1 /*
2 * Copyright (c) 1988-1997 Sam Leffler
3 * Copyright (c) 1991-1997 Silicon Graphics, Inc.
4 *
5 * Permission to use, copy, modify, distribute, and sell this software and
6 * its documentation for any purpose is hereby granted without fee, provided
7 * that (i) the above copyright notices and this permission notice appear in
8 * all copies of the software and related documentation, and (ii) the names of
9 * Sam Leffler and Silicon Graphics may not be used in any advertising or
10 * publicity relating to the software without the specific, prior written
11 * permission of Sam Leffler and Silicon Graphics.
12 *
13 * THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND,
14 * EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY
15 * WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
16 *
17 * IN NO EVENT SHALL SAM LEFFLER OR SILICON GRAPHICS BE LIABLE FOR
18 * ANY SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND,
19 * OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
20 * WHETHER OR NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF
21 * LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
22 * OF THIS SOFTWARE.
23 */
24
25 /*
26 * CIE L*a*b* to CIE XYZ and CIE XYZ to RGB conversion routines are taken
27 * from the VIPS library (http://www.vips.ecs.soton.ac.uk) with
28 * the permission of John Cupitt, the VIPS author.
29 */
30
31 /*
32 * TIFF Library.
33 *
34 * Color space conversion routines.
35 */
36
37 #include <precomp.h>
38 #include <math.h>
39
40 /*
41 * Convert color value from the CIE L*a*b* 1976 space to CIE XYZ.
42 */
43 void
TIFFCIELabToXYZ(TIFFCIELabToRGB * cielab,uint32 l,int32 a,int32 b,float * X,float * Y,float * Z)44 TIFFCIELabToXYZ(TIFFCIELabToRGB *cielab, uint32 l, int32 a, int32 b,
45 float *X, float *Y, float *Z)
46 {
47 float L = (float)l * 100.0F / 255.0F;
48 float cby, tmp;
49
50 if( L < 8.856F ) {
51 *Y = (L * cielab->Y0) / 903.292F;
52 cby = 7.787F * (*Y / cielab->Y0) + 16.0F / 116.0F;
53 } else {
54 cby = (L + 16.0F) / 116.0F;
55 *Y = cielab->Y0 * cby * cby * cby;
56 }
57
58 tmp = (float)a / 500.0F + cby;
59 if( tmp < 0.2069F )
60 *X = cielab->X0 * (tmp - 0.13793F) / 7.787F;
61 else
62 *X = cielab->X0 * tmp * tmp * tmp;
63
64 tmp = cby - (float)b / 200.0F;
65 if( tmp < 0.2069F )
66 *Z = cielab->Z0 * (tmp - 0.13793F) / 7.787F;
67 else
68 *Z = cielab->Z0 * tmp * tmp * tmp;
69 }
70
71 #define RINT(R) ((uint32)((R)>0?((R)+0.5):((R)-0.5)))
72 /*
73 * Convert color value from the XYZ space to RGB.
74 */
75 void
TIFFXYZToRGB(TIFFCIELabToRGB * cielab,float X,float Y,float Z,uint32 * r,uint32 * g,uint32 * b)76 TIFFXYZToRGB(TIFFCIELabToRGB *cielab, float X, float Y, float Z,
77 uint32 *r, uint32 *g, uint32 *b)
78 {
79 int i;
80 float Yr, Yg, Yb;
81 float *matrix = &cielab->display.d_mat[0][0];
82
83 /* Multiply through the matrix to get luminosity values. */
84 Yr = matrix[0] * X + matrix[1] * Y + matrix[2] * Z;
85 Yg = matrix[3] * X + matrix[4] * Y + matrix[5] * Z;
86 Yb = matrix[6] * X + matrix[7] * Y + matrix[8] * Z;
87
88 /* Clip input */
89 Yr = TIFFmax(Yr, cielab->display.d_Y0R);
90 Yg = TIFFmax(Yg, cielab->display.d_Y0G);
91 Yb = TIFFmax(Yb, cielab->display.d_Y0B);
92
93 /* Avoid overflow in case of wrong input values */
94 Yr = TIFFmin(Yr, cielab->display.d_YCR);
95 Yg = TIFFmin(Yg, cielab->display.d_YCG);
96 Yb = TIFFmin(Yb, cielab->display.d_YCB);
97
98 /* Turn luminosity to colour value. */
99 i = (int)((Yr - cielab->display.d_Y0R) / cielab->rstep);
100 i = TIFFmin(cielab->range, i);
101 *r = RINT(cielab->Yr2r[i]);
102
103 i = (int)((Yg - cielab->display.d_Y0G) / cielab->gstep);
104 i = TIFFmin(cielab->range, i);
105 *g = RINT(cielab->Yg2g[i]);
106
107 i = (int)((Yb - cielab->display.d_Y0B) / cielab->bstep);
108 i = TIFFmin(cielab->range, i);
109 *b = RINT(cielab->Yb2b[i]);
110
111 /* Clip output. */
112 *r = TIFFmin(*r, cielab->display.d_Vrwr);
113 *g = TIFFmin(*g, cielab->display.d_Vrwg);
114 *b = TIFFmin(*b, cielab->display.d_Vrwb);
115 }
116 #undef RINT
117
118 /*
119 * Allocate conversion state structures and make look_up tables for
120 * the Yr,Yb,Yg <=> r,g,b conversions.
