1 //===- InstrRefBasedImpl.cpp - Tracking Debug Value MIs -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file InstrRefBasedImpl.cpp
9 ///
10 /// This is a separate implementation of LiveDebugValues, see
11 /// LiveDebugValues.cpp and VarLocBasedImpl.cpp for more information.
12 ///
13 /// This pass propagates variable locations between basic blocks, resolving
14 /// control flow conflicts between them. The problem is SSA construction, where
15 /// each debug instruction assigns the *value* that a variable has, and every
16 /// instruction where the variable is in scope uses that variable. The resulting
17 /// map of instruction-to-value is then translated into a register (or spill)
18 /// location for each variable over each instruction.
19 ///
20 /// The primary difference from normal SSA construction is that we cannot
21 /// _create_ PHI values that contain variable values. CodeGen has already
22 /// completed, and we can't alter it just to make debug-info complete. Thus:
23 /// we can identify function positions where we would like a PHI value for a
24 /// variable, but must search the MachineFunction to see whether such a PHI is
25 /// available. If no such PHI exists, the variable location must be dropped.
26 ///
27 /// To achieve this, we perform two kinds of analysis. First, we identify
28 /// every value defined by every instruction (ignoring those that only move
29 /// another value), then re-compute an SSA-form representation of the
30 /// MachineFunction, using value propagation to eliminate any un-necessary
31 /// PHI values. This gives us a map of every value computed in the function,
32 /// and its location within the register file / stack.
33 ///
34 /// Secondly, for each variable we perform the same analysis, where each debug
35 /// instruction is considered a def, and every instruction where the variable
36 /// is in lexical scope as a use. Value propagation is used again to eliminate
37 /// any un-necessary PHIs. This gives us a map of each variable to the value
38 /// it should have in a block.
39 ///
40 /// Once both are complete, we have two maps for each block:
41 /// * Variables to the values they should have,
42 /// * Values to the register / spill slot they are located in.
43 /// After which we can marry-up variable values with a location, and emit
44 /// DBG_VALUE instructions specifying those locations. Variable locations may
45 /// be dropped in this process due to the desired variable value not being
46 /// resident in any machine location, or because there is no PHI value in any
47 /// location that accurately represents the desired value. The building of
48 /// location lists for each block is left to DbgEntityHistoryCalculator.
49 ///
50 /// This pass is kept efficient because the size of the first SSA problem
51 /// is proportional to the working-set size of the function, which the compiler
52 /// tries to keep small. (It's also proportional to the number of blocks).
53 /// Additionally, we repeatedly perform the second SSA problem analysis with
54 /// only the variables and blocks in a single lexical scope, exploiting their
55 /// locality.
56 ///
57 /// ### Terminology
58 ///
59 /// A machine location is a register or spill slot, a value is something that's
60 /// defined by an instruction or PHI node, while a variable value is the value
61 /// assigned to a variable. A variable location is a machine location, that must
62 /// contain the appropriate variable value. A value that is a PHI node is
63 /// occasionally called an mphi.
64 ///
65 /// The first SSA problem is the "machine value location" problem,
66 /// because we're determining which machine locations contain which values.
67 /// The "locations" are constant: what's unknown is what value they contain.
68 ///
69 /// The second SSA problem (the one for variables) is the "variable value
70 /// problem", because it's determining what values a variable has, rather than
71 /// what location those values are placed in.
72 ///
73 /// TODO:
74 /// Overlapping fragments
75 /// Entry values
76 /// Add back DEBUG statements for debugging this
77 /// Collect statistics
78 ///
79 //===----------------------------------------------------------------------===//
80
81 #include "llvm/ADT/DenseMap.h"
82 #include "llvm/ADT/PostOrderIterator.h"
83 #include "llvm/ADT/STLExtras.h"
84 #include "llvm/ADT/SmallPtrSet.h"
85 #include "llvm/ADT/SmallSet.h"
86 #include "llvm/ADT/SmallVector.h"
87 #include "llvm/BinaryFormat/Dwarf.h"
88 #include "llvm/CodeGen/LexicalScopes.h"
89 #include "llvm/CodeGen/MachineBasicBlock.h"
90 #include "llvm/CodeGen/MachineDominators.h"
91 #include "llvm/CodeGen/MachineFrameInfo.h"
92 #include "llvm/CodeGen/MachineFunction.h"
93 #include "llvm/CodeGen/MachineInstr.h"
94 #include "llvm/CodeGen/MachineInstrBuilder.h"
95 #include "llvm/CodeGen/MachineInstrBundle.h"
96 #include "llvm/CodeGen/MachineMemOperand.h"
97 #include "llvm/CodeGen/MachineOperand.h"
98 #include "llvm/CodeGen/PseudoSourceValue.h"
99 #include "llvm/CodeGen/TargetFrameLowering.h"
100 #include "llvm/CodeGen/TargetInstrInfo.h"
101 #include "llvm/CodeGen/TargetLowering.h"
102 #include "llvm/CodeGen/TargetPassConfig.h"
103 #include "llvm/CodeGen/TargetRegisterInfo.h"
104 #include "llvm/CodeGen/TargetSubtargetInfo.h"
105 #include "llvm/Config/llvm-config.h"
106 #include "llvm/IR/DebugInfoMetadata.h"
107 #include "llvm/IR/DebugLoc.h"
108 #include "llvm/IR/Function.h"
109 #include "llvm/MC/MCRegisterInfo.h"
110 #include "llvm/Support/Casting.h"
111 #include "llvm/Support/Compiler.h"
112 #include "llvm/Support/Debug.h"
113 #include "llvm/Support/GenericIteratedDominanceFrontier.h"
114 #include "llvm/Support/TypeSize.h"
115 #include "llvm/Support/raw_ostream.h"
116 #include "llvm/Target/TargetMachine.h"
117 #include "llvm/Transforms/Utils/SSAUpdaterImpl.h"
118 #include <algorithm>
119 #include <cassert>
120 #include <climits>
121 #include <cstdint>
122 #include <functional>
123 #include <queue>
124 #include <tuple>
125 #include <utility>
126 #include <vector>
127
128 #include "InstrRefBasedImpl.h"
129 #include "LiveDebugValues.h"
130 #include <optional>
131
132 using namespace llvm;
133 using namespace LiveDebugValues;
134
135 // SSAUpdaterImple sets DEBUG_TYPE, change it.
136 #undef DEBUG_TYPE
137 #define DEBUG_TYPE "livedebugvalues"
138
139 // Act more like the VarLoc implementation, by propagating some locations too
140 // far and ignoring some transfers.
141 static cl::opt<bool> EmulateOldLDV("emulate-old-livedebugvalues", cl::Hidden,
142 cl::desc("Act like old LiveDebugValues did"),
143 cl::init(false));
144
145 // Limit for the maximum number of stack slots we should track, past which we
146 // will ignore any spills. InstrRefBasedLDV gathers detailed information on all
147 // stack slots which leads to high memory consumption, and in some scenarios
148 // (such as asan with very many locals) the working set of the function can be
149 // very large, causing many spills. In these scenarios, it is very unlikely that
150 // the developer has hundreds of variables live at the same time that they're
151 // carefully thinking about -- instead, they probably autogenerated the code.
152 // When this happens, gracefully stop tracking excess spill slots, rather than
153 // consuming all the developer's memory.
154 static cl::opt<unsigned>
155 StackWorkingSetLimit("livedebugvalues-max-stack-slots", cl::Hidden,
156 cl::desc("livedebugvalues-stack-ws-limit"),
157 cl::init(250));
158
159 DbgOpID DbgOpID::UndefID = DbgOpID(0xffffffff);
160
161 /// Tracker for converting machine value locations and variable values into
162 /// variable locations (the output of LiveDebugValues), recorded as DBG_VALUEs
163 /// specifying block live-in locations and transfers within blocks.
164 ///
165 /// Operating on a per-block basis, this class takes a (pre-loaded) MLocTracker
166 /// and must be initialized with the set of variable values that are live-in to
167 /// the block. The caller then repeatedly calls process(). TransferTracker picks
168 /// out variable locations for the live-in variable values (if there _is_ a
169 /// location) and creates the corresponding DBG_VALUEs. Then, as the block is
170 /// stepped through, transfers of values between machine locations are
171 /// identified and if profitable, a DBG_VALUE created.
172 ///
173 /// This is where debug use-before-defs would be resolved: a variable with an
174 /// unavailable value could materialize in the middle of a block, when the
175 /// value becomes available. Or, we could detect clobbers and re-specify the
176 /// variable in a backup location. (XXX these are unimplemented).
177 class TransferTracker {
178 public:
179 const TargetInstrInfo *TII;
180 const TargetLowering *TLI;
181 /// This machine location tracker is assumed to always contain the up-to-date
182 /// value mapping for all machine locations. TransferTracker only reads
183 /// information from it. (XXX make it const?)
184 MLocTracker *MTracker;
185 MachineFunction &MF;
186 bool ShouldEmitDebugEntryValues;
187
188 /// Record of all changes in variable locations at a block position. Awkwardly
189 /// we allow inserting either before or after the point: MBB != nullptr
190 /// indicates it's before, otherwise after.
191 struct Transfer {
192 MachineBasicBlock::instr_iterator Pos; /// Position to insert DBG_VALUes
193 MachineBasicBlock *MBB; /// non-null if we should insert after.
194 SmallVector<MachineInstr *, 4> Insts; /// Vector of DBG_VALUEs to insert.
195 };
196
197 /// Stores the resolved operands (machine locations and constants) and
198 /// qualifying meta-information needed to construct a concrete DBG_VALUE-like
199 /// instruction.
200 struct ResolvedDbgValue {
201 SmallVector<ResolvedDbgOp> Ops;
202 DbgValueProperties Properties;
203
ResolvedDbgValueTransferTracker::ResolvedDbgValue204 ResolvedDbgValue(SmallVectorImpl<ResolvedDbgOp> &Ops,
205 DbgValueProperties Properties)
206 : Ops(Ops.begin(), Ops.end()), Properties(Properties) {}
207
208 /// Returns all the LocIdx values used in this struct, in the order in which
209 /// they appear as operands in the debug value; may contain duplicates.
loc_indicesTransferTracker::ResolvedDbgValue210 auto loc_indices() const {
211 return map_range(
212 make_filter_range(
213 Ops, [](const ResolvedDbgOp &Op) { return !Op.IsConst; }),
214 [](const ResolvedDbgOp &Op) { return Op.Loc; });
215 }
216 };
217
218 /// Collection of transfers (DBG_VALUEs) to be inserted.
219 SmallVector<Transfer, 32> Transfers;
220
221 /// Local cache of what-value-is-in-what-LocIdx. Used to identify differences
222 /// between TransferTrackers view of variable locations and MLocTrackers. For
223 /// example, MLocTracker observes all clobbers, but TransferTracker lazily
224 /// does not.
225 SmallVector<ValueIDNum, 32> VarLocs;
226
227 /// Map from LocIdxes to which DebugVariables are based that location.
228 /// Mantained while stepping through the block. Not accurate if
229 /// VarLocs[Idx] != MTracker->LocIdxToIDNum[Idx].
230 DenseMap<LocIdx, SmallSet<DebugVariable, 4>> ActiveMLocs;
231
232 /// Map from DebugVariable to it's current location and qualifying meta
233 /// information. To be used in conjunction with ActiveMLocs to construct
234 /// enough information for the DBG_VALUEs for a particular LocIdx.
235 DenseMap<DebugVariable, ResolvedDbgValue> ActiveVLocs;
236
237 /// Temporary cache of DBG_VALUEs to be entered into the Transfers collection.
238 SmallVector<MachineInstr *, 4> PendingDbgValues;
239
240 /// Record of a use-before-def: created when a value that's live-in to the
241 /// current block isn't available in any machine location, but it will be
242 /// defined in this block.
243 struct UseBeforeDef {
244 /// Value of this variable, def'd in block.
245 SmallVector<DbgOp> Values;
246 /// Identity of this variable.
247 DebugVariable Var;
248 /// Additional variable properties.
249 DbgValueProperties Properties;
UseBeforeDefTransferTracker::UseBeforeDef250 UseBeforeDef(ArrayRef<DbgOp> Values, const DebugVariable &Var,
251 const DbgValueProperties &Properties)
252 : Values(Values.begin(), Values.end()), Var(Var),
253 Properties(Properties) {}
254 };
255
256 /// Map from instruction index (within the block) to the set of UseBeforeDefs
257 /// that become defined at that instruction.
258 DenseMap<unsigned, SmallVector<UseBeforeDef, 1>> UseBeforeDefs;
259
260 /// The set of variables that are in UseBeforeDefs and can become a location
261 /// once the relevant value is defined. An element being erased from this
262 /// collection prevents the use-before-def materializing.
263 DenseSet<DebugVariable> UseBeforeDefVariables;
264
265 const TargetRegisterInfo &TRI;
266 const BitVector &CalleeSavedRegs;
267
TransferTracker(const TargetInstrInfo * TII,MLocTracker * MTracker,MachineFunction & MF,const TargetRegisterInfo & TRI,const BitVector & CalleeSavedRegs,const TargetPassConfig & TPC)268 TransferTracker(const TargetInstrInfo *TII, MLocTracker *MTracker,
269 MachineFunction &MF, const TargetRegisterInfo &TRI,
270 const BitVector &CalleeSavedRegs, const TargetPassConfig &TPC)
271 : TII(TII), MTracker(MTracker), MF(MF), TRI(TRI),
272 CalleeSavedRegs(CalleeSavedRegs) {
273 TLI = MF.getSubtarget().getTargetLowering();
274 auto &TM = TPC.getTM<TargetMachine>();
275 ShouldEmitDebugEntryValues = TM.Options.ShouldEmitDebugEntryValues();
276 }
277
isCalleeSaved(LocIdx L) const278 bool isCalleeSaved(LocIdx L) const {
279 unsigned Reg = MTracker->LocIdxToLocID[L];
280 if (Reg >= MTracker->NumRegs)
281 return false;
282 for (MCRegAliasIterator RAI(Reg, &TRI, true); RAI.isValid(); ++RAI)
283 if (CalleeSavedRegs.test(*RAI))
284 return true;
285 return false;
286 };
287
288 // An estimate of the expected lifespan of values at a machine location, with
289 // a greater value corresponding to a longer expected lifespan, i.e. spill
290 // slots generally live longer than callee-saved registers which generally
291 // live longer than non-callee-saved registers. The minimum value of 0
292 // corresponds to an illegal location that cannot have a "lifespan" at all.
293 enum class LocationQuality : unsigned char {
294 Illegal = 0,
295 Register,
296 CalleeSavedRegister,
297 SpillSlot,
298 Best = SpillSlot
299 };
300
301 class LocationAndQuality {
302 unsigned Location : 24;
303 unsigned Quality : 8;
304
305 public:
LocationAndQuality()306 LocationAndQuality() : Location(0), Quality(0) {}
LocationAndQuality(LocIdx L,LocationQuality Q)307 LocationAndQuality(LocIdx L, LocationQuality Q)
308 : Location(L.asU64()), Quality(static_cast<unsigned>(Q)) {}
getLoc() const309 LocIdx getLoc() const {
310 if (!Quality)
311 return LocIdx::MakeIllegalLoc();
312 return LocIdx(Location);
313 }
getQuality() const314 LocationQuality getQuality() const { return LocationQuality(Quality); }
isIllegal() const315 bool isIllegal() const { return !Quality; }
isBest() const316 bool isBest() const { return getQuality() == LocationQuality::Best; }
317 };
318
319 // Returns the LocationQuality for the location L iff the quality of L is
320 // is strictly greater than the provided minimum quality.
321 std::optional<LocationQuality>
getLocQualityIfBetter(LocIdx L,LocationQuality Min) const322 getLocQualityIfBetter(LocIdx L, LocationQuality Min) const {
323 if (L.isIllegal())
324 return std::nullopt;
325 if (Min >= LocationQuality::SpillSlot)
326 return std::nullopt;
327 if (MTracker->isSpill(L))
328 return LocationQuality::SpillSlot;
329 if (Min >= LocationQuality::CalleeSavedRegister)
330 return std::nullopt;
331 if (isCalleeSaved(L))
332 return LocationQuality::CalleeSavedRegister;
333 if (Min >= LocationQuality::Register)
334 return std::nullopt;
335 return LocationQuality::Register;
336 }
337
338 /// For a variable \p Var with the live-in value \p Value, attempts to resolve
339 /// the DbgValue to a concrete DBG_VALUE, emitting that value and loading the
340 /// tracking information to track Var throughout the block.
341 /// \p ValueToLoc is a map containing the best known location for every
342 /// ValueIDNum that Value may use.
343 /// \p MBB is the basic block that we are loading the live-in value for.
344 /// \p DbgOpStore is the map containing the DbgOpID->DbgOp mapping needed to
345 /// determine the values used by Value.
loadVarInloc(MachineBasicBlock & MBB,DbgOpIDMap & DbgOpStore,const DenseMap<ValueIDNum,LocationAndQuality> & ValueToLoc,DebugVariable Var,DbgValue Value)346 void loadVarInloc(MachineBasicBlock &MBB, DbgOpIDMap &DbgOpStore,
347 const DenseMap<ValueIDNum, LocationAndQuality> &ValueToLoc,
348 DebugVariable Var, DbgValue Value) {
349 SmallVector<DbgOp> DbgOps;
350 SmallVector<ResolvedDbgOp> ResolvedDbgOps;
351 bool IsValueValid = true;
352 unsigned LastUseBeforeDef = 0;
353
354 // If every value used by the incoming DbgValue is available at block
355 // entry, ResolvedDbgOps will contain the machine locations/constants for
356 // those values and will be used to emit a debug location.
357 // If one or more values are not yet available, but will all be defined in
358 // this block, then LastUseBeforeDef will track the instruction index in
359 // this BB at which the last of those values is defined, DbgOps will
360 // contain the values that we will emit when we reach that instruction.
361 // If one or more values are undef or not available throughout this block,
362 // and we can't recover as an entry value, we set IsValueValid=false and
363 // skip this variable.
364 for (DbgOpID ID : Value.getDbgOpIDs()) {
365 DbgOp Op = DbgOpStore.find(ID);
366 DbgOps.push_back(Op);
367 if (ID.isUndef()) {
368 IsValueValid = false;
369 break;
370 }
371 if (ID.isConst()) {
372 ResolvedDbgOps.push_back(Op.MO);
373 continue;
374 }
375
376 // If the value has no location, we can't make a variable location.
377 const ValueIDNum &Num = Op.ID;
378 auto ValuesPreferredLoc = ValueToLoc.find(Num);
379 if (ValuesPreferredLoc->second.isIllegal()) {
380 // If it's a def that occurs in this block, register it as a
381 // use-before-def to be resolved as we step through the block.
382 // Continue processing values so that we add any other UseBeforeDef
383 // entries needed for later.
384 if (Num.getBlock() == (unsigned)MBB.getNumber() && !Num.isPHI()) {
385 LastUseBeforeDef = std::max(LastUseBeforeDef,
386 static_cast<unsigned>(Num.getInst()));
387 continue;
388 }
389 recoverAsEntryValue(Var, Value.Properties, Num);
390 IsValueValid = false;
391 break;
392 }
393
394 // Defer modifying ActiveVLocs until after we've confirmed we have a
395 // live range.
396 LocIdx M = ValuesPreferredLoc->second.getLoc();
397 ResolvedDbgOps.push_back(M);
398 }
399
400 // If we cannot produce a valid value for the LiveIn value within this
401 // block, skip this variable.
402 if (!IsValueValid)
403 return;
404
405 // Add UseBeforeDef entry for the last value to be defined in this block.
406 if (LastUseBeforeDef) {
407 addUseBeforeDef(Var, Value.Properties, DbgOps,
408 LastUseBeforeDef);
409 return;
410 }
411
412 // The LiveIn value is available at block entry, begin tracking and record
413 // the transfer.
414 for (const ResolvedDbgOp &Op : ResolvedDbgOps)
415 if (!Op.IsConst)
416 ActiveMLocs[Op.Loc].insert(Var);
417 auto NewValue = ResolvedDbgValue{ResolvedDbgOps, Value.Properties};
418 auto Result = ActiveVLocs.insert(std::make_pair(Var, NewValue));
419 if (!Result.second)
420 Result.first->second = NewValue;
421 PendingDbgValues.push_back(
422 MTracker->emitLoc(ResolvedDbgOps, Var, Value.Properties));
423 }
424
425 /// Load object with live-in variable values. \p mlocs contains the live-in
426 /// values in each machine location, while \p vlocs the live-in variable
427 /// values. This method picks variable locations for the live-in variables,
428 /// creates DBG_VALUEs and puts them in #Transfers, then prepares the other
429 /// object fields to track variable locations as we step through the block.
430 /// FIXME: could just examine mloctracker instead of passing in \p mlocs?
431 void
loadInlocs(MachineBasicBlock & MBB,ValueTable & MLocs,DbgOpIDMap & DbgOpStore,const SmallVectorImpl<std::pair<DebugVariable,DbgValue>> & VLocs,unsigned NumLocs)432 loadInlocs(MachineBasicBlock &MBB, ValueTable &MLocs, DbgOpIDMap &DbgOpStore,
433 const SmallVectorImpl<std::pair<DebugVariable, DbgValue>> &VLocs,
434 unsigned NumLocs) {
435 ActiveMLocs.clear();
436 ActiveVLocs.clear();
437 VarLocs.clear();
438 VarLocs.reserve(NumLocs);
439 UseBeforeDefs.clear();
440 UseBeforeDefVariables.clear();
441
442 // Map of the preferred location for each value.
443 DenseMap<ValueIDNum, LocationAndQuality> ValueToLoc;
444
445 // Initialized the preferred-location map with illegal locations, to be
446 // filled in later.
447 for (const auto &VLoc : VLocs)
448 if (VLoc.second.Kind == DbgValue::Def)
449 for (DbgOpID OpID : VLoc.second.getDbgOpIDs())
450 if (!OpID.ID.IsConst)
451 ValueToLoc.insert({DbgOpStore.find(OpID).ID, LocationAndQuality()});
452
453 ActiveMLocs.reserve(VLocs.size());
454 ActiveVLocs.reserve(VLocs.size());
455
456 // Produce a map of value numbers to the current machine locs they live
457 // in. When emulating VarLocBasedImpl, there should only be one
458 // location; when not, we get to pick.
459 for (auto Location : MTracker->locations()) {
460 LocIdx Idx = Location.Idx;
461 ValueIDNum &VNum = MLocs[Idx.asU64()];
462 if (VNum == ValueIDNum::EmptyValue)
463 continue;
464 VarLocs.push_back(VNum);
465
466 // Is there a variable that wants a location for this value? If not, skip.
467 auto VIt = ValueToLoc.find(VNum);
468 if (VIt == ValueToLoc.end())
469 continue;
470
471 auto &Previous = VIt->second;
472 // If this is the first location with that value, pick it. Otherwise,
473 // consider whether it's a "longer term" location.
474 std::optional<LocationQuality> ReplacementQuality =
475 getLocQualityIfBetter(Idx, Previous.getQuality());
476 if (ReplacementQuality)
477 Previous = LocationAndQuality(Idx, *ReplacementQuality);
478 }
479
480 // Now map variables to their picked LocIdxes.
481 for (const auto &Var : VLocs) {
482 loadVarInloc(MBB, DbgOpStore, ValueToLoc, Var.first, Var.second);
483 }
484 flushDbgValues(MBB.begin(), &MBB);
485 }
486
487 /// Record that \p Var has value \p ID, a value that becomes available
488 /// later in the function.
addUseBeforeDef(const DebugVariable & Var,const DbgValueProperties & Properties,const SmallVectorImpl<DbgOp> & DbgOps,unsigned Inst)489 void addUseBeforeDef(const DebugVariable &Var,
490 const DbgValueProperties &Properties,
491 const SmallVectorImpl<DbgOp> &DbgOps, unsigned Inst) {
492 UseBeforeDefs[Inst].emplace_back(DbgOps, Var, Properties);
493 UseBeforeDefVariables.insert(Var);
494 }
495
496 /// After the instruction at index \p Inst and position \p pos has been
497 /// processed, check whether it defines a variable value in a use-before-def.
498 /// If so, and the variable value hasn't changed since the start of the
499 /// block, create a DBG_VALUE.
checkInstForNewValues(unsigned Inst,MachineBasicBlock::iterator pos)500 void checkInstForNewValues(unsigned Inst, MachineBasicBlock::iterator pos) {
501 auto MIt = UseBeforeDefs.find(Inst);
502 if (MIt == UseBeforeDefs.end())
503 return;
504
505 // Map of values to the locations that store them for every value used by
506 // the variables that may have become available.
507 SmallDenseMap<ValueIDNum, LocationAndQuality> ValueToLoc;
508
509 // Populate ValueToLoc with illegal default mappings for every value used by
510 // any UseBeforeDef variables for this instruction.
511 for (auto &Use : MIt->second) {
512 if (!UseBeforeDefVariables.count(Use.Var))
513 continue;
514
515 for (DbgOp &Op : Use.Values) {
516 assert(!Op.isUndef() && "UseBeforeDef erroneously created for a "
517 "DbgValue with undef values.");
518 if (Op.IsConst)
519 continue;
520
521 ValueToLoc.insert({Op.ID, LocationAndQuality()});
522 }
523 }
524
525 // Exit early if we have no DbgValues to produce.
526 if (ValueToLoc.empty())
527 return;
528
529 // Determine the best location for each desired value.
530 for (auto Location : MTracker->locations()) {
531 LocIdx Idx = Location.Idx;
532 ValueIDNum &LocValueID = Location.Value;
533
534 // Is there a variable that wants a location for this value? If not, skip.
