1 /*M///////////////////////////////////////////////////////////////////////////////////////
2 //
3 //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4 //
5 //  By downloading, copying, installing or using the software you agree to this license.
6 //  If you do not agree to this license, do not download, install,
7 //  copy or use the software.
8 //
9 //
10 //                           License Agreement
11 //                For Open Source Computer Vision Library
12 //
13 // Copyright (C) 2013, OpenCV Foundation, all rights reserved.
14 // Third party copyrights are property of their respective owners.
15 //
16 // Redistribution and use in source and binary forms, with or without modification,
17 // are permitted provided that the following conditions are met:
18 //
19 //   * Redistribution's of source code must retain the above copyright notice,
20 //     this list of conditions and the following disclaimer.
21 //
22 //   * Redistribution's in binary form must reproduce the above copyright notice,
23 //     this list of conditions and the following disclaimer in the documentation
24 //     and/or other materials provided with the distribution.
25 //
26 //   * The name of the copyright holders may not be used to endorse or promote products
27 //     derived from this software without specific prior written permission.
28 //
29 // This software is provided by the copyright holders and contributors "as is" and
30 // any express or implied warranties, including, but not limited to, the implied
31 // warranties of merchantability and fitness for a particular purpose are disclaimed.
32 // In no event shall the Intel Corporation or contributors be liable for any direct,
33 // indirect, incidental, special, exemplary, or consequential damages
34 // (including, but not limited to, procurement of substitute goods or services;
35 // loss of use, data, or profits; or business interruption) however caused
36 // and on any theory of liability, whether in contract, strict liability,
37 // or tort (including negligence or otherwise) arising in any way out of
38 // the use of this software, even if advised of the possibility of such damage.
39 //
40 //M*/
41 
42 #ifndef OPENCV_DNN_DNN_HPP
43 #define OPENCV_DNN_DNN_HPP
44 
45 #include <vector>
46 #include <opencv2/core.hpp>
47 #include "opencv2/core/async.hpp"
48 
49 #include "../dnn/version.hpp"
50 
51 #include <opencv2/dnn/dict.hpp>
52 
53 namespace cv {
54 namespace dnn {
55 CV__DNN_INLINE_NS_BEGIN
56 //! @addtogroup dnn
57 //! @{
58 
59     typedef std::vector<int> MatShape;
60 
61     /**
62      * @brief Enum of computation backends supported by layers.
63      * @see Net::setPreferableBackend
64      */
65     enum Backend
66     {
67         //! DNN_BACKEND_DEFAULT equals to DNN_BACKEND_INFERENCE_ENGINE if
68         //! OpenCV is built with Intel's Inference Engine library or
69         //! DNN_BACKEND_OPENCV otherwise.
70         DNN_BACKEND_DEFAULT = 0,
71         DNN_BACKEND_HALIDE,
72         DNN_BACKEND_INFERENCE_ENGINE,            //!< Intel's Inference Engine computational backend
73                                                  //!< @sa setInferenceEngineBackendType
74         DNN_BACKEND_OPENCV,
75         DNN_BACKEND_VKCOM,
76         DNN_BACKEND_CUDA,
77 #ifdef __OPENCV_BUILD
78         DNN_BACKEND_INFERENCE_ENGINE_NGRAPH = 1000000,     // internal - use DNN_BACKEND_INFERENCE_ENGINE + setInferenceEngineBackendType()
79         DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019,      // internal - use DNN_BACKEND_INFERENCE_ENGINE + setInferenceEngineBackendType()
80 #endif
81     };
82 
83     /**
84      * @brief Enum of target devices for computations.
85      * @see Net::setPreferableTarget
86      */
87     enum Target
88     {
89         DNN_TARGET_CPU = 0,
90         DNN_TARGET_OPENCL,
91         DNN_TARGET_OPENCL_FP16,
92         DNN_TARGET_MYRIAD,
93         DNN_TARGET_VULKAN,
94         DNN_TARGET_FPGA,  //!< FPGA device with CPU fallbacks using Inference Engine's Heterogeneous plugin.
95         DNN_TARGET_CUDA,
96         DNN_TARGET_CUDA_FP16,
97         DNN_TARGET_HDDL
98     };
99 
100     CV_EXPORTS std::vector< std::pair<Backend, Target> > getAvailableBackends();
101     CV_EXPORTS_W std::vector<Target> getAvailableTargets(dnn::Backend be);
102 
103     /**
104      * @brief Enables detailed logging of the DNN model loading with CV DNN API.
105      * @param[in] isDiagnosticsMode Indicates whether diagnostic mode should be set.
106      *
107      * Diagnostic mode provides detailed logging of the model loading stage to explore
108      * potential problems (ex.: not implemented layer type).
109      *
110      * @note In diagnostic mode series of assertions will be skipped, it can lead to the
111      * expected application crash.
112      */
113     CV_EXPORTS void enableModelDiagnostics(bool isDiagnosticsMode);
114 
115     /** @brief This class provides all data needed to initialize layer.
116      *
117      * It includes dictionary with scalar params (which can be read by using Dict interface),
118      * blob params #blobs and optional meta information: #name and #type of layer instance.
119     */
120     class CV_EXPORTS LayerParams : public Dict
121     {
122     public:
123         //TODO: Add ability to name blob params
124         std::vector<Mat> blobs; //!< List of learned parameters stored as blobs.
125 
126         String name; //!< Name of the layer instance (optional, can be used internal purposes).
127         String type; //!< Type name which was used for creating layer by layer factory (optional).
128     };
129 
130    /**
131     * @brief Derivatives of this class encapsulates functions of certain backends.
132     */
133     class BackendNode
134     {
135     public:
136         BackendNode(int backendId);
137 
138         virtual ~BackendNode(); //!< Virtual destructor to make polymorphism.
139 
140         int backendId; //!< Backend identifier.
141     };
142 
143     /**
144      * @brief Derivatives of this class wraps cv::Mat for different backends and targets.
145      */
146     class BackendWrapper
147     {
148     public:
149         BackendWrapper(int backendId, int targetId);
150 
151         /**
152          * @brief Wrap cv::Mat for specific backend and target.
153          * @param[in] targetId Target identifier.
154          * @param[in] m cv::Mat for wrapping.
155          *
156          * Make CPU->GPU data transfer if it's require for the target.
157          */
158         BackendWrapper(int targetId, const cv::Mat& m);
159 
160         /**
161          * @brief Make wrapper for reused cv::Mat.
162          * @param[in] base Wrapper of cv::Mat that will be reused.
163          * @param[in] shape Specific shape.
164          *
165          * Initialize wrapper from another one. It'll wrap the same host CPU
166          * memory and mustn't allocate memory on device(i.e. GPU). It might
167          * has different shape. Use in case of CPU memory reusing for reuse
168          * associated memory on device too.
169          */
170         BackendWrapper(const Ptr<BackendWrapper>& base, const MatShape& shape);
171 
172         virtual ~BackendWrapper(); //!< Virtual destructor to make polymorphism.
173 
174         /**
175          * @brief Transfer data to CPU host memory.
176          */
177         virtual void copyToHost() = 0;
178 
179         /**
180          * @brief Indicate that an actual data is on CPU.
181          */
182         virtual void setHostDirty() = 0;
183 
184         int backendId;  //!< Backend identifier.
185         int targetId;   //!< Target identifier.
186     };
187 
188     class CV_EXPORTS ActivationLayer;
189 
190     /** @brief This interface class allows to build new Layers - are building blocks of networks.
191      *
192      * Each class, derived from Layer, must implement allocate() methods to declare own outputs and forward() to compute outputs.
193      * Also before using the new layer into networks you must register your layer by using one of @ref dnnLayerFactory "LayerFactory" macros.
194      */
195     class CV_EXPORTS_W Layer : public Algorithm
196     {
197     public:
198 
199         //! List of learned parameters must be stored here to allow read them by using Net::getParam().
200         CV_PROP_RW std::vector<Mat> blobs;
201 
202         /** @brief Computes and sets internal parameters according to inputs, outputs and blobs.
203          *  @deprecated Use Layer::finalize(InputArrayOfArrays, OutputArrayOfArrays) instead
204          *  @param[in]  input  vector of already allocated input blobs
205          *  @param[out] output vector of already allocated output blobs
206          *
207          * If this method is called after network has allocated all memory for input and output blobs
208          * and before inferencing.
209          */
210         CV_DEPRECATED_EXTERNAL
211         virtual void finalize(const std::vector<Mat*> &input, std::vector<Mat> &output);
212 
213         /** @brief Computes and sets internal parameters according to inputs, outputs and blobs.
214          *  @param[in]  inputs  vector of already allocated input blobs
215          *  @param[out] outputs vector of already allocated output blobs
216          *
217          * If this method is called after network has allocated all memory for input and output blobs
218          * and before inferencing.
219          */
220         CV_WRAP virtual void finalize(InputArrayOfArrays inputs, OutputArrayOfArrays outputs);
221 
222         /** @brief Given the @p input blobs, computes the output @p blobs.
223          *  @deprecated Use Layer::forward(InputArrayOfArrays, OutputArrayOfArrays, OutputArrayOfArrays) instead
224          *  @param[in]  input  the input blobs.
225          *  @param[out] output allocated output blobs, which will store results of the computation.
226          *  @param[out] internals allocated internal blobs
227          */
228         CV_DEPRECATED_EXTERNAL
229         virtual void forward(std::vector<Mat*> &input, std::vector<Mat> &output, std::vector<Mat> &internals);
230 
231         /** @brief Given the @p input blobs, computes the output @p blobs.
