1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2016 by Delphix. All rights reserved.
25  * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
26  * Copyright (c) 2012, Joyent, Inc. All rights reserved.
27  * Copyright 2013 DEY Storage Systems, Inc.
28  * Copyright 2014 HybridCluster. All rights reserved.
29  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
30  * Copyright 2013 Saso Kiselkov. All rights reserved.
31  * Copyright (c) 2014 Integros [integros.com]
32  */
33 
34 /* Portions Copyright 2010 Robert Milkowski */
35 
36 #ifndef	_SYS_DMU_H
37 #define	_SYS_DMU_H
38 
39 /*
40  * This file describes the interface that the DMU provides for its
41  * consumers.
42  *
43  * The DMU also interacts with the SPA.  That interface is described in
44  * dmu_spa.h.
45  */
46 
47 #include <sys/zfs_context.h>
48 #include <sys/inttypes.h>
49 #include <sys/cred.h>
50 #include <sys/fs/zfs.h>
51 #include <sys/zio_priority.h>
52 
53 #ifdef	__cplusplus
54 extern "C" {
55 #endif
56 
57 struct uio;
58 struct xuio;
59 struct page;
60 struct vnode;
61 struct spa;
62 struct zilog;
63 struct zio;
64 struct blkptr;
65 struct zap_cursor;
66 struct dsl_dataset;
67 struct dsl_pool;
68 struct dnode;
69 struct drr_begin;
70 struct drr_end;
71 struct zbookmark_phys;
72 struct spa;
73 struct nvlist;
74 struct arc_buf;
75 struct zio_prop;
76 struct sa_handle;
77 struct file;
78 
79 typedef struct objset objset_t;
80 typedef struct dmu_tx dmu_tx_t;
81 typedef struct dsl_dir dsl_dir_t;
82 typedef struct dnode dnode_t;
83 
84 typedef enum dmu_object_byteswap {
85 	DMU_BSWAP_UINT8,
86 	DMU_BSWAP_UINT16,
87 	DMU_BSWAP_UINT32,
88 	DMU_BSWAP_UINT64,
89 	DMU_BSWAP_ZAP,
90 	DMU_BSWAP_DNODE,
91 	DMU_BSWAP_OBJSET,
92 	DMU_BSWAP_ZNODE,
93 	DMU_BSWAP_OLDACL,
94 	DMU_BSWAP_ACL,
95 	/*
96 	 * Allocating a new byteswap type number makes the on-disk format
97 	 * incompatible with any other format that uses the same number.
98 	 *
99 	 * Data can usually be structured to work with one of the
100 	 * DMU_BSWAP_UINT* or DMU_BSWAP_ZAP types.
101 	 */
102 	DMU_BSWAP_NUMFUNCS
103 } dmu_object_byteswap_t;
104 
105 #define	DMU_OT_NEWTYPE 0x80
106 #define	DMU_OT_METADATA 0x40
107 #define	DMU_OT_BYTESWAP_MASK 0x3f
108 
109 /*
110  * Defines a uint8_t object type. Object types specify if the data
111  * in the object is metadata (boolean) and how to byteswap the data
112  * (dmu_object_byteswap_t).
113  */
114 #define	DMU_OT(byteswap, metadata) \
115 	(DMU_OT_NEWTYPE | \
116 	((metadata) ? DMU_OT_METADATA : 0) | \
117 	((byteswap) & DMU_OT_BYTESWAP_MASK))
118 
119 #define	DMU_OT_IS_VALID(ot) (((ot) & DMU_OT_NEWTYPE) ? \
120 	((ot) & DMU_OT_BYTESWAP_MASK) < DMU_BSWAP_NUMFUNCS : \
121 	(ot) < DMU_OT_NUMTYPES)
122 
123 #define	DMU_OT_IS_METADATA(ot) (((ot) & DMU_OT_NEWTYPE) ? \
124 	((ot) & DMU_OT_METADATA) : \
125 	dmu_ot[(ot)].ot_metadata)
126 
127 /*
128  * These object types use bp_fill != 1 for their L0 bp's. Therefore they can't
129  * have their data embedded (i.e. use a BP_IS_EMBEDDED() bp), because bp_fill
130  * is repurposed for embedded BPs.