535 auto VIt = ValueToLoc.find(LocValueID);
536 if (VIt == ValueToLoc.end())
537 continue;
538
539 auto &Previous = VIt->second;
540 // If this is the first location with that value, pick it. Otherwise,
541 // consider whether it's a "longer term" location.
542 std::optional<LocationQuality> ReplacementQuality =
543 getLocQualityIfBetter(Idx, Previous.getQuality());
544 if (ReplacementQuality)
545 Previous = LocationAndQuality(Idx, *ReplacementQuality);
546 }
547
548 // Using the map of values to locations, produce a final set of values for
549 // this variable.
550 for (auto &Use : MIt->second) {
551 if (!UseBeforeDefVariables.count(Use.Var))
552 continue;
553
554 SmallVector<ResolvedDbgOp> DbgOps;
555
556 for (DbgOp &Op : Use.Values) {
557 if (Op.IsConst) {
558 DbgOps.push_back(Op.MO);
559 continue;
560 }
561 LocIdx NewLoc = ValueToLoc.find(Op.ID)->second.getLoc();
562 if (NewLoc.isIllegal())
563 break;
564 DbgOps.push_back(NewLoc);
565 }
566
567 // If at least one value used by this debug value is no longer available,
568 // i.e. one of the values was killed before we finished defining all of
569 // the values used by this variable, discard.
570 if (DbgOps.size() != Use.Values.size())
571 continue;
572
573 // Otherwise, we're good to go.
574 PendingDbgValues.push_back(
575 MTracker->emitLoc(DbgOps, Use.Var, Use.Properties));
576 }
577 flushDbgValues(pos, nullptr);
578 }
579
580 /// Helper to move created DBG_VALUEs into Transfers collection.
flushDbgValues(MachineBasicBlock::iterator Pos,MachineBasicBlock * MBB)581 void flushDbgValues(MachineBasicBlock::iterator Pos, MachineBasicBlock *MBB) {
582 if (PendingDbgValues.size() == 0)
583 return;
584
585 // Pick out the instruction start position.
586 MachineBasicBlock::instr_iterator BundleStart;
587 if (MBB && Pos == MBB->begin())
588 BundleStart = MBB->instr_begin();
589 else
590 BundleStart = getBundleStart(Pos->getIterator());
591
592 Transfers.push_back({BundleStart, MBB, PendingDbgValues});
593 PendingDbgValues.clear();
594 }
595
isEntryValueVariable(const DebugVariable & Var,const DIExpression * Expr) const596 bool isEntryValueVariable(const DebugVariable &Var,
597 const DIExpression *Expr) const {
598 if (!Var.getVariable()->isParameter())
599 return false;
600
601 if (Var.getInlinedAt())
602 return false;
603
604 if (Expr->getNumElements() > 0)
605 return false;
606
607 return true;
608 }
609
isEntryValueValue(const ValueIDNum & Val) const610 bool isEntryValueValue(const ValueIDNum &Val) const {
611 // Must be in entry block (block number zero), and be a PHI / live-in value.
612 if (Val.getBlock() || !Val.isPHI())
613 return false;
614
615 // Entry values must enter in a register.
616 if (MTracker->isSpill(Val.getLoc()))
617 return false;
618
619 Register SP = TLI->getStackPointerRegisterToSaveRestore();
620 Register FP = TRI.getFrameRegister(MF);
621 Register Reg = MTracker->LocIdxToLocID[Val.getLoc()];
622 return Reg != SP && Reg != FP;
623 }
624
recoverAsEntryValue(const DebugVariable & Var,const DbgValueProperties & Prop,const ValueIDNum & Num)625 bool recoverAsEntryValue(const DebugVariable &Var,
626 const DbgValueProperties &Prop,
627 const ValueIDNum &Num) {
628 // Is this variable location a candidate to be an entry value. First,
629 // should we be trying this at all?
630 if (!ShouldEmitDebugEntryValues)
631 return false;
632
633 const DIExpression *DIExpr = Prop.DIExpr;
634
635 // We don't currently emit entry values for DBG_VALUE_LISTs.
636 if (Prop.IsVariadic) {
637 // If this debug value can be converted to be non-variadic, then do so;
638 // otherwise give up.
639 auto NonVariadicExpression =
640 DIExpression::convertToNonVariadicExpression(DIExpr);
641 if (!NonVariadicExpression)
642 return false;
643 DIExpr = *NonVariadicExpression;
644 }
645
646 // Is the variable appropriate for entry values (i.e., is a parameter).
647 if (!isEntryValueVariable(Var, DIExpr))
648 return false;
649
650 // Is the value assigned to this variable still the entry value?
651 if (!isEntryValueValue(Num))
652 return false;
653
654 // Emit a variable location using an entry value expression.
655 DIExpression *NewExpr =
656 DIExpression::prepend(DIExpr, DIExpression::EntryValue);
657 Register Reg = MTracker->LocIdxToLocID[Num.getLoc()];
658 MachineOperand MO = MachineOperand::CreateReg(Reg, false);
659
660 PendingDbgValues.push_back(
661 emitMOLoc(MO, Var, {NewExpr, Prop.Indirect, false}));
662 return true;
663 }
664
665 /// Change a variable value after encountering a DBG_VALUE inside a block.
redefVar(const MachineInstr & MI)666 void redefVar(const MachineInstr &MI) {
667 DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
668 MI.getDebugLoc()->getInlinedAt());
669 DbgValueProperties Properties(MI);
670
671 // Ignore non-register locations, we don't transfer those.
672 if (MI.isUndefDebugValue() ||
673 all_of(MI.debug_operands(),
674 [](const MachineOperand &MO) { return !MO.isReg(); })) {
675 auto It = ActiveVLocs.find(Var);
676 if (It != ActiveVLocs.end()) {
677 for (LocIdx Loc : It->second.loc_indices())
678 ActiveMLocs[Loc].erase(Var);
679 ActiveVLocs.erase(It);
680 }
681 // Any use-before-defs no longer apply.
682 UseBeforeDefVariables.erase(Var);
683 return;
684 }
685
686 SmallVector<ResolvedDbgOp> NewLocs;
687 for (const MachineOperand &MO : MI.debug_operands()) {
688 if (MO.isReg()) {
689 // Any undef regs have already been filtered out above.
690 Register Reg = MO.getReg();
691 LocIdx NewLoc = MTracker->getRegMLoc(Reg);
692 NewLocs.push_back(NewLoc);
693 } else {
694 NewLocs.push_back(MO);
695 }
696 }
697
698 redefVar(MI, Properties, NewLocs);
699 }
700
701 /// Handle a change in variable location within a block. Terminate the
702 /// variables current location, and record the value it now refers to, so
703 /// that we can detect location transfers later on.
redefVar(const MachineInstr & MI,const DbgValueProperties & Properties,SmallVectorImpl<ResolvedDbgOp> & NewLocs)704 void redefVar(const MachineInstr &MI, const DbgValueProperties &Properties,
705 SmallVectorImpl<ResolvedDbgOp> &NewLocs) {
706 DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
707 MI.getDebugLoc()->getInlinedAt());
708 // Any use-before-defs no longer apply.
709 UseBeforeDefVariables.erase(Var);
710
711 // Erase any previous location.
712 auto It = ActiveVLocs.find(Var);
713 if (It != ActiveVLocs.end()) {
714 for (LocIdx Loc : It->second.loc_indices())
715 ActiveMLocs[Loc].erase(Var);
716 }
717
718 // If there _is_ no new location, all we had to do was erase.
719 if (NewLocs.empty()) {
720 if (It != ActiveVLocs.end())
721 ActiveVLocs.erase(It);
722 return;
723 }
724
725 SmallVector<std::pair<LocIdx, DebugVariable>> LostMLocs;
726 for (ResolvedDbgOp &Op : NewLocs) {
727 if (Op.IsConst)
728 continue;
729
730 LocIdx NewLoc = Op.Loc;
731
732 // Check whether our local copy of values-by-location in #VarLocs is out
733 // of date. Wipe old tracking data for the location if it's been clobbered
734 // in the meantime.
735 if (MTracker->readMLoc(NewLoc) != VarLocs[NewLoc.asU64()]) {
736 for (const auto &P : ActiveMLocs[NewLoc]) {
737 auto LostVLocIt = ActiveVLocs.find(P);
738 if (LostVLocIt != ActiveVLocs.end()) {
739 for (LocIdx Loc : LostVLocIt->second.loc_indices()) {
740 // Every active variable mapping for NewLoc will be cleared, no
741 // need to track individual variables.
742 if (Loc == NewLoc)
743 continue;
744 LostMLocs.emplace_back(Loc, P);
745 }
746 }
747 ActiveVLocs.erase(P);
748 }
749 for (const auto &LostMLoc : LostMLocs)
750 ActiveMLocs[LostMLoc.first].erase(LostMLoc.second);
751 LostMLocs.clear();
752 It = ActiveVLocs.find(Var);
753 ActiveMLocs[NewLoc.asU64()].clear();
754 VarLocs[NewLoc.asU64()] = MTracker->readMLoc(NewLoc);
755 }
756
757 ActiveMLocs[NewLoc].insert(Var);
758 }
759
760 if (It == ActiveVLocs.end()) {
761 ActiveVLocs.insert(
762 std::make_pair(Var, ResolvedDbgValue(NewLocs, Properties)));
763 } else {
764 It->second.Ops.assign(NewLocs);
765 It->second.Properties = Properties;
766 }
767 }
768
769 /// Account for a location \p mloc being clobbered. Examine the variable
770 /// locations that will be terminated: and try to recover them by using
771 /// another location. Optionally, given \p MakeUndef, emit a DBG_VALUE to
772 /// explicitly terminate a location if it can't be recovered.
clobberMloc(LocIdx MLoc,MachineBasicBlock::iterator Pos,bool MakeUndef=true)773 void clobberMloc(LocIdx MLoc, MachineBasicBlock::iterator Pos,
774 bool MakeUndef = true) {
775 auto ActiveMLocIt = ActiveMLocs.find(MLoc);
776 if (ActiveMLocIt == ActiveMLocs.end())
777 return;
778
779 // What was the old variable value?
780 ValueIDNum OldValue = VarLocs[MLoc.asU64()];
781 clobberMloc(MLoc, OldValue, Pos, MakeUndef);
782 }
783 /// Overload that takes an explicit value \p OldValue for when the value in
784 /// \p MLoc has changed and the TransferTracker's locations have not been
785 /// updated yet.
clobberMloc(LocIdx MLoc,ValueIDNum OldValue,MachineBasicBlock::iterator Pos,bool MakeUndef=true)786 void clobberMloc(LocIdx MLoc, ValueIDNum OldValue,
787 MachineBasicBlock::iterator Pos, bool MakeUndef = true) {
788 auto ActiveMLocIt = ActiveMLocs.find(MLoc);
789 if (ActiveMLocIt == ActiveMLocs.end())
790 return;
791
792 VarLocs[MLoc.asU64()] = ValueIDNum::EmptyValue;
793
794 // Examine the remaining variable locations: if we can find the same value
795 // again, we can recover the location.
796 std::optional<LocIdx> NewLoc;
797 for (auto Loc : MTracker->locations())
798 if (Loc.Value == OldValue)
799 NewLoc = Loc.Idx;
800
801 // If there is no location, and we weren't asked to make the variable
802 // explicitly undef, then stop here.
803 if (!NewLoc && !MakeUndef) {
804 // Try and recover a few more locations with entry values.
805 for (const auto &Var : ActiveMLocIt->second) {
806 auto &Prop = ActiveVLocs.find(Var)->second.Properties;
807 recoverAsEntryValue(Var, Prop, OldValue);
808 }
809 flushDbgValues(Pos, nullptr);
810 return;
811 }
812
813 // Examine all the variables based on this location.
814 DenseSet<DebugVariable> NewMLocs;
815 // If no new location has been found, every variable that depends on this
816 // MLoc is dead, so end their existing MLoc->Var mappings as well.
817 SmallVector<std::pair<LocIdx, DebugVariable>> LostMLocs;
818 for (const auto &Var : ActiveMLocIt->second) {
819 auto ActiveVLocIt = ActiveVLocs.find(Var);
820 // Re-state the variable location: if there's no replacement then NewLoc
821 // is std::nullopt and a $noreg DBG_VALUE will be created. Otherwise, a
822 // DBG_VALUE identifying the alternative location will be emitted.
823 const DbgValueProperties &Properties = ActiveVLocIt->second.Properties;
824
825 // Produce the new list of debug ops - an empty list if no new location
826 // was found, or the existing list with the substitution MLoc -> NewLoc
827 // otherwise.
828 SmallVector<ResolvedDbgOp> DbgOps;
829 if (NewLoc) {
830 ResolvedDbgOp OldOp(MLoc);
831 ResolvedDbgOp NewOp(*NewLoc);
832 // Insert illegal ops to overwrite afterwards.
833 DbgOps.insert(DbgOps.begin(), ActiveVLocIt->second.Ops.size(),
834 ResolvedDbgOp(LocIdx::MakeIllegalLoc()));
835 replace_copy(ActiveVLocIt->second.Ops, DbgOps.begin(), OldOp, NewOp);
836 }
837
838 PendingDbgValues.push_back(MTracker->emitLoc(DbgOps, Var, Properties));
839
840 // Update machine locations <=> variable locations maps. Defer updating
841 // ActiveMLocs to avoid invalidating the ActiveMLocIt iterator.
842 if (!NewLoc) {
843 for (LocIdx Loc : ActiveVLocIt->second.loc_indices()) {
844 if (Loc != MLoc)
845 LostMLocs.emplace_back(Loc, Var);
846 }
847 ActiveVLocs.erase(ActiveVLocIt);
848 } else {
849 ActiveVLocIt->second.Ops = DbgOps;
850 NewMLocs.insert(Var);
851 }
852 }
853
854 // Remove variables from ActiveMLocs if they no longer use any other MLocs
855 // due to being killed by this clobber.
856 for (auto &LocVarIt : LostMLocs) {
857 auto LostMLocIt = ActiveMLocs.find(LocVarIt.first);
858 assert(LostMLocIt != ActiveMLocs.end() &&
859 "Variable was using this MLoc, but ActiveMLocs[MLoc] has no "
860 "entries?");
861 LostMLocIt->second.erase(LocVarIt.second);
862 }
863
864 // We lazily track what locations have which values; if we've found a new
865 // location for the clobbered value, remember it.
866 if (NewLoc)
867 VarLocs[NewLoc->asU64()] = OldValue;
868
869 flushDbgValues(Pos, nullptr);
870
871 // Commit ActiveMLoc changes.
872 ActiveMLocIt->second.clear();
873 if (!NewMLocs.empty())
874 for (auto &Var : NewMLocs)
875 ActiveMLocs[*NewLoc].insert(Var);
876 }
877
878 /// Transfer variables based on \p Src to be based on \p Dst. This handles
879 /// both register copies as well as spills and restores. Creates DBG_VALUEs
880 /// describing the movement.
transferMlocs(LocIdx Src,LocIdx Dst,MachineBasicBlock::iterator Pos)881 void transferMlocs(LocIdx Src, LocIdx Dst, MachineBasicBlock::iterator Pos) {
882 // Does Src still contain the value num we expect? If not, it's been
883 // clobbered in the meantime, and our variable locations are stale.
884 if (VarLocs[Src.asU64()] != MTracker->readMLoc(Src))
885 return;
886
887 // assert(ActiveMLocs[Dst].size() == 0);
888 //^^^ Legitimate scenario on account of un-clobbered slot being assigned to?
889
890 // Move set of active variables from one location to another.
891 auto MovingVars = ActiveMLocs[Src];
892 ActiveMLocs[Dst].insert(MovingVars.begin(), MovingVars.end());
893 VarLocs[Dst.asU64()] = VarLocs[Src.asU64()];
894
895 // For each variable based on Src; create a location at Dst.
896 ResolvedDbgOp SrcOp(Src);
897 ResolvedDbgOp DstOp(Dst);
898 for (const auto &Var : MovingVars) {
899 auto ActiveVLocIt = ActiveVLocs.find(Var);
900 assert(ActiveVLocIt != ActiveVLocs.end());
901
902 // Update all instances of Src in the variable's tracked values to Dst.
903 std::replace(ActiveVLocIt->second.Ops.begin(),
904 ActiveVLocIt->second.Ops.end(), SrcOp, DstOp);
905
906 MachineInstr *MI = MTracker->emitLoc(ActiveVLocIt->second.Ops, Var,
907 ActiveVLocIt->second.Properties);
908 PendingDbgValues.push_back(MI);
909 }
910 ActiveMLocs[Src].clear();
911 flushDbgValues(Pos, nullptr);
912
913 // XXX XXX XXX "pretend to be old LDV" means dropping all tracking data
914 // about the old location.
915 if (EmulateOldLDV)
916 VarLocs[Src.asU64()] = ValueIDNum::EmptyValue;
917 }
918
emitMOLoc(const MachineOperand & MO,const DebugVariable & Var,const DbgValueProperties & Properties)919 MachineInstrBuilder emitMOLoc(const MachineOperand &MO,
920 const DebugVariable &Var,
921 const DbgValueProperties &Properties) {
922 DebugLoc DL = DILocation::get(Var.getVariable()->getContext(), 0, 0,
923 Var.getVariable()->getScope(),
924 const_cast<DILocation *>(Var.getInlinedAt()));
925 auto MIB = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE));
926 MIB.add(MO);
927 if (Properties.Indirect)
928 MIB.addImm(0);
929 else
930 MIB.addReg(0);
931 MIB.addMetadata(Var.getVariable());
932 MIB.addMetadata(Properties.DIExpr);
933 return MIB;
934 }
935 };
936
937 //===----------------------------------------------------------------------===//
938 // Implementation
939 //===----------------------------------------------------------------------===//
940
941 ValueIDNum ValueIDNum::EmptyValue = {UINT_MAX, UINT_MAX, UINT_MAX};
942 ValueIDNum ValueIDNum::TombstoneValue = {UINT_MAX, UINT_MAX, UINT_MAX - 1};
943
944 #ifndef NDEBUG
dump(const MLocTracker * MTrack) const945 void ResolvedDbgOp::dump(const MLocTracker *MTrack) const {
946 if (IsConst) {
947 dbgs() << MO;
948 } else {
949 dbgs() << MTrack->LocIdxToName(Loc);
950 }
951 }
dump(const MLocTracker * MTrack) const952 void DbgOp::dump(const MLocTracker *MTrack) const {
953 if (IsConst) {
954 dbgs() << MO;
955 } else if (!isUndef()) {
956 dbgs() << MTrack->IDAsString(ID);
957 }
958 }
dump(const MLocTracker * MTrack,const DbgOpIDMap * OpStore) const959 void DbgOpID::dump(const MLocTracker *MTrack, const DbgOpIDMap *OpStore) const {
960 if (!OpStore) {
961 dbgs() << "ID(" << asU32() << ")";
962 } else {
963 OpStore->find(*this).dump(MTrack);
964 }
965 }
dump(const MLocTracker * MTrack,const DbgOpIDMap * OpStore) const966 void DbgValue::dump(const MLocTracker *MTrack,
967 const DbgOpIDMap *OpStore) const {
968 if (Kind == NoVal) {
969 dbgs() << "NoVal(" << BlockNo << ")";
970 } else if (Kind == VPHI || Kind == Def) {
971 if (Kind == VPHI)
972 dbgs() << "VPHI(" << BlockNo << ",";
973 else
974 dbgs() << "Def(";
975 for (unsigned Idx = 0; Idx < getDbgOpIDs().size(); ++Idx) {
976 getDbgOpID(Idx).dump(MTrack, OpStore);
977 if (Idx != 0)
978 dbgs() << ",";
979 }
980 dbgs() << ")";
981 }
982 if (Properties.Indirect)
983 dbgs() << " indir";
984 if (Properties.DIExpr)
985 dbgs() << " " << *Properties.DIExpr;
986 }
987 #endif
988
MLocTracker(MachineFunction & MF,const TargetInstrInfo & TII,const TargetRegisterInfo & TRI,const TargetLowering & TLI)989 MLocTracker::MLocTracker(MachineFunction &MF, const TargetInstrInfo &TII,
990 const TargetRegisterInfo &TRI,
991 const TargetLowering &TLI)
992 : MF(MF), TII(TII), TRI(TRI), TLI(TLI),
993 LocIdxToIDNum(ValueIDNum::EmptyValue), LocIdxToLocID(0) {
994 NumRegs = TRI.getNumRegs();
995 reset();
996 LocIDToLocIdx.resize(NumRegs, LocIdx::MakeIllegalLoc());
997 assert(NumRegs < (1u << NUM_LOC_BITS)); // Detect bit packing failure
998
999 // Always track SP. This avoids the implicit clobbering caused by regmasks
1000 // from affectings its values. (LiveDebugValues disbelieves calls and
1001 // regmasks that claim to clobber SP).
1002 Register SP = TLI.getStackPointerRegisterToSaveRestore();
1003 if (SP) {
1004 unsigned ID = getLocID(SP);
1005 (void)lookupOrTrackRegister(ID);
1006
1007 for (MCRegAliasIterator RAI(SP, &TRI, true); RAI.isValid(); ++RAI)
1008 SPAliases.insert(*RAI);
1009 }
1010
1011 // Build some common stack positions -- full registers being spilt to the
1012 // stack.
1013 StackSlotIdxes.insert({{8, 0}, 0});
1014 StackSlotIdxes.insert({{16, 0}, 1});
1015 StackSlotIdxes.insert({{32, 0}, 2});
1016 StackSlotIdxes.insert({{64, 0}, 3});
1017 StackSlotIdxes.insert({{128, 0}, 4});
1018 StackSlotIdxes.insert({{256, 0}, 5});
1019 StackSlotIdxes.insert({{512, 0}, 6});
1020
1021 // Traverse all the subregister idxes, and ensure there's an index for them.
1022 // Duplicates are no problem: we're interested in their position in the
1023 // stack slot, we don't want to type the slot.
1024 for (unsigned int I = 1; I < TRI.getNumSubRegIndices(); ++I) {
1025 unsigned Size = TRI.getSubRegIdxSize(I);
1026 unsigned Offs = TRI.getSubRegIdxOffset(I);
1027 unsigned Idx = StackSlotIdxes.size();
1028
1029 // Some subregs have -1, -2 and so forth fed into their fields, to mean
1030 // special backend things. Ignore those.
1031 if (Size > 60000 || Offs > 60000)
1032 continue;
1033
1034 StackSlotIdxes.insert({{Size, Offs}, Idx});
1035 }
1036
1037 // There may also be strange register class sizes (think x86 fp80s).
1038 for (const TargetRegisterClass *RC : TRI.regclasses()) {
1039 unsigned Size = TRI.getRegSizeInBits(*RC);
1040
1041 // We might see special reserved values as sizes, and classes for other
1042 // stuff the machine tries to model. If it's more than 512 bits, then it
1043 // is very unlikely to be a register than can be spilt.
1044 if (Size > 512)
1045 continue;
1046
1047 unsigned Idx = StackSlotIdxes.size();
1048 StackSlotIdxes.insert({{Size, 0}, Idx});
1049 }
1050
1051 for (auto &Idx : StackSlotIdxes)
1052 StackIdxesToPos[Idx.second] = Idx.first;
1053
1054 NumSlotIdxes = StackSlotIdxes.size();
1055 }
1056
trackRegister(unsigned ID)1057 LocIdx MLocTracker::trackRegister(unsigned ID) {
1058 assert(ID != 0);
1059 LocIdx NewIdx = LocIdx(LocIdxToIDNum.size());
1060 LocIdxToIDNum.grow(NewIdx);
1061 LocIdxToLocID.grow(NewIdx);
1062
1063 // Default: it's an mphi.
1064 ValueIDNum ValNum = {CurBB, 0, NewIdx};
1065 // Was this reg ever touched by a regmask?
1066 for (const auto &MaskPair : reverse(Masks)) {
1067 if (MaskPair.first->clobbersPhysReg(ID)) {
1068 // There was an earlier def we skipped.
1069 ValNum = {CurBB, MaskPair.second, NewIdx};
1070 break;
1071 }
1072 }
1073
1074 LocIdxToIDNum[NewIdx] = ValNum;
1075 LocIdxToLocID[NewIdx] = ID;
1076 return NewIdx;
1077 }
1078
writeRegMask(const MachineOperand * MO,unsigned CurBB,unsigned InstID)1079 void MLocTracker::writeRegMask(const MachineOperand *MO, unsigned CurBB,
1080 unsigned InstID) {
1081 // Def any register we track have that isn't preserved. The regmask
1082 // terminates the liveness of a register, meaning its value can't be
1083 // relied upon -- we represent this by giving it a new value.
1084 for (auto Location : locations()) {
1085 unsigned ID = LocIdxToLocID[Location.Idx];
1086 // Don't clobber SP, even if the mask says it's clobbered.
1087 if (ID < NumRegs && !SPAliases.count(ID) && MO->clobbersPhysReg(ID))
1088 defReg(ID, CurBB, InstID);
1089 }
1090 Masks.push_back(std::make_pair(MO, InstID));
1091 }
1092
getOrTrackSpillLoc(SpillLoc L)1093 std::optional<SpillLocationNo> MLocTracker::getOrTrackSpillLoc(SpillLoc L) {
1094 SpillLocationNo SpillID(SpillLocs.idFor(L));
1095
1096 if (SpillID.id() == 0) {
1097 // If there is no location, and we have reached the limit of how many stack
1098 // slots to track, then don't track this one.
1099 if (SpillLocs.size() >= StackWorkingSetLimit)
1100 return std::nullopt;
1101
1102 // Spill location is untracked: create record for this one, and all
1103 // subregister slots too.