121 */
122 int
TIFFCIELabToRGBInit(TIFFCIELabToRGB * cielab,const TIFFDisplay * display,float * refWhite)123 TIFFCIELabToRGBInit(TIFFCIELabToRGB* cielab,
124 const TIFFDisplay *display, float *refWhite)
125 {
126 int i;
127 double dfGamma;
128
129 cielab->range = CIELABTORGB_TABLE_RANGE;
130
131 _TIFFmemcpy(&cielab->display, display, sizeof(TIFFDisplay));
132
133 /* Red */
134 dfGamma = 1.0 / cielab->display.d_gammaR ;
135 cielab->rstep =
136 (cielab->display.d_YCR - cielab->display.d_Y0R) / cielab->range;
137 for(i = 0; i <= cielab->range; i++) {
138 cielab->Yr2r[i] = cielab->display.d_Vrwr
139 * ((float)pow((double)i / cielab->range, dfGamma));
140 }
141
142 /* Green */
143 dfGamma = 1.0 / cielab->display.d_gammaG ;
144 cielab->gstep =
145 (cielab->display.d_YCR - cielab->display.d_Y0R) / cielab->range;
146 for(i = 0; i <= cielab->range; i++) {
147 cielab->Yg2g[i] = cielab->display.d_Vrwg
148 * ((float)pow((double)i / cielab->range, dfGamma));
149 }
150
151 /* Blue */
152 dfGamma = 1.0 / cielab->display.d_gammaB ;
153 cielab->bstep =
154 (cielab->display.d_YCR - cielab->display.d_Y0R) / cielab->range;
155 for(i = 0; i <= cielab->range; i++) {
156 cielab->Yb2b[i] = cielab->display.d_Vrwb
157 * ((float)pow((double)i / cielab->range, dfGamma));
158 }
159
160 /* Init reference white point */
161 cielab->X0 = refWhite[0];
162 cielab->Y0 = refWhite[1];
163 cielab->Z0 = refWhite[2];
164
165 return 0;
166 }
167
168 /*
169 * Convert color value from the YCbCr space to RGB.
170 * The colorspace conversion algorithm comes from the IJG v5a code;
171 * see below for more information on how it works.
172 */
173 #define SHIFT 16
174 #define FIX(x) ((int32)((x) * (1L<<SHIFT) + 0.5))
175 #define ONE_HALF ((int32)(1<<(SHIFT-1)))
176 #define Code2V(c, RB, RW, CR) ((((c)-(int32)(RB))*(float)(CR))/(float)(((RW)-(RB)!=0) ? ((RW)-(RB)) : 1))
177 #define CLAMP(f,min,max) ((f)<(min)?(min):(f)>(max)?(max):(f))
178 #define HICLAMP(f,max) ((f)>(max)?(max):(f))
179
180 void
TIFFYCbCrtoRGB(TIFFYCbCrToRGB * ycbcr,uint32 Y,int32 Cb,int32 Cr,uint32 * r,uint32 * g,uint32 * b)181 TIFFYCbCrtoRGB(TIFFYCbCrToRGB *ycbcr, uint32 Y, int32 Cb, int32 Cr,
182 uint32 *r, uint32 *g, uint32 *b)
183 {
184 int32 i;
185
186 /* XXX: Only 8-bit YCbCr input supported for now */
187 Y = HICLAMP(Y, 255);
188 Cb = CLAMP(Cb, 0, 255);
189 Cr = CLAMP(Cr, 0, 255);
190
191 i = ycbcr->Y_tab[Y] + ycbcr->Cr_r_tab[Cr];
192 *r = CLAMP(i, 0, 255);
193 i = ycbcr->Y_tab[Y]
194 + (int)((ycbcr->Cb_g_tab[Cb] + ycbcr->Cr_g_tab[Cr]) >> SHIFT);
195 *g = CLAMP(i, 0, 255);
196 i = ycbcr->Y_tab[Y] + ycbcr->Cb_b_tab[Cb];
197 *b = CLAMP(i, 0, 255);
198 }
199
200 /* Clamp function for sanitization purposes. Normally clamping should not */
201 /* occur for well behaved chroma and refBlackWhite coefficients */
CLAMPw(float v,float vmin,float vmax)202 static float CLAMPw(float v, float vmin, float vmax)
203 {
204 if( v < vmin )
205 {
206 /* printf("%f clamped to %f\n", v, vmin); */
207 return vmin;
208 }
209 if( v > vmax )
210 {
211 /* printf("%f clamped to %f\n", v, vmax); */
212 return vmax;
213 }
214 return v;
215 }
216
217 /*
218 * Initialize the YCbCr->RGB conversion tables. The conversion
219 * is done according to the 6.0 spec:
220 *
221 * R = Y + Cr*(2 - 2*LumaRed)
222 * B = Y + Cb*(2 - 2*LumaBlue)
223 * G = Y
224 * - LumaBlue*Cb*(2-2*LumaBlue)/LumaGreen
225 * - LumaRed*Cr*(2-2*LumaRed)/LumaGreen
226 *
227 * To avoid floating point arithmetic the fractional constants that
228 * come out of the equations are represented as fixed point values
229 * in the range 0...2^16. We also eliminate multiplications by
230 * pre-calculating possible values indexed by Cb and Cr (this code
231 * assumes conversion is being done for 8-bit samples).