131  */
132 #define	DMU_OT_HAS_FILL(ot) \
133 	((ot) == DMU_OT_DNODE || (ot) == DMU_OT_OBJSET)
134 
135 #define	DMU_OT_BYTESWAP(ot) (((ot) & DMU_OT_NEWTYPE) ? \
136 	((ot) & DMU_OT_BYTESWAP_MASK) : \
137 	dmu_ot[(ot)].ot_byteswap)
138 
139 typedef enum dmu_object_type {
140 	DMU_OT_NONE,
141 	/* general: */
142 	DMU_OT_OBJECT_DIRECTORY,	/* ZAP */
143 	DMU_OT_OBJECT_ARRAY,		/* UINT64 */
144 	DMU_OT_PACKED_NVLIST,		/* UINT8 (XDR by nvlist_pack/unpack) */
145 	DMU_OT_PACKED_NVLIST_SIZE,	/* UINT64 */
146 	DMU_OT_BPOBJ,			/* UINT64 */
147 	DMU_OT_BPOBJ_HDR,		/* UINT64 */
148 	/* spa: */
149 	DMU_OT_SPACE_MAP_HEADER,	/* UINT64 */
150 	DMU_OT_SPACE_MAP,		/* UINT64 */
151 	/* zil: */
152 	DMU_OT_INTENT_LOG,		/* UINT64 */
153 	/* dmu: */
154 	DMU_OT_DNODE,			/* DNODE */
155 	DMU_OT_OBJSET,			/* OBJSET */
156 	/* dsl: */
157 	DMU_OT_DSL_DIR,			/* UINT64 */
158 	DMU_OT_DSL_DIR_CHILD_MAP,	/* ZAP */
159 	DMU_OT_DSL_DS_SNAP_MAP,		/* ZAP */
160 	DMU_OT_DSL_PROPS,		/* ZAP */
161 	DMU_OT_DSL_DATASET,		/* UINT64 */
162 	/* zpl: */
163 	DMU_OT_ZNODE,			/* ZNODE */
164 	DMU_OT_OLDACL,			/* Old ACL */
165 	DMU_OT_PLAIN_FILE_CONTENTS,	/* UINT8 */
166 	DMU_OT_DIRECTORY_CONTENTS,	/* ZAP */
167 	DMU_OT_MASTER_NODE,		/* ZAP */
168 	DMU_OT_UNLINKED_SET,		/* ZAP */
169 	/* zvol: */
170 	DMU_OT_ZVOL,			/* UINT8 */
171 	DMU_OT_ZVOL_PROP,		/* ZAP */
172 	/* other; for testing only! */
173 	DMU_OT_PLAIN_OTHER,		/* UINT8 */
174 	DMU_OT_UINT64_OTHER,		/* UINT64 */
175 	DMU_OT_ZAP_OTHER,		/* ZAP */
176 	/* new object types: */
177 	DMU_OT_ERROR_LOG,		/* ZAP */
178 	DMU_OT_SPA_HISTORY,		/* UINT8 */
179 	DMU_OT_SPA_HISTORY_OFFSETS,	/* spa_his_phys_t */
180 	DMU_OT_POOL_PROPS,		/* ZAP */
181 	DMU_OT_DSL_PERMS,		/* ZAP */
182 	DMU_OT_ACL,			/* ACL */
183 	DMU_OT_SYSACL,			/* SYSACL */
184 	DMU_OT_FUID,			/* FUID table (Packed NVLIST UINT8) */
185 	DMU_OT_FUID_SIZE,		/* FUID table size UINT64 */
186 	DMU_OT_NEXT_CLONES,		/* ZAP */
187 	DMU_OT_SCAN_QUEUE,		/* ZAP */
188 	DMU_OT_USERGROUP_USED,		/* ZAP */
189 	DMU_OT_USERGROUP_QUOTA,		/* ZAP */
190 	DMU_OT_USERREFS,		/* ZAP */
191 	DMU_OT_DDT_ZAP,			/* ZAP */
192 	DMU_OT_DDT_STATS,		/* ZAP */
193 	DMU_OT_SA,			/* System attr */
194 	DMU_OT_SA_MASTER_NODE,		/* ZAP */
195 	DMU_OT_SA_ATTR_REGISTRATION,	/* ZAP */
196 	DMU_OT_SA_ATTR_LAYOUTS,		/* ZAP */
197 	DMU_OT_SCAN_XLATE,		/* ZAP */
198 	DMU_OT_DEDUP,			/* fake dedup BP from ddt_bp_create() */
199 	DMU_OT_DEADLIST,		/* ZAP */
200 	DMU_OT_DEADLIST_HDR,		/* UINT64 */
201 	DMU_OT_DSL_CLONES,		/* ZAP */
202 	DMU_OT_BPOBJ_SUBOBJ,		/* UINT64 */
203 	/*
204 	 * Do not allocate new object types here. Doing so makes the on-disk
205 	 * format incompatible with any other format that uses the same object
206 	 * type number.
207 	 *
208 	 * When creating an object which does not have one of the above types
209 	 * use the DMU_OTN_* type with the correct byteswap and metadata
210 	 * values.
211 	 *
212 	 * The DMU_OTN_* types do not have entries in the dmu_ot table,
213 	 * use the DMU_OT_IS_METDATA() and DMU_OT_BYTESWAP() macros instead
214 	 * of indexing into dmu_ot directly (this works for both DMU_OT_* types
215 	 * and DMU_OTN_* types).
216 	 */
217 	DMU_OT_NUMTYPES,
218 
219 	/*
220 	 * Names for valid types declared with DMU_OT().
221 	 */
222 	DMU_OTN_UINT8_DATA = DMU_OT(DMU_BSWAP_UINT8, B_FALSE),
223 	DMU_OTN_UINT8_METADATA = DMU_OT(DMU_BSWAP_UINT8, B_TRUE),
224 	DMU_OTN_UINT16_DATA = DMU_OT(DMU_BSWAP_UINT16, B_FALSE),
225 	DMU_OTN_UINT16_METADATA = DMU_OT(DMU_BSWAP_UINT16, B_TRUE),
226 	DMU_OTN_UINT32_DATA = DMU_OT(DMU_BSWAP_UINT32, B_FALSE),
227 	DMU_OTN_UINT32_METADATA = DMU_OT(DMU_BSWAP_UINT32, B_TRUE),
228 	DMU_OTN_UINT64_DATA = DMU_OT(DMU_BSWAP_UINT64, B_FALSE),
229 	DMU_OTN_UINT64_METADATA = DMU_OT(DMU_BSWAP_UINT64, B_TRUE),
230 	DMU_OTN_ZAP_DATA = DMU_OT(DMU_BSWAP_ZAP, B_FALSE),
231 	DMU_OTN_ZAP_METADATA = DMU_OT(DMU_BSWAP_ZAP, B_TRUE),
232 } dmu_object_type_t;
233 
234 typedef enum txg_how {
235 	TXG_WAIT = 1,
236 	TXG_NOWAIT,
237 	TXG_WAITED,
238 } txg_how_t;
239 
240 void byteswap_uint64_array(void *buf, size_t size);
241 void byteswap_uint32_array(void *buf, size_t size);
242 void byteswap_uint16_array(void *buf, size_t size);
243 void byteswap_uint8_array(void *buf, size_t size);
244 void zap_byteswap(void *buf, size_t size);
245 void zfs_oldacl_byteswap(void *buf, size_t size);
246 void zfs_acl_byteswap(void *buf, size_t size);
247 void zfs_znode_byteswap(void *buf, size_t size);
248 
249 #define	DS_FIND_SNAPSHOTS	(1<<0)
250 #define	DS_FIND_CHILDREN	(1<<1)
251 #define	DS_FIND_SERIALIZE	(1<<2)
252 
253 /*
254  * The maximum number of bytes that can be accessed as part of one
255  * operation, including metadata.