1104 SpillID = SpillLocationNo(SpillLocs.insert(L));
1105 for (unsigned StackIdx = 0; StackIdx < NumSlotIdxes; ++StackIdx) {
1106 unsigned L = getSpillIDWithIdx(SpillID, StackIdx);
1107 LocIdx Idx = LocIdx(LocIdxToIDNum.size()); // New idx
1108 LocIdxToIDNum.grow(Idx);
1109 LocIdxToLocID.grow(Idx);
1110 LocIDToLocIdx.push_back(Idx);
1111 LocIdxToLocID[Idx] = L;
1112 // Initialize to PHI value; corresponds to the location's live-in value
1113 // during transfer function construction.
1114 LocIdxToIDNum[Idx] = ValueIDNum(CurBB, 0, Idx);
1115 }
1116 }
1117 return SpillID;
1118 }
1119
LocIdxToName(LocIdx Idx) const1120 std::string MLocTracker::LocIdxToName(LocIdx Idx) const {
1121 unsigned ID = LocIdxToLocID[Idx];
1122 if (ID >= NumRegs) {
1123 StackSlotPos Pos = locIDToSpillIdx(ID);
1124 ID -= NumRegs;
1125 unsigned Slot = ID / NumSlotIdxes;
1126 return Twine("slot ")
1127 .concat(Twine(Slot).concat(Twine(" sz ").concat(Twine(Pos.first)
1128 .concat(Twine(" offs ").concat(Twine(Pos.second))))))
1129 .str();
1130 } else {
1131 return TRI.getRegAsmName(ID).str();
1132 }
1133 }
1134
IDAsString(const ValueIDNum & Num) const1135 std::string MLocTracker::IDAsString(const ValueIDNum &Num) const {
1136 std::string DefName = LocIdxToName(Num.getLoc());
1137 return Num.asString(DefName);
1138 }
1139
1140 #ifndef NDEBUG
dump()1141 LLVM_DUMP_METHOD void MLocTracker::dump() {
1142 for (auto Location : locations()) {
1143 std::string MLocName = LocIdxToName(Location.Value.getLoc());
1144 std::string DefName = Location.Value.asString(MLocName);
1145 dbgs() << LocIdxToName(Location.Idx) << " --> " << DefName << "\n";
1146 }
1147 }
1148
dump_mloc_map()1149 LLVM_DUMP_METHOD void MLocTracker::dump_mloc_map() {
1150 for (auto Location : locations()) {
1151 std::string foo = LocIdxToName(Location.Idx);
1152 dbgs() << "Idx " << Location.Idx.asU64() << " " << foo << "\n";
1153 }
1154 }
1155 #endif
1156
1157 MachineInstrBuilder
emitLoc(const SmallVectorImpl<ResolvedDbgOp> & DbgOps,const DebugVariable & Var,const DbgValueProperties & Properties)1158 MLocTracker::emitLoc(const SmallVectorImpl<ResolvedDbgOp> &DbgOps,
1159 const DebugVariable &Var,
1160 const DbgValueProperties &Properties) {
1161 DebugLoc DL = DILocation::get(Var.getVariable()->getContext(), 0, 0,
1162 Var.getVariable()->getScope(),
1163 const_cast<DILocation *>(Var.getInlinedAt()));
1164
1165 const MCInstrDesc &Desc = Properties.IsVariadic
1166 ? TII.get(TargetOpcode::DBG_VALUE_LIST)
1167 : TII.get(TargetOpcode::DBG_VALUE);
1168
1169 #ifdef EXPENSIVE_CHECKS
1170 assert(all_of(DbgOps,
1171 [](const ResolvedDbgOp &Op) {
1172 return Op.IsConst || !Op.Loc.isIllegal();
1173 }) &&
1174 "Did not expect illegal ops in DbgOps.");
1175 assert((DbgOps.size() == 0 ||
1176 DbgOps.size() == Properties.getLocationOpCount()) &&
1177 "Expected to have either one DbgOp per MI LocationOp, or none.");
1178 #endif
1179
1180 auto GetRegOp = [](unsigned Reg) -> MachineOperand {
1181 return MachineOperand::CreateReg(
1182 /* Reg */ Reg, /* isDef */ false, /* isImp */ false,
1183 /* isKill */ false, /* isDead */ false,
1184 /* isUndef */ false, /* isEarlyClobber */ false,
1185 /* SubReg */ 0, /* isDebug */ true);
1186 };
1187
1188 SmallVector<MachineOperand> MOs;
1189
1190 auto EmitUndef = [&]() {
1191 MOs.clear();
1192 MOs.assign(Properties.getLocationOpCount(), GetRegOp(0));
1193 return BuildMI(MF, DL, Desc, false, MOs, Var.getVariable(),
1194 Properties.DIExpr);
1195 };
1196
1197 // Don't bother passing any real operands to BuildMI if any of them would be
1198 // $noreg.
1199 if (DbgOps.empty())
1200 return EmitUndef();
1201
1202 bool Indirect = Properties.Indirect;
1203
1204 const DIExpression *Expr = Properties.DIExpr;
1205
1206 assert(DbgOps.size() == Properties.getLocationOpCount());
1207
1208 // If all locations are valid, accumulate them into our list of
1209 // MachineOperands. For any spilled locations, either update the indirectness
1210 // register or apply the appropriate transformations in the DIExpression.
1211 for (size_t Idx = 0; Idx < Properties.getLocationOpCount(); ++Idx) {
1212 const ResolvedDbgOp &Op = DbgOps[Idx];
1213
1214 if (Op.IsConst) {
1215 MOs.push_back(Op.MO);
1216 continue;
1217 }
1218
1219 LocIdx MLoc = Op.Loc;
1220 unsigned LocID = LocIdxToLocID[MLoc];
1221 if (LocID >= NumRegs) {
1222 SpillLocationNo SpillID = locIDToSpill(LocID);
1223 StackSlotPos StackIdx = locIDToSpillIdx(LocID);
1224 unsigned short Offset = StackIdx.second;
1225
1226 // TODO: support variables that are located in spill slots, with non-zero
1227 // offsets from the start of the spill slot. It would require some more
1228 // complex DIExpression calculations. This doesn't seem to be produced by
1229 // LLVM right now, so don't try and support it.
1230 // Accept no-subregister slots and subregisters where the offset is zero.
1231 // The consumer should already have type information to work out how large
1232 // the variable is.
1233 if (Offset == 0) {
1234 const SpillLoc &Spill = SpillLocs[SpillID.id()];
1235 unsigned Base = Spill.SpillBase;
1236
1237 // There are several ways we can dereference things, and several inputs
1238 // to consider:
1239 // * NRVO variables will appear with IsIndirect set, but should have
1240 // nothing else in their DIExpressions,
1241 // * Variables with DW_OP_stack_value in their expr already need an
1242 // explicit dereference of the stack location,
1243 // * Values that don't match the variable size need DW_OP_deref_size,
1244 // * Everything else can just become a simple location expression.
1245
1246 // We need to use deref_size whenever there's a mismatch between the
1247 // size of value and the size of variable portion being read.
1248 // Additionally, we should use it whenever dealing with stack_value
1249 // fragments, to avoid the consumer having to determine the deref size
1250 // from DW_OP_piece.
1251 bool UseDerefSize = false;
1252 unsigned ValueSizeInBits = getLocSizeInBits(MLoc);
1253 unsigned DerefSizeInBytes = ValueSizeInBits / 8;
1254 if (auto Fragment = Var.getFragment()) {
1255 unsigned VariableSizeInBits = Fragment->SizeInBits;
1256 if (VariableSizeInBits != ValueSizeInBits || Expr->isComplex())
1257 UseDerefSize = true;
1258 } else if (auto Size = Var.getVariable()->getSizeInBits()) {
1259 if (*Size != ValueSizeInBits) {
1260 UseDerefSize = true;
1261 }
1262 }
1263
1264 SmallVector<uint64_t, 5> OffsetOps;
1265 TRI.getOffsetOpcodes(Spill.SpillOffset, OffsetOps);
1266 bool StackValue = false;
1267
1268 if (Properties.Indirect) {
1269 // This is something like an NRVO variable, where the pointer has been
1270 // spilt to the stack. It should end up being a memory location, with
1271 // the pointer to the variable loaded off the stack with a deref:
1272 assert(!Expr->isImplicit());
1273 OffsetOps.push_back(dwarf::DW_OP_deref);
1274 } else if (UseDerefSize && Expr->isSingleLocationExpression()) {
1275 // TODO: Figure out how to handle deref size issues for variadic
1276 // values.
1277 // We're loading a value off the stack that's not the same size as the
1278 // variable. Add / subtract stack offset, explicitly deref with a
1279 // size, and add DW_OP_stack_value if not already present.
1280 OffsetOps.push_back(dwarf::DW_OP_deref_size);
1281 OffsetOps.push_back(DerefSizeInBytes);
1282 StackValue = true;
1283 } else if (Expr->isComplex() || Properties.IsVariadic) {
1284 // A variable with no size ambiguity, but with extra elements in it's
1285 // expression. Manually dereference the stack location.
1286 OffsetOps.push_back(dwarf::DW_OP_deref);
1287 } else {
1288 // A plain value that has been spilt to the stack, with no further
1289 // context. Request a location expression, marking the DBG_VALUE as
1290 // IsIndirect.
1291 Indirect = true;
1292 }
1293
1294 Expr = DIExpression::appendOpsToArg(Expr, OffsetOps, Idx, StackValue);
1295 MOs.push_back(GetRegOp(Base));
1296 } else {
1297 // This is a stack location with a weird subregister offset: emit an
1298 // undef DBG_VALUE instead.
1299 return EmitUndef();
1300 }
1301 } else {
1302 // Non-empty, non-stack slot, must be a plain register.
1303 MOs.push_back(GetRegOp(LocID));
1304 }
1305 }
1306
1307 return BuildMI(MF, DL, Desc, Indirect, MOs, Var.getVariable(), Expr);
1308 }
1309
1310 /// Default construct and initialize the pass.
1311 InstrRefBasedLDV::InstrRefBasedLDV() = default;
1312
isCalleeSaved(LocIdx L) const1313 bool InstrRefBasedLDV::isCalleeSaved(LocIdx L) const {
1314 unsigned Reg = MTracker->LocIdxToLocID[L];
1315 return isCalleeSavedReg(Reg);
1316 }
isCalleeSavedReg(Register R) const1317 bool InstrRefBasedLDV::isCalleeSavedReg(Register R) const {
1318 for (MCRegAliasIterator RAI(R, TRI, true); RAI.isValid(); ++RAI)
1319 if (CalleeSavedRegs.test(*RAI))
1320 return true;
1321 return false;
1322 }
1323
1324 //===----------------------------------------------------------------------===//
1325 // Debug Range Extension Implementation
1326 //===----------------------------------------------------------------------===//
1327
1328 #ifndef NDEBUG
1329 // Something to restore in the future.
1330 // void InstrRefBasedLDV::printVarLocInMBB(..)
1331 #endif
1332
1333 std::optional<SpillLocationNo>
extractSpillBaseRegAndOffset(const MachineInstr & MI)1334 InstrRefBasedLDV::extractSpillBaseRegAndOffset(const MachineInstr &MI) {
1335 assert(MI.hasOneMemOperand() &&
1336 "Spill instruction does not have exactly one memory operand?");
1337 auto MMOI = MI.memoperands_begin();
1338 const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue();
1339 assert(PVal->kind() == PseudoSourceValue::FixedStack &&
1340 "Inconsistent memory operand in spill instruction");
1341 int FI = cast<FixedStackPseudoSourceValue>(PVal)->getFrameIndex();
1342 const MachineBasicBlock *MBB = MI.getParent();
1343 Register Reg;
1344 StackOffset Offset = TFI->getFrameIndexReference(*MBB->getParent(), FI, Reg);
1345 return MTracker->getOrTrackSpillLoc({Reg, Offset});
1346 }
1347
1348 std::optional<LocIdx>
findLocationForMemOperand(const MachineInstr & MI)1349 InstrRefBasedLDV::findLocationForMemOperand(const MachineInstr &MI) {
1350 std::optional<SpillLocationNo> SpillLoc = extractSpillBaseRegAndOffset(MI);
1351 if (!SpillLoc)
1352 return std::nullopt;
1353
1354 // Where in the stack slot is this value defined -- i.e., what size of value
1355 // is this? An important question, because it could be loaded into a register
1356 // from the stack at some point. Happily the memory operand will tell us
1357 // the size written to the stack.
1358 auto *MemOperand = *MI.memoperands_begin();
1359 unsigned SizeInBits = MemOperand->getSizeInBits();
1360
1361 // Find that position in the stack indexes we're tracking.
1362 auto IdxIt = MTracker->StackSlotIdxes.find({SizeInBits, 0});
1363 if (IdxIt == MTracker->StackSlotIdxes.end())
1364 // That index is not tracked. This is suprising, and unlikely to ever
1365 // occur, but the safe action is to indicate the variable is optimised out.
1366 return std::nullopt;
1367
1368 unsigned SpillID = MTracker->getSpillIDWithIdx(*SpillLoc, IdxIt->second);
1369 return MTracker->getSpillMLoc(SpillID);
1370 }
1371
1372 /// End all previous ranges related to @MI and start a new range from @MI
1373 /// if it is a DBG_VALUE instr.
transferDebugValue(const MachineInstr & MI)1374 bool InstrRefBasedLDV::transferDebugValue(const MachineInstr &MI) {
1375 if (!MI.isDebugValue())
1376 return false;
1377
1378 const DILocalVariable *Var = MI.getDebugVariable();
1379 const DIExpression *Expr = MI.getDebugExpression();
1380 const DILocation *DebugLoc = MI.getDebugLoc();
1381 const DILocation *InlinedAt = DebugLoc->getInlinedAt();
1382 assert(Var->isValidLocationForIntrinsic(DebugLoc) &&
1383 "Expected inlined-at fields to agree");
1384
1385 DebugVariable V(Var, Expr, InlinedAt);
1386 DbgValueProperties Properties(MI);
1387
1388 // If there are no instructions in this lexical scope, do no location tracking
1389 // at all, this variable shouldn't get a legitimate location range.
1390 auto *Scope = LS.findLexicalScope(MI.getDebugLoc().get());
1391 if (Scope == nullptr)
1392 return true; // handled it; by doing nothing
1393
1394 // MLocTracker needs to know that this register is read, even if it's only
1395 // read by a debug inst.
1396 for (const MachineOperand &MO : MI.debug_operands())
1397 if (MO.isReg() && MO.getReg() != 0)
1398 (void)MTracker->readReg(MO.getReg());
1399
1400 // If we're preparing for the second analysis (variables), the machine value
1401 // locations are already solved, and we report this DBG_VALUE and the value
1402 // it refers to to VLocTracker.
1403 if (VTracker) {
1404 SmallVector<DbgOpID> DebugOps;
1405 // Feed defVar the new variable location, or if this is a DBG_VALUE $noreg,
1406 // feed defVar None.
1407 if (!MI.isUndefDebugValue()) {
1408 for (const MachineOperand &MO : MI.debug_operands()) {
1409 // There should be no undef registers here, as we've screened for undef
1410 // debug values.
1411 if (MO.isReg()) {
1412 DebugOps.push_back(DbgOpStore.insert(MTracker->readReg(MO.getReg())));
1413 } else if (MO.isImm() || MO.isFPImm() || MO.isCImm()) {
1414 DebugOps.push_back(DbgOpStore.insert(MO));
1415 } else {
1416 llvm_unreachable("Unexpected debug operand type.");
1417 }
1418 }
1419 }
1420 VTracker->defVar(MI, Properties, DebugOps);
1421 }
1422
1423 // If performing final tracking of transfers, report this variable definition
1424 // to the TransferTracker too.
1425 if (TTracker)
1426 TTracker->redefVar(MI);
1427 return true;
1428 }
1429
getValueForInstrRef(unsigned InstNo,unsigned OpNo,MachineInstr & MI,const ValueTable * MLiveOuts,const ValueTable * MLiveIns)1430 std::optional<ValueIDNum> InstrRefBasedLDV::getValueForInstrRef(
1431 unsigned InstNo, unsigned OpNo, MachineInstr &MI,
1432 const ValueTable *MLiveOuts, const ValueTable *MLiveIns) {
1433 // Various optimizations may have happened to the value during codegen,
1434 // recorded in the value substitution table. Apply any substitutions to
1435 // the instruction / operand number in this DBG_INSTR_REF, and collect
1436 // any subregister extractions performed during optimization.
1437 const MachineFunction &MF = *MI.getParent()->getParent();
1438
1439 // Create dummy substitution with Src set, for lookup.
1440 auto SoughtSub =
1441 MachineFunction::DebugSubstitution({InstNo, OpNo}, {0, 0}, 0);
1442
1443 SmallVector<unsigned, 4> SeenSubregs;
1444 auto LowerBoundIt = llvm::lower_bound(MF.DebugValueSubstitutions, SoughtSub);
1445 while (LowerBoundIt != MF.DebugValueSubstitutions.end() &&
1446 LowerBoundIt->Src == SoughtSub.Src) {
1447 std::tie(InstNo, OpNo) = LowerBoundIt->Dest;
1448 SoughtSub.Src = LowerBoundIt->Dest;
1449 if (unsigned Subreg = LowerBoundIt->Subreg)
1450 SeenSubregs.push_back(Subreg);
1451 LowerBoundIt = llvm::lower_bound(MF.DebugValueSubstitutions, SoughtSub);
1452 }
1453
1454 // Default machine value number is <None> -- if no instruction defines
1455 // the corresponding value, it must have been optimized out.
1456 std::optional<ValueIDNum> NewID;
1457
1458 // Try to lookup the instruction number, and find the machine value number
1459 // that it defines. It could be an instruction, or a PHI.
1460 auto InstrIt = DebugInstrNumToInstr.find(InstNo);
1461 auto PHIIt = llvm::lower_bound(DebugPHINumToValue, InstNo);
1462 if (InstrIt != DebugInstrNumToInstr.end()) {
1463 const MachineInstr &TargetInstr = *InstrIt->second.first;
1464 uint64_t BlockNo = TargetInstr.getParent()->getNumber();
1465
1466 // Pick out the designated operand. It might be a memory reference, if
1467 // a register def was folded into a stack store.
1468 if (OpNo == MachineFunction::DebugOperandMemNumber &&
1469 TargetInstr.hasOneMemOperand()) {
1470 std::optional<LocIdx> L = findLocationForMemOperand(TargetInstr);
1471 if (L)
1472 NewID = ValueIDNum(BlockNo, InstrIt->second.second, *L);
1473 } else if (OpNo != MachineFunction::DebugOperandMemNumber) {
1474 // Permit the debug-info to be completely wrong: identifying a nonexistant
1475 // operand, or one that is not a register definition, means something
1476 // unexpected happened during optimisation. Broken debug-info, however,
1477 // shouldn't crash the compiler -- instead leave the variable value as
1478 // None, which will make it appear "optimised out".
1479 if (OpNo < TargetInstr.getNumOperands()) {
1480 const MachineOperand &MO = TargetInstr.getOperand(OpNo);
1481
1482 if (MO.isReg() && MO.isDef() && MO.getReg()) {
1483 unsigned LocID = MTracker->getLocID(MO.getReg());
1484 LocIdx L = MTracker->LocIDToLocIdx[LocID];
1485 NewID = ValueIDNum(BlockNo, InstrIt->second.second, L);
1486 }
1487 }
1488
1489 if (!NewID) {
1490 LLVM_DEBUG(
1491 { dbgs() << "Seen instruction reference to illegal operand\n"; });
1492 }
1493 }
1494 // else: NewID is left as None.
1495 } else if (PHIIt != DebugPHINumToValue.end() && PHIIt->InstrNum == InstNo) {
1496 // It's actually a PHI value. Which value it is might not be obvious, use
1497 // the resolver helper to find out.
1498 NewID = resolveDbgPHIs(*MI.getParent()->getParent(), MLiveOuts, MLiveIns,
1499 MI, InstNo);
1500 }
1501
1502 // Apply any subregister extractions, in reverse. We might have seen code
1503 // like this:
1504 // CALL64 @foo, implicit-def $rax
1505 // %0:gr64 = COPY $rax
1506 // %1:gr32 = COPY %0.sub_32bit
1507 // %2:gr16 = COPY %1.sub_16bit
1508 // %3:gr8 = COPY %2.sub_8bit
1509 // In which case each copy would have been recorded as a substitution with
1510 // a subregister qualifier. Apply those qualifiers now.
1511 if (NewID && !SeenSubregs.empty()) {
1512 unsigned Offset = 0;
1513 unsigned Size = 0;
1514
1515 // Look at each subregister that we passed through, and progressively
1516 // narrow in, accumulating any offsets that occur. Substitutions should
1517 // only ever be the same or narrower width than what they read from;
1518 // iterate in reverse order so that we go from wide to small.
1519 for (unsigned Subreg : reverse(SeenSubregs)) {
1520 unsigned ThisSize = TRI->getSubRegIdxSize(Subreg);
1521 unsigned ThisOffset = TRI->getSubRegIdxOffset(Subreg);
1522 Offset += ThisOffset;
1523 Size = (Size == 0) ? ThisSize : std::min(Size, ThisSize);
1524 }
1525
1526 // If that worked, look for an appropriate subregister with the register
1527 // where the define happens. Don't look at values that were defined during
1528 // a stack write: we can't currently express register locations within
1529 // spills.
1530 LocIdx L = NewID->getLoc();
1531 if (NewID && !MTracker->isSpill(L)) {
1532 // Find the register class for the register where this def happened.
1533 // FIXME: no index for this?
1534 Register Reg = MTracker->LocIdxToLocID[L];
1535 const TargetRegisterClass *TRC = nullptr;
1536 for (const auto *TRCI : TRI->regclasses())
1537 if (TRCI->contains(Reg))
1538 TRC = TRCI;
1539 assert(TRC && "Couldn't find target register class?");
1540
1541 // If the register we have isn't the right size or in the right place,
1542 // Try to find a subregister inside it.
1543 unsigned MainRegSize = TRI->getRegSizeInBits(*TRC);
1544 if (Size != MainRegSize || Offset) {
1545 // Enumerate all subregisters, searching.
1546 Register NewReg = 0;
1547 for (MCSubRegIterator SRI(Reg, TRI, false); SRI.isValid(); ++SRI) {
1548 unsigned Subreg = TRI->getSubRegIndex(Reg, *SRI);
1549 unsigned SubregSize = TRI->getSubRegIdxSize(Subreg);
1550 unsigned SubregOffset = TRI->getSubRegIdxOffset(Subreg);
1551 if (SubregSize == Size && SubregOffset == Offset) {
1552 NewReg = *SRI;
1553 break;
1554 }
1555 }
1556
1557 // If we didn't find anything: there's no way to express our value.
1558 if (!NewReg) {
1559 NewID = std::nullopt;
1560 } else {
1561 // Re-state the value as being defined within the subregister
1562 // that we found.
1563 LocIdx NewLoc = MTracker->lookupOrTrackRegister(NewReg);
1564 NewID = ValueIDNum(NewID->getBlock(), NewID->getInst(), NewLoc);
1565 }
1566 }
1567 } else {
1568 // If we can't handle subregisters, unset the new value.
1569 NewID = std::nullopt;
1570 }
1571 }
1572
1573 return NewID;
1574 }
1575
transferDebugInstrRef(MachineInstr & MI,const ValueTable * MLiveOuts,const ValueTable * MLiveIns)1576 bool InstrRefBasedLDV::transferDebugInstrRef(MachineInstr &MI,
1577 const ValueTable *MLiveOuts,
1578 const ValueTable *MLiveIns) {
1579 if (!MI.isDebugRef())
1580 return false;
1581
1582 // Only handle this instruction when we are building the variable value
1583 // transfer function.
1584 if (!VTracker && !TTracker)
1585 return false;
1586
1587 const DILocalVariable *Var = MI.getDebugVariable();
1588 const DIExpression *Expr = MI.getDebugExpression();
1589 const DILocation *DebugLoc = MI.getDebugLoc();
1590 const DILocation *InlinedAt = DebugLoc->getInlinedAt();
1591 assert(Var->isValidLocationForIntrinsic(DebugLoc) &&
1592 "Expected inlined-at fields to agree");
1593
1594 DebugVariable V(Var, Expr, InlinedAt);
1595
1596 auto *Scope = LS.findLexicalScope(MI.getDebugLoc().get());
1597 if (Scope == nullptr)
1598 return true; // Handled by doing nothing. This variable is never in scope.
1599
1600 SmallVector<DbgOpID> DbgOpIDs;
1601 for (const MachineOperand &MO : MI.debug_operands()) {
1602 if (!MO.isDbgInstrRef()) {
1603 assert(!MO.isReg() && "DBG_INSTR_REF should not contain registers");
1604 DbgOpID ConstOpID = DbgOpStore.insert(DbgOp(MO));
1605 DbgOpIDs.push_back(ConstOpID);
1606 continue;
1607 }
1608
1609 unsigned InstNo = MO.getInstrRefInstrIndex();
1610 unsigned OpNo = MO.getInstrRefOpIndex();
1611
1612 // Default machine value number is <None> -- if no instruction defines
1613 // the corresponding value, it must have been optimized out.
1614 std::optional<ValueIDNum> NewID =
1615 getValueForInstrRef(InstNo, OpNo, MI, MLiveOuts, MLiveIns);
1616 // We have a value number or std::nullopt. If the latter, then kill the
1617 // entire debug value.
1618 if (NewID) {
1619 DbgOpIDs.push_back(DbgOpStore.insert(*NewID));
1620 } else {
1621 DbgOpIDs.clear();
1622 break;
1623 }
1624 }
1625
1626 // We have a DbgOpID for every value or for none. Tell the variable value
1627 // tracker about it. The rest of this LiveDebugValues implementation acts
1628 // exactly the same for DBG_INSTR_REFs as DBG_VALUEs (just, the former can
1629 // refer to values that aren't immediately available).
