (unsigned I = 0, E = Descriptor.size(); I != E; ++I) {
406         Intrinsic::IITDescriptor Operand = Descriptor[I];
407         switch (Operand.Kind) {
408         case Intrinsic::IITDescriptor::Argument:
409           if (Operand.getArgumentKind() !=
410               Intrinsic::IITDescriptor::AK_MatchType) {
411             if (I == 0)
412               TParams.push_back(OldInst.getType());
413             else
414               TParams.push_back(OldInst.getOperand(I - 1)->getType());
415           }
416           break;
417         case Intrinsic::IITDescriptor::SameVecWidthArgument:
418           ++I;
419           break;
420         default:
421           break;
422         }
423       }
424 
425       // Create intrinsic call.
426       LLVMContext &Ctx = NewFunc->getContext();
427       Function *IFn =
428           Intrinsic::getDeclaration(NewFunc->getParent(), CIID, TParams);
429       SmallVector<Value *, 4> Args;
430       unsigned NumOperands = OldInst.getNumOperands();
431       if (isa<CallInst>(OldInst))
432         --NumOperands;
433       for (unsigned I = 0; I < NumOperands; ++I) {
434         Value *Op = OldInst.getOperand(I);
435         Args.push_back(Op);
436       }
437       if (const auto *CmpI = dyn_cast<FCmpInst>(&OldInst)) {
438         FCmpInst::Predicate Pred = CmpI->getPredicate();
439         StringRef PredName = FCmpInst::getPredicateName(Pred);
440         Args.push_back(MetadataAsValue::get(Ctx, MDString::get(Ctx, PredName)));
441       }
442 
443       // The last arguments of a constrained intrinsic are metadata that
444       // represent rounding mode (absents in some intrinsics) and exception
445       // behavior. The inlined function uses default settings.
446       if (hasRoundingModeOperand(CIID))
447         Args.push_back(
448             MetadataAsValue::get(Ctx, MDString::get(Ctx, "round.tonearest")));
449       Args.push_back(
450           MetadataAsValue::get(Ctx, MDString::get(Ctx, "fpexcept.ignore")));
451 
452       NewInst = CallInst::Create(IFn, Args, OldInst.getName() + ".strict");
453     }
454   }
455   if (!NewInst)
456     NewInst = II->clone();
457   return NewInst;
458 }
459 
460 /// The specified block is found to be reachable, clone it and
461 /// anything that it can reach.
CloneBlock(const BasicBlock * BB,BasicBlock::const_iterator StartingInst,std::vector<const BasicBlock * > & ToClone)462 void PruningFunctionCloner::CloneBlock(
463     const BasicBlock *BB, BasicBlock::const_iterator StartingInst,
464     std::vector<const BasicBlock *> &ToClone) {
465   WeakTrackingVH &BBEntry = VMap[BB];
466 
467   // Have we already cloned this block?
468   if (BBEntry)
469     return;
470 
471   // Nope, clone it now.
472   BasicBlock *NewBB;
473   BBEntry = NewBB = BasicBlock::Create(BB->getContext());
474   if (BB->hasName())
475     NewBB->setName(BB->getName() + NameSuffix);
476 
477   // It is only legal to clone a function if a block address within that
478   // function is never referenced outside of the function.  Given that, we
479   // want to map block addresses from the old function to block addresses in
480   // the clone. (This is different from the generic ValueMapper
481   // implementation, which generates an invalid blockaddress when
482   // cloning a function.)
483   //
484   // Note that we don't need to fix the mapping for unreachable blocks;
485   // the default mapping there is safe.
486   if (BB->hasAddressTaken()) {
487     Constant *OldBBAddr = BlockAddress::get(const_cast<Function *>(OldFunc),
488                                             const_cast<BasicBlock *>(BB));
489     VMap[OldBBAddr] = BlockAddress::get(NewFunc, NewBB);
490   }
491 
492   bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
493   bool hasMemProfMetadata = false;
494 
495   // Loop over all instructions, and copy them over, DCE'ing as we go.  This
496   // loop doesn't include the terminator.
497   for (BasicBlock::const_iterator II = StartingInst, IE = --BB->end(); II != IE;
498        ++II) {
499 
500     Instruction *NewInst = cloneInstruction(II);
501 
502     if (HostFuncIsStrictFP) {
503       // All function calls in the inlined function must get 'strictfp'
504       // attribute to prevent undesirable optimizations.
505       if (auto *Call = dyn_cast<CallInst>(NewInst))
506         Call->addFnAttr(Attribute::StrictFP);
507     }
508 
509     // Eagerly remap operands to the newly cloned instruction, except for PHI
510     // nodes for which we defer processing until we update the CFG. Also defer
511     // debug intrinsic processing because they may contain use-before-defs.