256  */
257 #define	DMU_MAX_ACCESS (32 * 1024 * 1024) /* 32MB */
258 #define	DMU_MAX_DELETEBLKCNT (20480) /* ~5MB of indirect blocks */
259 
260 #define	DMU_USERUSED_OBJECT	(-1ULL)
261 #define	DMU_GROUPUSED_OBJECT	(-2ULL)
262 
263 /*
264  * artificial blkids for bonus buffer and spill blocks
265  */
266 #define	DMU_BONUS_BLKID		(-1ULL)
267 #define	DMU_SPILL_BLKID		(-2ULL)
268 /*
269  * Public routines to create, destroy, open, and close objsets.
270  */
271 int dmu_objset_hold(const char *name, void *tag, objset_t **osp);
272 int dmu_objset_own(const char *name, dmu_objset_type_t type,
273     boolean_t readonly, void *tag, objset_t **osp);
274 void dmu_objset_rele(objset_t *os, void *tag);
275 void dmu_objset_disown(objset_t *os, void *tag);
276 int dmu_objset_open_ds(struct dsl_dataset *ds, objset_t **osp);
277 
278 void dmu_objset_evict_dbufs(objset_t *os);
279 int dmu_objset_create(const char *name, dmu_objset_type_t type, uint64_t flags,
280     void (*func)(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx), void *arg);
281 int dmu_get_recursive_snaps_nvl(char *fsname, const char *snapname,
282     struct nvlist *snaps);
283 int dmu_objset_clone(const char *name, const char *origin);
284 int dsl_destroy_snapshots_nvl(struct nvlist *snaps, boolean_t defer,
285     struct nvlist *errlist);
286 int dmu_objset_snapshot_one(const char *fsname, const char *snapname);
287 int dmu_objset_snapshot_tmp(const char *, const char *, int);
288 int dmu_objset_find(char *name, int func(const char *, void *), void *arg,
289     int flags);
290 void dmu_objset_byteswap(void *buf, size_t size);
291 int dsl_dataset_rename_snapshot(const char *fsname,
292     const char *oldsnapname, const char *newsnapname, boolean_t recursive);
293 
294 typedef struct dmu_buf {
295 	uint64_t db_object;		/* object that this buffer is part of */
296 	uint64_t db_offset;		/* byte offset in this object */
297 	uint64_t db_size;		/* size of buffer in bytes */
298 	void *db_data;			/* data in buffer */
299 } dmu_buf_t;
300 
301 /*
302  * The names of zap entries in the DIRECTORY_OBJECT of the MOS.
303  */
304 #define	DMU_POOL_DIRECTORY_OBJECT	1
305 #define	DMU_POOL_CONFIG			"config"
306 #define	DMU_POOL_FEATURES_FOR_WRITE	"features_for_write"
307 #define	DMU_POOL_FEATURES_FOR_READ	"features_for_read"
308 #define	DMU_POOL_FEATURE_DESCRIPTIONS	"feature_descriptions"
309 #define	DMU_POOL_FEATURE_ENABLED_TXG	"feature_enabled_txg"
310 #define	DMU_POOL_ROOT_DATASET		"root_dataset"
311 #define	DMU_POOL_SYNC_BPOBJ		"sync_bplist"
312 #define	DMU_POOL_ERRLOG_SCRUB		"errlog_scrub"
313 #define	DMU_POOL_ERRLOG_LAST		"errlog_last"
314 #define	DMU_POOL_SPARES			"spares"
315 #define	DMU_POOL_DEFLATE		"deflate"
316 #define	DMU_POOL_HISTORY		"history"
317 #define	DMU_POOL_PROPS			"pool_props"
318 #define	DMU_POOL_L2CACHE		"l2cache"
319 #define	DMU_POOL_TMP_USERREFS		"tmp_userrefs"
320 #define	DMU_POOL_DDT			"DDT-%s-%s-%s"
321 #define	DMU_POOL_DDT_STATS		"DDT-statistics"
322 #define	DMU_POOL_CREATION_VERSION	"creation_version"
323 #define	DMU_POOL_SCAN			"scan"
324 #define	DMU_POOL_FREE_BPOBJ		"free_bpobj"
325 #define	DMU_POOL_BPTREE_OBJ		"bptree_obj"
326 #define	DMU_POOL_EMPTY_BPOBJ		"empty_bpobj"
327 #define	DMU_POOL_CHECKSUM_SALT		"org.illumos:checksum_salt"
328 #define	DMU_POOL_VDEV_ZAP_MAP		"com.delphix:vdev_zap_map"
329 
330 /*
331  * Allocate an object from this objset.  The range of object numbers
332  * available is (0, DN_MAX_OBJECT).  Object 0 is the meta-dnode.
333  *
334  * The transaction must be assigned to a txg.  The newly allocated
335  * object will be "held" in the transaction (ie. you can modify the
336  * newly allocated object in this transaction).
337  *
338  * dmu_object_alloc() chooses an object and returns it in *objectp.
339  *
340  * dmu_object_claim() allocates a specific object number.  If that
341  * number is already allocated, it fails and returns EEXIST.