1630 DbgValueProperties Properties(Expr, false, true);
1631 if (VTracker)
1632 VTracker->defVar(MI, Properties, DbgOpIDs);
1633
1634 // If we're on the final pass through the function, decompose this INSTR_REF
1635 // into a plain DBG_VALUE.
1636 if (!TTracker)
1637 return true;
1638
1639 // Fetch the concrete DbgOps now, as we will need them later.
1640 SmallVector<DbgOp> DbgOps;
1641 for (DbgOpID OpID : DbgOpIDs) {
1642 DbgOps.push_back(DbgOpStore.find(OpID));
1643 }
1644
1645 // Pick a location for the machine value number, if such a location exists.
1646 // (This information could be stored in TransferTracker to make it faster).
1647 SmallDenseMap<ValueIDNum, TransferTracker::LocationAndQuality> FoundLocs;
1648 SmallVector<ValueIDNum> ValuesToFind;
1649 // Initialized the preferred-location map with illegal locations, to be
1650 // filled in later.
1651 for (const DbgOp &Op : DbgOps) {
1652 if (!Op.IsConst)
1653 if (FoundLocs.insert({Op.ID, TransferTracker::LocationAndQuality()})
1654 .second)
1655 ValuesToFind.push_back(Op.ID);
1656 }
1657
1658 for (auto Location : MTracker->locations()) {
1659 LocIdx CurL = Location.Idx;
1660 ValueIDNum ID = MTracker->readMLoc(CurL);
1661 auto ValueToFindIt = find(ValuesToFind, ID);
1662 if (ValueToFindIt == ValuesToFind.end())
1663 continue;
1664 auto &Previous = FoundLocs.find(ID)->second;
1665 // If this is the first location with that value, pick it. Otherwise,
1666 // consider whether it's a "longer term" location.
1667 std::optional<TransferTracker::LocationQuality> ReplacementQuality =
1668 TTracker->getLocQualityIfBetter(CurL, Previous.getQuality());
1669 if (ReplacementQuality) {
1670 Previous = TransferTracker::LocationAndQuality(CurL, *ReplacementQuality);
1671 if (Previous.isBest()) {
1672 ValuesToFind.erase(ValueToFindIt);
1673 if (ValuesToFind.empty())
1674 break;
1675 }
1676 }
1677 }
1678
1679 SmallVector<ResolvedDbgOp> NewLocs;
1680 for (const DbgOp &DbgOp : DbgOps) {
1681 if (DbgOp.IsConst) {
1682 NewLocs.push_back(DbgOp.MO);
1683 continue;
1684 }
1685 LocIdx FoundLoc = FoundLocs.find(DbgOp.ID)->second.getLoc();
1686 if (FoundLoc.isIllegal()) {
1687 NewLocs.clear();
1688 break;
1689 }
1690 NewLocs.push_back(FoundLoc);
1691 }
1692 // Tell transfer tracker that the variable value has changed.
1693 TTracker->redefVar(MI, Properties, NewLocs);
1694
1695 // If there were values with no location, but all such values are defined in
1696 // later instructions in this block, this is a block-local use-before-def.
1697 if (!DbgOps.empty() && NewLocs.empty()) {
1698 bool IsValidUseBeforeDef = true;
1699 uint64_t LastUseBeforeDef = 0;
1700 for (auto ValueLoc : FoundLocs) {
1701 ValueIDNum NewID = ValueLoc.first;
1702 LocIdx FoundLoc = ValueLoc.second.getLoc();
1703 if (!FoundLoc.isIllegal())
1704 continue;
1705 // If we have an value with no location that is not defined in this block,
1706 // then it has no location in this block, leaving this value undefined.
1707 if (NewID.getBlock() != CurBB || NewID.getInst() <= CurInst) {
1708 IsValidUseBeforeDef = false;
1709 break;
1710 }
1711 LastUseBeforeDef = std::max(LastUseBeforeDef, NewID.getInst());
1712 }
1713 if (IsValidUseBeforeDef) {
1714 TTracker->addUseBeforeDef(V, {MI.getDebugExpression(), false, true},
1715 DbgOps, LastUseBeforeDef);
1716 }
1717 }
1718
1719 // Produce a DBG_VALUE representing what this DBG_INSTR_REF meant.
1720 // This DBG_VALUE is potentially a $noreg / undefined location, if
1721 // FoundLoc is illegal.
1722 // (XXX -- could morph the DBG_INSTR_REF in the future).
1723 MachineInstr *DbgMI = MTracker->emitLoc(NewLocs, V, Properties);
1724
1725 TTracker->PendingDbgValues.push_back(DbgMI);
1726 TTracker->flushDbgValues(MI.getIterator(), nullptr);
1727 return true;
1728 }
1729
transferDebugPHI(MachineInstr & MI)1730 bool InstrRefBasedLDV::transferDebugPHI(MachineInstr &MI) {
1731 if (!MI.isDebugPHI())
1732 return false;
1733
1734 // Analyse these only when solving the machine value location problem.
1735 if (VTracker || TTracker)
1736 return true;
1737
1738 // First operand is the value location, either a stack slot or register.
1739 // Second is the debug instruction number of the original PHI.
1740 const MachineOperand &MO = MI.getOperand(0);
1741 unsigned InstrNum = MI.getOperand(1).getImm();
1742
1743 auto EmitBadPHI = [this, &MI, InstrNum]() -> bool {
1744 // Helper lambda to do any accounting when we fail to find a location for
1745 // a DBG_PHI. This can happen if DBG_PHIs are malformed, or refer to a
1746 // dead stack slot, for example.
1747 // Record a DebugPHIRecord with an empty value + location.
1748 DebugPHINumToValue.push_back(
1749 {InstrNum, MI.getParent(), std::nullopt, std::nullopt});
1750 return true;
1751 };
1752
1753 if (MO.isReg() && MO.getReg()) {
1754 // The value is whatever's currently in the register. Read and record it,
1755 // to be analysed later.
1756 Register Reg = MO.getReg();
1757 ValueIDNum Num = MTracker->readReg(Reg);
1758 auto PHIRec = DebugPHIRecord(
1759 {InstrNum, MI.getParent(), Num, MTracker->lookupOrTrackRegister(Reg)});
1760 DebugPHINumToValue.push_back(PHIRec);
1761
1762 // Ensure this register is tracked.
1763 for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI)
1764 MTracker->lookupOrTrackRegister(*RAI);
1765 } else if (MO.isFI()) {
1766 // The value is whatever's in this stack slot.
1767 unsigned FI = MO.getIndex();
1768
1769 // If the stack slot is dead, then this was optimized away.
1770 // FIXME: stack slot colouring should account for slots that get merged.
1771 if (MFI->isDeadObjectIndex(FI))
1772 return EmitBadPHI();
1773
1774 // Identify this spill slot, ensure it's tracked.
1775 Register Base;
1776 StackOffset Offs = TFI->getFrameIndexReference(*MI.getMF(), FI, Base);
1777 SpillLoc SL = {Base, Offs};
1778 std::optional<SpillLocationNo> SpillNo = MTracker->getOrTrackSpillLoc(SL);
1779
1780 // We might be able to find a value, but have chosen not to, to avoid
1781 // tracking too much stack information.
1782 if (!SpillNo)
1783 return EmitBadPHI();
1784
1785 // Any stack location DBG_PHI should have an associate bit-size.
1786 assert(MI.getNumOperands() == 3 && "Stack DBG_PHI with no size?");
1787 unsigned slotBitSize = MI.getOperand(2).getImm();
1788
1789 unsigned SpillID = MTracker->getLocID(*SpillNo, {slotBitSize, 0});
1790 LocIdx SpillLoc = MTracker->getSpillMLoc(SpillID);
1791 ValueIDNum Result = MTracker->readMLoc(SpillLoc);
1792
1793 // Record this DBG_PHI for later analysis.
1794 auto DbgPHI = DebugPHIRecord({InstrNum, MI.getParent(), Result, SpillLoc});
1795 DebugPHINumToValue.push_back(DbgPHI);
1796 } else {
1797 // Else: if the operand is neither a legal register or a stack slot, then
1798 // we're being fed illegal debug-info. Record an empty PHI, so that any
1799 // debug users trying to read this number will be put off trying to
1800 // interpret the value.
1801 LLVM_DEBUG(
1802 { dbgs() << "Seen DBG_PHI with unrecognised operand format\n"; });
1803 return EmitBadPHI();
1804 }
1805
1806 return true;
1807 }
1808
transferRegisterDef(MachineInstr & MI)1809 void InstrRefBasedLDV::transferRegisterDef(MachineInstr &MI) {
1810 // Meta Instructions do not affect the debug liveness of any register they
1811 // define.
1812 if (MI.isImplicitDef()) {
1813 // Except when there's an implicit def, and the location it's defining has
1814 // no value number. The whole point of an implicit def is to announce that
1815 // the register is live, without be specific about it's value. So define
1816 // a value if there isn't one already.
1817 ValueIDNum Num = MTracker->readReg(MI.getOperand(0).getReg());
1818 // Has a legitimate value -> ignore the implicit def.
1819 if (Num.getLoc() != 0)
1820 return;
1821 // Otherwise, def it here.
1822 } else if (MI.isMetaInstruction())
1823 return;
1824
1825 // We always ignore SP defines on call instructions, they don't actually
1826 // change the value of the stack pointer... except for win32's _chkstk. This
1827 // is rare: filter quickly for the common case (no stack adjustments, not a
1828 // call, etc). If it is a call that modifies SP, recognise the SP register
1829 // defs.
1830 bool CallChangesSP = false;
1831 if (AdjustsStackInCalls && MI.isCall() && MI.getOperand(0).isSymbol() &&
1832 !strcmp(MI.getOperand(0).getSymbolName(), StackProbeSymbolName.data()))
1833 CallChangesSP = true;
1834
1835 // Test whether we should ignore a def of this register due to it being part
1836 // of the stack pointer.
1837 auto IgnoreSPAlias = [this, &MI, CallChangesSP](Register R) -> bool {
1838 if (CallChangesSP)
1839 return false;
1840 return MI.isCall() && MTracker->SPAliases.count(R);
1841 };
1842
1843 // Find the regs killed by MI, and find regmasks of preserved regs.
1844 // Max out the number of statically allocated elements in `DeadRegs`, as this
1845 // prevents fallback to std::set::count() operations.
1846 SmallSet<uint32_t, 32> DeadRegs;
1847 SmallVector<const uint32_t *, 4> RegMasks;
1848 SmallVector<const MachineOperand *, 4> RegMaskPtrs;
1849 for (const MachineOperand &MO : MI.operands()) {
1850 // Determine whether the operand is a register def.
1851 if (MO.isReg() && MO.isDef() && MO.getReg() && MO.getReg().isPhysical() &&
1852 !IgnoreSPAlias(MO.getReg())) {
1853 // Remove ranges of all aliased registers.
1854 for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI)
1855 // FIXME: Can we break out of this loop early if no insertion occurs?
1856 DeadRegs.insert(*RAI);
1857 } else if (MO.isRegMask()) {
1858 RegMasks.push_back(MO.getRegMask());
1859 RegMaskPtrs.push_back(&MO);
1860 }
1861 }
1862
1863 // Tell MLocTracker about all definitions, of regmasks and otherwise.
1864 for (uint32_t DeadReg : DeadRegs)
1865 MTracker->defReg(DeadReg, CurBB, CurInst);
1866
1867 for (const auto *MO : RegMaskPtrs)
1868 MTracker->writeRegMask(MO, CurBB, CurInst);
1869
1870 // If this instruction writes to a spill slot, def that slot.
1871 if (hasFoldedStackStore(MI)) {
1872 if (std::optional<SpillLocationNo> SpillNo =
1873 extractSpillBaseRegAndOffset(MI)) {
1874 for (unsigned int I = 0; I < MTracker->NumSlotIdxes; ++I) {
1875 unsigned SpillID = MTracker->getSpillIDWithIdx(*SpillNo, I);
1876 LocIdx L = MTracker->getSpillMLoc(SpillID);
1877 MTracker->setMLoc(L, ValueIDNum(CurBB, CurInst, L));
1878 }
1879 }
1880 }
1881
1882 if (!TTracker)
1883 return;
1884
1885 // When committing variable values to locations: tell transfer tracker that
1886 // we've clobbered things. It may be able to recover the variable from a
1887 // different location.
1888
1889 // Inform TTracker about any direct clobbers.
1890 for (uint32_t DeadReg : DeadRegs) {
1891 LocIdx Loc = MTracker->lookupOrTrackRegister(DeadReg);
1892 TTracker->clobberMloc(Loc, MI.getIterator(), false);
1893 }
1894
1895 // Look for any clobbers performed by a register mask. Only test locations
1896 // that are actually being tracked.
1897 if (!RegMaskPtrs.empty()) {
1898 for (auto L : MTracker->locations()) {
1899 // Stack locations can't be clobbered by regmasks.
1900 if (MTracker->isSpill(L.Idx))
1901 continue;
1902
1903 Register Reg = MTracker->LocIdxToLocID[L.Idx];
1904 if (IgnoreSPAlias(Reg))
1905 continue;
1906
1907 for (const auto *MO : RegMaskPtrs)
1908 if (MO->clobbersPhysReg(Reg))
1909 TTracker->clobberMloc(L.Idx, MI.getIterator(), false);
1910 }
1911 }
1912
1913 // Tell TTracker about any folded stack store.
1914 if (hasFoldedStackStore(MI)) {
1915 if (std::optional<SpillLocationNo> SpillNo =
1916 extractSpillBaseRegAndOffset(MI)) {
1917 for (unsigned int I = 0; I < MTracker->NumSlotIdxes; ++I) {
1918 unsigned SpillID = MTracker->getSpillIDWithIdx(*SpillNo, I);
1919 LocIdx L = MTracker->getSpillMLoc(SpillID);
1920 TTracker->clobberMloc(L, MI.getIterator(), true);
1921 }
1922 }
1923 }
1924 }
1925
performCopy(Register SrcRegNum,Register DstRegNum)1926 void InstrRefBasedLDV::performCopy(Register SrcRegNum, Register DstRegNum) {
1927 // In all circumstances, re-def all aliases. It's definitely a new value now.
1928 for (MCRegAliasIterator RAI(DstRegNum, TRI, true); RAI.isValid(); ++RAI)
1929 MTracker->defReg(*RAI, CurBB, CurInst);
1930
1931 ValueIDNum SrcValue = MTracker->readReg(SrcRegNum);
1932 MTracker->setReg(DstRegNum, SrcValue);
1933
1934 // Copy subregisters from one location to another.
1935 for (MCSubRegIndexIterator SRI(SrcRegNum, TRI); SRI.isValid(); ++SRI) {
1936 unsigned SrcSubReg = SRI.getSubReg();
1937 unsigned SubRegIdx = SRI.getSubRegIndex();
1938 unsigned DstSubReg = TRI->getSubReg(DstRegNum, SubRegIdx);
1939 if (!DstSubReg)
1940 continue;
1941
1942 // Do copy. There are two matching subregisters, the source value should
1943 // have been def'd when the super-reg was, the latter might not be tracked
1944 // yet.
1945 // This will force SrcSubReg to be tracked, if it isn't yet. Will read
1946 // mphi values if it wasn't tracked.
1947 LocIdx SrcL = MTracker->lookupOrTrackRegister(SrcSubReg);
1948 LocIdx DstL = MTracker->lookupOrTrackRegister(DstSubReg);
1949 (void)SrcL;
1950 (void)DstL;
1951 ValueIDNum CpyValue = MTracker->readReg(SrcSubReg);
1952
1953 MTracker->setReg(DstSubReg, CpyValue);
1954 }
1955 }
1956
1957 std::optional<SpillLocationNo>
isSpillInstruction(const MachineInstr & MI,MachineFunction * MF)1958 InstrRefBasedLDV::isSpillInstruction(const MachineInstr &MI,
1959 MachineFunction *MF) {
1960 // TODO: Handle multiple stores folded into one.
1961 if (!MI.hasOneMemOperand())
1962 return std::nullopt;
1963
1964 // Reject any memory operand that's aliased -- we can't guarantee its value.
1965 auto MMOI = MI.memoperands_begin();
1966 const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue();
1967 if (PVal->isAliased(MFI))
1968 return std::nullopt;
1969
1970 if (!MI.getSpillSize(TII) && !MI.getFoldedSpillSize(TII))
1971 return std::nullopt; // This is not a spill instruction, since no valid size
1972 // was returned from either function.
1973
1974 return extractSpillBaseRegAndOffset(MI);
1975 }
1976
isLocationSpill(const MachineInstr & MI,MachineFunction * MF,unsigned & Reg)1977 bool InstrRefBasedLDV::isLocationSpill(const MachineInstr &MI,
1978 MachineFunction *MF, unsigned &Reg) {
1979 if (!isSpillInstruction(MI, MF))
1980 return false;
1981
1982 int FI;
1983 Reg = TII->isStoreToStackSlotPostFE(MI, FI);
1984 return Reg != 0;
1985 }
1986
1987 std::optional<SpillLocationNo>
isRestoreInstruction(const MachineInstr & MI,MachineFunction * MF,unsigned & Reg)1988 InstrRefBasedLDV::isRestoreInstruction(const MachineInstr &MI,
1989 MachineFunction *MF, unsigned &Reg) {
1990 if (!MI.hasOneMemOperand())
1991 return std::nullopt;
1992
1993 // FIXME: Handle folded restore instructions with more than one memory
1994 // operand.
1995 if (MI.getRestoreSize(TII)) {
1996 Reg = MI.getOperand(0).getReg();
1997 return extractSpillBaseRegAndOffset(MI);
1998 }
1999 return std::nullopt;
2000 }
2001
transferSpillOrRestoreInst(MachineInstr & MI)2002 bool InstrRefBasedLDV::transferSpillOrRestoreInst(MachineInstr &MI) {
2003 // XXX -- it's too difficult to implement VarLocBasedImpl's stack location
2004 // limitations under the new model. Therefore, when comparing them, compare
2005 // versions that don't attempt spills or restores at all.
2006 if (EmulateOldLDV)
2007 return false;
2008
2009 // Strictly limit ourselves to plain loads and stores, not all instructions
2010 // that can access the stack.
2011 int DummyFI = -1;
2012 if (!TII->isStoreToStackSlotPostFE(MI, DummyFI) &&
2013 !TII->isLoadFromStackSlotPostFE(MI, DummyFI))
2014 return false;
2015
2016 MachineFunction *MF = MI.getMF();
2017 unsigned Reg;
2018
2019 LLVM_DEBUG(dbgs() << "Examining instruction: "; MI.dump(););
2020
2021 // Strictly limit ourselves to plain loads and stores, not all instructions
2022 // that can access the stack.
2023 int FIDummy;
2024 if (!TII->isStoreToStackSlotPostFE(MI, FIDummy) &&
2025 !TII->isLoadFromStackSlotPostFE(MI, FIDummy))
2026 return false;
2027
2028 // First, if there are any DBG_VALUEs pointing at a spill slot that is
2029 // written to, terminate that variable location. The value in memory
2030 // will have changed. DbgEntityHistoryCalculator doesn't try to detect this.
2031 if (std::optional<SpillLocationNo> Loc = isSpillInstruction(MI, MF)) {
2032 // Un-set this location and clobber, so that earlier locations don't
2033 // continue past this store.
2034 for (unsigned SlotIdx = 0; SlotIdx < MTracker->NumSlotIdxes; ++SlotIdx) {
2035 unsigned SpillID = MTracker->getSpillIDWithIdx(*Loc, SlotIdx);
2036 std::optional<LocIdx> MLoc = MTracker->getSpillMLoc(SpillID);
2037 if (!MLoc)
2038 continue;
2039
2040 // We need to over-write the stack slot with something (here, a def at
2041 // this instruction) to ensure no values are preserved in this stack slot
2042 // after the spill. It also prevents TTracker from trying to recover the
2043 // location and re-installing it in the same place.
2044 ValueIDNum Def(CurBB, CurInst, *MLoc);
2045 MTracker->setMLoc(*MLoc, Def);
2046 if (TTracker)
2047 TTracker->clobberMloc(*MLoc, MI.getIterator());
2048 }
2049 }
2050
2051 // Try to recognise spill and restore instructions that may transfer a value.
2052 if (isLocationSpill(MI, MF, Reg)) {
2053 // isLocationSpill returning true should guarantee we can extract a
2054 // location.
2055 SpillLocationNo Loc = *extractSpillBaseRegAndOffset(MI);
2056
2057 auto DoTransfer = [&](Register SrcReg, unsigned SpillID) {
2058 auto ReadValue = MTracker->readReg(SrcReg);
2059 LocIdx DstLoc = MTracker->getSpillMLoc(SpillID);
2060 MTracker->setMLoc(DstLoc, ReadValue);
2061
2062 if (TTracker) {
2063 LocIdx SrcLoc = MTracker->getRegMLoc(SrcReg);
2064 TTracker->transferMlocs(SrcLoc, DstLoc, MI.getIterator());
2065 }
2066 };
2067
2068 // Then, transfer subreg bits.
2069 for (MCSubRegIterator SRI(Reg, TRI, false); SRI.isValid(); ++SRI) {
2070 // Ensure this reg is tracked,
2071 (void)MTracker->lookupOrTrackRegister(*SRI);
2072 unsigned SubregIdx = TRI->getSubRegIndex(Reg, *SRI);
2073 unsigned SpillID = MTracker->getLocID(Loc, SubregIdx);
2074 DoTransfer(*SRI, SpillID);
2075 }
2076
2077 // Directly lookup size of main source reg, and transfer.
2078 unsigned Size = TRI->getRegSizeInBits(Reg, *MRI);
2079 unsigned SpillID = MTracker->getLocID(Loc, {Size, 0});
2080 DoTransfer(Reg, SpillID);
2081 } else {
2082 std::optional<SpillLocationNo> Loc = isRestoreInstruction(MI, MF, Reg);
2083 if (!Loc)
2084 return false;
2085
2086 // Assumption: we're reading from the base of the stack slot, not some
2087 // offset into it. It seems very unlikely LLVM would ever generate
2088 // restores where this wasn't true. This then becomes a question of what
2089 // subregisters in the destination register line up with positions in the
2090 // stack slot.
2091
2092 // Def all registers that alias the destination.
2093 for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
2094 MTracker->defReg(*RAI, CurBB, CurInst);
2095
2096 // Now find subregisters within the destination register, and load values
2097 // from stack slot positions.
2098 auto DoTransfer = [&](Register DestReg, unsigned SpillID) {
2099 LocIdx SrcIdx = MTracker->getSpillMLoc(SpillID);
2100 auto ReadValue = MTracker->readMLoc(SrcIdx);
2101 MTracker->setReg(DestReg, ReadValue);
2102 };
2103
2104 for (MCSubRegIterator SRI(Reg, TRI, false); SRI.isValid(); ++SRI) {
2105 unsigned Subreg = TRI->getSubRegIndex(Reg, *SRI);
2106 unsigned SpillID = MTracker->getLocID(*Loc, Subreg);
2107 DoTransfer(*SRI, SpillID);
2108 }
2109
2110 // Directly look up this registers slot idx by size, and transfer.
2111 unsigned Size = TRI->getRegSizeInBits(Reg, *MRI);
2112 unsigned SpillID = MTracker->getLocID(*Loc, {Size, 0});
2113 DoTransfer(Reg, SpillID);
2114 }
2115 return true;
2116 }
2117
transferRegisterCopy(MachineInstr & MI)2118 bool InstrRefBasedLDV::transferRegisterCopy(MachineInstr &MI) {
2119 auto DestSrc = TII->isCopyInstr(MI);
2120 if (!DestSrc)
2121 return false;
2122
2123 const MachineOperand *DestRegOp = DestSrc->Destination;
2124 const MachineOperand *SrcRegOp = DestSrc->Source;
2125
2126 Register SrcReg = SrcRegOp->getReg();
2127 Register DestReg = DestRegOp->getReg();
2128
2129 // Ignore identity copies. Yep, these make it as far as LiveDebugValues.
2130 if (SrcReg == DestReg)
2131 return true;
2132
2133 // For emulating VarLocBasedImpl:
2134 // We want to recognize instructions where destination register is callee
2135 // saved register. If register that could be clobbered by the call is
2136 // included, there would be a great chance that it is going to be clobbered
2137 // soon. It is more likely that previous register, which is callee saved, is
2138 // going to stay unclobbered longer, even if it is killed.
2139 //
2140 // For InstrRefBasedImpl, we can track multiple locations per value, so
2141 // ignore this condition.
2142 if (EmulateOldLDV && !isCalleeSavedReg(DestReg))
2143 return false;
2144
2145 // InstrRefBasedImpl only followed killing copies.
2146 if (EmulateOldLDV && !SrcRegOp->isKill())
2147 return false;
2148
2149 // Before we update MTracker, remember which values were present in each of
2150 // the locations about to be overwritten, so that we can recover any
2151 // potentially clobbered variables.
2152 DenseMap<LocIdx, ValueIDNum> ClobberedLocs;
2153 if (TTracker) {
2154 for (MCRegAliasIterator RAI(DestReg, TRI, true); RAI.isValid(); ++RAI) {
2155 LocIdx ClobberedLoc = MTracker->getRegMLoc(*RAI);
2156 auto MLocIt = TTracker->ActiveMLocs.find(ClobberedLoc);
2157 // If ActiveMLocs isn't tracking this location or there are no variables
2158 // using it, don't bother remembering.