512     if (!isa<PHINode>(NewInst) && !isa<DbgVariableIntrinsic>(NewInst)) {
513       RemapInstruction(NewInst, VMap,
514                        ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
515 
516       // If we can simplify this instruction to some other value, simply add
517       // a mapping to that value rather than inserting a new instruction into
518       // the basic block.
519       if (Value *V =
520               simplifyInstruction(NewInst, BB->getModule()->getDataLayout())) {
521         // On the off-chance that this simplifies to an instruction in the old
522         // function, map it back into the new function.
523         if (NewFunc != OldFunc)
524           if (Value *MappedV = VMap.lookup(V))
525             V = MappedV;
526 
527         if (!NewInst->mayHaveSideEffects()) {
528           VMap[&*II] = V;
529           NewInst->deleteValue();
530           continue;
531         }
532       }
533     }
534 
535     if (II->hasName())
536       NewInst->setName(II->getName() + NameSuffix);
537     VMap[&*II] = NewInst; // Add instruction map to value.
538     NewInst->insertInto(NewBB, NewBB->end());
539     if (isa<CallInst>(II) && !II->isDebugOrPseudoInst()) {
540       hasCalls = true;
541       hasMemProfMetadata |= II->hasMetadata(LLVMContext::MD_memprof);
542     }
543 
544     if (CodeInfo) {
545       CodeInfo->OrigVMap[&*II] = NewInst;
546       if (auto *CB = dyn_cast<CallBase>(&*II))
547         if (CB->hasOperandBundles())
548           CodeInfo->OperandBundleCallSites.push_back(NewInst);
549     }
550 
551     if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
552       if (isa<ConstantInt>(AI->getArraySize()))
553         hasStaticAllocas = true;
554       else
555         hasDynamicAllocas = true;
556     }
557   }
558 
559   // Finally, clone over the terminator.
560   const Instruction *OldTI = BB->getTerminator();
561   bool TerminatorDone = false;
562   if (const BranchInst *BI = dyn_cast<BranchInst>(OldTI)) {
563     if (BI->isConditional()) {
564       // If the condition was a known constant in the callee...
565       ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
566       // Or is a known constant in the caller...
567       if (!Cond) {
568         Value *V = VMap.lookup(BI->getCondition());
569         Cond = dyn_cast_or_null<ConstantInt>(V);
570       }
571 
572       // Constant fold to uncond branch!
573       if (Cond) {
574         BasicBlock *Dest = BI->getSuccessor(!Cond->getZExtValue());
575         VMap[OldTI] = BranchInst::Create(Dest, NewBB);
576         ToClone.push_back(Dest);
577         TerminatorDone = true;
578       }
579     }
580   } else if (const SwitchInst *SI = dyn_cast<SwitchInst>(OldTI)) {
581     // If switching on a value known constant in the caller.
582     ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition());
583     if (!Cond) { // Or known constant after constant prop in the callee...
584       Value *V = VMap.lookup(SI->getCondition());
585       Cond = dyn_cast_or_null<ConstantInt>(V);
586     }
587     if (Cond) { // Constant fold to uncond branch!
588       SwitchInst::ConstCaseHandle Case = *SI->findCaseValue(Cond);
589       BasicBlock *Dest = const_cast<BasicBlock *>(Case.getCaseSuccessor());
590       VMap[OldTI] = BranchInst::Create(Dest, NewBB);
591       ToClone.push_back(Dest);
592       TerminatorDone = true;
593     }
594   }
595 
596   if (!TerminatorDone) {
597     Instruction *NewInst = OldTI->clone();
598     if (OldTI->hasName())
599       NewInst->setName(OldTI->getName() + NameSuffix);
600     NewInst->insertInto(NewBB, NewBB->end());
601     VMap[OldTI] = NewInst; // Add instruction map to value.
602 
603     if (CodeInfo) {
604       CodeInfo->OrigVMap[OldTI] = NewInst;
605       if (auto *CB = dyn_cast<CallBase>(OldTI))
606         if (CB->hasOperandBundles())
607           CodeInfo->OperandBundleCallSites.push_back(NewInst);
608     }
609 
610     // Recursively clone any reachable successor blocks.
611     append_range(ToClone, successors(BB->getTerminator()));
612   }
613 
614   if (CodeInfo) {
615     CodeInfo->ContainsCalls |= hasCalls;
616     CodeInfo->ContainsMemProfMetadata |= hasMemProfMetadata;
617     CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
618     CodeInfo->ContainsDynamicAllocas |=
619         hasStaticAllocas && BB != &BB->getParent()->front();
620   }
621 }
622 
623 /// This works like CloneAndPruneFunctionInto, except that it does not clone the
624 /// entire function. Instead it starts at an instruction provided by the caller
625 /// and copies (and prunes) only the code reachable from that instruction.