342  *
343  * Return 0 on success, or ENOSPC or EEXIST as specified above.
344  */
345 uint64_t dmu_object_alloc(objset_t *os, dmu_object_type_t ot,
346     int blocksize, dmu_object_type_t bonus_type, int bonus_len, dmu_tx_t *tx);
347 int dmu_object_claim(objset_t *os, uint64_t object, dmu_object_type_t ot,
348     int blocksize, dmu_object_type_t bonus_type, int bonus_len, dmu_tx_t *tx);
349 int dmu_object_reclaim(objset_t *os, uint64_t object, dmu_object_type_t ot,
350     int blocksize, dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *txp);
351 
352 /*
353  * Free an object from this objset.
354  *
355  * The object's data will be freed as well (ie. you don't need to call
356  * dmu_free(object, 0, -1, tx)).
357  *
358  * The object need not be held in the transaction.
359  *
360  * If there are any holds on this object's buffers (via dmu_buf_hold()),
361  * or tx holds on the object (via dmu_tx_hold_object()), you can not
362  * free it; it fails and returns EBUSY.
363  *
364  * If the object is not allocated, it fails and returns ENOENT.
365  *
366  * Return 0 on success, or EBUSY or ENOENT as specified above.
367  */
368 int dmu_object_free(objset_t *os, uint64_t object, dmu_tx_t *tx);
369 
370 /*
371  * Find the next allocated or free object.
372  *
373  * The objectp parameter is in-out.  It will be updated to be the next
374  * object which is allocated.  Ignore objects which have not been
375  * modified since txg.
376  *
377  * XXX Can only be called on a objset with no dirty data.
378  *
379  * Returns 0 on success, or ENOENT if there are no more objects.
380  */
381 int dmu_object_next(objset_t *os, uint64_t *objectp,
382     boolean_t hole, uint64_t txg);
383 
384 /*
385  * Set the data blocksize for an object.
386  *
387  * The object cannot have any blocks allcated beyond the first.  If
388  * the first block is allocated already, the new size must be greater
389  * than the current block size.  If these conditions are not met,
390  * ENOTSUP will be returned.
391  *
392  * Returns 0 on success, or EBUSY if there are any holds on the object
393  * contents, or ENOTSUP as described above.
394  */
395 int dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size,
396     int ibs, dmu_tx_t *tx);
397 
398 /*
399  * Set the checksum property on a dnode.  The new checksum algorithm will
400  * apply to all newly written blocks; existing blocks will not be affected.
401  */
402 void dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum,
403     dmu_tx_t *tx);
404 
405 /*
406  * Set the compress property on a dnode.  The new compression algorithm will
407  * apply to all newly written blocks; existing blocks will not be affected.
408  */
409 void dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress,
410     dmu_tx_t *tx);
411 
412 void
413 dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset,
414     void *data, uint8_t etype, uint8_t comp, int uncompressed_size,
415     int compressed_size, int byteorder, dmu_tx_t *tx);
416 
417 /*
418  * Decide how to write a block: checksum, compression, number of copies, etc.
419  */
420 #define	WP_NOFILL	0x1
421 #define	WP_DMU_SYNC	0x2
422 #define	WP_SPILL	0x4
423 
424 void dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp,
425     struct zio_prop *zp);
426 /*
427  * The bonus data is accessed more or less like a regular buffer.
428  * You must dmu_bonus_hold() to get the buffer, which will give you a
429  * dmu_buf_t with db_offset==-1ULL, and db_size = the size of the bonus
430  * data.  As with any normal buffer, you must call dmu_buf_read() to
431  * read db_data, dmu_buf_will_dirty() before modifying it, and the
432  * object must be held in an assigned transaction before calling
433  * dmu_buf_will_dirty.  You may use dmu_buf_set_user() on the bonus
434  * buffer as well.  You must release your hold with dmu_buf_rele().
435  *
436  * Returns ENOENT, EIO, or 0.
437  */
438 int dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **);
439 int dmu_bonus_max(void);
440 int dmu_set_bonus(dmu_buf_t *, int, dmu_tx_t *);
441 int dmu_set_bonustype(dmu_buf_t *, dmu_object_type_t, dmu_tx_t *);
442 dmu_object_type_t dmu_get_bonustype(dmu_buf_t *);
443 int dmu_rm_spill(objset_t *, uint64_t, dmu_tx_t *);
444 
445 /*
446  * Special spill buffer support used by "SA" framework
447  */
448 
449 int dmu_spill_hold_by_bonus(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp);
450 int dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags,
451     void *tag, dmu_buf_t **dbp);
452 int dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp);
453 
454 /*
455  * Obtain the DMU buffer from the specified object which contains the
456  * specified offset.  dmu_buf_hold() puts a "hold" on the buffer, so
457  * that it will remain in memory.  You must release the hold with
458  * dmu_buf_rele().  You musn't access the dmu_buf_t after releasing your
459  * hold.  You must have a hold on any dmu_buf_t* you pass to the DMU.
460  *
461  * You must call dmu_buf_read, dmu_buf_will_dirty, or dmu_buf_will_fill
462  * on the returned buffer before reading or writing the buffer's
463  * db_data.  The comments for those routines describe what particular
464  * operations are valid after calling them.
465  *
466  * The object number must be a valid, allocated object number.
467  */
468 int dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset,
469     void *tag, dmu_buf_t **, int flags);
470 int dmu_buf_hold_by_dnode(dnode_t *dn, uint64_t offset,
471     void *tag, dmu_buf_t **dbp, int flags);
472 
473 /*
474  * Add a reference to a dmu buffer that has already been held via
475  * dmu_buf_hold() in the current context.