2159 if (MLocIt == TTracker->ActiveMLocs.end() || MLocIt->second.empty())
2160 continue;
2161 ValueIDNum Value = MTracker->readReg(*RAI);
2162 ClobberedLocs[ClobberedLoc] = Value;
2163 }
2164 }
2165
2166 // Copy MTracker info, including subregs if available.
2167 InstrRefBasedLDV::performCopy(SrcReg, DestReg);
2168
2169 // The copy might have clobbered variables based on the destination register.
2170 // Tell TTracker about it, passing the old ValueIDNum to search for
2171 // alternative locations (or else terminating those variables).
2172 if (TTracker) {
2173 for (auto LocVal : ClobberedLocs) {
2174 TTracker->clobberMloc(LocVal.first, LocVal.second, MI.getIterator(), false);
2175 }
2176 }
2177
2178 // Only produce a transfer of DBG_VALUE within a block where old LDV
2179 // would have. We might make use of the additional value tracking in some
2180 // other way, later.
2181 if (TTracker && isCalleeSavedReg(DestReg) && SrcRegOp->isKill())
2182 TTracker->transferMlocs(MTracker->getRegMLoc(SrcReg),
2183 MTracker->getRegMLoc(DestReg), MI.getIterator());
2184
2185 // VarLocBasedImpl would quit tracking the old location after copying.
2186 if (EmulateOldLDV && SrcReg != DestReg)
2187 MTracker->defReg(SrcReg, CurBB, CurInst);
2188
2189 return true;
2190 }
2191
2192 /// Accumulate a mapping between each DILocalVariable fragment and other
2193 /// fragments of that DILocalVariable which overlap. This reduces work during
2194 /// the data-flow stage from "Find any overlapping fragments" to "Check if the
2195 /// known-to-overlap fragments are present".
2196 /// \param MI A previously unprocessed debug instruction to analyze for
2197 /// fragment usage.
accumulateFragmentMap(MachineInstr & MI)2198 void InstrRefBasedLDV::accumulateFragmentMap(MachineInstr &MI) {
2199 assert(MI.isDebugValueLike());
2200 DebugVariable MIVar(MI.getDebugVariable(), MI.getDebugExpression(),
2201 MI.getDebugLoc()->getInlinedAt());
2202 FragmentInfo ThisFragment = MIVar.getFragmentOrDefault();
2203
2204 // If this is the first sighting of this variable, then we are guaranteed
2205 // there are currently no overlapping fragments either. Initialize the set
2206 // of seen fragments, record no overlaps for the current one, and return.
2207 auto SeenIt = SeenFragments.find(MIVar.getVariable());
2208 if (SeenIt == SeenFragments.end()) {
2209 SmallSet<FragmentInfo, 4> OneFragment;
2210 OneFragment.insert(ThisFragment);
2211 SeenFragments.insert({MIVar.getVariable(), OneFragment});
2212
2213 OverlapFragments.insert({{MIVar.getVariable(), ThisFragment}, {}});
2214 return;
2215 }
2216
2217 // If this particular Variable/Fragment pair already exists in the overlap
2218 // map, it has already been accounted for.
2219 auto IsInOLapMap =
2220 OverlapFragments.insert({{MIVar.getVariable(), ThisFragment}, {}});
2221 if (!IsInOLapMap.second)
2222 return;
2223
2224 auto &ThisFragmentsOverlaps = IsInOLapMap.first->second;
2225 auto &AllSeenFragments = SeenIt->second;
2226
2227 // Otherwise, examine all other seen fragments for this variable, with "this"
2228 // fragment being a previously unseen fragment. Record any pair of
2229 // overlapping fragments.
2230 for (const auto &ASeenFragment : AllSeenFragments) {
2231 // Does this previously seen fragment overlap?
2232 if (DIExpression::fragmentsOverlap(ThisFragment, ASeenFragment)) {
2233 // Yes: Mark the current fragment as being overlapped.
2234 ThisFragmentsOverlaps.push_back(ASeenFragment);
2235 // Mark the previously seen fragment as being overlapped by the current
2236 // one.
2237 auto ASeenFragmentsOverlaps =
2238 OverlapFragments.find({MIVar.getVariable(), ASeenFragment});
2239 assert(ASeenFragmentsOverlaps != OverlapFragments.end() &&
2240 "Previously seen var fragment has no vector of overlaps");
2241 ASeenFragmentsOverlaps->second.push_back(ThisFragment);
2242 }
2243 }
2244
2245 AllSeenFragments.insert(ThisFragment);
2246 }
2247
process(MachineInstr & MI,const ValueTable * MLiveOuts,const ValueTable * MLiveIns)2248 void InstrRefBasedLDV::process(MachineInstr &MI, const ValueTable *MLiveOuts,
2249 const ValueTable *MLiveIns) {
2250 // Try to interpret an MI as a debug or transfer instruction. Only if it's
2251 // none of these should we interpret it's register defs as new value
2252 // definitions.
2253 if (transferDebugValue(MI))
2254 return;
2255 if (transferDebugInstrRef(MI, MLiveOuts, MLiveIns))
2256 return;
2257 if (transferDebugPHI(MI))
2258 return;
2259 if (transferRegisterCopy(MI))
2260 return;
2261 if (transferSpillOrRestoreInst(MI))
2262 return;
2263 transferRegisterDef(MI);
2264 }
2265
produceMLocTransferFunction(MachineFunction & MF,SmallVectorImpl<MLocTransferMap> & MLocTransfer,unsigned MaxNumBlocks)2266 void InstrRefBasedLDV::produceMLocTransferFunction(
2267 MachineFunction &MF, SmallVectorImpl<MLocTransferMap> &MLocTransfer,
2268 unsigned MaxNumBlocks) {
2269 // Because we try to optimize around register mask operands by ignoring regs
2270 // that aren't currently tracked, we set up something ugly for later: RegMask
2271 // operands that are seen earlier than the first use of a register, still need
2272 // to clobber that register in the transfer function. But this information
2273 // isn't actively recorded. Instead, we track each RegMask used in each block,
2274 // and accumulated the clobbered but untracked registers in each block into
2275 // the following bitvector. Later, if new values are tracked, we can add
2276 // appropriate clobbers.
2277 SmallVector<BitVector, 32> BlockMasks;
2278 BlockMasks.resize(MaxNumBlocks);
2279
2280 // Reserve one bit per register for the masks described above.
2281 unsigned BVWords = MachineOperand::getRegMaskSize(TRI->getNumRegs());
2282 for (auto &BV : BlockMasks)
2283 BV.resize(TRI->getNumRegs(), true);
2284
2285 // Step through all instructions and inhale the transfer function.
2286 for (auto &MBB : MF) {
2287 // Object fields that are read by trackers to know where we are in the
2288 // function.
2289 CurBB = MBB.getNumber();
2290 CurInst = 1;
2291
2292 // Set all machine locations to a PHI value. For transfer function
2293 // production only, this signifies the live-in value to the block.
2294 MTracker->reset();
2295 MTracker->setMPhis(CurBB);
2296
2297 // Step through each instruction in this block.
2298 for (auto &MI : MBB) {
2299 // Pass in an empty unique_ptr for the value tables when accumulating the
2300 // machine transfer function.
2301 process(MI, nullptr, nullptr);
2302
2303 // Also accumulate fragment map.
2304 if (MI.isDebugValueLike())
2305 accumulateFragmentMap(MI);
2306
2307 // Create a map from the instruction number (if present) to the
2308 // MachineInstr and its position.
2309 if (uint64_t InstrNo = MI.peekDebugInstrNum()) {
2310 auto InstrAndPos = std::make_pair(&MI, CurInst);
2311 auto InsertResult =
2312 DebugInstrNumToInstr.insert(std::make_pair(InstrNo, InstrAndPos));
2313
2314 // There should never be duplicate instruction numbers.
2315 assert(InsertResult.second);
2316 (void)InsertResult;
2317 }
2318
2319 ++CurInst;
2320 }
2321
2322 // Produce the transfer function, a map of machine location to new value. If
2323 // any machine location has the live-in phi value from the start of the
2324 // block, it's live-through and doesn't need recording in the transfer
2325 // function.
2326 for (auto Location : MTracker->locations()) {
2327 LocIdx Idx = Location.Idx;
2328 ValueIDNum &P = Location.Value;
2329 if (P.isPHI() && P.getLoc() == Idx.asU64())
2330 continue;
2331
2332 // Insert-or-update.
2333 auto &TransferMap = MLocTransfer[CurBB];
2334 auto Result = TransferMap.insert(std::make_pair(Idx.asU64(), P));
2335 if (!Result.second)
2336 Result.first->second = P;
2337 }
2338
2339 // Accumulate any bitmask operands into the clobbered reg mask for this
2340 // block.
2341 for (auto &P : MTracker->Masks) {
2342 BlockMasks[CurBB].clearBitsNotInMask(P.first->getRegMask(), BVWords);
2343 }
2344 }
2345
2346 // Compute a bitvector of all the registers that are tracked in this block.
2347 BitVector UsedRegs(TRI->getNumRegs());
2348 for (auto Location : MTracker->locations()) {
2349 unsigned ID = MTracker->LocIdxToLocID[Location.Idx];
2350 // Ignore stack slots, and aliases of the stack pointer.
2351 if (ID >= TRI->getNumRegs() || MTracker->SPAliases.count(ID))
2352 continue;
2353 UsedRegs.set(ID);
2354 }
2355
2356 // Check that any regmask-clobber of a register that gets tracked, is not
2357 // live-through in the transfer function. It needs to be clobbered at the
2358 // very least.
2359 for (unsigned int I = 0; I < MaxNumBlocks; ++I) {
2360 BitVector &BV = BlockMasks[I];
2361 BV.flip();
2362 BV &= UsedRegs;
2363 // This produces all the bits that we clobber, but also use. Check that
2364 // they're all clobbered or at least set in the designated transfer
2365 // elem.
2366 for (unsigned Bit : BV.set_bits()) {
2367 unsigned ID = MTracker->getLocID(Bit);
2368 LocIdx Idx = MTracker->LocIDToLocIdx[ID];
2369 auto &TransferMap = MLocTransfer[I];
2370
2371 // Install a value representing the fact that this location is effectively
2372 // written to in this block. As there's no reserved value, instead use
2373 // a value number that is never generated. Pick the value number for the
2374 // first instruction in the block, def'ing this location, which we know
2375 // this block never used anyway.
2376 ValueIDNum NotGeneratedNum = ValueIDNum(I, 1, Idx);
2377 auto Result =
2378 TransferMap.insert(std::make_pair(Idx.asU64(), NotGeneratedNum));
2379 if (!Result.second) {
2380 ValueIDNum &ValueID = Result.first->second;
2381 if (ValueID.getBlock() == I && ValueID.isPHI())
2382 // It was left as live-through. Set it to clobbered.
2383 ValueID = NotGeneratedNum;
2384 }
2385 }
2386 }
2387 }
2388
mlocJoin(MachineBasicBlock & MBB,SmallPtrSet<const MachineBasicBlock *,16> & Visited,FuncValueTable & OutLocs,ValueTable & InLocs)2389 bool InstrRefBasedLDV::mlocJoin(
2390 MachineBasicBlock &MBB, SmallPtrSet<const MachineBasicBlock *, 16> &Visited,
2391 FuncValueTable &OutLocs, ValueTable &InLocs) {
2392 LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n");
2393 bool Changed = false;
2394
2395 // Handle value-propagation when control flow merges on entry to a block. For
2396 // any location without a PHI already placed, the location has the same value
2397 // as its predecessors. If a PHI is placed, test to see whether it's now a
2398 // redundant PHI that we can eliminate.
2399
2400 SmallVector<const MachineBasicBlock *, 8> BlockOrders;
2401 for (auto *Pred : MBB.predecessors())
2402 BlockOrders.push_back(Pred);
2403
2404 // Visit predecessors in RPOT order.
2405 auto Cmp = [&](const MachineBasicBlock *A, const MachineBasicBlock *B) {
2406 return BBToOrder.find(A)->second < BBToOrder.find(B)->second;
2407 };
2408 llvm::sort(BlockOrders, Cmp);
2409
2410 // Skip entry block.
2411 if (BlockOrders.size() == 0)
2412 return false;
2413
2414 // Step through all machine locations, look at each predecessor and test
2415 // whether we can eliminate redundant PHIs.
2416 for (auto Location : MTracker->locations()) {
2417 LocIdx Idx = Location.Idx;
2418
2419 // Pick out the first predecessors live-out value for this location. It's
2420 // guaranteed to not be a backedge, as we order by RPO.
2421 ValueIDNum FirstVal = OutLocs[BlockOrders[0]->getNumber()][Idx.asU64()];
2422
2423 // If we've already eliminated a PHI here, do no further checking, just
2424 // propagate the first live-in value into this block.
2425 if (InLocs[Idx.asU64()] != ValueIDNum(MBB.getNumber(), 0, Idx)) {
2426 if (InLocs[Idx.asU64()] != FirstVal) {
2427 InLocs[Idx.asU64()] = FirstVal;
2428 Changed |= true;
2429 }
2430 continue;
2431 }
2432
2433 // We're now examining a PHI to see whether it's un-necessary. Loop around
2434 // the other live-in values and test whether they're all the same.
2435 bool Disagree = false;
2436 for (unsigned int I = 1; I < BlockOrders.size(); ++I) {
2437 const MachineBasicBlock *PredMBB = BlockOrders[I];
2438 const ValueIDNum &PredLiveOut =
2439 OutLocs[PredMBB->getNumber()][Idx.asU64()];
2440
2441 // Incoming values agree, continue trying to eliminate this PHI.
2442 if (FirstVal == PredLiveOut)
2443 continue;
2444
2445 // We can also accept a PHI value that feeds back into itself.
2446 if (PredLiveOut == ValueIDNum(MBB.getNumber(), 0, Idx))
2447 continue;
2448
2449 // Live-out of a predecessor disagrees with the first predecessor.
2450 Disagree = true;
2451 }
2452
2453 // No disagreement? No PHI. Otherwise, leave the PHI in live-ins.
2454 if (!Disagree) {
2455 InLocs[Idx.asU64()] = FirstVal;
2456 Changed |= true;
2457 }
2458 }
2459
2460 // TODO: Reimplement NumInserted and NumRemoved.
2461 return Changed;
2462 }
2463
findStackIndexInterference(SmallVectorImpl<unsigned> & Slots)2464 void InstrRefBasedLDV::findStackIndexInterference(
2465 SmallVectorImpl<unsigned> &Slots) {
2466 // We could spend a bit of time finding the exact, minimal, set of stack
2467 // indexes that interfere with each other, much like reg units. Or, we can
2468 // rely on the fact that:
2469 // * The smallest / lowest index will interfere with everything at zero
2470 // offset, which will be the largest set of registers,
2471 // * Most indexes with non-zero offset will end up being interference units
2472 // anyway.
2473 // So just pick those out and return them.
2474
2475 // We can rely on a single-byte stack index existing already, because we
2476 // initialize them in MLocTracker.
2477 auto It = MTracker->StackSlotIdxes.find({8, 0});
2478 assert(It != MTracker->StackSlotIdxes.end());
2479 Slots.push_back(It->second);
2480
2481 // Find anything that has a non-zero offset and add that too.
2482 for (auto &Pair : MTracker->StackSlotIdxes) {
2483 // Is offset zero? If so, ignore.
2484 if (!Pair.first.second)
2485 continue;
2486 Slots.push_back(Pair.second);
2487 }
2488 }
2489
placeMLocPHIs(MachineFunction & MF,SmallPtrSetImpl<MachineBasicBlock * > & AllBlocks,FuncValueTable & MInLocs,SmallVectorImpl<MLocTransferMap> & MLocTransfer)2490 void InstrRefBasedLDV::placeMLocPHIs(
2491 MachineFunction &MF, SmallPtrSetImpl<MachineBasicBlock *> &AllBlocks,
2492 FuncValueTable &MInLocs, SmallVectorImpl<MLocTransferMap> &MLocTransfer) {
2493 SmallVector<unsigned, 4> StackUnits;
2494 findStackIndexInterference(StackUnits);
2495
2496 // To avoid repeatedly running the PHI placement algorithm, leverage the
2497 // fact that a def of register MUST also def its register units. Find the
2498 // units for registers, place PHIs for them, and then replicate them for
2499 // aliasing registers. Some inputs that are never def'd (DBG_PHIs of
2500 // arguments) don't lead to register units being tracked, just place PHIs for
2501 // those registers directly. Stack slots have their own form of "unit",
2502 // store them to one side.
2503 SmallSet<Register, 32> RegUnitsToPHIUp;
2504 SmallSet<LocIdx, 32> NormalLocsToPHI;
2505 SmallSet<SpillLocationNo, 32> StackSlots;
2506 for (auto Location : MTracker->locations()) {
2507 LocIdx L = Location.Idx;
2508 if (MTracker->isSpill(L)) {
2509 StackSlots.insert(MTracker->locIDToSpill(MTracker->LocIdxToLocID[L]));
2510 continue;
2511 }
2512
2513 Register R = MTracker->LocIdxToLocID[L];
2514 SmallSet<Register, 8> FoundRegUnits;
2515 bool AnyIllegal = false;
2516 for (MCRegUnitIterator RUI(R.asMCReg(), TRI); RUI.isValid(); ++RUI) {
2517 for (MCRegUnitRootIterator URoot(*RUI, TRI); URoot.isValid(); ++URoot){
2518 if (!MTracker->isRegisterTracked(*URoot)) {
2519 // Not all roots were loaded into the tracking map: this register
2520 // isn't actually def'd anywhere, we only read from it. Generate PHIs
2521 // for this reg, but don't iterate units.
2522 AnyIllegal = true;
2523 } else {
2524 FoundRegUnits.insert(*URoot);
2525 }
2526 }
2527 }
2528
2529 if (AnyIllegal) {
2530 NormalLocsToPHI.insert(L);
2531 continue;
2532 }
2533
2534 RegUnitsToPHIUp.insert(FoundRegUnits.begin(), FoundRegUnits.end());
2535 }
2536
2537 // Lambda to fetch PHIs for a given location, and write into the PHIBlocks
2538 // collection.
2539 SmallVector<MachineBasicBlock *, 32> PHIBlocks;
2540 auto CollectPHIsForLoc = [&](LocIdx L) {
2541 // Collect the set of defs.
2542 SmallPtrSet<MachineBasicBlock *, 32> DefBlocks;
2543 for (unsigned int I = 0; I < OrderToBB.size(); ++I) {
2544 MachineBasicBlock *MBB = OrderToBB[I];
2545 const auto &TransferFunc = MLocTransfer[MBB->getNumber()];
2546 if (TransferFunc.find(L) != TransferFunc.end())
2547 DefBlocks.insert(MBB);
2548 }
2549
2550 // The entry block defs the location too: it's the live-in / argument value.
2551 // Only insert if there are other defs though; everything is trivially live
2552 // through otherwise.
2553 if (!DefBlocks.empty())
2554 DefBlocks.insert(&*MF.begin());
2555
2556 // Ask the SSA construction algorithm where we should put PHIs. Clear
2557 // anything that might have been hanging around from earlier.
2558 PHIBlocks.clear();
2559 BlockPHIPlacement(AllBlocks, DefBlocks, PHIBlocks);
2560 };
2561
2562 auto InstallPHIsAtLoc = [&PHIBlocks, &MInLocs](LocIdx L) {
2563 for (const MachineBasicBlock *MBB : PHIBlocks)
2564 MInLocs[MBB->getNumber()][L.asU64()] = ValueIDNum(MBB->getNumber(), 0, L);
2565 };
2566
2567 // For locations with no reg units, just place PHIs.
2568 for (LocIdx L : NormalLocsToPHI) {
2569 CollectPHIsForLoc(L);
2570 // Install those PHI values into the live-in value array.
2571 InstallPHIsAtLoc(L);
2572 }
2573
2574 // For stack slots, calculate PHIs for the equivalent of the units, then
2575 // install for each index.
2576 for (SpillLocationNo Slot : StackSlots) {
2577 for (unsigned Idx : StackUnits) {
2578 unsigned SpillID = MTracker->getSpillIDWithIdx(Slot, Idx);
2579 LocIdx L = MTracker->getSpillMLoc(SpillID);
2580 CollectPHIsForLoc(L);
2581 InstallPHIsAtLoc(L);
2582
2583 // Find anything that aliases this stack index, install PHIs for it too.
2584 unsigned Size, Offset;
2585 std::tie(Size, Offset) = MTracker->StackIdxesToPos[Idx];
2586 for (auto &Pair : MTracker->StackSlotIdxes) {
2587 unsigned ThisSize, ThisOffset;
2588 std::tie(ThisSize, ThisOffset) = Pair.first;
2589 if (ThisSize + ThisOffset <= Offset || Size + Offset <= ThisOffset)
2590 continue;
2591
2592 unsigned ThisID = MTracker->getSpillIDWithIdx(Slot, Pair.second);
2593 LocIdx ThisL = MTracker->getSpillMLoc(ThisID);
2594 InstallPHIsAtLoc(ThisL);
2595 }
2596 }
2597 }
2598
2599 // For reg units, place PHIs, and then place them for any aliasing registers.
2600 for (Register R : RegUnitsToPHIUp) {
2601 LocIdx L = MTracker->lookupOrTrackRegister(R);
2602 CollectPHIsForLoc(L);
2603
2604 // Install those PHI values into the live-in value array.
2605 InstallPHIsAtLoc(L);
2606
2607 // Now find aliases and install PHIs for those.
2608 for (MCRegAliasIterator RAI(R, TRI, true); RAI.isValid(); ++RAI) {
2609 // Super-registers that are "above" the largest register read/written by
2610 // the function will alias, but will not be tracked.
2611 if (!MTracker->isRegisterTracked(*RAI))
2612 continue;
2613
2614 LocIdx AliasLoc = MTracker->lookupOrTrackRegister(*RAI);
2615 InstallPHIsAtLoc(AliasLoc);
2616 }
2617 }
2618 }
2619
buildMLocValueMap(MachineFunction & MF,FuncValueTable & MInLocs,FuncValueTable & MOutLocs,SmallVectorImpl<MLocTransferMap> & MLocTransfer)2620 void InstrRefBasedLDV::buildMLocValueMap(
2621 MachineFunction &MF, FuncValueTable &MInLocs, FuncValueTable &MOutLocs,
2622 SmallVectorImpl<MLocTransferMap> &MLocTransfer) {
2623 std::priority_queue<unsigned int, std::vector<unsigned int>,
2624 std::greater<unsigned int>>
2625 Worklist, Pending;
2626
2627 // We track what is on the current and pending worklist to avoid inserting
2628 // the same thing twice. We could avoid this with a custom priority queue,
2629 // but this is probably not worth it.
2630 SmallPtrSet<MachineBasicBlock *, 16> OnPending, OnWorklist;
2631
2632 // Initialize worklist with every block to be visited. Also produce list of
2633 // all blocks.
2634 SmallPtrSet<MachineBasicBlock *, 32> AllBlocks;
2635 for (unsigned int I = 0; I < BBToOrder.size(); ++I) {
2636 Worklist.push(I);
2637 OnWorklist.insert(OrderToBB[I]);
2638 AllBlocks.insert(OrderToBB[I]);
2639 }
2640
2641 // Initialize entry block to PHIs. These represent arguments.
2642 for (auto Location : MTracker->locations())
2643 MInLocs[0][Location.Idx.asU64()] = ValueIDNum(0, 0, Location.Idx);
2644
2645 MTracker->reset();
2646
2647 // Start by placing PHIs, using the usual SSA constructor algorithm. Consider
2648 // any machine-location that isn't live-through a block to be def'd in that
2649 // block.
2650 placeMLocPHIs(MF, AllBlocks, MInLocs, MLocTransfer);
2651
2652 // Propagate values to eliminate redundant PHIs. At the same time, this
2653 // produces the table of Block x Location => Value for the entry to each
2654 // block.
2655 // The kind of PHIs we can eliminate are, for example, where one path in a
2656 // conditional spills and restores a register, and the register still has
2657 // the same value once control flow joins, unbeknowns to the PHI placement
2658 // code. Propagating values allows us to identify such un-necessary PHIs and
2659 // remove them.
2660 SmallPtrSet<const MachineBasicBlock *, 16> Visited;
2661 while (!Worklist.empty() || !Pending.empty()) {
2662 // Vector for storing the evaluated block transfer function.
2663 SmallVector<std::pair<LocIdx, ValueIDNum>, 32> ToRemap;
2664
2665 while (!Worklist.empty()) {
2666 MachineBasicBlock *MBB = OrderToBB[Worklist.top()];
2667 CurBB = MBB->getNumber();
2668 Worklist.pop();
2669
2670 // Join the values in all predecessor blocks.
2671 bool InLocsChanged;
2672 InLocsChanged = mlocJoin(*MBB, Visited, MOutLocs, MInLocs[CurBB]);
2673 InLocsChanged |= Visited.insert(MBB).second;
2674
2675 // Don't examine transfer function if we've visited this loc at least
2676 // once, and inlocs haven't changed.
2677 if (!InLocsChanged)
2678 continue;
2679
2680 // Load the current set of live-ins into MLocTracker.
2681 MTracker->loadFromArray(MInLocs[CurBB], CurBB);
2682
2683 // Each element of the transfer function can be a new def, or a read of
2684 // a live-in value. Evaluate each element, and store to "ToRemap".
2685 ToRemap.clear();
2686 for (auto &P : MLocTransfer[CurBB]) {
2687 if (P.second.getBlock() == CurBB && P.second.isPHI()) {
2688 // This is a movement of whatever was live in. Read it.
2689 ValueIDNum NewID = MTracker->readMLoc(P.second.getLoc());
2690 ToRemap.push_back(std::make_pair(P.first, NewID));
2691 } else {
2692 // It's a def. Just set it.