CloneAndPruneIntoFromInst(Function * NewFunc,const Function * OldFunc,const Instruction * StartingInst,ValueToValueMapTy & VMap,bool ModuleLevelChanges,SmallVectorImpl<ReturnInst * > & Returns,const char * NameSuffix,ClonedCodeInfo * CodeInfo)626 void llvm::CloneAndPruneIntoFromInst(Function *NewFunc, const Function *OldFunc,
627                                      const Instruction *StartingInst,
628                                      ValueToValueMapTy &VMap,
629                                      bool ModuleLevelChanges,
630                                      SmallVectorImpl<ReturnInst *> &Returns,
631                                      const char *NameSuffix,
632                                      ClonedCodeInfo *CodeInfo) {
633   assert(NameSuffix && "NameSuffix cannot be null!");
634 
635   ValueMapTypeRemapper *TypeMapper = nullptr;
636   ValueMaterializer *Materializer = nullptr;
637 
638 #ifndef NDEBUG
639   // If the cloning starts at the beginning of the function, verify that
640   // the function arguments are mapped.
641   if (!StartingInst)
642     for (const Argument &II : OldFunc->args())
643       assert(VMap.count(&II) && "No mapping from source argument specified!");
644 #endif
645 
646   PruningFunctionCloner PFC(NewFunc, OldFunc, VMap, ModuleLevelChanges,
647                             NameSuffix, CodeInfo);
648   const BasicBlock *StartingBB;
649   if (StartingInst)
650     StartingBB = StartingInst->getParent();
651   else {
652     StartingBB = &OldFunc->getEntryBlock();
653     StartingInst = &StartingBB->front();
654   }
655 
656   // Collect debug intrinsics for remapping later.
657   SmallVector<const DbgVariableIntrinsic *, 8> DbgIntrinsics;
658   for (const auto &BB : *OldFunc) {
659     for (const auto &I : BB) {
660       if (const auto *DVI = dyn_cast<DbgVariableIntrinsic>(&I))
661         DbgIntrinsics.push_back(DVI);
662     }
663   }
664 
665   // Clone the entry block, and anything recursively reachable from it.
666   std::vector<const BasicBlock *> CloneWorklist;
667   PFC.CloneBlock(StartingBB, StartingInst->getIterator(), CloneWorklist);
668   while (!CloneWorklist.empty()) {
669     const BasicBlock *BB = CloneWorklist.back();
670     CloneWorklist.pop_back();
671     PFC.CloneBlock(BB, BB->begin(), CloneWorklist);
672   }
673 
674   // Loop over all of the basic blocks in the old function.  If the block was
675   // reachable, we have cloned it and the old block is now in the value map:
676   // insert it into the new function in the right order.  If not, ignore it.
677   //
678   // Defer PHI resolution until rest of function is resolved.
679   SmallVector<const PHINode *, 16> PHIToResolve;
680   for (const BasicBlock &BI : *OldFunc) {
681     Value *V = VMap.lookup(&BI);
682     BasicBlock *NewBB = cast_or_null<BasicBlock>(V);
683     if (!NewBB)
684       continue; // Dead block.
685 
686     // Add the new block to the new function.
687     NewFunc->insert(NewFunc->end(), NewBB);
688 
689     // Handle PHI nodes specially, as we have to remove references to dead
690     // blocks.
691     for (const PHINode &PN : BI.phis()) {
692       // PHI nodes may have been remapped to non-PHI nodes by the caller or
693       // during the cloning process.
694       if (isa<PHINode>(VMap[&PN]))
695         PHIToResolve.push_back(&PN);
696       else
697         break;
698     }
699 
700     // Finally, remap the terminator instructions, as those can't be remapped
701     // until all BBs are mapped.
702     RemapInstruction(NewBB->getTerminator(), VMap,
703                      ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
704                      TypeMapper, Materializer);
705   }
706 
707   // Defer PHI resolution until rest of function is resolved, PHI resolution
708   // requires the CFG to be up-to-date.
709   for (unsigned phino = 0, e = PHIToResolve.size(); phino != e;) {
710     const PHINode *OPN = PHIToResolve[phino];
711     unsigned NumPreds = OPN->getNumIncomingValues();
712     const BasicBlock *OldBB = OPN->getParent();
713     BasicBlock *NewBB = cast<BasicBlock>(VMap[OldBB]);
714 
715     // Map operands for blocks that are live and remove operands for blocks
716     // that are dead.
717     for (; phino != PHIToResolve.size() &&
718            PHIToResolve[phino]->getParent() == OldBB;
719          ++phino) {
720       OPN = PHIToResolve[phino];
721       PHINode *PN = cast<PHINode>(VMap[OPN]);
722       for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) {
723         Value *V = VMap.lookup(PN->getIncomingBlock(pred));
724         if (BasicBlock *MappedBlock = cast_or_null<BasicBlock>(V)) {
725           Value *InVal =
726               MapValue(PN->getIncomingValue(pred), VMap,
727                        ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
728           assert(InVal && "Unknown input value?");
729           PN->setIncomingValue(pred, InVal);
730           PN->setIncomingBlock(pred, MappedBlock);
731         } else {
732           PN->removeIncomingValue(pred, false);
733           --pred; // Revisit the next entry.