476  */
477 void dmu_buf_add_ref(dmu_buf_t *db, void* tag);
478 
479 /*
480  * Attempt to add a reference to a dmu buffer that is in an unknown state,
481  * using a pointer that may have been invalidated by eviction processing.
482  * The request will succeed if the passed in dbuf still represents the
483  * same os/object/blkid, is ineligible for eviction, and has at least
484  * one hold by a user other than the syncer.
485  */
486 boolean_t dmu_buf_try_add_ref(dmu_buf_t *, objset_t *os, uint64_t object,
487     uint64_t blkid, void *tag);
488 
489 void dmu_buf_rele(dmu_buf_t *db, void *tag);
490 uint64_t dmu_buf_refcount(dmu_buf_t *db);
491 
492 /*
493  * dmu_buf_hold_array holds the DMU buffers which contain all bytes in a
494  * range of an object.  A pointer to an array of dmu_buf_t*'s is
495  * returned (in *dbpp).
496  *
497  * dmu_buf_rele_array releases the hold on an array of dmu_buf_t*'s, and
498  * frees the array.  The hold on the array of buffers MUST be released
499  * with dmu_buf_rele_array.  You can NOT release the hold on each buffer
500  * individually with dmu_buf_rele.
501  */
502 int dmu_buf_hold_array_by_bonus(dmu_buf_t *db, uint64_t offset,
503     uint64_t length, boolean_t read, void *tag,
504     int *numbufsp, dmu_buf_t ***dbpp);
505 void dmu_buf_rele_array(dmu_buf_t **, int numbufs, void *tag);
506 
507 typedef void dmu_buf_evict_func_t(void *user_ptr);
508 
509 /*
510  * A DMU buffer user object may be associated with a dbuf for the
511  * duration of its lifetime.  This allows the user of a dbuf (client)
512  * to attach private data to a dbuf (e.g. in-core only data such as a
513  * dnode_children_t, zap_t, or zap_leaf_t) and be optionally notified
514  * when that dbuf has been evicted.  Clients typically respond to the
515  * eviction notification by freeing their private data, thus ensuring
516  * the same lifetime for both dbuf and private data.
517  *
518  * The mapping from a dmu_buf_user_t to any client private data is the
519  * client's responsibility.  All current consumers of the API with private
520  * data embed a dmu_buf_user_t as the first member of the structure for
521  * their private data.  This allows conversions between the two types
522  * with a simple cast.  Since the DMU buf user API never needs access
523  * to the private data, other strategies can be employed if necessary
524  * or convenient for the client (e.g. using container_of() to do the
525  * conversion for private data that cannot have the dmu_buf_user_t as
526  * its first member).
527  *
528  * Eviction callbacks are executed without the dbuf mutex held or any
529  * other type of mechanism to guarantee that the dbuf is still available.
530  * For this reason, users must assume the dbuf has already been freed
531  * and not reference the dbuf from the callback context.
532  *
533  * Users requesting "immediate eviction" are notified as soon as the dbuf
534  * is only referenced by dirty records (dirties == holds).  Otherwise the
535  * notification occurs after eviction processing for the dbuf begins.
536  */
537 typedef struct dmu_buf_user {
538 	/*
539 	 * Asynchronous user eviction callback state.
540 	 */
541 	taskq_ent_t	dbu_tqent;
542 
543 	/*
544 	 * This instance's eviction function pointers.
545 	 *
546 	 * dbu_evict_func_sync is called synchronously and then
547 	 * dbu_evict_func_async is executed asynchronously on a taskq.
548 	 */
549 	dmu_buf_evict_func_t *dbu_evict_func_sync;
550 	dmu_buf_evict_func_t *dbu_evict_func_async;
551 #ifdef ZFS_DEBUG
552 	/*
553 	 * Pointer to user's dbuf pointer.  NULL for clients that do
554 	 * not associate a dbuf with their user data.
555 	 *
556 	 * The dbuf pointer is cleared upon eviction so as to catch
557 	 * use-after-evict bugs in clients.
558 	 */
559 	dmu_buf_t **dbu_clear_on_evict_dbufp;
560 #endif
561 } dmu_buf_user_t;
562 
563 /*
564  * Initialize the given dmu_buf_user_t instance with the eviction function
565  * evict_func, to be called when the user is evicted.
566  *
567  * NOTE: This function should only be called once on a given dmu_buf_user_t.
568  *       To allow enforcement of this, dbu must already be zeroed on entry.
569  */
570 #ifdef __lint
571 /* Very ugly, but it beats issuing suppression directives in many Makefiles. */
572 extern void
573 dmu_buf_init_user(dmu_buf_user_t *dbu, dmu_buf_evict_func_t *evict_func,
574     dmu_buf_evict_func_t *evict_func_async, dmu_buf_t **clear_on_evict_dbufp);
575 #else /* __lint */
576 inline void
dmu_buf_init_user(dmu_buf_user_t * dbu,dmu_buf_evict_func_t * evict_func_sync,dmu_buf_evict_func_t * evict_func_async,dmu_buf_t ** clear_on_evict_dbufp)577 dmu_buf_init_user(dmu_buf_user_t *dbu, dmu_buf_evict_func_t *evict_func_sync,
578     dmu_buf_evict_func_t *evict_func_async, dmu_buf_t **clear_on_evict_dbufp)
579 {
580 	ASSERT(dbu->dbu_evict_func_sync == NULL);
581 	ASSERT(dbu->dbu_evict_func_async == NULL);
582 
583 	/* must have at least one evict func */
584 	IMPLY(evict_func_sync == NULL, evict_func_async != NULL);
585 	dbu->dbu_evict_func_sync = evict_func_sync;
586 	dbu->dbu_evict_func_async = evict_func_async;
587 #ifdef ZFS_DEBUG
588 	dbu->dbu_clear_on_evict_dbufp = clear_on_evict_dbufp;
589 #endif
590 }
591 #endif /* __lint */
592 
593 /*
594  * Attach user data to a dbuf and mark it for normal (when the dbuf's
595  * data is cleared or its reference count goes to zero) eviction processing.