2693 assert(P.second.getBlock() == CurBB);
2694 ToRemap.push_back(std::make_pair(P.first, P.second));
2695 }
2696 }
2697
2698 // Commit the transfer function changes into mloc tracker, which
2699 // transforms the contents of the MLocTracker into the live-outs.
2700 for (auto &P : ToRemap)
2701 MTracker->setMLoc(P.first, P.second);
2702
2703 // Now copy out-locs from mloc tracker into out-loc vector, checking
2704 // whether changes have occurred. These changes can have come from both
2705 // the transfer function, and mlocJoin.
2706 bool OLChanged = false;
2707 for (auto Location : MTracker->locations()) {
2708 OLChanged |= MOutLocs[CurBB][Location.Idx.asU64()] != Location.Value;
2709 MOutLocs[CurBB][Location.Idx.asU64()] = Location.Value;
2710 }
2711
2712 MTracker->reset();
2713
2714 // No need to examine successors again if out-locs didn't change.
2715 if (!OLChanged)
2716 continue;
2717
2718 // All successors should be visited: put any back-edges on the pending
2719 // list for the next pass-through, and any other successors to be
2720 // visited this pass, if they're not going to be already.
2721 for (auto *s : MBB->successors()) {
2722 // Does branching to this successor represent a back-edge?
2723 if (BBToOrder[s] > BBToOrder[MBB]) {
2724 // No: visit it during this dataflow iteration.
2725 if (OnWorklist.insert(s).second)
2726 Worklist.push(BBToOrder[s]);
2727 } else {
2728 // Yes: visit it on the next iteration.
2729 if (OnPending.insert(s).second)
2730 Pending.push(BBToOrder[s]);
2731 }
2732 }
2733 }
2734
2735 Worklist.swap(Pending);
2736 std::swap(OnPending, OnWorklist);
2737 OnPending.clear();
2738 // At this point, pending must be empty, since it was just the empty
2739 // worklist
2740 assert(Pending.empty() && "Pending should be empty");
2741 }
2742
2743 // Once all the live-ins don't change on mlocJoin(), we've eliminated all
2744 // redundant PHIs.
2745 }
2746
BlockPHIPlacement(const SmallPtrSetImpl<MachineBasicBlock * > & AllBlocks,const SmallPtrSetImpl<MachineBasicBlock * > & DefBlocks,SmallVectorImpl<MachineBasicBlock * > & PHIBlocks)2747 void InstrRefBasedLDV::BlockPHIPlacement(
2748 const SmallPtrSetImpl<MachineBasicBlock *> &AllBlocks,
2749 const SmallPtrSetImpl<MachineBasicBlock *> &DefBlocks,
2750 SmallVectorImpl<MachineBasicBlock *> &PHIBlocks) {
2751 // Apply IDF calculator to the designated set of location defs, storing
2752 // required PHIs into PHIBlocks. Uses the dominator tree stored in the
2753 // InstrRefBasedLDV object.
2754 IDFCalculatorBase<MachineBasicBlock, false> IDF(DomTree->getBase());
2755
2756 IDF.setLiveInBlocks(AllBlocks);
2757 IDF.setDefiningBlocks(DefBlocks);
2758 IDF.calculate(PHIBlocks);
2759 }
2760
pickVPHILoc(SmallVectorImpl<DbgOpID> & OutValues,const MachineBasicBlock & MBB,const LiveIdxT & LiveOuts,FuncValueTable & MOutLocs,const SmallVectorImpl<const MachineBasicBlock * > & BlockOrders)2761 bool InstrRefBasedLDV::pickVPHILoc(
2762 SmallVectorImpl<DbgOpID> &OutValues, const MachineBasicBlock &MBB,
2763 const LiveIdxT &LiveOuts, FuncValueTable &MOutLocs,
2764 const SmallVectorImpl<const MachineBasicBlock *> &BlockOrders) {
2765
2766 // No predecessors means no PHIs.
2767 if (BlockOrders.empty())
2768 return false;
2769
2770 // All the location operands that do not already agree need to be joined,
2771 // track the indices of each such location operand here.
2772 SmallDenseSet<unsigned> LocOpsToJoin;
2773
2774 auto FirstValueIt = LiveOuts.find(BlockOrders[0]);
2775 if (FirstValueIt == LiveOuts.end())
2776 return false;
2777 const DbgValue &FirstValue = *FirstValueIt->second;
2778
2779 for (const auto p : BlockOrders) {
2780 auto OutValIt = LiveOuts.find(p);
2781 if (OutValIt == LiveOuts.end())
2782 // If we have a predecessor not in scope, we'll never find a PHI position.
2783 return false;
2784 const DbgValue &OutVal = *OutValIt->second;
2785
2786 // No-values cannot have locations we can join on.
2787 if (OutVal.Kind == DbgValue::NoVal)
2788 return false;
2789
2790 // For unjoined VPHIs where we don't know the location, we definitely
2791 // can't find a join loc unless the VPHI is a backedge.
2792 if (OutVal.isUnjoinedPHI() && OutVal.BlockNo != MBB.getNumber())
2793 return false;
2794
2795 if (!FirstValue.Properties.isJoinable(OutVal.Properties))
2796 return false;
2797
2798 for (unsigned Idx = 0; Idx < FirstValue.getLocationOpCount(); ++Idx) {
2799 // An unjoined PHI has no defined locations, and so a shared location must
2800 // be found for every operand.
2801 if (OutVal.isUnjoinedPHI()) {
2802 LocOpsToJoin.insert(Idx);
2803 continue;
2804 }
2805 DbgOpID FirstValOp = FirstValue.getDbgOpID(Idx);
2806 DbgOpID OutValOp = OutVal.getDbgOpID(Idx);
2807 if (FirstValOp != OutValOp) {
2808 // We can never join constant ops - the ops must either both be equal
2809 // constant ops or non-const ops.
2810 if (FirstValOp.isConst() || OutValOp.isConst())
2811 return false;
2812 else
2813 LocOpsToJoin.insert(Idx);
2814 }
2815 }
2816 }
2817
2818 SmallVector<DbgOpID> NewDbgOps;
2819
2820 for (unsigned Idx = 0; Idx < FirstValue.getLocationOpCount(); ++Idx) {
2821 // If this op doesn't need to be joined because the values agree, use that
2822 // already-agreed value.
2823 if (!LocOpsToJoin.contains(Idx)) {
2824 NewDbgOps.push_back(FirstValue.getDbgOpID(Idx));
2825 continue;
2826 }
2827
2828 std::optional<ValueIDNum> JoinedOpLoc =
2829 pickOperandPHILoc(Idx, MBB, LiveOuts, MOutLocs, BlockOrders);
2830
2831 if (!JoinedOpLoc)
2832 return false;
2833
2834 NewDbgOps.push_back(DbgOpStore.insert(*JoinedOpLoc));
2835 }
2836
2837 OutValues.append(NewDbgOps);
2838 return true;
2839 }
2840
pickOperandPHILoc(unsigned DbgOpIdx,const MachineBasicBlock & MBB,const LiveIdxT & LiveOuts,FuncValueTable & MOutLocs,const SmallVectorImpl<const MachineBasicBlock * > & BlockOrders)2841 std::optional<ValueIDNum> InstrRefBasedLDV::pickOperandPHILoc(
2842 unsigned DbgOpIdx, const MachineBasicBlock &MBB, const LiveIdxT &LiveOuts,
2843 FuncValueTable &MOutLocs,
2844 const SmallVectorImpl<const MachineBasicBlock *> &BlockOrders) {
2845
2846 // Collect a set of locations from predecessor where its live-out value can
2847 // be found.
2848 SmallVector<SmallVector<LocIdx, 4>, 8> Locs;
2849 unsigned NumLocs = MTracker->getNumLocs();
2850
2851 for (const auto p : BlockOrders) {
2852 unsigned ThisBBNum = p->getNumber();
2853 auto OutValIt = LiveOuts.find(p);
2854 assert(OutValIt != LiveOuts.end());
2855 const DbgValue &OutVal = *OutValIt->second;
2856 DbgOpID OutValOpID = OutVal.getDbgOpID(DbgOpIdx);
2857 DbgOp OutValOp = DbgOpStore.find(OutValOpID);
2858 assert(!OutValOp.IsConst);
2859
2860 // Create new empty vector of locations.
2861 Locs.resize(Locs.size() + 1);
2862
2863 // If the live-in value is a def, find the locations where that value is
2864 // present. Do the same for VPHIs where we know the VPHI value.
2865 if (OutVal.Kind == DbgValue::Def ||
2866 (OutVal.Kind == DbgValue::VPHI && OutVal.BlockNo != MBB.getNumber() &&
2867 !OutValOp.isUndef())) {
2868 ValueIDNum ValToLookFor = OutValOp.ID;
2869 // Search the live-outs of the predecessor for the specified value.
2870 for (unsigned int I = 0; I < NumLocs; ++I) {
2871 if (MOutLocs[ThisBBNum][I] == ValToLookFor)
2872 Locs.back().push_back(LocIdx(I));
2873 }
2874 } else {
2875 assert(OutVal.Kind == DbgValue::VPHI);
2876 // Otherwise: this is a VPHI on a backedge feeding back into itself, i.e.
2877 // a value that's live-through the whole loop. (It has to be a backedge,
2878 // because a block can't dominate itself). We can accept as a PHI location
2879 // any location where the other predecessors agree, _and_ the machine
2880 // locations feed back into themselves. Therefore, add all self-looping
2881 // machine-value PHI locations.
2882 for (unsigned int I = 0; I < NumLocs; ++I) {
2883 ValueIDNum MPHI(MBB.getNumber(), 0, LocIdx(I));
2884 if (MOutLocs[ThisBBNum][I] == MPHI)
2885 Locs.back().push_back(LocIdx(I));
2886 }
2887 }
2888 }
2889 // We should have found locations for all predecessors, or returned.
2890 assert(Locs.size() == BlockOrders.size());
2891
2892 // Starting with the first set of locations, take the intersection with
2893 // subsequent sets.
2894 SmallVector<LocIdx, 4> CandidateLocs = Locs[0];
2895 for (unsigned int I = 1; I < Locs.size(); ++I) {
2896 auto &LocVec = Locs[I];
2897 SmallVector<LocIdx, 4> NewCandidates;
2898 std::set_intersection(CandidateLocs.begin(), CandidateLocs.end(),
2899 LocVec.begin(), LocVec.end(), std::inserter(NewCandidates, NewCandidates.begin()));
2900 CandidateLocs = NewCandidates;
2901 }
2902 if (CandidateLocs.empty())
2903 return std::nullopt;
2904
2905 // We now have a set of LocIdxes that contain the right output value in
2906 // each of the predecessors. Pick the lowest; if there's a register loc,
2907 // that'll be it.
2908 LocIdx L = *CandidateLocs.begin();
2909
2910 // Return a PHI-value-number for the found location.
2911 ValueIDNum PHIVal = {(unsigned)MBB.getNumber(), 0, L};
2912 return PHIVal;
2913 }
2914
vlocJoin(MachineBasicBlock & MBB,LiveIdxT & VLOCOutLocs,SmallPtrSet<const MachineBasicBlock *,8> & BlocksToExplore,DbgValue & LiveIn)2915 bool InstrRefBasedLDV::vlocJoin(
2916 MachineBasicBlock &MBB, LiveIdxT &VLOCOutLocs,
2917 SmallPtrSet<const MachineBasicBlock *, 8> &BlocksToExplore,
2918 DbgValue &LiveIn) {
2919 LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n");
2920 bool Changed = false;
2921
2922 // Order predecessors by RPOT order, for exploring them in that order.
2923 SmallVector<MachineBasicBlock *, 8> BlockOrders(MBB.predecessors());
2924
2925 auto Cmp = [&](MachineBasicBlock *A, MachineBasicBlock *B) {
2926 return BBToOrder[A] < BBToOrder[B];
2927 };
2928
2929 llvm::sort(BlockOrders, Cmp);
2930
2931 unsigned CurBlockRPONum = BBToOrder[&MBB];
2932
2933 // Collect all the incoming DbgValues for this variable, from predecessor
2934 // live-out values.
2935 SmallVector<InValueT, 8> Values;
2936 bool Bail = false;
2937 int BackEdgesStart = 0;
2938 for (auto *p : BlockOrders) {
2939 // If the predecessor isn't in scope / to be explored, we'll never be
2940 // able to join any locations.
2941 if (!BlocksToExplore.contains(p)) {
2942 Bail = true;
2943 break;
2944 }
2945
2946 // All Live-outs will have been initialized.
2947 DbgValue &OutLoc = *VLOCOutLocs.find(p)->second;
2948
2949 // Keep track of where back-edges begin in the Values vector. Relies on
2950 // BlockOrders being sorted by RPO.
2951 unsigned ThisBBRPONum = BBToOrder[p];
2952 if (ThisBBRPONum < CurBlockRPONum)
2953 ++BackEdgesStart;
2954
2955 Values.push_back(std::make_pair(p, &OutLoc));
2956 }
2957
2958 // If there were no values, or one of the predecessors couldn't have a
2959 // value, then give up immediately. It's not safe to produce a live-in
2960 // value. Leave as whatever it was before.
2961 if (Bail || Values.size() == 0)
2962 return false;
2963
2964 // All (non-entry) blocks have at least one non-backedge predecessor.
2965 // Pick the variable value from the first of these, to compare against
2966 // all others.
2967 const DbgValue &FirstVal = *Values[0].second;
2968
2969 // If the old live-in value is not a PHI then either a) no PHI is needed
2970 // here, or b) we eliminated the PHI that was here. If so, we can just
2971 // propagate in the first parent's incoming value.
2972 if (LiveIn.Kind != DbgValue::VPHI || LiveIn.BlockNo != MBB.getNumber()) {
2973 Changed = LiveIn != FirstVal;
2974 if (Changed)
2975 LiveIn = FirstVal;
2976 return Changed;
2977 }
2978
2979 // Scan for variable values that can never be resolved: if they have
2980 // different DIExpressions, different indirectness, or are mixed constants /
2981 // non-constants.
2982 for (const auto &V : Values) {
2983 if (!V.second->Properties.isJoinable(FirstVal.Properties))
2984 return false;
2985 if (V.second->Kind == DbgValue::NoVal)
2986 return false;
2987 if (!V.second->hasJoinableLocOps(FirstVal))
2988 return false;
2989 }
2990
2991 // Try to eliminate this PHI. Do the incoming values all agree?
2992 bool Disagree = false;
2993 for (auto &V : Values) {
2994 if (*V.second == FirstVal)
2995 continue; // No disagreement.
2996
2997 // If both values are not equal but have equal non-empty IDs then they refer
2998 // to the same value from different sources (e.g. one is VPHI and the other
2999 // is Def), which does not cause disagreement.
3000 if (V.second->hasIdenticalValidLocOps(FirstVal))
3001 continue;
3002
3003 // Eliminate if a backedge feeds a VPHI back into itself.
3004 if (V.second->Kind == DbgValue::VPHI &&
3005 V.second->BlockNo == MBB.getNumber() &&
3006 // Is this a backedge?
3007 std::distance(Values.begin(), &V) >= BackEdgesStart)
3008 continue;
3009
3010 Disagree = true;
3011 }
3012
3013 // No disagreement -> live-through value.
3014 if (!Disagree) {
3015 Changed = LiveIn != FirstVal;
3016 if (Changed)
3017 LiveIn = FirstVal;
3018 return Changed;
3019 } else {
3020 // Otherwise use a VPHI.
3021 DbgValue VPHI(MBB.getNumber(), FirstVal.Properties, DbgValue::VPHI);
3022 Changed = LiveIn != VPHI;
3023 if (Changed)
3024 LiveIn = VPHI;
3025 return Changed;
3026 }
3027 }
3028
getBlocksForScope(const DILocation * DILoc,SmallPtrSetImpl<const MachineBasicBlock * > & BlocksToExplore,const SmallPtrSetImpl<MachineBasicBlock * > & AssignBlocks)3029 void InstrRefBasedLDV::getBlocksForScope(
3030 const DILocation *DILoc,
3031 SmallPtrSetImpl<const MachineBasicBlock *> &BlocksToExplore,
3032 const SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks) {
3033 // Get the set of "normal" in-lexical-scope blocks.
3034 LS.getMachineBasicBlocks(DILoc, BlocksToExplore);
3035
3036 // VarLoc LiveDebugValues tracks variable locations that are defined in
3037 // blocks not in scope. This is something we could legitimately ignore, but
3038 // lets allow it for now for the sake of coverage.
3039 BlocksToExplore.insert(AssignBlocks.begin(), AssignBlocks.end());
3040
3041 // Storage for artificial blocks we intend to add to BlocksToExplore.
3042 DenseSet<const MachineBasicBlock *> ToAdd;
3043
3044 // To avoid needlessly dropping large volumes of variable locations, propagate
3045 // variables through aritifical blocks, i.e. those that don't have any
3046 // instructions in scope at all. To accurately replicate VarLoc
3047 // LiveDebugValues, this means exploring all artificial successors too.
3048 // Perform a depth-first-search to enumerate those blocks.
3049 for (const auto *MBB : BlocksToExplore) {
3050 // Depth-first-search state: each node is a block and which successor
3051 // we're currently exploring.
3052 SmallVector<std::pair<const MachineBasicBlock *,
3053 MachineBasicBlock::const_succ_iterator>,
3054 8>
3055 DFS;
3056
3057 // Find any artificial successors not already tracked.
3058 for (auto *succ : MBB->successors()) {
3059 if (BlocksToExplore.count(succ))
3060 continue;
3061 if (!ArtificialBlocks.count(succ))
3062 continue;
3063 ToAdd.insert(succ);
3064 DFS.push_back({succ, succ->succ_begin()});
3065 }
3066
3067 // Search all those blocks, depth first.
3068 while (!DFS.empty()) {
3069 const MachineBasicBlock *CurBB = DFS.back().first;
3070 MachineBasicBlock::const_succ_iterator &CurSucc = DFS.back().second;
3071 // Walk back if we've explored this blocks successors to the end.
3072 if (CurSucc == CurBB->succ_end()) {
3073 DFS.pop_back();
3074 continue;
3075 }
3076
3077 // If the current successor is artificial and unexplored, descend into
3078 // it.
3079 if (!ToAdd.count(*CurSucc) && ArtificialBlocks.count(*CurSucc)) {
3080 ToAdd.insert(*CurSucc);
3081 DFS.push_back({*CurSucc, (*CurSucc)->succ_begin()});
3082 continue;
3083 }
3084
3085 ++CurSucc;
3086 }
3087 };
3088
3089 BlocksToExplore.insert(ToAdd.begin(), ToAdd.end());
3090 }
3091
buildVLocValueMap(const DILocation * DILoc,const SmallSet<DebugVariable,4> & VarsWeCareAbout,SmallPtrSetImpl<MachineBasicBlock * > & AssignBlocks,LiveInsT & Output,FuncValueTable & MOutLocs,FuncValueTable & MInLocs,SmallVectorImpl<VLocTracker> & AllTheVLocs)3092 void InstrRefBasedLDV::buildVLocValueMap(
3093 const DILocation *DILoc, const SmallSet<DebugVariable, 4> &VarsWeCareAbout,
3094 SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks, LiveInsT &Output,
3095 FuncValueTable &MOutLocs, FuncValueTable &MInLocs,
3096 SmallVectorImpl<VLocTracker> &AllTheVLocs) {
3097 // This method is much like buildMLocValueMap: but focuses on a single
3098 // LexicalScope at a time. Pick out a set of blocks and variables that are
3099 // to have their value assignments solved, then run our dataflow algorithm
3100 // until a fixedpoint is reached.
3101 std::priority_queue<unsigned int, std::vector<unsigned int>,
3102 std::greater<unsigned int>>
3103 Worklist, Pending;
3104 SmallPtrSet<MachineBasicBlock *, 16> OnWorklist, OnPending;
3105
3106 // The set of blocks we'll be examining.
3107 SmallPtrSet<const MachineBasicBlock *, 8> BlocksToExplore;
3108
3109 // The order in which to examine them (RPO).
3110 SmallVector<MachineBasicBlock *, 8> BlockOrders;
3111
3112 // RPO ordering function.
3113 auto Cmp = [&](MachineBasicBlock *A, MachineBasicBlock *B) {
3114 return BBToOrder[A] < BBToOrder[B];
3115 };
3116
3117 getBlocksForScope(DILoc, BlocksToExplore, AssignBlocks);
3118
3119 // Single block scope: not interesting! No propagation at all. Note that
3120 // this could probably go above ArtificialBlocks without damage, but
3121 // that then produces output differences from original-live-debug-values,
3122 // which propagates from a single block into many artificial ones.
3123 if (BlocksToExplore.size() == 1)
3124 return;
3125
3126 // Convert a const set to a non-const set. LexicalScopes
3127 // getMachineBasicBlocks returns const MBB pointers, IDF wants mutable ones.
3128 // (Neither of them mutate anything).
3129 SmallPtrSet<MachineBasicBlock *, 8> MutBlocksToExplore;
3130 for (const auto *MBB : BlocksToExplore)
3131 MutBlocksToExplore.insert(const_cast<MachineBasicBlock *>(MBB));
3132
3133 // Picks out relevants blocks RPO order and sort them.
3134 for (const auto *MBB : BlocksToExplore)
3135 BlockOrders.push_back(const_cast<MachineBasicBlock *>(MBB));
3136
3137 llvm::sort(BlockOrders, Cmp);
3138 unsigned NumBlocks = BlockOrders.size();
3139
3140 // Allocate some vectors for storing the live ins and live outs. Large.
3141 SmallVector<DbgValue, 32> LiveIns, LiveOuts;
3142 LiveIns.reserve(NumBlocks);
3143 LiveOuts.reserve(NumBlocks);
3144
3145 // Initialize all values to start as NoVals. This signifies "it's live
3146 // through, but we don't know what it is".
3147 DbgValueProperties EmptyProperties(EmptyExpr, false, false);
3148 for (unsigned int I = 0; I < NumBlocks; ++I) {
3149 DbgValue EmptyDbgValue(I, EmptyProperties, DbgValue::NoVal);
3150 LiveIns.push_back(EmptyDbgValue);
3151 LiveOuts.push_back(EmptyDbgValue);
3152 }
3153
3154 // Produce by-MBB indexes of live-in/live-outs, to ease lookup within
3155 // vlocJoin.
3156 LiveIdxT LiveOutIdx, LiveInIdx;
3157 LiveOutIdx.reserve(NumBlocks);
3158 LiveInIdx.reserve(NumBlocks);
3159 for (unsigned I = 0; I < NumBlocks; ++I) {
3160 LiveOutIdx[BlockOrders[I]] = &LiveOuts[I];
3161 LiveInIdx[BlockOrders[I]] = &LiveIns[I];
3162 }
3163
3164 // Loop over each variable and place PHIs for it, then propagate values
3165 // between blocks. This keeps the locality of working on one lexical scope at
3166 // at time, but avoids re-processing variable values because some other
3167 // variable has been assigned.
3168 for (const auto &Var : VarsWeCareAbout) {
3169 // Re-initialize live-ins and live-outs, to clear the remains of previous
3170 // variables live-ins / live-outs.
3171 for (unsigned int I = 0; I < NumBlocks; ++I) {
3172 DbgValue EmptyDbgValue(I, EmptyProperties, DbgValue::NoVal);
3173 LiveIns[I] = EmptyDbgValue;
3174 LiveOuts[I] = EmptyDbgValue;
3175 }
3176
3177 // Place PHIs for variable values, using the LLVM IDF calculator.
3178 // Collect the set of blocks where variables are def'd.
3179 SmallPtrSet<MachineBasicBlock *, 32> DefBlocks;
3180 for (const MachineBasicBlock *ExpMBB : BlocksToExplore) {
3181 auto &TransferFunc = AllTheVLocs[ExpMBB->getNumber()].Vars;
3182 if (TransferFunc.find(Var) != TransferFunc.end())
3183 DefBlocks.insert(const_cast<MachineBasicBlock *>(ExpMBB));
3184 }
3185
3186 SmallVector<MachineBasicBlock *, 32> PHIBlocks;
3187
3188 // Request the set of PHIs we should insert for this variable. If there's
3189 // only one value definition, things are very simple.
3190 if (DefBlocks.size() == 1) {
3191 placePHIsForSingleVarDefinition(MutBlocksToExplore, *DefBlocks.begin(),
3192 AllTheVLocs, Var, Output);
3193 continue;
3194 }
3195
3196 // Otherwise: we need to place PHIs through SSA and propagate values.
3197 BlockPHIPlacement(MutBlocksToExplore, DefBlocks, PHIBlocks);
3198
3199 // Insert PHIs into the per-block live-in tables for this variable.
3200 for (MachineBasicBlock *PHIMBB : PHIBlocks) {
3201 unsigned BlockNo = PHIMBB->getNumber();
3202 DbgValue *LiveIn = LiveInIdx[PHIMBB];
3203 *LiveIn = DbgValue(BlockNo, EmptyProperties, DbgValue::VPHI);
3204 }
3205
3206 for (auto *MBB : BlockOrders) {
3207 Worklist.push(BBToOrder[MBB]);
3208 OnWorklist.insert(MBB);
3209 }
3210
3211 // Iterate over all the blocks we selected, propagating the variables value.
3212 // This loop does two things:
3213 // * Eliminates un-necessary VPHIs in vlocJoin,
3214 // * Evaluates the blocks transfer function (i.e. variable assignments) and
3215 // stores the result to the blocks live-outs.
3216 // Always evaluate the transfer function on the first iteration, and when
3217 // the live-ins change thereafter.