734           --e;
735         }
736       }
737     }
738 
739     // The loop above has removed PHI entries for those blocks that are dead
740     // and has updated others.  However, if a block is live (i.e. copied over)
741     // but its terminator has been changed to not go to this block, then our
742     // phi nodes will have invalid entries.  Update the PHI nodes in this
743     // case.
744     PHINode *PN = cast<PHINode>(NewBB->begin());
745     NumPreds = pred_size(NewBB);
746     if (NumPreds != PN->getNumIncomingValues()) {
747       assert(NumPreds < PN->getNumIncomingValues());
748       // Count how many times each predecessor comes to this block.
749       std::map<BasicBlock *, unsigned> PredCount;
750       for (BasicBlock *Pred : predecessors(NewBB))
751         --PredCount[Pred];
752 
753       // Figure out how many entries to remove from each PHI.
754       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
755         ++PredCount[PN->getIncomingBlock(i)];
756 
757       // At this point, the excess predecessor entries are positive in the
758       // map.  Loop over all of the PHIs and remove excess predecessor
759       // entries.
760       BasicBlock::iterator I = NewBB->begin();
761       for (; (PN = dyn_cast<PHINode>(I)); ++I) {
762         for (const auto &PCI : PredCount) {
763           BasicBlock *Pred = PCI.first;
764           for (unsigned NumToRemove = PCI.second; NumToRemove; --NumToRemove)
765             PN->removeIncomingValue(Pred, false);
766         }
767       }
768     }
769 
770     // If the loops above have made these phi nodes have 0 or 1 operand,
771     // replace them with poison or the input value.  We must do this for
772     // correctness, because 0-operand phis are not valid.
773     PN = cast<PHINode>(NewBB->begin());
774     if (PN->getNumIncomingValues() == 0) {
775       BasicBlock::iterator I = NewBB->begin();
776       BasicBlock::const_iterator OldI = OldBB->begin();
777       while ((PN = dyn_cast<PHINode>(I++))) {
778         Value *NV = PoisonValue::get(PN->getType());
779         PN->replaceAllUsesWith(NV);
780         assert(VMap[&*OldI] == PN && "VMap mismatch");
781         VMap[&*OldI] = NV;
782         PN->eraseFromParent();
783         ++OldI;
784       }
785     }
786   }
787 
788   // Make a second pass over the PHINodes now that all of them have been
789   // remapped into the new function, simplifying the PHINode and performing any
790   // recursive simplifications exposed. This will transparently update the
791   // WeakTrackingVH in the VMap. Notably, we rely on that so that if we coalesce
792   // two PHINodes, the iteration over the old PHIs remains valid, and the
793   // mapping will just map us to the new node (which may not even be a PHI
794   // node).
795   const DataLayout &DL = NewFunc->getParent()->getDataLayout();
796   SmallSetVector<const Value *, 8> Worklist;
797   for (unsigned Idx = 0, Size = PHIToResolve.size(); Idx != Size; ++Idx)
798     if (isa<PHINode>(VMap[PHIToResolve[Idx]]))
799       Worklist.insert(PHIToResolve[Idx]);
800 
801   // Note that we must test the size on each iteration, the worklist can grow.
802   for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
803     const Value *OrigV = Worklist[Idx];
804     auto *I = dyn_cast_or_null<Instruction>(VMap.lookup(OrigV));
805     if (!I)
806       continue;
807 
808     // Skip over non-intrinsic callsites, we don't want to remove any nodes from
809     // the CGSCC.
810     CallBase *CB = dyn_cast<CallBase>(I);
811     if (CB && CB->getCalledFunction() &&
812         !CB->getCalledFunction()->isIntrinsic())
813       continue;
814 
815     // See if this instruction simplifies.
816     Value *SimpleV = simplifyInstruction(I, DL);
817     if (!SimpleV)
818       continue;
819 
820     // Stash away all the uses of the old instruction so we can check them for
821     // recursive simplifications after a RAUW. This is cheaper than checking all
822     // uses of To on the recursive step in most cases.
823     for (const User *U : OrigV->users())
824       Worklist.insert(cast<Instruction>(U));
825 
826     // Replace the instruction with its simplified value.
827     I->replaceAllUsesWith(SimpleV);
828 
829     // If the original instruction had no side effects, remove it.
830     if (isInstructionTriviallyDead(I))
831       I->eraseFromParent();
832     else
833       VMap[OrigV] = I;
834   }
835 
836   // Remap debug intrinsic operands now that all values have been mapped.