232          *  @param[in]  inputs  the input blobs.
233          *  @param[out] outputs allocated output blobs, which will store results of the computation.
234          *  @param[out] internals allocated internal blobs
235          */
236         virtual void forward(InputArrayOfArrays inputs, OutputArrayOfArrays outputs, OutputArrayOfArrays internals);
237 
238         /** @brief Given the @p input blobs, computes the output @p blobs.
239          *  @param[in]  inputs  the input blobs.
240          *  @param[out] outputs allocated output blobs, which will store results of the computation.
241          *  @param[out] internals allocated internal blobs
242          */
243         void forward_fallback(InputArrayOfArrays inputs, OutputArrayOfArrays outputs, OutputArrayOfArrays internals);
244 
245         /** @brief
246          * @overload
247          * @deprecated Use Layer::finalize(InputArrayOfArrays, OutputArrayOfArrays) instead
248          */
249         CV_DEPRECATED_EXTERNAL
250         void finalize(const std::vector<Mat> &inputs, CV_OUT std::vector<Mat> &outputs);
251 
252         /** @brief
253          * @overload
254          * @deprecated Use Layer::finalize(InputArrayOfArrays, OutputArrayOfArrays) instead
255          */
256         CV_DEPRECATED std::vector<Mat> finalize(const std::vector<Mat> &inputs);
257 
258         /** @brief Allocates layer and computes output.
259          *  @deprecated This method will be removed in the future release.
260          */
261         CV_DEPRECATED CV_WRAP void run(const std::vector<Mat> &inputs, CV_OUT std::vector<Mat> &outputs,
262                                        CV_IN_OUT std::vector<Mat> &internals);
263 
264         /** @brief Returns index of input blob into the input array.
265          *  @param inputName label of input blob
266          *
267          * Each layer input and output can be labeled to easily identify them using "%<layer_name%>[.output_name]" notation.
268          * This method maps label of input blob to its index into input vector.
269          */
270         virtual int inputNameToIndex(String inputName);
271         /** @brief Returns index of output blob in output array.
272          *  @see inputNameToIndex()
273          */
274         CV_WRAP virtual int outputNameToIndex(const String& outputName);
275 
276         /**
277          * @brief Ask layer if it support specific backend for doing computations.
278          * @param[in] backendId computation backend identifier.
279          * @see Backend
280          */
281         virtual bool supportBackend(int backendId);
282 
283         /**
284          * @brief Returns Halide backend node.
285          * @param[in] inputs Input Halide buffers.
286          * @see BackendNode, BackendWrapper
287          *
288          * Input buffers should be exactly the same that will be used in forward invocations.
289          * Despite we can use Halide::ImageParam based on input shape only,
290          * it helps prevent some memory management issues (if something wrong,
291          * Halide tests will be failed).
292          */
293         virtual Ptr<BackendNode> initHalide(const std::vector<Ptr<BackendWrapper> > &inputs);
294 
295         virtual Ptr<BackendNode> initInfEngine(const std::vector<Ptr<BackendWrapper> > &inputs);
296 
297         virtual Ptr<BackendNode> initNgraph(const std::vector<Ptr<BackendWrapper> > &inputs, const std::vector<Ptr<BackendNode> >& nodes);
298 
299         virtual Ptr<BackendNode> initVkCom(const std::vector<Ptr<BackendWrapper> > &inputs);
300 
301         /**
302          * @brief Returns a CUDA backend node
303          *
304          * @param   context  void pointer to CSLContext object
305          * @param   inputs   layer inputs
306          * @param   outputs  layer outputs
307          */
308         virtual Ptr<BackendNode> initCUDA(
309             void *context,
310             const std::vector<Ptr<BackendWrapper>>& inputs,
311             const std::vector<Ptr<BackendWrapper>>& outputs
312         );
313 
314        /**
315         * @brief Automatic Halide scheduling based on layer hyper-parameters.
316         * @param[in] node Backend node with Halide functions.
317         * @param[in] inputs Blobs that will be used in forward invocations.
318         * @param[in] outputs Blobs that will be used in forward invocations.
319         * @param[in] targetId Target identifier
320         * @see BackendNode, Target
321         *
322         * Layer don't use own Halide::Func members because we can have applied
323         * layers fusing. In this way the fused function should be scheduled.
324         */
325         virtual void applyHalideScheduler(Ptr<BackendNode>& node,
326                                           const std::vector<Mat*> &inputs,
327                                           const std::vector<Mat> &outputs,
328                                           int targetId) const;
329 
330         /**
331          * @brief Implement layers fusing.
332          * @param[in] node Backend node of bottom layer.
333          * @see BackendNode
334          *
335          * Actual for graph-based backends. If layer attached successfully,
336          * returns non-empty cv::Ptr to node of the same backend.
337          * Fuse only over the last function.
338          */
339         virtual Ptr<BackendNode> tryAttach(const Ptr<BackendNode>& node);
340 
341         /**
342          * @brief Tries to attach to the layer the subsequent activation layer, i.e. do the layer fusion in a partial case.
343          * @param[in] layer The subsequent activation layer.
344          *
345          * Returns true if the activation layer has been attached successfully.
346          */
347         virtual bool setActivation(const Ptr<ActivationLayer>& layer);
348 
349         /**
350          * @brief Try to fuse current layer with a next one
351          * @param[in] top Next layer to be fused.
352          * @returns True if fusion was performed.
353          */
354         virtual bool tryFuse(Ptr<Layer>& top);
355 
356         /**
357          * @brief Returns parameters of layers with channel-wise multiplication and addition.
358          * @param[out] scale Channel-wise multipliers. Total number of values should
359          *                   be equal to number of channels.
360          * @param[out] shift Channel-wise offsets. Total number of values should
361          *                   be equal to number of channels.
362          *
363          * Some layers can fuse their transformations with further layers.
364          * In example, convolution + batch normalization. This way base layer
365          * use weights from layer after it. Fused layer is skipped.
366          * By default, @p scale and @p shift are empty that means layer has no
367          * element-wise multiplications or additions.
368          */
369         virtual void getScaleShift(Mat& scale, Mat& shift) const;
370 
371         /**
372          * @brief "Deattaches" all the layers, attached to particular layer.
373          */
374         virtual void unsetAttached();
375 
376         virtual bool getMemoryShapes(const std::vector<MatShape> &inputs,
377                                      const int requiredOutputs,
378                                      std::vector<MatShape> &outputs,
379                                      std::vector<MatShape> &internals) const;
380 
getFLOPS(const std::vector<MatShape> & inputs,const std::vector<MatShape> & outputs) const381         virtual int64 getFLOPS(const std::vector<MatShape> &inputs,
382                                const std::vector<MatShape> &outputs) const {CV_UNUSED(inputs); CV_UNUSED(outputs); return 0;}
383 
384         virtual bool updateMemoryShapes(const std::vector<MatShape> &inputs);
385 
386         CV_PROP String name; //!< Name of the layer instance, can be used for logging or other internal purposes.
387         CV_PROP String type; //!< Type name which was used for creating layer by layer factory.
388         CV_PROP int preferableTarget; //!< prefer target for layer forwarding
389 
390         Layer();
391         explicit Layer(const LayerParams &params);      //!< Initializes only #name, #type and #blobs fields.
392         void setParamsFrom(const LayerParams &params);  //!< Initializes only #name, #type and #blobs fields.
393         virtual ~Layer();
394     };
395 
396     /** @brief This class allows to create and manipulate comprehensive artificial neural networks.
397      *
398      * Neural network is presented as directed acyclic graph (DAG), where vertices are Layer instances,
399      * and edges specify relationships between layers inputs and outputs.
400      *
401      * Each network layer has unique integer id and unique string name inside its network.
402      * LayerId can store either layer name or layer id.
403      *
404      * This class supports reference counting of its instances, i. e. copies point to the same instance.
405      */
406     class CV_EXPORTS_W_SIMPLE Net
407     {
408     public:
409 
410         CV_WRAP Net();  //!< Default constructor.
411         CV_WRAP ~Net(); //!< Destructor frees the net only if there aren't references to the net anymore.
412 
413         /** @brief Create a network from Intel's Model Optimizer intermediate representation (IR).
414          *  @param[in] xml XML configuration file with network's topology.
415          *  @param[in] bin Binary file with trained weights.
416          *  Networks imported from Intel's Model Optimizer are launched in Intel's Inference Engine
417          *  backend.
418          */
419         CV_WRAP static Net readFromModelOptimizer(const String& xml, const String& bin);
420 
421         /** @brief Create a network from Intel's Model Optimizer in-memory buffers with intermediate representation (IR).
422          *  @param[in] bufferModelConfig buffer with model's configuration.
423          *  @param[in] bufferWeights buffer with model's trained weights.
424          *  @returns Net object.
425          */
426         CV_WRAP static
427         Net readFromModelOptimizer(const std::vector<uchar>& bufferModelConfig, const std::vector<uchar>& bufferWeights);
428 
429         /** @brief Create a network from Intel's Model Optimizer in-memory buffers with intermediate representation (IR).
430          *  @param[in] bufferModelConfigPtr buffer pointer of model's configuration.
431          *  @param[in] bufferModelConfigSize buffer size of model's configuration.
432          *  @param[in] bufferWeightsPtr buffer pointer of model's trained weights.
433          *  @param[in] bufferWeightsSize buffer size of model's trained weights.
434          *  @returns Net object.