596  *
597  * Returns NULL on success, or the existing user if another user currently
598  * owns the buffer.
599  */
600 void *dmu_buf_set_user(dmu_buf_t *db, dmu_buf_user_t *user);
601 
602 /*
603  * Attach user data to a dbuf and mark it for immediate (its dirty and
604  * reference counts are equal) eviction processing.
605  *
606  * Returns NULL on success, or the existing user if another user currently
607  * owns the buffer.
608  */
609 void *dmu_buf_set_user_ie(dmu_buf_t *db, dmu_buf_user_t *user);
610 
611 /*
612  * Replace the current user of a dbuf.
613  *
614  * If given the current user of a dbuf, replaces the dbuf's user with
615  * "new_user" and returns the user data pointer that was replaced.
616  * Otherwise returns the current, and unmodified, dbuf user pointer.
617  */
618 void *dmu_buf_replace_user(dmu_buf_t *db,
619     dmu_buf_user_t *old_user, dmu_buf_user_t *new_user);
620 
621 /*
622  * Remove the specified user data for a DMU buffer.
623  *
624  * Returns the user that was removed on success, or the current user if
625  * another user currently owns the buffer.
626  */
627 void *dmu_buf_remove_user(dmu_buf_t *db, dmu_buf_user_t *user);
628 
629 /*
630  * Returns the user data (dmu_buf_user_t *) associated with this dbuf.
631  */
632 void *dmu_buf_get_user(dmu_buf_t *db);
633 
634 objset_t *dmu_buf_get_objset(dmu_buf_t *db);
635 dnode_t *dmu_buf_dnode_enter(dmu_buf_t *db);
636 void dmu_buf_dnode_exit(dmu_buf_t *db);
637 
638 /* Block until any in-progress dmu buf user evictions complete. */
639 void dmu_buf_user_evict_wait(void);
640 
641 /*
642  * Returns the blkptr associated with this dbuf, or NULL if not set.
643  */
644 struct blkptr *dmu_buf_get_blkptr(dmu_buf_t *db);
645 
646 /*
647  * Indicate that you are going to modify the buffer's data (db_data).
648  *
649  * The transaction (tx) must be assigned to a txg (ie. you've called
650  * dmu_tx_assign()).  The buffer's object must be held in the tx
651  * (ie. you've called dmu_tx_hold_object(tx, db->db_object)).
652  */
653 void dmu_buf_will_dirty(dmu_buf_t *db, dmu_tx_t *tx);
654 
655 /*
656  * Tells if the given dbuf is freeable.
657  */
658 boolean_t dmu_buf_freeable(dmu_buf_t *);
659 
660 /*
661  * You must create a transaction, then hold the objects which you will
662  * (or might) modify as part of this transaction.  Then you must assign
663  * the transaction to a transaction group.  Once the transaction has
664  * been assigned, you can modify buffers which belong to held objects as
665  * part of this transaction.  You can't modify buffers before the
666  * transaction has been assigned; you can't modify buffers which don't
667  * belong to objects which this transaction holds; you can't hold
668  * objects once the transaction has been assigned.  You may hold an
669  * object which you are going to free (with dmu_object_free()), but you
670  * don't have to.
671  *
672  * You can abort the transaction before it has been assigned.
673  *
674  * Note that you may hold buffers (with dmu_buf_hold) at any time,
675  * regardless of transaction state.
676  */
677 
678 #define	DMU_NEW_OBJECT	(-1ULL)
679 #define	DMU_OBJECT_END	(-1ULL)
680 
681 dmu_tx_t *dmu_tx_create(objset_t *os);
682 void dmu_tx_hold_write(dmu_tx_t *tx, uint64_t object, uint64_t off, int len);
683 void dmu_tx_hold_free(dmu_tx_t *tx, uint64_t object, uint64_t off,
684     uint64_t len);
685 void dmu_tx_hold_zap(dmu_tx_t *tx, uint64_t object, int add, const char *name);
686 void dmu_tx_hold_bonus(dmu_tx_t *tx, uint64_t object);
687 void dmu_tx_hold_spill(dmu_tx_t *tx, uint64_t object);
688 void dmu_tx_hold_sa(dmu_tx_t *tx, struct sa_handle *hdl, boolean_t may_grow);
689 void dmu_tx_hold_sa_create(dmu_tx_t *tx, int total_size);
690 void dmu_tx_abort(dmu_tx_t *tx);
691 int dmu_tx_assign(dmu_tx_t *tx, enum txg_how txg_how);
692 void dmu_tx_wait(dmu_tx_t *tx);
693 void dmu_tx_commit(dmu_tx_t *tx);
694 void dmu_tx_mark_netfree(dmu_tx_t *tx);
695 
696 /*
697  * To register a commit callback, dmu_tx_callback_register() must be called.
698  *
699  * dcb_data is a pointer to caller private data that is passed on as a
700  * callback parameter. The caller is responsible for properly allocating and
701  * freeing it.
702  *
703  * When registering a callback, the transaction must be already created, but
704  * it cannot be committed or aborted. It can be assigned to a txg or not.
705  *
706  * The callback will be called after the transaction has been safely written
707  * to stable storage and will also be called if the dmu_tx is aborted.
708  * If there is any error which prevents the transaction from being committed to
709  * disk, the callback will be called with a value of error != 0.
710  */
711 typedef void dmu_tx_callback_func_t(void *dcb_data, int error);
712 
713 void dmu_tx_callback_register(dmu_tx_t *tx, dmu_tx_callback_func_t *dcb_func,
714     void *dcb_data);
715 
716 /*
717  * Free up the data blocks for a defined range of a file.  If size is
718  * -1, the range from offset to end-of-file is freed.