837   // Doing this now (late) preserves use-before-defs in debug intrinsics. If
838   // we didn't do this, ValueAsMetadata(use-before-def) operands would be
839   // replaced by empty metadata. This would signal later cleanup passes to
840   // remove the debug intrinsics, potentially causing incorrect locations.
841   for (const auto *DVI : DbgIntrinsics) {
842     if (DbgVariableIntrinsic *NewDVI =
843             cast_or_null<DbgVariableIntrinsic>(VMap.lookup(DVI)))
844       RemapInstruction(NewDVI, VMap,
845                        ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
846                        TypeMapper, Materializer);
847   }
848 
849   // Simplify conditional branches and switches with a constant operand. We try
850   // to prune these out when cloning, but if the simplification required
851   // looking through PHI nodes, those are only available after forming the full
852   // basic block. That may leave some here, and we still want to prune the dead
853   // code as early as possible.
854   Function::iterator Begin = cast<BasicBlock>(VMap[StartingBB])->getIterator();
855   for (BasicBlock &BB : make_range(Begin, NewFunc->end()))
856     ConstantFoldTerminator(&BB);
857 
858   // Some blocks may have become unreachable as a result. Find and delete them.
859   {
860     SmallPtrSet<BasicBlock *, 16> ReachableBlocks;
861     SmallVector<BasicBlock *, 16> Worklist;
862     Worklist.push_back(&*Begin);
863     while (!Worklist.empty()) {
864       BasicBlock *BB = Worklist.pop_back_val();
865       if (ReachableBlocks.insert(BB).second)
866         append_range(Worklist, successors(BB));
867     }
868 
869     SmallVector<BasicBlock *, 16> UnreachableBlocks;
870     for (BasicBlock &BB : make_range(Begin, NewFunc->end()))
871       if (!ReachableBlocks.contains(&BB))
872         UnreachableBlocks.push_back(&BB);
873     DeleteDeadBlocks(UnreachableBlocks);
874   }
875 
876   // Now that the inlined function body has been fully constructed, go through
877   // and zap unconditional fall-through branches. This happens all the time when
878   // specializing code: code specialization turns conditional branches into
879   // uncond branches, and this code folds them.
880   Function::iterator I = Begin;
881   while (I != NewFunc->end()) {
882     BranchInst *BI = dyn_cast<BranchInst>(I->getTerminator());
883     if (!BI || BI->isConditional()) {
884       ++I;
885       continue;
886     }
887 
888     BasicBlock *Dest = BI->getSuccessor(0);
889     if (!Dest->getSinglePredecessor()) {
890       ++I;
891       continue;
892     }
893 
894     // We shouldn't be able to get single-entry PHI nodes here, as instsimplify
895     // above should have zapped all of them..
896     assert(!isa<PHINode>(Dest->begin()));
897 
898     // We know all single-entry PHI nodes in the inlined function have been
899     // removed, so we just need to splice the blocks.
900     BI->eraseFromParent();
901 
902     // Make all PHI nodes that referred to Dest now refer to I as their source.
903     Dest->replaceAllUsesWith(&*I);
904 
905     // Move all the instructions in the succ to the pred.
906     I->splice(I->end(), Dest);
907 
908     // Remove the dest block.
909     Dest->eraseFromParent();
910 
911     // Do not increment I, iteratively merge all things this block branches to.
912   }
913 
914   // Make a final pass over the basic blocks from the old function to gather
915   // any return instructions which survived folding. We have to do this here
916   // because we can iteratively remove and merge returns above.
917   for (Function::iterator I = cast<BasicBlock>(VMap[StartingBB])->getIterator(),
918                           E = NewFunc->end();
919        I != E; ++I)
920     if (ReturnInst *RI = dyn_cast<ReturnInst>(I->getTerminator()))
921       Returns.push_back(RI);
922 }
923 
924 /// This works exactly like CloneFunctionInto,
925 /// except that it does some simple constant prop and DCE on the fly.  The
926 /// effect of this is to copy significantly less code in cases where (for
927 /// example) a function call with constant arguments is inlined, and those
928 /// constant arguments cause a significant amount of code in the callee to be
929 /// dead.  Since this doesn't produce an exact copy of the input, it can't be
930 /// used for things like CloneFunction or CloneModule.