435          */
436         static
437         Net readFromModelOptimizer(const uchar* bufferModelConfigPtr, size_t bufferModelConfigSize,
438                                             const uchar* bufferWeightsPtr, size_t bufferWeightsSize);
439 
440         /** Returns true if there are no layers in the network. */
441         CV_WRAP bool empty() const;
442 
443         /** @brief Dump net to String
444          *  @returns String with structure, hyperparameters, backend, target and fusion
445          *  Call method after setInput(). To see correct backend, target and fusion run after forward().
446          */
447         CV_WRAP String dump();
448         /** @brief Dump net structure, hyperparameters, backend, target and fusion to dot file
449          *  @param path   path to output file with .dot extension
450          *  @see dump()
451          */
452         CV_WRAP void dumpToFile(const String& path);
453         /** @brief Adds new layer to the net.
454          *  @param name   unique name of the adding layer.
455          *  @param type   typename of the adding layer (type must be registered in LayerRegister).
456          *  @param params parameters which will be used to initialize the creating layer.
457          *  @returns unique identifier of created layer, or -1 if a failure will happen.
458          */
459         int addLayer(const String &name, const String &type, LayerParams &params);
460         /** @brief Adds new layer and connects its first input to the first output of previously added layer.
461          *  @see addLayer()
462          */
463         int addLayerToPrev(const String &name, const String &type, LayerParams &params);
464 
465         /** @brief Converts string name of the layer to the integer identifier.
466          *  @returns id of the layer, or -1 if the layer wasn't found.
467          */
468         CV_WRAP int getLayerId(const String &layer);
469 
470         CV_WRAP std::vector<String> getLayerNames() const;
471 
472         /** @brief Container for strings and integers. */
473         typedef DictValue LayerId;
474 
475         /** @brief Returns pointer to layer with specified id or name which the network use. */
476         CV_WRAP Ptr<Layer> getLayer(LayerId layerId);
477 
478         /** @brief Returns pointers to input layers of specific layer. */
479         std::vector<Ptr<Layer> > getLayerInputs(LayerId layerId); // FIXIT: CV_WRAP
480 
481         /** @brief Connects output of the first layer to input of the second layer.
482          *  @param outPin descriptor of the first layer output.
483          *  @param inpPin descriptor of the second layer input.
484          *
485          * Descriptors have the following template <DFN>&lt;layer_name&gt;[.input_number]</DFN>:
486          * - the first part of the template <DFN>layer_name</DFN> is string name of the added layer.
487          *   If this part is empty then the network input pseudo layer will be used;
488          * - the second optional part of the template <DFN>input_number</DFN>
489          *   is either number of the layer input, either label one.
490          *   If this part is omitted then the first layer input will be used.
491          *
492          *  @see setNetInputs(), Layer::inputNameToIndex(), Layer::outputNameToIndex()
493          */
494         CV_WRAP void connect(String outPin, String inpPin);
495 
496         /** @brief Connects #@p outNum output of the first layer to #@p inNum input of the second layer.
497          *  @param outLayerId identifier of the first layer
498          *  @param outNum number of the first layer output
499          *  @param inpLayerId identifier of the second layer
500          *  @param inpNum number of the second layer input
501          */
502         void connect(int outLayerId, int outNum, int inpLayerId, int inpNum);
503 
504         /** @brief Sets outputs names of the network input pseudo layer.
505          *
506          * Each net always has special own the network input pseudo layer with id=0.
507          * This layer stores the user blobs only and don't make any computations.
508          * In fact, this layer provides the only way to pass user data into the network.
509          * As any other layer, this layer can label its outputs and this function provides an easy way to do this.
510          */
511         CV_WRAP void setInputsNames(const std::vector<String> &inputBlobNames);
512 
513         /** @brief Specify shape of network input.
514          */
515         CV_WRAP void setInputShape(const String &inputName, const MatShape& shape);
516 
517         /** @brief Runs forward pass to compute output of layer with name @p outputName.
518          *  @param outputName name for layer which output is needed to get
519          *  @return blob for first output of specified layer.
520          *  @details By default runs forward pass for the whole network.
521          */
522         CV_WRAP Mat forward(const String& outputName = String());
523 
524         /** @brief Runs forward pass to compute output of layer with name @p outputName.
525          *  @param outputName name for layer which output is needed to get
526          *  @details By default runs forward pass for the whole network.
527          *
528          *  This is an asynchronous version of forward(const String&).
529          *  dnn::DNN_BACKEND_INFERENCE_ENGINE backend is required.
530          */
531         CV_WRAP AsyncArray forwardAsync(const String& outputName = String());
532 
533         /** @brief Runs forward pass to compute output of layer with name @p outputName.
534          *  @param outputBlobs contains all output blobs for specified layer.
535          *  @param outputName name for layer which output is needed to get
536          *  @details If @p outputName is empty, runs forward pass for the whole network.
537          */
538         CV_WRAP void forward(OutputArrayOfArrays outputBlobs, const String& outputName = String());
539 
540         /** @brief Runs forward pass to compute outputs of layers listed in @p outBlobNames.
541          *  @param outputBlobs contains blobs for first outputs of specified layers.
542          *  @param outBlobNames names for layers which outputs are needed to get
543          */
544         CV_WRAP void forward(OutputArrayOfArrays outputBlobs,
545                              const std::vector<String>& outBlobNames);
546 
547         /** @brief Runs forward pass to compute outputs of layers listed in @p outBlobNames.
548          *  @param outputBlobs contains all output blobs for each layer specified in @p outBlobNames.
549          *  @param outBlobNames names for layers which outputs are needed to get
550          */
551         CV_WRAP_AS(forwardAndRetrieve) void forward(CV_OUT std::vector<std::vector<Mat> >& outputBlobs,
552                                                     const std::vector<String>& outBlobNames);
553 
554         /**
555          * @brief Compile Halide layers.
556          * @param[in] scheduler Path to YAML file with scheduling directives.
557          * @see setPreferableBackend
558          *
559          * Schedule layers that support Halide backend. Then compile them for
560          * specific target. For layers that not represented in scheduling file
561          * or if no manual scheduling used at all, automatic scheduling will be applied.
562          */
563         CV_WRAP void setHalideScheduler(const String& scheduler);
564 
565         /**
566          * @brief Ask network to use specific computation backend where it supported.
567          * @param[in] backendId backend identifier.
568          * @see Backend
569          *
570          * If OpenCV is compiled with Intel's Inference Engine library, DNN_BACKEND_DEFAULT
571          * means DNN_BACKEND_INFERENCE_ENGINE. Otherwise it equals to DNN_BACKEND_OPENCV.
572          */
573         CV_WRAP void setPreferableBackend(int backendId);
574 
575         /**
576          * @brief Ask network to make computations on specific target device.
577          * @param[in] targetId target identifier.
578          * @see Target
579          *
580          * List of supported combinations backend / target:
581          * |                        | DNN_BACKEND_OPENCV | DNN_BACKEND_INFERENCE_ENGINE | DNN_BACKEND_HALIDE |  DNN_BACKEND_CUDA |
582          * |------------------------|--------------------|------------------------------|--------------------|-------------------|
583          * | DNN_TARGET_CPU         |                  + |                            + |                  + |                   |
584          * | DNN_TARGET_OPENCL      |                  + |                            + |                  + |                   |
585          * | DNN_TARGET_OPENCL_FP16 |                  + |                            + |                    |                   |
586          * | DNN_TARGET_MYRIAD      |                    |                            + |                    |                   |
587          * | DNN_TARGET_FPGA        |                    |                            + |                    |                   |
588          * | DNN_TARGET_CUDA        |                    |                              |                    |                 + |
589          * | DNN_TARGET_CUDA_FP16   |                    |                              |                    |                 + |
590          * | DNN_TARGET_HDDL        |                    |                            + |                    |                   |
591          */
592         CV_WRAP void setPreferableTarget(int targetId);
593 
594         /** @brief Sets the new input value for the network
595          *  @param blob        A new blob. Should have CV_32F or CV_8U depth.
596          *  @param name        A name of input layer.
597          *  @param scalefactor An optional normalization scale.
598          *  @param mean        An optional mean subtraction values.
599          *  @see connect(String, String) to know format of the descriptor.
600          *
601          *  If scale or mean values are specified, a final input blob is computed
602          *  as:
603          * \f[input(n,c,h,w) = scalefactor \times (blob(n,c,h,w) - mean_c)\f]
604          */
605         CV_WRAP void setInput(InputArray blob, const String& name = "",
606                               double scalefactor = 1.0, const Scalar& mean = Scalar());
607 
608         /** @brief Sets the new value for the learned param of the layer.
609          *  @param layer name or id of the layer.
610          *  @param numParam index of the layer parameter in the Layer::blobs array.
611          *  @param blob the new value.
612          *  @see Layer::blobs
613          *  @note If shape of the new blob differs from the previous shape,
614          *  then the following forward pass may fail.
615         */
616         CV_WRAP void setParam(LayerId layer, int numParam, const Mat &blob);
617 
618         /** @brief Returns parameter blob of the layer.
619          *  @param layer name or id of the layer.
620          *  @param numParam index of the layer parameter in the Layer::blobs array.
621          *  @see Layer::blobs
622          */
623         CV_WRAP Mat getParam(LayerId layer, int numParam = 0);
624 
625         /** @brief Returns indexes of layers with unconnected outputs.
626          */
627         CV_WRAP std::vector<int> getUnconnectedOutLayers() const;
628 
629         /** @brief Returns names of layers with unconnected outputs.
630          */
631         CV_WRAP std::vector<String> getUnconnectedOutLayersNames() const;
632 
633         /** @brief Returns input and output shapes for all layers in loaded model;
634          *  preliminary inferencing isn't necessary.