719  */
720 int dmu_free_range(objset_t *os, uint64_t object, uint64_t offset,
721 	uint64_t size, dmu_tx_t *tx);
722 int dmu_free_long_range(objset_t *os, uint64_t object, uint64_t offset,
723 	uint64_t size);
724 int dmu_free_long_object(objset_t *os, uint64_t object);
725 
726 /*
727  * Convenience functions.
728  *
729  * Canfail routines will return 0 on success, or an errno if there is a
730  * nonrecoverable I/O error.
731  */
732 #define	DMU_READ_PREFETCH	0 /* prefetch */
733 #define	DMU_READ_NO_PREFETCH	1 /* don't prefetch */
734 int dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
735 	void *buf, uint32_t flags);
736 void dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
737 	const void *buf, dmu_tx_t *tx);
738 void dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
739 	dmu_tx_t *tx);
740 int dmu_read_uio(objset_t *os, uint64_t object, struct uio *uio, uint64_t size);
741 int dmu_read_uio_dbuf(dmu_buf_t *zdb, struct uio *uio, uint64_t size);
742 int dmu_write_uio(objset_t *os, uint64_t object, struct uio *uio, uint64_t size,
743     dmu_tx_t *tx);
744 int dmu_write_uio_dbuf(dmu_buf_t *zdb, struct uio *uio, uint64_t size,
745     dmu_tx_t *tx);
746 #ifdef _KERNEL
747 #ifdef illumos
748 int dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset,
749     uint64_t size, struct page *pp, dmu_tx_t *tx);
750 #else
751 int dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset,
752     uint64_t size, struct vm_page **ppa, dmu_tx_t *tx);
753 #endif
754 #endif
755 struct arc_buf *dmu_request_arcbuf(dmu_buf_t *handle, int size);
756 void dmu_return_arcbuf(struct arc_buf *buf);
757 void dmu_assign_arcbuf(dmu_buf_t *handle, uint64_t offset, struct arc_buf *buf,
758     dmu_tx_t *tx);
759 int dmu_xuio_init(struct xuio *uio, int niov);
760 void dmu_xuio_fini(struct xuio *uio);
761 int dmu_xuio_add(struct xuio *uio, struct arc_buf *abuf, offset_t off,
762     size_t n);
763 int dmu_xuio_cnt(struct xuio *uio);
764 struct arc_buf *dmu_xuio_arcbuf(struct xuio *uio, int i);
765 void dmu_xuio_clear(struct xuio *uio, int i);
766 void xuio_stat_wbuf_copied();
767 void xuio_stat_wbuf_nocopy();
768 
769 extern boolean_t zfs_prefetch_disable;
770 extern int zfs_max_recordsize;
771 
772 /*
773  * Asynchronously try to read in the data.
774  */
775 void dmu_prefetch(objset_t *os, uint64_t object, int64_t level, uint64_t offset,
776     uint64_t len, enum zio_priority pri);
777 
778 typedef struct dmu_object_info {
779 	/* All sizes are in bytes unless otherwise indicated. */
780 	uint32_t doi_data_block_size;
781 	uint32_t doi_metadata_block_size;
782 	dmu_object_type_t doi_type;
783 	dmu_object_type_t doi_bonus_type;
784 	uint64_t doi_bonus_size;
785 	uint8_t doi_indirection;		/* 2 = dnode->indirect->data */
786 	uint8_t doi_checksum;
787 	uint8_t doi_compress;
788 	uint8_t doi_nblkptr;
789 	uint8_t doi_pad[4];
790 	uint64_t doi_physical_blocks_512;	/* data + metadata, 512b blks */
791 	uint64_t doi_max_offset;
792 	uint64_t doi_fill_count;		/* number of non-empty blocks */
793 } dmu_object_info_t;
794 
795 typedef void arc_byteswap_func_t(void *buf, size_t size);
796 
797 typedef struct dmu_object_type_info {
798 	dmu_object_byteswap_t	ot_byteswap;
799 	boolean_t		ot_metadata;
800 	char			*ot_name;
801 } dmu_object_type_info_t;
802 
803 typedef struct dmu_object_byteswap_info {
804 	arc_byteswap_func_t	*ob_func;
805 	char			*ob_name;
806 } dmu_object_byteswap_info_t;
807 
808 extern const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES];
809 extern const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS];
810 
811 /*
812  * Get information on a DMU object.
813  *
814  * Return 0 on success or ENOENT if object is not allocated.
815  *
816  * If doi is NULL, just indicates whether the object exists.
817  */
818 int dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi);
819 /* Like dmu_object_info, but faster if you have a held dnode in hand. */
820 void dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi);
821 /* Like dmu_object_info, but faster if you have a held dbuf in hand. */
822 void dmu_object_info_from_db(dmu_buf_t *db, dmu_object_info_t *doi);
823 /*
824  * Like dmu_object_info_from_db, but faster still when you only care about
825  * the size.  This is specifically optimized for zfs_getattr().
826  */
827 void dmu_object_size_from_db(dmu_buf_t *db, uint32_t *blksize,
828     u_longlong_t *nblk512);
829 
830 typedef struct dmu_objset_stats {
831 	uint64_t dds_num_clones; /* number of clones of this */
832 	uint64_t dds_creation_txg;
833 	uint64_t dds_guid;
834 	dmu_objset_type_t dds_type;
835 	uint8_t dds_is_snapshot;
836 	uint8_t dds_inconsistent;
837 	char dds_origin[ZFS_MAX_DATASET_NAME_LEN];
838 } dmu_objset_stats_t;
839 
840 /*
841  * Get stats on a dataset.