CloneAndPruneFunctionInto(Function * NewFunc,const Function * OldFunc,ValueToValueMapTy & VMap,bool ModuleLevelChanges,SmallVectorImpl<ReturnInst * > & Returns,const char * NameSuffix,ClonedCodeInfo * CodeInfo)931 void llvm::CloneAndPruneFunctionInto(
932     Function *NewFunc, const Function *OldFunc, ValueToValueMapTy &VMap,
933     bool ModuleLevelChanges, SmallVectorImpl<ReturnInst *> &Returns,
934     const char *NameSuffix, ClonedCodeInfo *CodeInfo) {
935   CloneAndPruneIntoFromInst(NewFunc, OldFunc, &OldFunc->front().front(), VMap,
936                             ModuleLevelChanges, Returns, NameSuffix, CodeInfo);
937 }
938 
939 /// Remaps instructions in \p Blocks using the mapping in \p VMap.
remapInstructionsInBlocks(const SmallVectorImpl<BasicBlock * > & Blocks,ValueToValueMapTy & VMap)940 void llvm::remapInstructionsInBlocks(
941     const SmallVectorImpl<BasicBlock *> &Blocks, ValueToValueMapTy &VMap) {
942   // Rewrite the code to refer to itself.
943   for (auto *BB : Blocks)
944     for (auto &Inst : *BB)
945       RemapInstruction(&Inst, VMap,
946                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
947 }
948 
949 /// Clones a loop \p OrigLoop.  Returns the loop and the blocks in \p
950 /// Blocks.
951 ///
952 /// Updates LoopInfo and DominatorTree assuming the loop is dominated by block
953 /// \p LoopDomBB.  Insert the new blocks before block specified in \p Before.
cloneLoopWithPreheader(BasicBlock * Before,BasicBlock * LoopDomBB,Loop * OrigLoop,ValueToValueMapTy & VMap,const Twine & NameSuffix,LoopInfo * LI,DominatorTree * DT,SmallVectorImpl<BasicBlock * > & Blocks)954 Loop *llvm::cloneLoopWithPreheader(BasicBlock *Before, BasicBlock *LoopDomBB,
955                                    Loop *OrigLoop, ValueToValueMapTy &VMap,
956                                    const Twine &NameSuffix, LoopInfo *LI,
957                                    DominatorTree *DT,
958                                    SmallVectorImpl<BasicBlock *> &Blocks) {
959   Function *F = OrigLoop->getHeader()->getParent();
960   Loop *ParentLoop = OrigLoop->getParentLoop();
961   DenseMap<Loop *, Loop *> LMap;
962 
963   Loop *NewLoop = LI->AllocateLoop();
964   LMap[OrigLoop] = NewLoop;
965   if (ParentLoop)
966     ParentLoop->addChildLoop(NewLoop);
967   else
968     LI->addTopLevelLoop(NewLoop);
969 
970   BasicBlock *OrigPH = OrigLoop->getLoopPreheader();
971   assert(OrigPH && "No preheader");
972   BasicBlock *NewPH = CloneBasicBlock(OrigPH, VMap, NameSuffix, F);
973   // To rename the loop PHIs.
974   VMap[OrigPH] = NewPH;
975   Blocks.push_back(NewPH);
976 
977   // Update LoopInfo.
978   if (ParentLoop)
979     ParentLoop->addBasicBlockToLoop(NewPH, *LI);
980 
981   // Update DominatorTree.
982   DT->addNewBlock(NewPH, LoopDomBB);
983 
984   for (Loop *CurLoop : OrigLoop->getLoopsInPreorder()) {
985     Loop *&NewLoop = LMap[CurLoop];
986     if (!NewLoop) {
987       NewLoop = LI->AllocateLoop();
988 
989       // Establish the parent/child relationship.
990       Loop *OrigParent = CurLoop->getParentLoop();
991       assert(OrigParent && "Could not find the original parent loop");
992       Loop *NewParentLoop = LMap[OrigParent];
993       assert(NewParentLoop && "Could not find the new parent loop");
994 
995       NewParentLoop->addChildLoop(NewLoop);
996     }
997   }
998 
999   for (BasicBlock *BB : OrigLoop->getBlocks()) {
1000     Loop *CurLoop = LI->getLoopFor(BB);
1001     Loop *&NewLoop = LMap[CurLoop];
1002     assert(NewLoop && "Expecting new loop to be allocated");
1003 
1004     BasicBlock *NewBB = CloneBasicBlock(BB, VMap, NameSuffix, F);
1005     VMap[BB] = NewBB;
1006 
1007     // Update LoopInfo.
1008     NewLoop->addBasicBlockToLoop(NewBB, *LI);
1009 
1010     // Add DominatorTree node. After seeing all blocks, update to correct
1011     // IDom.
1012     DT->addNewBlock(NewBB, NewPH);
1013 
1014     Blocks.push_back(NewBB);
1015   }
1016 
1017   for (BasicBlock *BB : OrigLoop->getBlocks()) {
1018     // Update loop headers.
1019     Loop *CurLoop = LI->getLoopFor(BB);
1020     if (BB == CurLoop->getHeader())
1021       LMap[CurLoop]->moveToHeader(cast<BasicBlock>(VMap[BB]));
1022 
1023     // Update DominatorTree.