635          *  @param netInputShapes shapes for all input blobs in net input layer.
636          *  @param layersIds output parameter for layer IDs.
637          *  @param inLayersShapes output parameter for input layers shapes;
638          * order is the same as in layersIds
639          *  @param outLayersShapes output parameter for output layers shapes;
640          * order is the same as in layersIds
641          */
642         CV_WRAP void getLayersShapes(const std::vector<MatShape>& netInputShapes,
643                                      CV_OUT std::vector<int>& layersIds,
644                                      CV_OUT std::vector<std::vector<MatShape> >& inLayersShapes,
645                                      CV_OUT std::vector<std::vector<MatShape> >& outLayersShapes) const;
646 
647         /** @overload */
648         CV_WRAP void getLayersShapes(const MatShape& netInputShape,
649                                      CV_OUT std::vector<int>& layersIds,
650                                      CV_OUT std::vector<std::vector<MatShape> >& inLayersShapes,
651                                      CV_OUT std::vector<std::vector<MatShape> >& outLayersShapes) const;
652 
653         /** @brief Returns input and output shapes for layer with specified
654          * id in loaded model; preliminary inferencing isn't necessary.
655          *  @param netInputShape shape input blob in net input layer.
656          *  @param layerId id for layer.
657          *  @param inLayerShapes output parameter for input layers shapes;
658          * order is the same as in layersIds
659          *  @param outLayerShapes output parameter for output layers shapes;
660          * order is the same as in layersIds
661          */
662         void getLayerShapes(const MatShape& netInputShape,
663                                     const int layerId,
664                                     CV_OUT std::vector<MatShape>& inLayerShapes,
665                                     CV_OUT std::vector<MatShape>& outLayerShapes) const; // FIXIT: CV_WRAP
666 
667         /** @overload */
668         void getLayerShapes(const std::vector<MatShape>& netInputShapes,
669                                     const int layerId,
670                                     CV_OUT std::vector<MatShape>& inLayerShapes,
671                                     CV_OUT std::vector<MatShape>& outLayerShapes) const; // FIXIT: CV_WRAP
672 
673         /** @brief Computes FLOP for whole loaded model with specified input shapes.
674          * @param netInputShapes vector of shapes for all net inputs.
675          * @returns computed FLOP.
676          */
677         CV_WRAP int64 getFLOPS(const std::vector<MatShape>& netInputShapes) const;
678         /** @overload */
679         CV_WRAP int64 getFLOPS(const MatShape& netInputShape) const;
680         /** @overload */
681         CV_WRAP int64 getFLOPS(const int layerId,
682                                const std::vector<MatShape>& netInputShapes) const;
683         /** @overload */
684         CV_WRAP int64 getFLOPS(const int layerId,
685                                const MatShape& netInputShape) const;
686 
687         /** @brief Returns list of types for layer used in model.
688          * @param layersTypes output parameter for returning types.
689          */
690         CV_WRAP void getLayerTypes(CV_OUT std::vector<String>& layersTypes) const;
691 
692         /** @brief Returns count of layers of specified type.
693          * @param layerType type.
694          * @returns count of layers
695          */
696         CV_WRAP int getLayersCount(const String& layerType) const;
697 
698         /** @brief Computes bytes number which are required to store
699          * all weights and intermediate blobs for model.
700          * @param netInputShapes vector of shapes for all net inputs.
701          * @param weights output parameter to store resulting bytes for weights.
702          * @param blobs output parameter to store resulting bytes for intermediate blobs.
703          */
704         void getMemoryConsumption(const std::vector<MatShape>& netInputShapes,
705                                           CV_OUT size_t& weights, CV_OUT size_t& blobs) const; // FIXIT: CV_WRAP
706         /** @overload */
707         CV_WRAP void getMemoryConsumption(const MatShape& netInputShape,
708                                           CV_OUT size_t& weights, CV_OUT size_t& blobs) const;
709         /** @overload */
710         CV_WRAP void getMemoryConsumption(const int layerId,
711                                           const std::vector<MatShape>& netInputShapes,
712                                           CV_OUT size_t& weights, CV_OUT size_t& blobs) const;
713         /** @overload */
714         CV_WRAP void getMemoryConsumption(const int layerId,
715                                           const MatShape& netInputShape,
716                                           CV_OUT size_t& weights, CV_OUT size_t& blobs) const;
717 
718         /** @brief Computes bytes number which are required to store
719          * all weights and intermediate blobs for each layer.
720          * @param netInputShapes vector of shapes for all net inputs.
721          * @param layerIds output vector to save layer IDs.
722          * @param weights output parameter to store resulting bytes for weights.
723          * @param blobs output parameter to store resulting bytes for intermediate blobs.
724          */
725         void getMemoryConsumption(const std::vector<MatShape>& netInputShapes,
726                                           CV_OUT std::vector<int>& layerIds,
727                                           CV_OUT std::vector<size_t>& weights,
728                                           CV_OUT std::vector<size_t>& blobs) const; // FIXIT: CV_WRAP
729         /** @overload */
730         void getMemoryConsumption(const MatShape& netInputShape,
731                                           CV_OUT std::vector<int>& layerIds,
732                                           CV_OUT std::vector<size_t>& weights,
733                                           CV_OUT std::vector<size_t>& blobs) const; // FIXIT: CV_WRAP
734 
735         /** @brief Enables or disables layer fusion in the network.
736          * @param fusion true to enable the fusion, false to disable. The fusion is enabled by default.
737          */
738         CV_WRAP void enableFusion(bool fusion);
739 
740         /** @brief Returns overall time for inference and timings (in ticks) for layers.
741          *
742          * Indexes in returned vector correspond to layers ids. Some layers can be fused with others,
743          * in this case zero ticks count will be return for that skipped layers. Supported by DNN_BACKEND_OPENCV on DNN_TARGET_CPU only.
744          *
745          * @param[out] timings vector for tick timings for all layers.
746          * @return overall ticks for model inference.
747          */
748         CV_WRAP int64 getPerfProfile(CV_OUT std::vector<double>& timings);
749 
750     private:
751         struct Impl;
752         Ptr<Impl> impl;
753     };
754 
755     /** @brief Reads a network model stored in <a href="https://pjreddie.com/darknet/">Darknet</a> model files.
756     *  @param cfgFile      path to the .cfg file with text description of the network architecture.
757     *  @param darknetModel path to the .weights file with learned network.
758     *  @returns Network object that ready to do forward, throw an exception in failure cases.
759     *  @returns Net object.
760     */
761     CV_EXPORTS_W Net readNetFromDarknet(const String &cfgFile, const String &darknetModel = String());
762 
763     /** @brief Reads a network model stored in <a href="https://pjreddie.com/darknet/">Darknet</a> model files.
764      *  @param bufferCfg   A buffer contains a content of .cfg file with text description of the network architecture.
765      *  @param bufferModel A buffer contains a content of .weights file with learned network.
766      *  @returns Net object.
767      */
768     CV_EXPORTS_W Net readNetFromDarknet(const std::vector<uchar>& bufferCfg,
769                                         const std::vector<uchar>& bufferModel = std::vector<uchar>());
770 
771     /** @brief Reads a network model stored in <a href="https://pjreddie.com/darknet/">Darknet</a> model files.
772      *  @param bufferCfg   A buffer contains a content of .cfg file with text description of the network architecture.
773      *  @param lenCfg      Number of bytes to read from bufferCfg
774      *  @param bufferModel A buffer contains a content of .weights file with learned network.
775      *  @param lenModel    Number of bytes to read from bufferModel
776      *  @returns Net object.
777      */
778     CV_EXPORTS Net readNetFromDarknet(const char *bufferCfg, size_t lenCfg,
779                                       const char *bufferModel = NULL, size_t lenModel = 0);
780 
781     /** @brief Reads a network model stored in <a href="http://caffe.berkeleyvision.org">Caffe</a> framework's format.
782       * @param prototxt   path to the .prototxt file with text description of the network architecture.
783       * @param caffeModel path to the .caffemodel file with learned network.
784       * @returns Net object.
785       */
786     CV_EXPORTS_W Net readNetFromCaffe(const String &prototxt, const String &caffeModel = String());
787 
788     /** @brief Reads a network model stored in Caffe model in memory.
789       * @param bufferProto buffer containing the content of the .prototxt file
790       * @param bufferModel buffer containing the content of the .caffemodel file
791       * @returns Net object.
792       */
793     CV_EXPORTS_W Net readNetFromCaffe(const std::vector<uchar>& bufferProto,
794                                       const std::vector<uchar>& bufferModel = std::vector<uchar>());
795 
796     /** @brief Reads a network model stored in Caffe model in memory.
797       * @details This is an overloaded member function, provided for convenience.
798       * It differs from the above function only in what argument(s) it accepts.
799       * @param bufferProto buffer containing the content of the .prototxt file
800       * @param lenProto length of bufferProto
801       * @param bufferModel buffer containing the content of the .caffemodel file
802       * @param lenModel length of bufferModel
803       * @returns Net object.
804       */
805     CV_EXPORTS Net readNetFromCaffe(const char *bufferProto, size_t lenProto,
806                                     const char *bufferModel = NULL, size_t lenModel = 0);
807 
808     /** @brief Reads a network model stored in <a href="https://www.tensorflow.org/">TensorFlow</a> framework's format.
809       * @param model  path to the .pb file with binary protobuf description of the network architecture
810       * @param config path to the .pbtxt file that contains text graph definition in protobuf format.