3218 bool FirstTrip = true;
3219 while (!Worklist.empty() || !Pending.empty()) {
3220 while (!Worklist.empty()) {
3221 auto *MBB = OrderToBB[Worklist.top()];
3222 CurBB = MBB->getNumber();
3223 Worklist.pop();
3224
3225 auto LiveInsIt = LiveInIdx.find(MBB);
3226 assert(LiveInsIt != LiveInIdx.end());
3227 DbgValue *LiveIn = LiveInsIt->second;
3228
3229 // Join values from predecessors. Updates LiveInIdx, and writes output
3230 // into JoinedInLocs.
3231 bool InLocsChanged =
3232 vlocJoin(*MBB, LiveOutIdx, BlocksToExplore, *LiveIn);
3233
3234 SmallVector<const MachineBasicBlock *, 8> Preds;
3235 for (const auto *Pred : MBB->predecessors())
3236 Preds.push_back(Pred);
3237
3238 // If this block's live-in value is a VPHI, try to pick a machine-value
3239 // for it. This makes the machine-value available and propagated
3240 // through all blocks by the time value propagation finishes. We can't
3241 // do this any earlier as it needs to read the block live-outs.
3242 if (LiveIn->Kind == DbgValue::VPHI && LiveIn->BlockNo == (int)CurBB) {
3243 // There's a small possibility that on a preceeding path, a VPHI is
3244 // eliminated and transitions from VPHI-with-location to
3245 // live-through-value. As a result, the selected location of any VPHI
3246 // might change, so we need to re-compute it on each iteration.
3247 SmallVector<DbgOpID> JoinedOps;
3248
3249 if (pickVPHILoc(JoinedOps, *MBB, LiveOutIdx, MOutLocs, Preds)) {
3250 bool NewLocPicked = !equal(LiveIn->getDbgOpIDs(), JoinedOps);
3251 InLocsChanged |= NewLocPicked;
3252 if (NewLocPicked)
3253 LiveIn->setDbgOpIDs(JoinedOps);
3254 }
3255 }
3256
3257 if (!InLocsChanged && !FirstTrip)
3258 continue;
3259
3260 DbgValue *LiveOut = LiveOutIdx[MBB];
3261 bool OLChanged = false;
3262
3263 // Do transfer function.
3264 auto &VTracker = AllTheVLocs[MBB->getNumber()];
3265 auto TransferIt = VTracker.Vars.find(Var);
3266 if (TransferIt != VTracker.Vars.end()) {
3267 // Erase on empty transfer (DBG_VALUE $noreg).
3268 if (TransferIt->second.Kind == DbgValue::Undef) {
3269 DbgValue NewVal(MBB->getNumber(), EmptyProperties, DbgValue::NoVal);
3270 if (*LiveOut != NewVal) {
3271 *LiveOut = NewVal;
3272 OLChanged = true;
3273 }
3274 } else {
3275 // Insert new variable value; or overwrite.
3276 if (*LiveOut != TransferIt->second) {
3277 *LiveOut = TransferIt->second;
3278 OLChanged = true;
3279 }
3280 }
3281 } else {
3282 // Just copy live-ins to live-outs, for anything not transferred.
3283 if (*LiveOut != *LiveIn) {
3284 *LiveOut = *LiveIn;
3285 OLChanged = true;
3286 }
3287 }
3288
3289 // If no live-out value changed, there's no need to explore further.
3290 if (!OLChanged)
3291 continue;
3292
3293 // We should visit all successors. Ensure we'll visit any non-backedge
3294 // successors during this dataflow iteration; book backedge successors
3295 // to be visited next time around.
3296 for (auto *s : MBB->successors()) {
3297 // Ignore out of scope / not-to-be-explored successors.
3298 if (LiveInIdx.find(s) == LiveInIdx.end())
3299 continue;
3300
3301 if (BBToOrder[s] > BBToOrder[MBB]) {
3302 if (OnWorklist.insert(s).second)
3303 Worklist.push(BBToOrder[s]);
3304 } else if (OnPending.insert(s).second && (FirstTrip || OLChanged)) {
3305 Pending.push(BBToOrder[s]);
3306 }
3307 }
3308 }
3309 Worklist.swap(Pending);
3310 std::swap(OnWorklist, OnPending);
3311 OnPending.clear();
3312 assert(Pending.empty());
3313 FirstTrip = false;
3314 }
3315
3316 // Save live-ins to output vector. Ignore any that are still marked as being
3317 // VPHIs with no location -- those are variables that we know the value of,
3318 // but are not actually available in the register file.
3319 for (auto *MBB : BlockOrders) {
3320 DbgValue *BlockLiveIn = LiveInIdx[MBB];
3321 if (BlockLiveIn->Kind == DbgValue::NoVal)
3322 continue;
3323 if (BlockLiveIn->isUnjoinedPHI())
3324 continue;
3325 if (BlockLiveIn->Kind == DbgValue::VPHI)
3326 BlockLiveIn->Kind = DbgValue::Def;
3327 assert(BlockLiveIn->Properties.DIExpr->getFragmentInfo() ==
3328 Var.getFragment() && "Fragment info missing during value prop");
3329 Output[MBB->getNumber()].push_back(std::make_pair(Var, *BlockLiveIn));
3330 }
3331 } // Per-variable loop.
3332
3333 BlockOrders.clear();
3334 BlocksToExplore.clear();
3335 }
3336
placePHIsForSingleVarDefinition(const SmallPtrSetImpl<MachineBasicBlock * > & InScopeBlocks,MachineBasicBlock * AssignMBB,SmallVectorImpl<VLocTracker> & AllTheVLocs,const DebugVariable & Var,LiveInsT & Output)3337 void InstrRefBasedLDV::placePHIsForSingleVarDefinition(
3338 const SmallPtrSetImpl<MachineBasicBlock *> &InScopeBlocks,
3339 MachineBasicBlock *AssignMBB, SmallVectorImpl<VLocTracker> &AllTheVLocs,
3340 const DebugVariable &Var, LiveInsT &Output) {
3341 // If there is a single definition of the variable, then working out it's
3342 // value everywhere is very simple: it's every block dominated by the
3343 // definition. At the dominance frontier, the usual algorithm would:
3344 // * Place PHIs,
3345 // * Propagate values into them,
3346 // * Find there's no incoming variable value from the other incoming branches
3347 // of the dominance frontier,
3348 // * Specify there's no variable value in blocks past the frontier.
3349 // This is a common case, hence it's worth special-casing it.
3350
3351 // Pick out the variables value from the block transfer function.
3352 VLocTracker &VLocs = AllTheVLocs[AssignMBB->getNumber()];
3353 auto ValueIt = VLocs.Vars.find(Var);
3354 const DbgValue &Value = ValueIt->second;
3355
3356 // If it's an explicit assignment of "undef", that means there is no location
3357 // anyway, anywhere.
3358 if (Value.Kind == DbgValue::Undef)
3359 return;
3360
3361 // Assign the variable value to entry to each dominated block that's in scope.
3362 // Skip the definition block -- it's assigned the variable value in the middle
3363 // of the block somewhere.
3364 for (auto *ScopeBlock : InScopeBlocks) {
3365 if (!DomTree->properlyDominates(AssignMBB, ScopeBlock))
3366 continue;
3367
3368 Output[ScopeBlock->getNumber()].push_back({Var, Value});
3369 }
3370
3371 // All blocks that aren't dominated have no live-in value, thus no variable
3372 // value will be given to them.
3373 }
3374
3375 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump_mloc_transfer(const MLocTransferMap & mloc_transfer) const3376 void InstrRefBasedLDV::dump_mloc_transfer(
3377 const MLocTransferMap &mloc_transfer) const {
3378 for (const auto &P : mloc_transfer) {
3379 std::string foo = MTracker->LocIdxToName(P.first);
3380 std::string bar = MTracker->IDAsString(P.second);
3381 dbgs() << "Loc " << foo << " --> " << bar << "\n";
3382 }
3383 }
3384 #endif
3385
initialSetup(MachineFunction & MF)3386 void InstrRefBasedLDV::initialSetup(MachineFunction &MF) {
3387 // Build some useful data structures.
3388
3389 LLVMContext &Context = MF.getFunction().getContext();
3390 EmptyExpr = DIExpression::get(Context, {});
3391
3392 auto hasNonArtificialLocation = [](const MachineInstr &MI) -> bool {
3393 if (const DebugLoc &DL = MI.getDebugLoc())
3394 return DL.getLine() != 0;
3395 return false;
3396 };
3397 // Collect a set of all the artificial blocks.
3398 for (auto &MBB : MF)
3399 if (none_of(MBB.instrs(), hasNonArtificialLocation))
3400 ArtificialBlocks.insert(&MBB);
3401
3402 // Compute mappings of block <=> RPO order.
3403 ReversePostOrderTraversal<MachineFunction *> RPOT(&MF);
3404 unsigned int RPONumber = 0;
3405 auto processMBB = [&](MachineBasicBlock *MBB) {
3406 OrderToBB[RPONumber] = MBB;
3407 BBToOrder[MBB] = RPONumber;
3408 BBNumToRPO[MBB->getNumber()] = RPONumber;
3409 ++RPONumber;
3410 };
3411 for (MachineBasicBlock *MBB : RPOT)
3412 processMBB(MBB);
3413 for (MachineBasicBlock &MBB : MF)
3414 if (BBToOrder.find(&MBB) == BBToOrder.end())
3415 processMBB(&MBB);
3416
3417 // Order value substitutions by their "source" operand pair, for quick lookup.
3418 llvm::sort(MF.DebugValueSubstitutions);
3419
3420 #ifdef EXPENSIVE_CHECKS
3421 // As an expensive check, test whether there are any duplicate substitution
3422 // sources in the collection.
3423 if (MF.DebugValueSubstitutions.size() > 2) {
3424 for (auto It = MF.DebugValueSubstitutions.begin();
3425 It != std::prev(MF.DebugValueSubstitutions.end()); ++It) {
3426 assert(It->Src != std::next(It)->Src && "Duplicate variable location "
3427 "substitution seen");
3428 }
3429 }
3430 #endif
3431 }
3432
3433 // Produce an "ejection map" for blocks, i.e., what's the highest-numbered
3434 // lexical scope it's used in. When exploring in DFS order and we pass that
3435 // scope, the block can be processed and any tracking information freed.
makeDepthFirstEjectionMap(SmallVectorImpl<unsigned> & EjectionMap,const ScopeToDILocT & ScopeToDILocation,ScopeToAssignBlocksT & ScopeToAssignBlocks)3436 void InstrRefBasedLDV::makeDepthFirstEjectionMap(
3437 SmallVectorImpl<unsigned> &EjectionMap,
3438 const ScopeToDILocT &ScopeToDILocation,
3439 ScopeToAssignBlocksT &ScopeToAssignBlocks) {
3440 SmallPtrSet<const MachineBasicBlock *, 8> BlocksToExplore;
3441 SmallVector<std::pair<LexicalScope *, ssize_t>, 4> WorkStack;
3442 auto *TopScope = LS.getCurrentFunctionScope();
3443
3444 // Unlike lexical scope explorers, we explore in reverse order, to find the
3445 // "last" lexical scope used for each block early.
3446 WorkStack.push_back({TopScope, TopScope->getChildren().size() - 1});
3447
3448 while (!WorkStack.empty()) {
3449 auto &ScopePosition = WorkStack.back();
3450 LexicalScope *WS = ScopePosition.first;
3451 ssize_t ChildNum = ScopePosition.second--;
3452
3453 const SmallVectorImpl<LexicalScope *> &Children = WS->getChildren();
3454 if (ChildNum >= 0) {
3455 // If ChildNum is positive, there are remaining children to explore.
3456 // Push the child and its children-count onto the stack.
3457 auto &ChildScope = Children[ChildNum];
3458 WorkStack.push_back(
3459 std::make_pair(ChildScope, ChildScope->getChildren().size() - 1));
3460 } else {
3461 WorkStack.pop_back();
3462
3463 // We've explored all children and any later blocks: examine all blocks
3464 // in our scope. If they haven't yet had an ejection number set, then
3465 // this scope will be the last to use that block.
3466 auto DILocationIt = ScopeToDILocation.find(WS);
3467 if (DILocationIt != ScopeToDILocation.end()) {
3468 getBlocksForScope(DILocationIt->second, BlocksToExplore,
3469 ScopeToAssignBlocks.find(WS)->second);
3470 for (const auto *MBB : BlocksToExplore) {
3471 unsigned BBNum = MBB->getNumber();
3472 if (EjectionMap[BBNum] == 0)
3473 EjectionMap[BBNum] = WS->getDFSOut();
3474 }
3475
3476 BlocksToExplore.clear();
3477 }
3478 }
3479 }
3480 }
3481
depthFirstVLocAndEmit(unsigned MaxNumBlocks,const ScopeToDILocT & ScopeToDILocation,const ScopeToVarsT & ScopeToVars,ScopeToAssignBlocksT & ScopeToAssignBlocks,LiveInsT & Output,FuncValueTable & MOutLocs,FuncValueTable & MInLocs,SmallVectorImpl<VLocTracker> & AllTheVLocs,MachineFunction & MF,DenseMap<DebugVariable,unsigned> & AllVarsNumbering,const TargetPassConfig & TPC)3482 bool InstrRefBasedLDV::depthFirstVLocAndEmit(
3483 unsigned MaxNumBlocks, const ScopeToDILocT &ScopeToDILocation,
3484 const ScopeToVarsT &ScopeToVars, ScopeToAssignBlocksT &ScopeToAssignBlocks,
3485 LiveInsT &Output, FuncValueTable &MOutLocs, FuncValueTable &MInLocs,
3486 SmallVectorImpl<VLocTracker> &AllTheVLocs, MachineFunction &MF,
3487 DenseMap<DebugVariable, unsigned> &AllVarsNumbering,
3488 const TargetPassConfig &TPC) {
3489 TTracker = new TransferTracker(TII, MTracker, MF, *TRI, CalleeSavedRegs, TPC);
3490 unsigned NumLocs = MTracker->getNumLocs();
3491 VTracker = nullptr;
3492
3493 // No scopes? No variable locations.
3494 if (!LS.getCurrentFunctionScope())
3495 return false;
3496
3497 // Build map from block number to the last scope that uses the block.
3498 SmallVector<unsigned, 16> EjectionMap;
3499 EjectionMap.resize(MaxNumBlocks, 0);
3500 makeDepthFirstEjectionMap(EjectionMap, ScopeToDILocation,
3501 ScopeToAssignBlocks);
3502
3503 // Helper lambda for ejecting a block -- if nothing is going to use the block,
3504 // we can translate the variable location information into DBG_VALUEs and then
3505 // free all of InstrRefBasedLDV's data structures.
3506 auto EjectBlock = [&](MachineBasicBlock &MBB) -> void {
3507 unsigned BBNum = MBB.getNumber();
3508 AllTheVLocs[BBNum].clear();
3509
3510 // Prime the transfer-tracker, and then step through all the block
3511 // instructions, installing transfers.
3512 MTracker->reset();
3513 MTracker->loadFromArray(MInLocs[BBNum], BBNum);
3514 TTracker->loadInlocs(MBB, MInLocs[BBNum], DbgOpStore, Output[BBNum],
3515 NumLocs);
3516
3517 CurBB = BBNum;
3518 CurInst = 1;
3519 for (auto &MI : MBB) {
3520 process(MI, MOutLocs.get(), MInLocs.get());
3521 TTracker->checkInstForNewValues(CurInst, MI.getIterator());
3522 ++CurInst;
3523 }
3524
3525 // Free machine-location tables for this block.
3526 MInLocs[BBNum].reset();
3527 MOutLocs[BBNum].reset();
3528 // We don't need live-in variable values for this block either.
3529 Output[BBNum].clear();
3530 AllTheVLocs[BBNum].clear();
3531 };
3532
3533 SmallPtrSet<const MachineBasicBlock *, 8> BlocksToExplore;
3534 SmallVector<std::pair<LexicalScope *, ssize_t>, 4> WorkStack;
3535 WorkStack.push_back({LS.getCurrentFunctionScope(), 0});
3536 unsigned HighestDFSIn = 0;
3537
3538 // Proceed to explore in depth first order.
3539 while (!WorkStack.empty()) {
3540 auto &ScopePosition = WorkStack.back();
3541 LexicalScope *WS = ScopePosition.first;
3542 ssize_t ChildNum = ScopePosition.second++;
3543
3544 // We obesrve scopes with children twice here, once descending in, once
3545 // ascending out of the scope nest. Use HighestDFSIn as a ratchet to ensure
3546 // we don't process a scope twice. Additionally, ignore scopes that don't
3547 // have a DILocation -- by proxy, this means we never tracked any variable
3548 // assignments in that scope.
3549 auto DILocIt = ScopeToDILocation.find(WS);
3550 if (HighestDFSIn <= WS->getDFSIn() && DILocIt != ScopeToDILocation.end()) {
3551 const DILocation *DILoc = DILocIt->second;
3552 auto &VarsWeCareAbout = ScopeToVars.find(WS)->second;
3553 auto &BlocksInScope = ScopeToAssignBlocks.find(WS)->second;
3554
3555 buildVLocValueMap(DILoc, VarsWeCareAbout, BlocksInScope, Output, MOutLocs,
3556 MInLocs, AllTheVLocs);
3557 }
3558
3559 HighestDFSIn = std::max(HighestDFSIn, WS->getDFSIn());
3560
3561 // Descend into any scope nests.
3562 const SmallVectorImpl<LexicalScope *> &Children = WS->getChildren();
3563 if (ChildNum < (ssize_t)Children.size()) {
3564 // There are children to explore -- push onto stack and continue.
3565 auto &ChildScope = Children[ChildNum];
3566 WorkStack.push_back(std::make_pair(ChildScope, 0));
3567 } else {
3568 WorkStack.pop_back();
3569
3570 // We've explored a leaf, or have explored all the children of a scope.
3571 // Try to eject any blocks where this is the last scope it's relevant to.
3572 auto DILocationIt = ScopeToDILocation.find(WS);
3573 if (DILocationIt == ScopeToDILocation.end())
3574 continue;
3575
3576 getBlocksForScope(DILocationIt->second, BlocksToExplore,
3577 ScopeToAssignBlocks.find(WS)->second);
3578 for (const auto *MBB : BlocksToExplore)
3579 if (WS->getDFSOut() == EjectionMap[MBB->getNumber()])
3580 EjectBlock(const_cast<MachineBasicBlock &>(*MBB));
3581
3582 BlocksToExplore.clear();
3583 }
3584 }
3585
3586 // Some artificial blocks may not have been ejected, meaning they're not
3587 // connected to an actual legitimate scope. This can technically happen
3588 // with things like the entry block. In theory, we shouldn't need to do
3589 // anything for such out-of-scope blocks, but for the sake of being similar
3590 // to VarLocBasedLDV, eject these too.
3591 for (auto *MBB : ArtificialBlocks)
3592 if (MOutLocs[MBB->getNumber()])
3593 EjectBlock(*MBB);
3594
3595 return emitTransfers(AllVarsNumbering);
3596 }
3597
emitTransfers(DenseMap<DebugVariable,unsigned> & AllVarsNumbering)3598 bool InstrRefBasedLDV::emitTransfers(
3599 DenseMap<DebugVariable, unsigned> &AllVarsNumbering) {
3600 // Go through all the transfers recorded in the TransferTracker -- this is
3601 // both the live-ins to a block, and any movements of values that happen
3602 // in the middle.
3603 for (const auto &P : TTracker->Transfers) {
3604 // We have to insert DBG_VALUEs in a consistent order, otherwise they
3605 // appear in DWARF in different orders. Use the order that they appear
3606 // when walking through each block / each instruction, stored in
3607 // AllVarsNumbering.
3608 SmallVector<std::pair<unsigned, MachineInstr *>> Insts;
3609 for (MachineInstr *MI : P.Insts) {
3610 DebugVariable Var(MI->getDebugVariable(), MI->getDebugExpression(),
3611 MI->getDebugLoc()->getInlinedAt());
3612 Insts.emplace_back(AllVarsNumbering.find(Var)->second, MI);
3613 }
3614 llvm::sort(Insts, llvm::less_first());
3615
3616 // Insert either before or after the designated point...
3617 if (P.MBB) {
3618 MachineBasicBlock &MBB = *P.MBB;
3619 for (const auto &Pair : Insts)
3620 MBB.insert(P.Pos, Pair.second);
3621 } else {
3622 // Terminators, like tail calls, can clobber things. Don't try and place
3623 // transfers after them.
3624 if (P.Pos->isTerminator())
3625 continue;
3626
3627 MachineBasicBlock &MBB = *P.Pos->getParent();
3628 for (const auto &Pair : Insts)
3629 MBB.insertAfterBundle(P.Pos, Pair.second);
3630 }
3631 }
3632
3633 return TTracker->Transfers.size() != 0;
3634 }
3635
3636 /// Calculate the liveness information for the given machine function and
3637 /// extend ranges across basic blocks.
ExtendRanges(MachineFunction & MF,MachineDominatorTree * DomTree,TargetPassConfig * TPC,unsigned InputBBLimit,unsigned InputDbgValLimit)3638 bool InstrRefBasedLDV::ExtendRanges(MachineFunction &MF,
3639 MachineDominatorTree *DomTree,
3640 TargetPassConfig *TPC,
3641 unsigned InputBBLimit,
3642 unsigned InputDbgValLimit) {
3643 // No subprogram means this function contains no debuginfo.
3644 if (!MF.getFunction().getSubprogram())
3645 return false;
3646
3647 LLVM_DEBUG(dbgs() << "\nDebug Range Extension\n");
3648 this->TPC = TPC;
3649
3650 this->DomTree = DomTree;
3651 TRI = MF.getSubtarget().getRegisterInfo();
3652 MRI = &MF.getRegInfo();
3653 TII = MF.getSubtarget().getInstrInfo();
3654 TFI = MF.getSubtarget().getFrameLowering();
3655 TFI->getCalleeSaves(MF, CalleeSavedRegs);
3656 MFI = &MF.getFrameInfo();
3657 LS.initialize(MF);
3658
3659 const auto &STI = MF.getSubtarget();
3660 AdjustsStackInCalls = MFI->adjustsStack() &&
3661 STI.getFrameLowering()->stackProbeFunctionModifiesSP();
3662 if (AdjustsStackInCalls)
3663 StackProbeSymbolName = STI.getTargetLowering()->getStackProbeSymbolName(MF);
3664
3665 MTracker =
3666 new MLocTracker(MF, *TII, *TRI, *MF.getSubtarget().getTargetLowering());
3667 VTracker = nullptr;
3668 TTracker = nullptr;
3669
3670 SmallVector<MLocTransferMap, 32> MLocTransfer;
3671 SmallVector<VLocTracker, 8> vlocs;
3672 LiveInsT SavedLiveIns;
3673
3674 int MaxNumBlocks = -1;
3675 for (auto &MBB : MF)
3676 MaxNumBlocks = std::max(MBB.getNumber(), MaxNumBlocks);
3677 assert(MaxNumBlocks >= 0);
3678 ++MaxNumBlocks;
3679
3680 initialSetup(MF);
3681
3682 MLocTransfer.resize(MaxNumBlocks);
3683 vlocs.resize(MaxNumBlocks, VLocTracker(OverlapFragments, EmptyExpr));
3684 SavedLiveIns.resize(MaxNumBlocks);
3685
3686 produceMLocTransferFunction(MF, MLocTransfer, MaxNumBlocks);
3687
3688 // Allocate and initialize two array-of-arrays for the live-in and live-out
3689 // machine values. The outer dimension is the block number; while the inner
3690 // dimension is a LocIdx from MLocTracker.
3691 FuncValueTable MOutLocs = std::make_unique<ValueTable[]>(MaxNumBlocks);
3692 FuncValueTable MInLocs = std::make_unique<ValueTable[]>(MaxNumBlocks);
3693 unsigned NumLocs = MTracker->getNumLocs();
3694 for (int i = 0; i < MaxNumBlocks; ++i) {
3695 // These all auto-initialize to ValueIDNum::EmptyValue
3696 MOutLocs[i] = std::make_unique<ValueIDNum[]>(NumLocs);
3697 MInLocs[i] = std::make_unique<ValueIDNum[]>(NumLocs);
3698 }
3699
3700 // Solve the machine value dataflow problem using the MLocTransfer function,
3701 // storing the computed live-ins / live-outs into the array-of-arrays. We use
3702 // both live-ins and live-outs for decision making in the variable value
3703 // dataflow problem.
3704 buildMLocValueMap(MF, MInLocs, MOutLocs, MLocTransfer);
3705
3706 // Patch up debug phi numbers, turning unknown block-live-in values into
3707 // either live-through machine values, or PHIs.
3708 for (auto &DBG_PHI : DebugPHINumToValue) {
3709 // Identify unresolved block-live-ins.
3710 if (!DBG_PHI.ValueRead)
3711 continue;
3712
3713 ValueIDNum &Num = *DBG_PHI.ValueRead;
3714 if (!Num.isPHI())
3715 continue;
3716
3717 unsigned BlockNo = Num.getBlock();
3718 LocIdx LocNo = Num.getLoc();
3719 Num = MInLocs[BlockNo][LocNo.asU64()];
3720 }
3721 // Later, we'll be looking up ranges of instruction numbers.
3722 llvm::sort(DebugPHINumToValue);
3723
3724 // Walk back through each block / instruction, collecting DBG_VALUE
3725 // instructions and recording what machine value their operands refer to.