1024     BasicBlock *IDomBB = DT->getNode(BB)->getIDom()->getBlock();
1025     DT->changeImmediateDominator(cast<BasicBlock>(VMap[BB]),
1026                                  cast<BasicBlock>(VMap[IDomBB]));
1027   }
1028 
1029   // Move them physically from the end of the block list.
1030   F->splice(Before->getIterator(), F, NewPH->getIterator());
1031   F->splice(Before->getIterator(), F, NewLoop->getHeader()->getIterator(),
1032             F->end());
1033 
1034   return NewLoop;
1035 }
1036 
1037 /// Duplicate non-Phi instructions from the beginning of block up to
1038 /// StopAt instruction into a split block between BB and its predecessor.
DuplicateInstructionsInSplitBetween(BasicBlock * BB,BasicBlock * PredBB,Instruction * StopAt,ValueToValueMapTy & ValueMapping,DomTreeUpdater & DTU)1039 BasicBlock *llvm::DuplicateInstructionsInSplitBetween(
1040     BasicBlock *BB, BasicBlock *PredBB, Instruction *StopAt,
1041     ValueToValueMapTy &ValueMapping, DomTreeUpdater &DTU) {
1042 
1043   assert(count(successors(PredBB), BB) == 1 &&
1044          "There must be a single edge between PredBB and BB!");
1045   // We are going to have to map operands from the original BB block to the new
1046   // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
1047   // account for entry from PredBB.
1048   BasicBlock::iterator BI = BB->begin();
1049   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1050     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1051 
1052   BasicBlock *NewBB = SplitEdge(PredBB, BB);
1053   NewBB->setName(PredBB->getName() + ".split");
1054   Instruction *NewTerm = NewBB->getTerminator();
1055 
1056   // FIXME: SplitEdge does not yet take a DTU, so we include the split edge
1057   //        in the update set here.
1058   DTU.applyUpdates({{DominatorTree::Delete, PredBB, BB},
1059                     {DominatorTree::Insert, PredBB, NewBB},
1060                     {DominatorTree::Insert, NewBB, BB}});
1061 
1062   // Clone the non-phi instructions of BB into NewBB, keeping track of the
1063   // mapping and using it to remap operands in the cloned instructions.
1064   // Stop once we see the terminator too. This covers the case where BB's
1065   // terminator gets replaced and StopAt == BB's terminator.
1066   for (; StopAt != &*BI && BB->getTerminator() != &*BI; ++BI) {
1067     Instruction *New = BI->clone();
1068     New->setName(BI->getName());
1069     New->insertBefore(NewTerm);
1070     ValueMapping[&*BI] = New;
1071 
1072     // Remap operands to patch up intra-block references.
1073     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1074       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1075         auto I = ValueMapping.find(Inst);
1076         if (I != ValueMapping.end())
1077           New->setOperand(i, I->second);
1078       }
1079   }
1080 
1081   return NewBB;
1082 }
1083 
cloneNoAliasScopes(ArrayRef<MDNode * > NoAliasDeclScopes,DenseMap<MDNode *,MDNode * > & ClonedScopes,StringRef Ext,LLVMContext & Context)1084 void llvm::cloneNoAliasScopes(ArrayRef<MDNode *> NoAliasDeclScopes,
1085                               DenseMap<MDNode *, MDNode *> &ClonedScopes,
1086                               StringRef Ext, LLVMContext &Context) {
1087   MDBuilder MDB(Context);
1088 
1089   for (auto *ScopeList : NoAliasDeclScopes) {
1090     for (const auto &MDOperand : ScopeList->operands()) {
1091       if (MDNode *MD = dyn_cast<MDNode>(MDOperand)) {
1092         AliasScopeNode SNANode(MD);
1093 
1094         std::string Name;
1095         auto ScopeName = SNANode.getName();
1096         if (!ScopeName.empty())
1097           Name = (Twine(ScopeName) + ":" + Ext).str();
1098         else
1099           Name = std::string(Ext);
1100 
1101         MDNode *NewScope = MDB.createAnonymousAliasScope(
1102             const_cast<MDNode *>(SNANode.getDomain()), Name);
1103         ClonedScopes.insert(std::make_pair(MD, NewScope));
1104       }
1105     }
1106   }
1107 }
1108 
adaptNoAliasScopes(Instruction * I,const DenseMap<MDNode *,MDNode * > & ClonedScopes,LLVMContext & Context)1109 void llvm::adaptNoAliasScopes(Instruction *I,
1110                               const DenseMap<MDNode *, MDNode *> &ClonedScopes,
1111                               LLVMContext &Context) {