811       *               Resulting Net object is built by text graph using weights from a binary one that
812       *               let us make it more flexible.
813       * @returns Net object.
814       */
815     CV_EXPORTS_W Net readNetFromTensorflow(const String &model, const String &config = String());
816 
817     /** @brief Reads a network model stored in <a href="https://www.tensorflow.org/">TensorFlow</a> framework's format.
818       * @param bufferModel buffer containing the content of the pb file
819       * @param bufferConfig buffer containing the content of the pbtxt file
820       * @returns Net object.
821       */
822     CV_EXPORTS_W Net readNetFromTensorflow(const std::vector<uchar>& bufferModel,
823                                            const std::vector<uchar>& bufferConfig = std::vector<uchar>());
824 
825     /** @brief Reads a network model stored in <a href="https://www.tensorflow.org/">TensorFlow</a> framework's format.
826       * @details This is an overloaded member function, provided for convenience.
827       * It differs from the above function only in what argument(s) it accepts.
828       * @param bufferModel buffer containing the content of the pb file
829       * @param lenModel length of bufferModel
830       * @param bufferConfig buffer containing the content of the pbtxt file
831       * @param lenConfig length of bufferConfig
832       */
833     CV_EXPORTS Net readNetFromTensorflow(const char *bufferModel, size_t lenModel,
834                                          const char *bufferConfig = NULL, size_t lenConfig = 0);
835 
836     /**
837      *  @brief Reads a network model stored in <a href="http://torch.ch">Torch7</a> framework's format.
838      *  @param model    path to the file, dumped from Torch by using torch.save() function.
839      *  @param isBinary specifies whether the network was serialized in ascii mode or binary.
840      *  @param evaluate specifies testing phase of network. If true, it's similar to evaluate() method in Torch.
841      *  @returns Net object.
842      *
843      *  @note Ascii mode of Torch serializer is more preferable, because binary mode extensively use `long` type of C language,
844      *  which has various bit-length on different systems.
845      *
846      * The loading file must contain serialized <a href="https://github.com/torch/nn/blob/master/doc/module.md">nn.Module</a> object
847      * with importing network. Try to eliminate a custom objects from serialazing data to avoid importing errors.
848      *
849      * List of supported layers (i.e. object instances derived from Torch nn.Module class):
850      * - nn.Sequential
851      * - nn.Parallel
852      * - nn.Concat
853      * - nn.Linear
854      * - nn.SpatialConvolution
855      * - nn.SpatialMaxPooling, nn.SpatialAveragePooling
856      * - nn.ReLU, nn.TanH, nn.Sigmoid
857      * - nn.Reshape
858      * - nn.SoftMax, nn.LogSoftMax
859      *
860      * Also some equivalents of these classes from cunn, cudnn, and fbcunn may be successfully imported.
861      */
862      CV_EXPORTS_W Net readNetFromTorch(const String &model, bool isBinary = true, bool evaluate = true);
863 
864      /**
865       * @brief Read deep learning network represented in one of the supported formats.
866       * @param[in] model Binary file contains trained weights. The following file
867       *                  extensions are expected for models from different frameworks:
868       *                  * `*.caffemodel` (Caffe, http://caffe.berkeleyvision.org/)
869       *                  * `*.pb` (TensorFlow, https://www.tensorflow.org/)
870       *                  * `*.t7` | `*.net` (Torch, http://torch.ch/)
871       *                  * `*.weights` (Darknet, https://pjreddie.com/darknet/)
872       *                  * `*.bin` (DLDT, https://software.intel.com/openvino-toolkit)
873       *                  * `*.onnx` (ONNX, https://onnx.ai/)
874       * @param[in] config Text file contains network configuration. It could be a
875       *                   file with the following extensions:
876       *                  * `*.prototxt` (Caffe, http://caffe.berkeleyvision.org/)
877       *                  * `*.pbtxt` (TensorFlow, https://www.tensorflow.org/)
878       *                  * `*.cfg` (Darknet, https://pjreddie.com/darknet/)
879       *                  * `*.xml` (DLDT, https://software.intel.com/openvino-toolkit)
880       * @param[in] framework Explicit framework name tag to determine a format.
881       * @returns Net object.
882       *
883       * This function automatically detects an origin framework of trained model
884       * and calls an appropriate function such @ref readNetFromCaffe, @ref readNetFromTensorflow,
885       * @ref readNetFromTorch or @ref readNetFromDarknet. An order of @p model and @p config
886       * arguments does not matter.
887       */
888      CV_EXPORTS_W Net readNet(const String& model, const String& config = "", const String& framework = "");
889 
890      /**
891       * @brief Read deep learning network represented in one of the supported formats.
892       * @details This is an overloaded member function, provided for convenience.
893       *          It differs from the above function only in what argument(s) it accepts.
894       * @param[in] framework    Name of origin framework.
895       * @param[in] bufferModel  A buffer with a content of binary file with weights
896       * @param[in] bufferConfig A buffer with a content of text file contains network configuration.
897       * @returns Net object.
898       */
899      CV_EXPORTS_W Net readNet(const String& framework, const std::vector<uchar>& bufferModel,
900                               const std::vector<uchar>& bufferConfig = std::vector<uchar>());
901 
902     /** @brief Loads blob which was serialized as torch.Tensor object of Torch7 framework.
903      *  @warning This function has the same limitations as readNetFromTorch().
904      */
905     CV_EXPORTS_W Mat readTorchBlob(const String &filename, bool isBinary = true);
906 
907     /** @brief Load a network from Intel's Model Optimizer intermediate representation.
908      *  @param[in] xml XML configuration file with network's topology.
909      *  @param[in] bin Binary file with trained weights.
910      *  @returns Net object.
911      *  Networks imported from Intel's Model Optimizer are launched in Intel's Inference Engine
912      *  backend.
913      */
914     CV_EXPORTS_W
915     Net readNetFromModelOptimizer(const String &xml, const String &bin);
916 
917     /** @brief Load a network from Intel's Model Optimizer intermediate representation.
918      *  @param[in] bufferModelConfig Buffer contains XML configuration with network's topology.
919      *  @param[in] bufferWeights Buffer contains binary data with trained weights.
920      *  @returns Net object.
921      *  Networks imported from Intel's Model Optimizer are launched in Intel's Inference Engine
922      *  backend.
923      */
924     CV_EXPORTS_W
925     Net readNetFromModelOptimizer(const std::vector<uchar>& bufferModelConfig, const std::vector<uchar>& bufferWeights);
926 
927     /** @brief Load a network from Intel's Model Optimizer intermediate representation.
928      *  @param[in] bufferModelConfigPtr Pointer to buffer which contains XML configuration with network's topology.
929      *  @param[in] bufferModelConfigSize Binary size of XML configuration data.
930      *  @param[in] bufferWeightsPtr Pointer to buffer which contains binary data with trained weights.
931      *  @param[in] bufferWeightsSize Binary size of trained weights data.
932      *  @returns Net object.
933      *  Networks imported from Intel's Model Optimizer are launched in Intel's Inference Engine
934      *  backend.
935      */
936     CV_EXPORTS
937     Net readNetFromModelOptimizer(const uchar* bufferModelConfigPtr, size_t bufferModelConfigSize,
938                                            const uchar* bufferWeightsPtr, size_t bufferWeightsSize);
939 
940     /** @brief Reads a network model <a href="https://onnx.ai/">ONNX</a>.
941      *  @param onnxFile path to the .onnx file with text description of the network architecture.
942      *  @returns Network object that ready to do forward, throw an exception in failure cases.
943      */
944     CV_EXPORTS_W Net readNetFromONNX(const String &onnxFile);
945 
946     /** @brief Reads a network model from <a href="https://onnx.ai/">ONNX</a>
947      *         in-memory buffer.
948      *  @param buffer memory address of the first byte of the buffer.
949      *  @param sizeBuffer size of the buffer.
950      *  @returns Network object that ready to do forward, throw an exception
951      *        in failure cases.
952      */
953     CV_EXPORTS Net readNetFromONNX(const char* buffer, size_t sizeBuffer);
954 
955     /** @brief Reads a network model from <a href="https://onnx.ai/">ONNX</a>
956      *         in-memory buffer.
957      *  @param buffer in-memory buffer that stores the ONNX model bytes.
958      *  @returns Network object that ready to do forward, throw an exception
959      *        in failure cases.
960      */
961     CV_EXPORTS_W Net readNetFromONNX(const std::vector<uchar>& buffer);
962 
963     /** @brief Creates blob from .pb file.
964      *  @param path to the .pb file with input tensor.
965      *  @returns Mat.
966      */
967     CV_EXPORTS_W Mat readTensorFromONNX(const String& path);
968 
969     /** @brief Creates 4-dimensional blob from image. Optionally resizes and crops @p image from center,
970      *  subtract @p mean values, scales values by @p scalefactor, swap Blue and Red channels.
971      *  @param image input image (with 1-, 3- or 4-channels).
972      *  @param size spatial size for output image
973      *  @param mean scalar with mean values which are subtracted from channels. Values are intended
974      *  to be in (mean-R, mean-G, mean-B) order if @p image has BGR ordering and @p swapRB is true.
975      *  @param scalefactor multiplier for @p image values.
976      *  @param swapRB flag which indicates that swap first and last channels
977      *  in 3-channel image is necessary.
978      *  @param crop flag which indicates whether image will be cropped after resize or not
979      *  @param ddepth Depth of output blob. Choose CV_32F or CV_8U.
980      *  @details if @p crop is true, input image is resized so one side after resize is equal to corresponding
981      *  dimension in @p size and another one is equal or larger. Then, crop from the center is performed.