232 */
233 int
TIFFYCbCrToRGBInit(TIFFYCbCrToRGB * ycbcr,float * luma,float * refBlackWhite)234 TIFFYCbCrToRGBInit(TIFFYCbCrToRGB* ycbcr, float *luma, float *refBlackWhite)
235 {
236 TIFFRGBValue* clamptab;
237 int i;
238
239 #define LumaRed luma[0]
240 #define LumaGreen luma[1]
241 #define LumaBlue luma[2]
242
243 clamptab = (TIFFRGBValue*)(
244 (uint8*) ycbcr+TIFFroundup_32(sizeof (TIFFYCbCrToRGB), sizeof (long)));
245 _TIFFmemset(clamptab, 0, 256); /* v < 0 => 0 */
246 ycbcr->clamptab = (clamptab += 256);
247 for (i = 0; i < 256; i++)
248 clamptab[i] = (TIFFRGBValue) i;
249 _TIFFmemset(clamptab+256, 255, 2*256); /* v > 255 => 255 */
250 ycbcr->Cr_r_tab = (int*) (clamptab + 3*256);
251 ycbcr->Cb_b_tab = ycbcr->Cr_r_tab + 256;
252 ycbcr->Cr_g_tab = (int32*) (ycbcr->Cb_b_tab + 256);
253 ycbcr->Cb_g_tab = ycbcr->Cr_g_tab + 256;
254 ycbcr->Y_tab = ycbcr->Cb_g_tab + 256;
255
256 { float f1 = 2-2*LumaRed; int32 D1 = FIX(CLAMP(f1,0.0F,2.0F));
257 float f2 = LumaRed*f1/LumaGreen; int32 D2 = -FIX(CLAMP(f2,0.0F,2.0F));
258 float f3 = 2-2*LumaBlue; int32 D3 = FIX(CLAMP(f3,0.0F,2.0F));
259 float f4 = LumaBlue*f3/LumaGreen; int32 D4 = -FIX(CLAMP(f4,0.0F,2.0F));
260 int x;
261
262 #undef LumaBlue
263 #undef LumaGreen
264 #undef LumaRed
265
266 /*
267 * i is the actual input pixel value in the range 0..255
268 * Cb and Cr values are in the range -128..127 (actually
269 * they are in a range defined by the ReferenceBlackWhite
270 * tag) so there is some range shifting to do here when
271 * constructing tables indexed by the raw pixel data.
272 */
273 for (i = 0, x = -128; i < 256; i++, x++) {
274 int32 Cr = (int32)CLAMPw(Code2V(x, refBlackWhite[4] - 128.0F,
275 refBlackWhite[5] - 128.0F, 127),
276 -128.0F * 32, 128.0F * 32);
277 int32 Cb = (int32)CLAMPw(Code2V(x, refBlackWhite[2] - 128.0F,
278 refBlackWhite[3] - 128.0F, 127),
279 -128.0F * 32, 128.0F * 32);
280
281 ycbcr->Cr_r_tab[i] = (int32)((D1*Cr + ONE_HALF)>>SHIFT);
282 ycbcr->Cb_b_tab[i] = (int32)((D3*Cb + ONE_HALF)>>SHIFT);
283 ycbcr->Cr_g_tab[i] = D2*Cr;
284 ycbcr->Cb_g_tab[i] = D4*Cb + ONE_HALF;
285 ycbcr->Y_tab[i] =
286 (int32)CLAMPw(Code2V(x + 128, refBlackWhite[0], refBlackWhite[1], 255),
287 -128.0F * 32, 128.0F * 32);
288 }
289 }
290
291 return 0;
292 }
293 #undef HICLAMP
294 #undef CLAMP
295 #undef Code2V
296 #undef SHIFT
297 #undef ONE_HALF
298 #undef FIX
299
300 /* vim: set ts=8 sts=8 sw=8 noet: */
301 /*
302 * Local Variables:
303 * mode: c
304 * c-basic-offset: 8
305 * fill-column: 78
306 * End:
307 */
308