1112   auto CloneScopeList = [&](const MDNode *ScopeList) -> MDNode * {
1113     bool NeedsReplacement = false;
1114     SmallVector<Metadata *, 8> NewScopeList;
1115     for (const auto &MDOp : ScopeList->operands()) {
1116       if (MDNode *MD = dyn_cast<MDNode>(MDOp)) {
1117         if (auto *NewMD = ClonedScopes.lookup(MD)) {
1118           NewScopeList.push_back(NewMD);
1119           NeedsReplacement = true;
1120           continue;
1121         }
1122         NewScopeList.push_back(MD);
1123       }
1124     }
1125     if (NeedsReplacement)
1126       return MDNode::get(Context, NewScopeList);
1127     return nullptr;
1128   };
1129 
1130   if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(I))
1131     if (auto *NewScopeList = CloneScopeList(Decl->getScopeList()))
1132       Decl->setScopeList(NewScopeList);
1133 
1134   auto replaceWhenNeeded = [&](unsigned MD_ID) {
1135     if (const MDNode *CSNoAlias = I->getMetadata(MD_ID))
1136       if (auto *NewScopeList = CloneScopeList(CSNoAlias))
1137         I->setMetadata(MD_ID, NewScopeList);
1138   };
1139   replaceWhenNeeded(LLVMContext::MD_noalias);
1140   replaceWhenNeeded(LLVMContext::MD_alias_scope);
1141 }
1142 
cloneAndAdaptNoAliasScopes(ArrayRef<MDNode * > NoAliasDeclScopes,ArrayRef<BasicBlock * > NewBlocks,LLVMContext & Context,StringRef Ext)1143 void llvm::cloneAndAdaptNoAliasScopes(ArrayRef<MDNode *> NoAliasDeclScopes,
1144                                       ArrayRef<BasicBlock *> NewBlocks,
1145                                       LLVMContext &Context, StringRef Ext) {
1146   if (NoAliasDeclScopes.empty())
1147     return;
1148 
1149   DenseMap<MDNode *, MDNode *> ClonedScopes;
1150   LLVM_DEBUG(dbgs() << "cloneAndAdaptNoAliasScopes: cloning "
1151                     << NoAliasDeclScopes.size() << " node(s)\n");
1152 
1153   cloneNoAliasScopes(NoAliasDeclScopes, ClonedScopes, Ext, Context);
1154   // Identify instructions using metadata that needs adaptation
1155   for (BasicBlock *NewBlock : NewBlocks)
1156     for (Instruction &I : *NewBlock)
1157       adaptNoAliasScopes(&I, ClonedScopes, Context);
1158 }
1159 
cloneAndAdaptNoAliasScopes(ArrayRef<MDNode * > NoAliasDeclScopes,Instruction * IStart,Instruction * IEnd,LLVMContext & Context,StringRef Ext)1160 void llvm::cloneAndAdaptNoAliasScopes(ArrayRef<MDNode *> NoAliasDeclScopes,
1161                                       Instruction *IStart, Instruction *IEnd,
1162                                       LLVMContext &Context, StringRef Ext) {
1163   if (NoAliasDeclScopes.empty())
1164     return;
1165 
1166   DenseMap<MDNode *, MDNode *> ClonedScopes;
1167   LLVM_DEBUG(dbgs() << "cloneAndAdaptNoAliasScopes: cloning "
1168                     << NoAliasDeclScopes.size() << " node(s)\n");
1169 
1170   cloneNoAliasScopes(NoAliasDeclScopes, ClonedScopes, Ext, Context);
1171   // Identify instructions using metadata that needs adaptation
1172   assert(IStart->getParent() == IEnd->getParent() && "different basic block ?");
1173   auto ItStart = IStart->getIterator();
1174   auto ItEnd = IEnd->getIterator();
1175   ++ItEnd; // IEnd is included, increment ItEnd to get the end of the range
1176   for (auto &I : llvm::make_range(ItStart, ItEnd))
1177     adaptNoAliasScopes(&I, ClonedScopes, Context);
1178 }
1179 
identifyNoAliasScopesToClone(ArrayRef<BasicBlock * > BBs,SmallVectorImpl<MDNode * > & NoAliasDeclScopes)1180 void llvm::identifyNoAliasScopesToClone(
1181     ArrayRef<BasicBlock *> BBs, SmallVectorImpl<MDNode *> &NoAliasDeclScopes) {
1182   for (BasicBlock *BB : BBs)
1183     for (Instruction &I : *BB)
1184       if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I))
1185         NoAliasDeclScopes.push_back(Decl->getScopeList());
1186 }
1187 
identifyNoAliasScopesToClone(BasicBlock::iterator Start,BasicBlock::iterator End,SmallVectorImpl<MDNode * > & NoAliasDeclScopes)1188 void llvm::identifyNoAliasScopesToClone(
1189     BasicBlock::iterator Start, BasicBlock::iterator End,
1190     SmallVectorImpl<MDNode *> &NoAliasDeclScopes) {
1191   for (Instruction &I : make_range(Start, End))
1192     if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I))
1193       NoAliasDeclScopes.push_back(Decl->getScopeList());
1194 }
1195