982      *  If @p crop is false, direct resize without cropping and preserving aspect ratio is performed.
983      *  @returns 4-dimensional Mat with NCHW dimensions order.
984      */
985     CV_EXPORTS_W Mat blobFromImage(InputArray image, double scalefactor=1.0, const Size& size = Size(),
986                                    const Scalar& mean = Scalar(), bool swapRB=false, bool crop=false,
987                                    int ddepth=CV_32F);
988 
989     /** @brief Creates 4-dimensional blob from image.
990      *  @details This is an overloaded member function, provided for convenience.
991      *           It differs from the above function only in what argument(s) it accepts.
992      */
993     CV_EXPORTS void blobFromImage(InputArray image, OutputArray blob, double scalefactor=1.0,
994                                   const Size& size = Size(), const Scalar& mean = Scalar(),
995                                   bool swapRB=false, bool crop=false, int ddepth=CV_32F);
996 
997 
998     /** @brief Creates 4-dimensional blob from series of images. Optionally resizes and
999      *  crops @p images from center, subtract @p mean values, scales values by @p scalefactor,
1000      *  swap Blue and Red channels.
1001      *  @param images input images (all with 1-, 3- or 4-channels).
1002      *  @param size spatial size for output image
1003      *  @param mean scalar with mean values which are subtracted from channels. Values are intended
1004      *  to be in (mean-R, mean-G, mean-B) order if @p image has BGR ordering and @p swapRB is true.
1005      *  @param scalefactor multiplier for @p images values.
1006      *  @param swapRB flag which indicates that swap first and last channels
1007      *  in 3-channel image is necessary.
1008      *  @param crop flag which indicates whether image will be cropped after resize or not
1009      *  @param ddepth Depth of output blob. Choose CV_32F or CV_8U.
1010      *  @details if @p crop is true, input image is resized so one side after resize is equal to corresponding
1011      *  dimension in @p size and another one is equal or larger. Then, crop from the center is performed.
1012      *  If @p crop is false, direct resize without cropping and preserving aspect ratio is performed.
1013      *  @returns 4-dimensional Mat with NCHW dimensions order.
1014      */
1015     CV_EXPORTS_W Mat blobFromImages(InputArrayOfArrays images, double scalefactor=1.0,
1016                                     Size size = Size(), const Scalar& mean = Scalar(), bool swapRB=false, bool crop=false,
1017                                     int ddepth=CV_32F);
1018 
1019     /** @brief Creates 4-dimensional blob from series of images.
1020      *  @details This is an overloaded member function, provided for convenience.
1021      *           It differs from the above function only in what argument(s) it accepts.
1022      */
1023     CV_EXPORTS void blobFromImages(InputArrayOfArrays images, OutputArray blob,
1024                                    double scalefactor=1.0, Size size = Size(),
1025                                    const Scalar& mean = Scalar(), bool swapRB=false, bool crop=false,
1026                                    int ddepth=CV_32F);
1027 
1028     /** @brief Parse a 4D blob and output the images it contains as 2D arrays through a simpler data structure
1029      *  (std::vector<cv::Mat>).
1030      *  @param[in] blob_ 4 dimensional array (images, channels, height, width) in floating point precision (CV_32F) from
1031      *  which you would like to extract the images.
1032      *  @param[out] images_ array of 2D Mat containing the images extracted from the blob in floating point precision
1033      *  (CV_32F). They are non normalized neither mean added. The number of returned images equals the first dimension
1034      *  of the blob (batch size). Every image has a number of channels equals to the second dimension of the blob (depth).
1035      */
1036     CV_EXPORTS_W void imagesFromBlob(const cv::Mat& blob_, OutputArrayOfArrays images_);
1037 
1038     /** @brief Convert all weights of Caffe network to half precision floating point.
1039      * @param src Path to origin model from Caffe framework contains single
1040      *            precision floating point weights (usually has `.caffemodel` extension).
1041      * @param dst Path to destination model with updated weights.
1042      * @param layersTypes Set of layers types which parameters will be converted.
1043      *                    By default, converts only Convolutional and Fully-Connected layers'
1044      *                    weights.
1045      *
1046      * @note Shrinked model has no origin float32 weights so it can't be used
1047      *       in origin Caffe framework anymore. However the structure of data
1048      *       is taken from NVidia's Caffe fork: https://github.com/NVIDIA/caffe.
1049      *       So the resulting model may be used there.
1050      */
1051     CV_EXPORTS_W void shrinkCaffeModel(const String& src, const String& dst,
1052                                        const std::vector<String>& layersTypes = std::vector<String>());
1053 
1054     /** @brief Create a text representation for a binary network stored in protocol buffer format.
1055      *  @param[in] model  A path to binary network.
1056      *  @param[in] output A path to output text file to be created.
1057      *
1058      *  @note To reduce output file size, trained weights are not included.
1059      */
1060     CV_EXPORTS_W void writeTextGraph(const String& model, const String& output);
1061 
1062     /** @brief Performs non maximum suppression given boxes and corresponding scores.
1063 
1064      * @param bboxes a set of bounding boxes to apply NMS.
1065      * @param scores a set of corresponding confidences.
1066      * @param score_threshold a threshold used to filter boxes by score.
1067      * @param nms_threshold a threshold used in non maximum suppression.
1068      * @param indices the kept indices of bboxes after NMS.
1069      * @param eta a coefficient in adaptive threshold formula: \f$nms\_threshold_{i+1}=eta\cdot nms\_threshold_i\f$.
1070      * @param top_k if `>0`, keep at most @p top_k picked indices.
1071      */
1072     CV_EXPORTS void NMSBoxes(const std::vector<Rect>& bboxes, const std::vector<float>& scores,
1073                                const float score_threshold, const float nms_threshold,
1074                                CV_OUT std::vector<int>& indices,
1075                                const float eta = 1.f, const int top_k = 0);
1076 
1077     CV_EXPORTS_W void NMSBoxes(const std::vector<Rect2d>& bboxes, const std::vector<float>& scores,
1078                                const float score_threshold, const float nms_threshold,
1079                                CV_OUT std::vector<int>& indices,
1080                                const float eta = 1.f, const int top_k = 0);
1081 
1082     CV_EXPORTS_AS(NMSBoxesRotated) void NMSBoxes(const std::vector<RotatedRect>& bboxes, const std::vector<float>& scores,
1083                              const float score_threshold, const float nms_threshold,
1084                              CV_OUT std::vector<int>& indices,
1085                              const float eta = 1.f, const int top_k = 0);
1086 
1087 
1088      /** @brief This class is presented high-level API for neural networks.
1089       *
1090       * Model allows to set params for preprocessing input image.
1091       * Model creates net from file with trained weights and config,
1092       * sets preprocessing input and runs forward pass.
1093       */
1094      class CV_EXPORTS_W_SIMPLE Model
1095      {
1096      public:
1097          CV_DEPRECATED_EXTERNAL  // avoid using in C++ code, will be moved to "protected" (need to fix bindings first)
1098          Model();
1099 
1100          Model(const Model&) = default;
1101          Model(Model&&) = default;
1102          Model& operator=(const Model&) = default;
1103          Model& operator=(Model&&) = default;
1104 
1105          /**
1106           * @brief Create model from deep learning network represented in one of the supported formats.
1107           * An order of @p model and @p config arguments does not matter.
1108           * @param[in] model Binary file contains trained weights.
1109           * @param[in] config Text file contains network configuration.
1110           */
1111          CV_WRAP Model(const String& model, const String& config = "");
1112 
1113          /**
1114           * @brief Create model from deep learning network.
1115           * @param[in] network Net object.
1116           */
1117          CV_WRAP Model(const Net& network);
1118 
1119          /** @brief Set input size for frame.
1120           *  @param[in] size New input size.
1121           *  @note If shape of the new blob less than 0, then frame size not change.
1122          */
1123          CV_WRAP Model& setInputSize(const Size& size);
1124 
1125          /** @overload
1126          *  @param[in] width New input width.
1127          *  @param[in] height New input height.
1128          */
1129          CV_WRAP inline
setInputSize(int width,int height)1130          Model& setInputSize(int width, int height) { return setInputSize(Size(width, height)); }
1131 
1132          /** @brief Set mean value for frame.
1133           *  @param[in] mean Scalar with mean values which are subtracted from channels.
1134          */
1135          CV_WRAP Model& setInputMean(const Scalar& mean);
1136 
1137          /** @brief Set scalefactor value for frame.
1138           *  @param[in] scale Multiplier for frame values.
1139          */
1140          CV_WRAP Model& setInputScale(double scale);
1141 
1142          /** @brief Set flag crop for frame.
1143           *  @param[in] crop Flag which indicates whether image will be cropped after resize or not.
1144          */
1145          CV_WRAP Model& setInputCrop(bool crop);
1146 
1147          /** @brief Set flag swapRB for frame.
1148           *  @param[in] swapRB Flag which indicates that swap first and last channels.
1149          */
1150          CV_WRAP Model& setInputSwapRB(bool swapRB);
1151 
1152          /** @brief Set preprocessing parameters for frame.
1153          *  @param[in] size New input size.
1154          *  @param[in] mean Scalar with mean values which are subtracted from channels.
1155          *  @param[in] scale Multiplier for frame values.
1156          *  @param[in] swapRB Flag which indicates that swap first and last channels.
1157          *  @param[in] crop Flag which indicates whether image will be cropped after resize or not.