3726 for (auto &OrderPair : OrderToBB) {
3727 MachineBasicBlock &MBB = *OrderPair.second;
3728 CurBB = MBB.getNumber();
3729 VTracker = &vlocs[CurBB];
3730 VTracker->MBB = &MBB;
3731 MTracker->loadFromArray(MInLocs[CurBB], CurBB);
3732 CurInst = 1;
3733 for (auto &MI : MBB) {
3734 process(MI, MOutLocs.get(), MInLocs.get());
3735 ++CurInst;
3736 }
3737 MTracker->reset();
3738 }
3739
3740 // Number all variables in the order that they appear, to be used as a stable
3741 // insertion order later.
3742 DenseMap<DebugVariable, unsigned> AllVarsNumbering;
3743
3744 // Map from one LexicalScope to all the variables in that scope.
3745 ScopeToVarsT ScopeToVars;
3746
3747 // Map from One lexical scope to all blocks where assignments happen for
3748 // that scope.
3749 ScopeToAssignBlocksT ScopeToAssignBlocks;
3750
3751 // Store map of DILocations that describes scopes.
3752 ScopeToDILocT ScopeToDILocation;
3753
3754 // To mirror old LiveDebugValues, enumerate variables in RPOT order. Otherwise
3755 // the order is unimportant, it just has to be stable.
3756 unsigned VarAssignCount = 0;
3757 for (unsigned int I = 0; I < OrderToBB.size(); ++I) {
3758 auto *MBB = OrderToBB[I];
3759 auto *VTracker = &vlocs[MBB->getNumber()];
3760 // Collect each variable with a DBG_VALUE in this block.
3761 for (auto &idx : VTracker->Vars) {
3762 const auto &Var = idx.first;
3763 const DILocation *ScopeLoc = VTracker->Scopes[Var];
3764 assert(ScopeLoc != nullptr);
3765 auto *Scope = LS.findLexicalScope(ScopeLoc);
3766
3767 // No insts in scope -> shouldn't have been recorded.
3768 assert(Scope != nullptr);
3769
3770 AllVarsNumbering.insert(std::make_pair(Var, AllVarsNumbering.size()));
3771 ScopeToVars[Scope].insert(Var);
3772 ScopeToAssignBlocks[Scope].insert(VTracker->MBB);
3773 ScopeToDILocation[Scope] = ScopeLoc;
3774 ++VarAssignCount;
3775 }
3776 }
3777
3778 bool Changed = false;
3779
3780 // If we have an extremely large number of variable assignments and blocks,
3781 // bail out at this point. We've burnt some time doing analysis already,
3782 // however we should cut our losses.
3783 if ((unsigned)MaxNumBlocks > InputBBLimit &&
3784 VarAssignCount > InputDbgValLimit) {
3785 LLVM_DEBUG(dbgs() << "Disabling InstrRefBasedLDV: " << MF.getName()
3786 << " has " << MaxNumBlocks << " basic blocks and "
3787 << VarAssignCount
3788 << " variable assignments, exceeding limits.\n");
3789 } else {
3790 // Optionally, solve the variable value problem and emit to blocks by using
3791 // a lexical-scope-depth search. It should be functionally identical to
3792 // the "else" block of this condition.
3793 Changed = depthFirstVLocAndEmit(
3794 MaxNumBlocks, ScopeToDILocation, ScopeToVars, ScopeToAssignBlocks,
3795 SavedLiveIns, MOutLocs, MInLocs, vlocs, MF, AllVarsNumbering, *TPC);
3796 }
3797
3798 delete MTracker;
3799 delete TTracker;
3800 MTracker = nullptr;
3801 VTracker = nullptr;
3802 TTracker = nullptr;
3803
3804 ArtificialBlocks.clear();
3805 OrderToBB.clear();
3806 BBToOrder.clear();
3807 BBNumToRPO.clear();
3808 DebugInstrNumToInstr.clear();
3809 DebugPHINumToValue.clear();
3810 OverlapFragments.clear();
3811 SeenFragments.clear();
3812 SeenDbgPHIs.clear();
3813 DbgOpStore.clear();
3814
3815 return Changed;
3816 }
3817
makeInstrRefBasedLiveDebugValues()3818 LDVImpl *llvm::makeInstrRefBasedLiveDebugValues() {
3819 return new InstrRefBasedLDV();
3820 }
3821
3822 namespace {
3823 class LDVSSABlock;
3824 class LDVSSAUpdater;
3825
3826 // Pick a type to identify incoming block values as we construct SSA. We
3827 // can't use anything more robust than an integer unfortunately, as SSAUpdater
3828 // expects to zero-initialize the type.
3829 typedef uint64_t BlockValueNum;
3830
3831 /// Represents an SSA PHI node for the SSA updater class. Contains the block
3832 /// this PHI is in, the value number it would have, and the expected incoming
3833 /// values from parent blocks.
3834 class LDVSSAPhi {
3835 public:
3836 SmallVector<std::pair<LDVSSABlock *, BlockValueNum>, 4> IncomingValues;
3837 LDVSSABlock *ParentBlock;
3838 BlockValueNum PHIValNum;
LDVSSAPhi(BlockValueNum PHIValNum,LDVSSABlock * ParentBlock)3839 LDVSSAPhi(BlockValueNum PHIValNum, LDVSSABlock *ParentBlock)
3840 : ParentBlock(ParentBlock), PHIValNum(PHIValNum) {}
3841
getParent()3842 LDVSSABlock *getParent() { return ParentBlock; }
3843 };
3844
3845 /// Thin wrapper around a block predecessor iterator. Only difference from a
3846 /// normal block iterator is that it dereferences to an LDVSSABlock.
3847 class LDVSSABlockIterator {
3848 public:
3849 MachineBasicBlock::pred_iterator PredIt;
3850 LDVSSAUpdater &Updater;
3851
LDVSSABlockIterator(MachineBasicBlock::pred_iterator PredIt,LDVSSAUpdater & Updater)3852 LDVSSABlockIterator(MachineBasicBlock::pred_iterator PredIt,
3853 LDVSSAUpdater &Updater)
3854 : PredIt(PredIt), Updater(Updater) {}
3855
operator !=(const LDVSSABlockIterator & OtherIt) const3856 bool operator!=(const LDVSSABlockIterator &OtherIt) const {
3857 return OtherIt.PredIt != PredIt;
3858 }
3859
operator ++()3860 LDVSSABlockIterator &operator++() {
3861 ++PredIt;
3862 return *this;
3863 }
3864
3865 LDVSSABlock *operator*();
3866 };
3867
3868 /// Thin wrapper around a block for SSA Updater interface. Necessary because
3869 /// we need to track the PHI value(s) that we may have observed as necessary
3870 /// in this block.
3871 class LDVSSABlock {
3872 public:
3873 MachineBasicBlock &BB;
3874 LDVSSAUpdater &Updater;
3875 using PHIListT = SmallVector<LDVSSAPhi, 1>;
3876 /// List of PHIs in this block. There should only ever be one.
3877 PHIListT PHIList;
3878
LDVSSABlock(MachineBasicBlock & BB,LDVSSAUpdater & Updater)3879 LDVSSABlock(MachineBasicBlock &BB, LDVSSAUpdater &Updater)
3880 : BB(BB), Updater(Updater) {}
3881
succ_begin()3882 LDVSSABlockIterator succ_begin() {
3883 return LDVSSABlockIterator(BB.succ_begin(), Updater);
3884 }
3885
succ_end()3886 LDVSSABlockIterator succ_end() {
3887 return LDVSSABlockIterator(BB.succ_end(), Updater);
3888 }
3889
3890 /// SSAUpdater has requested a PHI: create that within this block record.
newPHI(BlockValueNum Value)3891 LDVSSAPhi *newPHI(BlockValueNum Value) {
3892 PHIList.emplace_back(Value, this);
3893 return &PHIList.back();
3894 }
3895
3896 /// SSAUpdater wishes to know what PHIs already exist in this block.
phis()3897 PHIListT &phis() { return PHIList; }
3898 };
3899
3900 /// Utility class for the SSAUpdater interface: tracks blocks, PHIs and values
3901 /// while SSAUpdater is exploring the CFG. It's passed as a handle / baton to
3902 // SSAUpdaterTraits<LDVSSAUpdater>.
3903 class LDVSSAUpdater {
3904 public:
3905 /// Map of value numbers to PHI records.
3906 DenseMap<BlockValueNum, LDVSSAPhi *> PHIs;
3907 /// Map of which blocks generate Undef values -- blocks that are not
3908 /// dominated by any Def.
3909 DenseMap<MachineBasicBlock *, BlockValueNum> UndefMap;
3910 /// Map of machine blocks to our own records of them.
3911 DenseMap<MachineBasicBlock *, LDVSSABlock *> BlockMap;
3912 /// Machine location where any PHI must occur.
3913 LocIdx Loc;
3914 /// Table of live-in machine value numbers for blocks / locations.
3915 const ValueTable *MLiveIns;
3916
LDVSSAUpdater(LocIdx L,const ValueTable * MLiveIns)3917 LDVSSAUpdater(LocIdx L, const ValueTable *MLiveIns)
3918 : Loc(L), MLiveIns(MLiveIns) {}
3919
reset()3920 void reset() {
3921 for (auto &Block : BlockMap)
3922 delete Block.second;
3923
3924 PHIs.clear();
3925 UndefMap.clear();
3926 BlockMap.clear();
3927 }
3928
~LDVSSAUpdater()3929 ~LDVSSAUpdater() { reset(); }
3930
3931 /// For a given MBB, create a wrapper block for it. Stores it in the
3932 /// LDVSSAUpdater block map.
getSSALDVBlock(MachineBasicBlock * BB)3933 LDVSSABlock *getSSALDVBlock(MachineBasicBlock *BB) {
3934 auto it = BlockMap.find(BB);
3935 if (it == BlockMap.end()) {
3936 BlockMap[BB] = new LDVSSABlock(*BB, *this);
3937 it = BlockMap.find(BB);
3938 }
3939 return it->second;
3940 }
3941
3942 /// Find the live-in value number for the given block. Looks up the value at
3943 /// the PHI location on entry.
getValue(LDVSSABlock * LDVBB)3944 BlockValueNum getValue(LDVSSABlock *LDVBB) {
3945 return MLiveIns[LDVBB->BB.getNumber()][Loc.asU64()].asU64();
3946 }
3947 };
3948
operator *()3949 LDVSSABlock *LDVSSABlockIterator::operator*() {
3950 return Updater.getSSALDVBlock(*PredIt);
3951 }
3952
3953 #ifndef NDEBUG
3954
operator <<(raw_ostream & out,const LDVSSAPhi & PHI)3955 raw_ostream &operator<<(raw_ostream &out, const LDVSSAPhi &PHI) {
3956 out << "SSALDVPHI " << PHI.PHIValNum;
3957 return out;
3958 }
3959
3960 #endif
3961
3962 } // namespace
3963
3964 namespace llvm {
3965
3966 /// Template specialization to give SSAUpdater access to CFG and value
3967 /// information. SSAUpdater calls methods in these traits, passing in the
3968 /// LDVSSAUpdater object, to learn about blocks and the values they define.
3969 /// It also provides methods to create PHI nodes and track them.
3970 template <> class SSAUpdaterTraits<LDVSSAUpdater> {
3971 public:
3972 using BlkT = LDVSSABlock;
3973 using ValT = BlockValueNum;
3974 using PhiT = LDVSSAPhi;
3975 using BlkSucc_iterator = LDVSSABlockIterator;
3976
3977 // Methods to access block successors -- dereferencing to our wrapper class.
BlkSucc_begin(BlkT * BB)3978 static BlkSucc_iterator BlkSucc_begin(BlkT *BB) { return BB->succ_begin(); }
BlkSucc_end(BlkT * BB)3979 static BlkSucc_iterator BlkSucc_end(BlkT *BB) { return BB->succ_end(); }
3980
3981 /// Iterator for PHI operands.
3982 class PHI_iterator {
3983 private:
3984 LDVSSAPhi *PHI;
3985 unsigned Idx;
3986
3987 public:
PHI_iterator(LDVSSAPhi * P)3988 explicit PHI_iterator(LDVSSAPhi *P) // begin iterator
3989 : PHI(P), Idx(0) {}
PHI_iterator(LDVSSAPhi * P,bool)3990 PHI_iterator(LDVSSAPhi *P, bool) // end iterator
3991 : PHI(P), Idx(PHI->IncomingValues.size()) {}
3992
operator ++()3993 PHI_iterator &operator++() {
3994 Idx++;
3995 return *this;
3996 }
operator ==(const PHI_iterator & X) const3997 bool operator==(const PHI_iterator &X) const { return Idx == X.Idx; }
operator !=(const PHI_iterator & X) const3998 bool operator!=(const PHI_iterator &X) const { return !operator==(X); }
3999
getIncomingValue()4000 BlockValueNum getIncomingValue() { return PHI->IncomingValues[Idx].second; }
4001
getIncomingBlock()4002 LDVSSABlock *getIncomingBlock() { return PHI->IncomingValues[Idx].first; }
4003 };
4004
PHI_begin(PhiT * PHI)4005 static inline PHI_iterator PHI_begin(PhiT *PHI) { return PHI_iterator(PHI); }
4006
PHI_end(PhiT * PHI)4007 static inline PHI_iterator PHI_end(PhiT *PHI) {
4008 return PHI_iterator(PHI, true);
4009 }
4010
4011 /// FindPredecessorBlocks - Put the predecessors of BB into the Preds
4012 /// vector.
FindPredecessorBlocks(LDVSSABlock * BB,SmallVectorImpl<LDVSSABlock * > * Preds)4013 static void FindPredecessorBlocks(LDVSSABlock *BB,
4014 SmallVectorImpl<LDVSSABlock *> *Preds) {
4015 for (MachineBasicBlock *Pred : BB->BB.predecessors())
4016 Preds->push_back(BB->Updater.getSSALDVBlock(Pred));
4017 }
4018
4019 /// GetUndefVal - Normally creates an IMPLICIT_DEF instruction with a new
4020 /// register. For LiveDebugValues, represents a block identified as not having
4021 /// any DBG_PHI predecessors.
GetUndefVal(LDVSSABlock * BB,LDVSSAUpdater * Updater)4022 static BlockValueNum GetUndefVal(LDVSSABlock *BB, LDVSSAUpdater *Updater) {
4023 // Create a value number for this block -- it needs to be unique and in the
4024 // "undef" collection, so that we know it's not real. Use a number
4025 // representing a PHI into this block.
4026 BlockValueNum Num = ValueIDNum(BB->BB.getNumber(), 0, Updater->Loc).asU64();
4027 Updater->UndefMap[&BB->BB] = Num;
4028 return Num;
4029 }
4030
4031 /// CreateEmptyPHI - Create a (representation of a) PHI in the given block.
4032 /// SSAUpdater will populate it with information about incoming values. The
4033 /// value number of this PHI is whatever the machine value number problem
4034 /// solution determined it to be. This includes non-phi values if SSAUpdater
4035 /// tries to create a PHI where the incoming values are identical.
CreateEmptyPHI(LDVSSABlock * BB,unsigned NumPreds,LDVSSAUpdater * Updater)4036 static BlockValueNum CreateEmptyPHI(LDVSSABlock *BB, unsigned NumPreds,
4037 LDVSSAUpdater *Updater) {
4038 BlockValueNum PHIValNum = Updater->getValue(BB);
4039 LDVSSAPhi *PHI = BB->newPHI(PHIValNum);
4040 Updater->PHIs[PHIValNum] = PHI;
4041 return PHIValNum;
4042 }
4043
4044 /// AddPHIOperand - Add the specified value as an operand of the PHI for
4045 /// the specified predecessor block.
AddPHIOperand(LDVSSAPhi * PHI,BlockValueNum Val,LDVSSABlock * Pred)4046 static void AddPHIOperand(LDVSSAPhi *PHI, BlockValueNum Val, LDVSSABlock *Pred) {
4047 PHI->IncomingValues.push_back(std::make_pair(Pred, Val));
4048 }
4049
4050 /// ValueIsPHI - Check if the instruction that defines the specified value
4051 /// is a PHI instruction.
ValueIsPHI(BlockValueNum Val,LDVSSAUpdater * Updater)4052 static LDVSSAPhi *ValueIsPHI(BlockValueNum Val, LDVSSAUpdater *Updater) {
4053 auto PHIIt = Updater->PHIs.find(Val);
4054 if (PHIIt == Updater->PHIs.end())
4055 return nullptr;
4056 return PHIIt->second;
4057 }
4058
4059 /// ValueIsNewPHI - Like ValueIsPHI but also check if the PHI has no source
4060 /// operands, i.e., it was just added.
ValueIsNewPHI(BlockValueNum Val,LDVSSAUpdater * Updater)4061 static LDVSSAPhi *ValueIsNewPHI(BlockValueNum Val, LDVSSAUpdater *Updater) {
4062 LDVSSAPhi *PHI = ValueIsPHI(Val, Updater);
4063 if (PHI && PHI->IncomingValues.size() == 0)
4064 return PHI;
4065 return nullptr;
4066 }
4067
4068 /// GetPHIValue - For the specified PHI instruction, return the value
4069 /// that it defines.
GetPHIValue(LDVSSAPhi * PHI)4070 static BlockValueNum GetPHIValue(LDVSSAPhi *PHI) { return PHI->PHIValNum; }
4071 };
4072
4073 } // end namespace llvm
4074
resolveDbgPHIs(MachineFunction & MF,const ValueTable * MLiveOuts,const ValueTable * MLiveIns,MachineInstr & Here,uint64_t InstrNum)4075 std::optional<ValueIDNum> InstrRefBasedLDV::resolveDbgPHIs(
4076 MachineFunction &MF, const ValueTable *MLiveOuts,
4077 const ValueTable *MLiveIns, MachineInstr &Here, uint64_t InstrNum) {
4078 assert(MLiveOuts && MLiveIns &&
4079 "Tried to resolve DBG_PHI before location "
4080 "tables allocated?");
4081
4082 // This function will be called twice per DBG_INSTR_REF, and might end up
4083 // computing lots of SSA information: memoize it.
4084 auto SeenDbgPHIIt = SeenDbgPHIs.find(std::make_pair(&Here, InstrNum));
4085 if (SeenDbgPHIIt != SeenDbgPHIs.end())
4086 return SeenDbgPHIIt->second;
4087
4088 std::optional<ValueIDNum> Result =
4089 resolveDbgPHIsImpl(MF, MLiveOuts, MLiveIns, Here, InstrNum);
4090 SeenDbgPHIs.insert({std::make_pair(&Here, InstrNum), Result});
4091 return Result;
4092 }
4093
resolveDbgPHIsImpl(MachineFunction & MF,const ValueTable * MLiveOuts,const ValueTable * MLiveIns,MachineInstr & Here,uint64_t InstrNum)4094 std::optional<ValueIDNum> InstrRefBasedLDV::resolveDbgPHIsImpl(
4095 MachineFunction &MF, const ValueTable *MLiveOuts,
4096 const ValueTable *MLiveIns, MachineInstr &Here, uint64_t InstrNum) {
4097 // Pick out records of DBG_PHI instructions that have been observed. If there
4098 // are none, then we cannot compute a value number.
4099 auto RangePair = std::equal_range(DebugPHINumToValue.begin(),
4100 DebugPHINumToValue.end(), InstrNum);
4101 auto LowerIt = RangePair.first;
4102 auto UpperIt = RangePair.second;
4103
4104 // No DBG_PHI means there can be no location.
4105 if (LowerIt == UpperIt)
4106 return std::nullopt;
4107
4108 // If any DBG_PHIs referred to a location we didn't understand, don't try to
4109 // compute a value. There might be scenarios where we could recover a value
4110 // for some range of DBG_INSTR_REFs, but at this point we can have high
4111 // confidence that we've seen a bug.
4112 auto DBGPHIRange = make_range(LowerIt, UpperIt);
4113 for (const DebugPHIRecord &DBG_PHI : DBGPHIRange)
4114 if (!DBG_PHI.ValueRead)
4115 return std::nullopt;
4116
4117 // If there's only one DBG_PHI, then that is our value number.
4118 if (std::distance(LowerIt, UpperIt) == 1)
4119 return *LowerIt->ValueRead;
4120
4121 // Pick out the location (physreg, slot) where any PHIs must occur. It's
4122 // technically possible for us to merge values in different registers in each
4123 // block, but highly unlikely that LLVM will generate such code after register
4124 // allocation.
4125 LocIdx Loc = *LowerIt->ReadLoc;
4126
4127 // We have several DBG_PHIs, and a use position (the Here inst). All each
4128 // DBG_PHI does is identify a value at a program position. We can treat each
4129 // DBG_PHI like it's a Def of a value, and the use position is a Use of a
4130 // value, just like SSA. We use the bulk-standard LLVM SSA updater class to
4131 // determine which Def is used at the Use, and any PHIs that happen along
4132 // the way.
4133 // Adapted LLVM SSA Updater:
4134 LDVSSAUpdater Updater(Loc, MLiveIns);
4135 // Map of which Def or PHI is the current value in each block.
4136 DenseMap<LDVSSABlock *, BlockValueNum> AvailableValues;
4137 // Set of PHIs that we have created along the way.
4138 SmallVector<LDVSSAPhi *, 8> CreatedPHIs;
4139
4140 // Each existing DBG_PHI is a Def'd value under this model. Record these Defs
4141 // for the SSAUpdater.
4142 for (const auto &DBG_PHI : DBGPHIRange) {
4143 LDVSSABlock *Block = Updater.getSSALDVBlock(DBG_PHI.MBB);
4144 const ValueIDNum &Num = *DBG_PHI.ValueRead;
4145 AvailableValues.insert(std::make_pair(Block, Num.asU64()));
4146 }
4147
4148 LDVSSABlock *HereBlock = Updater.getSSALDVBlock(Here.getParent());
4149 const auto &AvailIt = AvailableValues.find(HereBlock);
4150 if (AvailIt != AvailableValues.end()) {
4151 // Actually, we already know what the value is -- the Use is in the same
4152 // block as the Def.
4153 return ValueIDNum::fromU64(AvailIt->second);
4154 }
4155
4156 // Otherwise, we must use the SSA Updater. It will identify the value number
4157 // that we are to use, and the PHIs that must happen along the way.
4158 SSAUpdaterImpl<LDVSSAUpdater> Impl(&Updater, &AvailableValues, &CreatedPHIs);
4159 BlockValueNum ResultInt = Impl.GetValue(Updater.getSSALDVBlock(Here.getParent()));
4160 ValueIDNum Result = ValueIDNum::fromU64(ResultInt);
4161
4162 // We have the number for a PHI, or possibly live-through value, to be used
4163 // at this Use. There are a number of things we have to check about it though:
4164 // * Does any PHI use an 'Undef' (like an IMPLICIT_DEF) value? If so, this
4165 // Use was not completely dominated by DBG_PHIs and we should abort.
4166 // * Are the Defs or PHIs clobbered in a block? SSAUpdater isn't aware that
4167 // we've left SSA form. Validate that the inputs to each PHI are the
4168 // expected values.
4169 // * Is a PHI we've created actually a merging of values, or are all the
4170 // predecessor values the same, leading to a non-PHI machine value number?
4171 // (SSAUpdater doesn't know that either). Remap validated PHIs into the
4172 // the ValidatedValues collection below to sort this out.
4173 DenseMap<LDVSSABlock *, ValueIDNum> ValidatedValues;
4174
4175 // Define all the input DBG_PHI values in ValidatedValues.
4176 for (const auto &DBG_PHI : DBGPHIRange) {
4177 LDVSSABlock *Block = Updater.getSSALDVBlock(DBG_PHI.MBB);
4178 const ValueIDNum &Num = *DBG_PHI.ValueRead;
4179 ValidatedValues.insert(std::make_pair(Block, Num));
4180 }
4181
4182 // Sort PHIs to validate into RPO-order.
4183 SmallVector<LDVSSAPhi *, 8> SortedPHIs;
4184 for (auto &PHI : CreatedPHIs)
4185 SortedPHIs.push_back(PHI);
4186
4187 llvm::sort(SortedPHIs, [&](LDVSSAPhi *A, LDVSSAPhi *B) {
4188 return BBToOrder[&A->getParent()->BB] < BBToOrder[&B->getParent()->BB];
4189 });
4190
4191 for (auto &PHI : SortedPHIs) {
4192 ValueIDNum ThisBlockValueNum =
4193 MLiveIns[PHI->ParentBlock->BB.getNumber()][Loc.asU64()];
4194
4195 // Are all these things actually defined?
4196 for (auto &PHIIt : PHI->IncomingValues) {
4197 // Any undef input means DBG_PHIs didn't dominate the use point.
4198 if (Updater.UndefMap.find(&PHIIt.first->BB) != Updater.UndefMap.end())
4199 return std::nullopt;
4200
4201 ValueIDNum ValueToCheck;
4202 const ValueTable &BlockLiveOuts = MLiveOuts[PHIIt.first->BB.getNumber()];
4203
4204 auto VVal = ValidatedValues.find(PHIIt.first);
4205 if (VVal == ValidatedValues.end()) {
4206 // We cross a loop, and this is a backedge. LLVMs tail duplication
4207 // happens so late that DBG_PHI instructions should not be able to
4208 // migrate into loops -- meaning we can only be live-through this
4209 // loop.
4210 ValueToCheck = ThisBlockValueNum;
4211 } else {
4212 // Does the block have as a live-out, in the location we're examining,
4213 // the value that we expect? If not, it's been moved or clobbered.
4214 ValueToCheck = VVal->second;
4215 }
4216
4217 if (BlockLiveOuts[Loc.asU64()] != ValueToCheck)
4218 return std::nullopt;
4219 }
4220
4221 // Record this value as validated.
4222 ValidatedValues.insert({PHI->ParentBlock, ThisBlockValueNum});
4223 }
4224
4225 // All the PHIs are valid: we can return what the SSAUpdater said our value
4226 // number was.
4227 return Result;
4228 }
4229