842  */
843 void dmu_objset_fast_stat(objset_t *os, dmu_objset_stats_t *stat);
844 
845 /*
846  * Add entries to the nvlist for all the objset's properties.  See
847  * zfs_prop_table[] and zfs(1m) for details on the properties.
848  */
849 void dmu_objset_stats(objset_t *os, struct nvlist *nv);
850 
851 /*
852  * Get the space usage statistics for statvfs().
853  *
854  * refdbytes is the amount of space "referenced" by this objset.
855  * availbytes is the amount of space available to this objset, taking
856  * into account quotas & reservations, assuming that no other objsets
857  * use the space first.  These values correspond to the 'referenced' and
858  * 'available' properties, described in the zfs(1m) manpage.
859  *
860  * usedobjs and availobjs are the number of objects currently allocated,
861  * and available.
862  */
863 void dmu_objset_space(objset_t *os, uint64_t *refdbytesp, uint64_t *availbytesp,
864     uint64_t *usedobjsp, uint64_t *availobjsp);
865 
866 /*
867  * The fsid_guid is a 56-bit ID that can change to avoid collisions.
868  * (Contrast with the ds_guid which is a 64-bit ID that will never
869  * change, so there is a small probability that it will collide.)
870  */
871 uint64_t dmu_objset_fsid_guid(objset_t *os);
872 
873 /*
874  * Get the [cm]time for an objset's snapshot dir
875  */
876 timestruc_t dmu_objset_snap_cmtime(objset_t *os);
877 
878 int dmu_objset_is_snapshot(objset_t *os);
879 
880 extern struct spa *dmu_objset_spa(objset_t *os);
881 extern struct zilog *dmu_objset_zil(objset_t *os);
882 extern struct dsl_pool *dmu_objset_pool(objset_t *os);
883 extern struct dsl_dataset *dmu_objset_ds(objset_t *os);
884 extern void dmu_objset_name(objset_t *os, char *buf);
885 extern dmu_objset_type_t dmu_objset_type(objset_t *os);
886 extern uint64_t dmu_objset_id(objset_t *os);
887 extern zfs_sync_type_t dmu_objset_syncprop(objset_t *os);
888 extern zfs_logbias_op_t dmu_objset_logbias(objset_t *os);
889 extern int dmu_snapshot_list_next(objset_t *os, int namelen, char *name,
890     uint64_t *id, uint64_t *offp, boolean_t *case_conflict);
891 extern int dmu_snapshot_realname(objset_t *os, char *name, char *real,
892     int maxlen, boolean_t *conflict);
893 extern int dmu_dir_list_next(objset_t *os, int namelen, char *name,
894     uint64_t *idp, uint64_t *offp);
895 
896 typedef int objset_used_cb_t(dmu_object_type_t bonustype,
897     void *bonus, uint64_t *userp, uint64_t *groupp);
898 extern void dmu_objset_register_type(dmu_objset_type_t ost,
899     objset_used_cb_t *cb);
900 extern void dmu_objset_set_user(objset_t *os, void *user_ptr);
901 extern void *dmu_objset_get_user(objset_t *os);
902 
903 /*
904  * Return the txg number for the given assigned transaction.
905  */
906 uint64_t dmu_tx_get_txg(dmu_tx_t *tx);
907 
908 /*
909  * Synchronous write.
910  * If a parent zio is provided this function initiates a write on the
911  * provided buffer as a child of the parent zio.
912  * In the absence of a parent zio, the write is completed synchronously.
913  * At write completion, blk is filled with the bp of the written block.
914  * Note that while the data covered by this function will be on stable
915  * storage when the write completes this new data does not become a
916  * permanent part of the file until the associated transaction commits.
917  */
918 
919 /*
920  * {zfs,zvol,ztest}_get_done() args
921  */
922 typedef struct zgd {
923 	struct zilog	*zgd_zilog;
924 	struct blkptr	*zgd_bp;
925 	dmu_buf_t	*zgd_db;
926 	struct rl	*zgd_rl;
927 	void		*zgd_private;
928 } zgd_t;
929 
930 typedef void dmu_sync_cb_t(zgd_t *arg, int error);
931 int dmu_sync(struct zio *zio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd);
932 
933 /*
934  * Find the next hole or data block in file starting at *off
935  * Return found offset in *off. Return ESRCH for end of file.
936  */
937 int dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole,
938     uint64_t *off);
939 
940 /*
941  * Check if a DMU object has any dirty blocks. If so, sync out
942  * all pending transaction groups. Otherwise, this function
943  * does not alter DMU state. This could be improved to only sync
944  * out the necessary transaction groups for this particular
945  * object.
946  */
947 int dmu_object_wait_synced(objset_t *os, uint64_t object);
948 
949 /*
950  * Initial setup and final teardown.
951  */
952 extern void dmu_init(void);
953 extern void dmu_fini(void);
954 
955 typedef void (*dmu_traverse_cb_t)(objset_t *os, void *arg, struct blkptr *bp,
956     uint64_t object, uint64_t offset, int len);
957 void dmu_traverse_objset(objset_t *os, uint64_t txg_start,
958     dmu_traverse_cb_t cb, void *arg);
959 
960 int dmu_diff(const char *tosnap_name, const char *fromsnap_name,
961     struct file *fp, offset_t *offp);
962 
963 /* CRC64 table */
964 #define	ZFS_CRC64_POLY	0xC96C5795D7870F42ULL	/* ECMA-182, reflected form */
965 extern uint64_t zfs_crc64_table[256];
966 
967 extern int zfs_mdcomp_disable;
968 
969 #ifdef	__cplusplus
970 }
971 #endif
972 
973 #endif	/* _SYS_DMU_H */
974