1158          *  blob(n, c, y, x) = scale * resize( frame(y, x, c) ) - mean(c) )
1159          */
1160          CV_WRAP void setInputParams(double scale = 1.0, const Size& size = Size(),
1161                                      const Scalar& mean = Scalar(), bool swapRB = false, bool crop = false);
1162 
1163          /** @brief Given the @p input frame, create input blob, run net and return the output @p blobs.
1164           *  @param[in]  frame  The input image.
1165           *  @param[out] outs Allocated output blobs, which will store results of the computation.
1166           */
1167          CV_WRAP void predict(InputArray frame, OutputArrayOfArrays outs) const;
1168 
1169 
1170          // ============================== Net proxy methods ==============================
1171          // Never expose methods with network implementation details, like:
1172          // - addLayer, addLayerToPrev, connect, setInputsNames, setInputShape, setParam, getParam
1173          // - getLayer*, getUnconnectedOutLayers, getUnconnectedOutLayersNames, getLayersShapes
1174          // - forward* methods, setInput
1175 
1176          /// @sa Net::setPreferableBackend
1177          CV_WRAP Model& setPreferableBackend(dnn::Backend backendId);
1178          /// @sa Net::setPreferableTarget
1179          CV_WRAP Model& setPreferableTarget(dnn::Target targetId);
1180 
1181          CV_DEPRECATED_EXTERNAL
operator Net&() const1182          operator Net&() const { return getNetwork_(); }
1183 
1184      //protected: - internal/tests usage only
1185          Net& getNetwork_() const;
getNetwork_()1186          inline Net& getNetwork_() { return const_cast<const Model*>(this)->getNetwork_(); }
1187 
1188          struct Impl;
getImpl() const1189          inline Impl* getImpl() const { return impl.get(); }
getImplRef() const1190          inline Impl& getImplRef() const { CV_DbgAssert(impl); return *impl.get(); }
1191      protected:
1192          Ptr<Impl> impl;
1193      };
1194 
1195      /** @brief This class represents high-level API for classification models.
1196       *
1197       * ClassificationModel allows to set params for preprocessing input image.
1198       * ClassificationModel creates net from file with trained weights and config,
1199       * sets preprocessing input, runs forward pass and return top-1 prediction.
1200       */
1201      class CV_EXPORTS_W_SIMPLE ClassificationModel : public Model
1202      {
1203      public:
1204          /**
1205           * @brief Create classification model from network represented in one of the supported formats.
1206           * An order of @p model and @p config arguments does not matter.
1207           * @param[in] model Binary file contains trained weights.
1208           * @param[in] config Text file contains network configuration.
1209           */
1210           CV_WRAP ClassificationModel(const String& model, const String& config = "");
1211 
1212          /**
1213           * @brief Create model from deep learning network.
1214           * @param[in] network Net object.
1215           */
1216          CV_WRAP ClassificationModel(const Net& network);
1217 
1218          /** @brief Given the @p input frame, create input blob, run net and return top-1 prediction.
1219           *  @param[in]  frame  The input image.
1220           */
1221          std::pair<int, float> classify(InputArray frame);
1222 
1223          /** @overload */
1224          CV_WRAP void classify(InputArray frame, CV_OUT int& classId, CV_OUT float& conf);
1225      };
1226 
1227      /** @brief This class represents high-level API for keypoints models
1228       *
1229       * KeypointsModel allows to set params for preprocessing input image.
1230       * KeypointsModel creates net from file with trained weights and config,
1231       * sets preprocessing input, runs forward pass and returns the x and y coordinates of each detected keypoint
1232       */
1233      class CV_EXPORTS_W_SIMPLE KeypointsModel: public Model
1234      {
1235      public:
1236          /**
1237           * @brief Create keypoints model from network represented in one of the supported formats.
1238           * An order of @p model and @p config arguments does not matter.
1239           * @param[in] model Binary file contains trained weights.
1240           * @param[in] config Text file contains network configuration.
1241           */
1242           CV_WRAP KeypointsModel(const String& model, const String& config = "");
1243 
1244          /**
1245           * @brief Create model from deep learning network.
1246           * @param[in] network Net object.
1247           */
1248          CV_WRAP KeypointsModel(const Net& network);
1249 
1250          /** @brief Given the @p input frame, create input blob, run net
1251           *  @param[in]  frame  The input image.
1252           *  @param thresh minimum confidence threshold to select a keypoint
1253           *  @returns a vector holding the x and y coordinates of each detected keypoint
1254           *
1255           */
1256          CV_WRAP std::vector<Point2f> estimate(InputArray frame, float thresh=0.5);
1257      };
1258 
1259      /** @brief This class represents high-level API for segmentation  models
1260       *
1261       * SegmentationModel allows to set params for preprocessing input image.
1262       * SegmentationModel creates net from file with trained weights and config,
1263       * sets preprocessing input, runs forward pass and returns the class prediction for each pixel.
1264       */
1265      class CV_EXPORTS_W_SIMPLE SegmentationModel: public Model
1266      {
1267      public:
1268          /**
1269           * @brief Create segmentation model from network represented in one of the supported formats.
1270           * An order of @p model and @p config arguments does not matter.
1271           * @param[in] model Binary file contains trained weights.
1272           * @param[in] config Text file contains network configuration.
1273           */
1274           CV_WRAP SegmentationModel(const String& model, const String& config = "");
1275 
1276          /**
1277           * @brief Create model from deep learning network.
1278           * @param[in] network Net object.
1279           */
1280          CV_WRAP SegmentationModel(const Net& network);
1281 
1282          /** @brief Given the @p input frame, create input blob, run net
1283           *  @param[in]  frame  The input image.
1284           *  @param[out] mask Allocated class prediction for each pixel
1285           */
1286          CV_WRAP void segment(InputArray frame, OutputArray mask);
1287      };
1288 
1289      /** @brief This class represents high-level API for object detection networks.
1290       *
1291       * DetectionModel allows to set params for preprocessing input image.
1292       * DetectionModel creates net from file with trained weights and config,
1293       * sets preprocessing input, runs forward pass and return result detections.
1294       * For DetectionModel SSD, Faster R-CNN, YOLO topologies are supported.
1295       */
1296      class CV_EXPORTS_W_SIMPLE DetectionModel : public Model
1297      {
1298      public:
1299          /**
1300           * @brief Create detection model from network represented in one of the supported formats.
1301           * An order of @p model and @p config arguments does not matter.
1302           * @param[in] model Binary file contains trained weights.
1303           * @param[in] config Text file contains network configuration.
1304           */
1305          CV_WRAP DetectionModel(const String& model, const String& config = "");
1306 
1307          /**
1308           * @brief Create model from deep learning network.
1309           * @param[in] network Net object.
1310           */
1311          CV_WRAP DetectionModel(const Net& network);
1312 
1313          CV_DEPRECATED_EXTERNAL  // avoid using in C++ code (need to fix bindings first)
1314          DetectionModel();
1315 
1316          /**
1317           * @brief nmsAcrossClasses defaults to false,
1318           * such that when non max suppression is used during the detect() function, it will do so per-class.
1319           * This function allows you to toggle this behaviour.
1320           * @param[in] value The new value for nmsAcrossClasses
1321           */
1322          CV_WRAP DetectionModel& setNmsAcrossClasses(bool value);
1323 
1324          /**
1325           * @brief Getter for nmsAcrossClasses. This variable defaults to false,
1326           * such that when non max suppression is used during the detect() function, it will do so only per-class
1327           */
1328          CV_WRAP bool getNmsAcrossClasses();
1329 
1330          /** @brief Given the @p input frame, create input blob, run net and return result detections.
1331           *  @param[in]  frame  The input image.
1332           *  @param[out] classIds Class indexes in result detection.
1333           *  @param[out] confidences A set of corresponding confidences.
1334           *  @param[out] boxes A set of bounding boxes.
1335           *  @param[in] confThreshold A threshold used to filter boxes by confidences.
1336           *  @param[in] nmsThreshold A threshold used in non maximum suppression.
1337           */
1338          CV_WRAP void detect(InputArray frame, CV_OUT std::vector<int>& classIds,
1339                              CV_OUT std::vector<float>& confidences, CV_OUT std::vector<Rect>& boxes,
1340                              float confThreshold = 0.5f, float nmsThreshold = 0.0f);
1341      };
1342 
1343 
1344 /** @brief This class represents high-level API for text recognition networks.
1345  *
1346  * TextRecognitionModel allows to set params for preprocessing input image.
1347  * TextRecognitionModel creates net from file with trained weights and config,
1348  * sets preprocessing input, runs forward pass and return recognition result.
1349  * For TextRecognitionModel, CRNN-CTC is supported.
1350  */
1351 class CV_EXPORTS_W_SIMPLE TextRecognitionModel : public Model
1352 {
1353 public:
1354     CV_DEPRECATED_EXTERNAL  // avoid using in C++ code, will be moved to "protected" (need to fix bindings first)
1355     TextRecognitionModel();
1356 
1357     /**
1358      * @brief Create Text Recognition model from deep learning network
1359      * Call setDecodeType() and setVocabulary() after constructor to initialize the decoding method
1360      * @param[in] network Net object
1361      */
1362     CV_WRAP TextRecognitionModel(const Net& network);
1363 
1364     /**
1365      * @brief Create text recognition model from network represented in one of the supported formats
1366      * Call setDecodeType() and setVocabulary() after constructor to initialize the decoding method
1367      * @param[in] model Binary file contains trained weights
1368      * @param[in] config Text file contains network configuration
1369      */
1370     CV_WRAP inline
TextRecognitionModel(const std::string & model,const std::string & config="")1371     TextRecognitionModel(const std::string& model, const std::string& config = "")
1372         : TextRecognitionModel(readNet(model, config)) { /* nothing */ }
1373 
1374     /**
1375      * @brief Set the decoding method of translating the network output into string
1376      * @param[in] decodeType The decoding method of translating the network output into string: {'CTC-greedy': greedy decoding for the output of CTC-based methods}
1377      */
1378     CV_WRAP
1379     TextRecognitionModel& setDecodeType(const std::string& decodeType);
1380 
1381     /**
1382      * @brief Get the decoding method
1383      * @return the decoding method
1384      */
1385     CV_WRAP
1386     const std::string& getDecodeType() const;
1387 
1388     /**
1389      * @brief Set the vocabulary for recognition.
1390      * @param[in] vocabulary the associated vocabulary of the network.
1391      */
1392     CV_WRAP
1393     TextRecognitionModel& setVocabulary(const std::vector<std::string>& vocabulary);
1394 
1395     /**
1396      * @brief Get the vocabulary for recognition.
1397      * @return vocabulary the associated vocabulary
1398      */
1399     CV_WRAP
1400     const std::vector<std::string>& getVocabulary() const;
1401 
1402     /**
1403      * @brief Given the @p input frame, create input blob, run net and return recognition result
1404      * @param[in] frame The input image
1405      * @return The text recognition result
1406      */
1407     CV_WRAP
1408     std::string recognize(InputArray frame) const;
1409 
1410     /**
1411      * @brief Given the @p input frame, create input blob, run net and return recognition result
1412      * @param[in] frame The input image
1413      * @param[in] roiRects List of text detection regions of interest (cv::Rect, CV_32SC4). ROIs is be cropped as the network inputs
1414      * @param[out] results A set of text recognition results.
1415      */
1416     CV_WRAP
1417     void recognize(InputArray frame, InputArrayOfArrays roiRects, CV_OUT std::vector<std::string>& results) const;
1418 };
1419 
1420 
1421 /** @brief Base class for text detection networks
1422  */
1423 class CV_EXPORTS_W_SIMPLE TextDetectionModel : public Model
1424 {
1425 protected:
1426     CV_DEPRECATED_EXTERNAL  // avoid using in C++ code, will be moved to "protected" (need to fix bindings first)
1427     TextDetectionModel();
1428 
1429 public:
1430 
1431     /** @brief Performs detection
1432      *
1433      * Given the input @p frame, prepare network input, run network inference, post-process network output and return result detections.
1434      *
1435      * Each result is quadrangle's 4 points in this order:
1436      * - bottom-left
1437      * - top-left
1438      * - top-right
1439      * - bottom-right
1440      *
1441      * Use cv::getPerspectiveTransform function to retrive image region without perspective transformations.
1442      *
1443      * @note If DL model doesn't support that kind of output then result may be derived from detectTextRectangles() output.
1444      *
1445      * @param[in] frame The input image
1446      * @param[out] detections array with detections' quadrangles (4 points per result)
1447      * @param[out] confidences array with detection confidences
1448      */
1449     CV_WRAP
1450     void detect(
1451             InputArray frame,
1452             CV_OUT std::vector< std::vector<Point> >& detections,
1453             CV_OUT std::vector<float>& confidences
1454     ) const;
1455 
1456     /** @overload */
1457     CV_WRAP
1458     void detect(
1459             InputArray frame,
1460             CV_OUT std::vector< std::vector<Point> >& detections
1461     ) const;
1462 
1463     /** @brief Performs detection
1464      *
1465      * Given the input @p frame, prepare network input, run network inference, post-process network output and return result detections.
1466      *
1467      * Each result is rotated rectangle.
1468      *
1469      * @note Result may be inaccurate in case of strong perspective transformations.
1470      *
1471      * @param[in] frame the input image
1472      * @param[out] detections array with detections' RotationRect results
1473      * @param[out] confidences array with detection confidences
1474      */
1475     CV_WRAP
1476     void detectTextRectangles(
1477             InputArray frame,
1478             CV_OUT std::vector<cv::RotatedRect>& detections,
1479             CV_OUT std::vector<float>& confidences
1480     ) const;
1481 
1482     /** @overload */
1483     CV_WRAP
1484     void detectTextRectangles(
1485             InputArray frame,
1486             CV_OUT std::vector<cv::RotatedRect>& detections
1487     ) const;
1488 };
1489 
1490 /** @brief This class represents high-level API for text detection DL networks compatible with EAST model.
1491  *
1492  * Configurable parameters:
1493  * - (float) confThreshold - used to filter boxes by confidences, default: 0.5f
1494  * - (float) nmsThreshold - used in non maximum suppression, default: 0.0f
1495  */
1496 class CV_EXPORTS_W_SIMPLE TextDetectionModel_EAST : public TextDetectionModel
1497 {
1498 public:
1499     CV_DEPRECATED_EXTERNAL  // avoid using in C++ code, will be moved to "protected" (need to fix bindings first)
1500     TextDetectionModel_EAST();
1501 
1502     /**
1503      * @brief Create text detection algorithm from deep learning network
1504      * @param[in] network Net object
1505      */
1506     CV_WRAP TextDetectionModel_EAST(const Net& network);
1507 
1508     /**
1509      * @brief Create text detection model from network represented in one of the supported formats.
1510      * An order of @p model and @p config arguments does not matter.
1511      * @param[in] model Binary file contains trained weights.
1512      * @param[in] config Text file contains network configuration.
1513      */
1514     CV_WRAP inline
TextDetectionModel_EAST(const std::string & model,const std::string & config="")1515     TextDetectionModel_EAST(const std::string& model, const std::string& config = "")
1516         : TextDetectionModel_EAST(readNet(model, config)) { /* nothing */ }
1517 
1518     /**
1519      * @brief Set the detection confidence threshold
1520      * @param[in] confThreshold A threshold used to filter boxes by confidences
1521      */
1522     CV_WRAP
1523     TextDetectionModel_EAST& setConfidenceThreshold(float confThreshold);
1524 
1525     /**
1526      * @brief Get the detection confidence threshold
1527      */
1528     CV_WRAP
1529     float getConfidenceThreshold() const;
1530 
1531     /**
1532      * @brief Set the detection NMS filter threshold
1533      * @param[in] nmsThreshold A threshold used in non maximum suppression
1534      */
1535     CV_WRAP
1536     TextDetectionModel_EAST& setNMSThreshold(float nmsThreshold);
1537 
1538     /**
1539      * @brief Get the detection confidence threshold
1540      */
1541     CV_WRAP
1542     float getNMSThreshold() const;
1543 };
1544 
1545 /** @brief This class represents high-level API for text detection DL networks compatible with DB model.
1546  *
1547  * Related publications: @cite liao2020real
1548  * Paper: https://arxiv.org/abs/1911.08947
1549  * For more information about the hyper-parameters setting, please refer to https://github.com/MhLiao/DB
1550  *
1551  * Configurable parameters:
1552  * - (float) binaryThreshold - The threshold of the binary map. It is usually set to 0.3.
1553  * - (float) polygonThreshold - The threshold of text polygons. It is usually set to 0.5, 0.6, and 0.7. Default is 0.5f
1554  * - (double) unclipRatio - The unclip ratio of the detected text region, which determines the output size. It is usually set to 2.0.
1555  * - (int) maxCandidates - The max number of the output results.
1556  */
1557 class CV_EXPORTS_W_SIMPLE TextDetectionModel_DB : public TextDetectionModel
1558 {
1559 public:
1560     CV_DEPRECATED_EXTERNAL  // avoid using in C++ code, will be moved to "protected" (need to fix bindings first)
1561     TextDetectionModel_DB();
1562 
1563     /**
1564      * @brief Create text detection algorithm from deep learning network.
1565      * @param[in] network Net object.
1566      */
1567     CV_WRAP TextDetectionModel_DB(const Net& network);
1568 
1569     /**
1570      * @brief Create text detection model from network represented in one of the supported formats.
1571      * An order of @p model and @p config arguments does not matter.
1572      * @param[in] model Binary file contains trained weights.
1573      * @param[in] config Text file contains network configuration.
1574      */
1575     CV_WRAP inline
TextDetectionModel_DB(const std::string & model,const std::string & config="")1576     TextDetectionModel_DB(const std::string& model, const std::string& config = "")
1577         : TextDetectionModel_DB(readNet(model, config)) { /* nothing */ }
1578 
1579     CV_WRAP TextDetectionModel_DB& setBinaryThreshold(float binaryThreshold);
1580     CV_WRAP float getBinaryThreshold() const;
1581 
1582     CV_WRAP TextDetectionModel_DB& setPolygonThreshold(float polygonThreshold);
1583     CV_WRAP float getPolygonThreshold() const;
1584 
1585     CV_WRAP TextDetectionModel_DB& setUnclipRatio(double unclipRatio);
1586     CV_WRAP double getUnclipRatio() const;
1587 
1588     CV_WRAP TextDetectionModel_DB& setMaxCandidates(int maxCandidates);
1589     CV_WRAP int getMaxCandidates() const;
1590 };
1591 
1592 //! @}
1593 CV__DNN_INLINE_NS_END
1594 }
1595 }
1596 
1597 #include <opencv2/dnn/layer.hpp>
1598 #include <opencv2/dnn/dnn.inl.hpp>
1599 
1600 /// @deprecated Include this header directly from application. Automatic inclusion will be removed
1601 #include <opencv2/dnn/utils/inference_engine.hpp>
1602 
1603 #endif  /* OPENCV_DNN_DNN_HPP */
1604