xref: /netbsd/sys/external/bsd/dwc2/dist/dwc2_hcd.h (revision 43e795b1)
1 /*	$NetBSD: dwc2_hcd.h,v 1.15 2018/08/08 07:20:44 simonb Exp $	*/
2 
3 /*
4  * hcd.h - DesignWare HS OTG Controller host-mode declarations
5  *
6  * Copyright (C) 2004-2013 Synopsys, Inc.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions, and the following disclaimer,
13  *    without modification.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. The names of the above-listed copyright holders may not be used
18  *    to endorse or promote products derived from this software without
19  *    specific prior written permission.
20  *
21  * ALTERNATIVELY, this software may be distributed under the terms of the
22  * GNU General Public License ("GPL") as published by the Free Software
23  * Foundation; either version 2 of the License, or (at your option) any
24  * later version.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
27  * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
28  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
30  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
31  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
32  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
33  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
34  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
35  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
36  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
37  */
38 #ifndef __DWC2_HCD_H__
39 #define __DWC2_HCD_H__
40 
41 /*
42  * This file contains the structures, constants, and interfaces for the
43  * Host Contoller Driver (HCD)
44  *
45  * The Host Controller Driver (HCD) is responsible for translating requests
46  * from the USB Driver into the appropriate actions on the DWC_otg controller.
47  * It isolates the USBD from the specifics of the controller by providing an
48  * API to the USBD.
49  */
50 
51 struct dwc2_qh;
52 
53 /**
54  * struct dwc2_host_chan - Software host channel descriptor
55  *
56  * @hc_num:             Host channel number, used for register address lookup
57  * @dev_addr:           Address of the device
58  * @ep_num:             Endpoint of the device
59  * @ep_is_in:           Endpoint direction
60  * @speed:              Device speed. One of the following values:
61  *                       - USB_SPEED_LOW
62  *                       - USB_SPEED_FULL
63  *                       - USB_SPEED_HIGH
64  * @ep_type:            Endpoint type. One of the following values:
65  *                       - USB_ENDPOINT_XFER_CONTROL: 0
66  *                       - USB_ENDPOINT_XFER_ISOC:    1
67  *                       - USB_ENDPOINT_XFER_BULK:    2
68  *                       - USB_ENDPOINT_XFER_INTR:    3
69  * @max_packet:         Max packet size in bytes
70  * @data_pid_start:     PID for initial transaction.
71  *                       0: DATA0
72  *                       1: DATA2
73  *                       2: DATA1
74  *                       3: MDATA (non-Control EP),
75  *                          SETUP (Control EP)
76  * @multi_count:        Number of additional periodic transactions per
77  *                      (micro)frame
78  * @xfer_buf:           Pointer to current transfer buffer position
79  * @xfer_dma:           DMA address of xfer_buf
80  * @align_buf:          In Buffer DMA mode this will be used if xfer_buf is not
81  *                      DWORD aligned
82  * @xfer_len:           Total number of bytes to transfer
83  * @xfer_count:         Number of bytes transferred so far
84  * @start_pkt_count:    Packet count at start of transfer
85  * @xfer_started:       True if the transfer has been started
86  * @ping:               True if a PING request should be issued on this channel
87  * @error_state:        True if the error count for this transaction is non-zero
88  * @halt_on_queue:      True if this channel should be halted the next time a
89  *                      request is queued for the channel. This is necessary in
90  *                      slave mode if no request queue space is available when
91  *                      an attempt is made to halt the channel.
92  * @halt_pending:       True if the host channel has been halted, but the core
93  *                      is not finished flushing queued requests
94  * @do_split:           Enable split for the channel
95  * @complete_split:     Enable complete split
96  * @hub_addr:           Address of high speed hub for the split
97  * @hub_port:           Port of the low/full speed device for the split
98  * @xact_pos:           Split transaction position. One of the following values:
99  *                       - DWC2_HCSPLT_XACTPOS_MID
100  *                       - DWC2_HCSPLT_XACTPOS_BEGIN
101  *                       - DWC2_HCSPLT_XACTPOS_END
102  *                       - DWC2_HCSPLT_XACTPOS_ALL
103  * @requests:           Number of requests issued for this channel since it was
104  *                      assigned to the current transfer (not counting PINGs)
105  * @schinfo:            Scheduling micro-frame bitmap
106  * @ntd:                Number of transfer descriptors for the transfer
107  * @halt_status:        Reason for halting the host channel
108  * @hcint               Contents of the HCINT register when the interrupt came
109  * @qh:                 QH for the transfer being processed by this channel
110  * @hc_list_entry:      For linking to list of host channels
111  * @desc_list_addr:     Current QH's descriptor list DMA address
112  * @desc_list_sz:       Current QH's descriptor list size
113  *
114  * This structure represents the state of a single host channel when acting in
115  * host mode. It contains the data items needed to transfer packets to an
116  * endpoint via a host channel.
117  */
118 struct dwc2_host_chan {
119 	u8 hc_num;
120 
121 	unsigned dev_addr:7;
122 	unsigned ep_num:4;
123 	unsigned ep_is_in:1;
124 	unsigned speed:4;
125 	unsigned ep_type:2;
126 	unsigned max_packet:11;
127 	unsigned data_pid_start:2;
128 #define DWC2_HC_PID_DATA0	TSIZ_SC_MC_PID_DATA0
129 #define DWC2_HC_PID_DATA2	TSIZ_SC_MC_PID_DATA2
130 #define DWC2_HC_PID_DATA1	TSIZ_SC_MC_PID_DATA1
131 #define DWC2_HC_PID_MDATA	TSIZ_SC_MC_PID_MDATA
132 #define DWC2_HC_PID_SETUP	TSIZ_SC_MC_PID_SETUP
133 
134 	unsigned multi_count:2;
135 
136 	usb_dma_t *xfer_usbdma;
137 	u8 *xfer_buf;
138 	dma_addr_t xfer_dma;
139 	dma_addr_t align_buf;
140 	u32 xfer_len;
141 	u32 xfer_count;
142 	u16 start_pkt_count;
143 	u8 xfer_started;
144 	u8 do_ping;
145 	u8 error_state;
146 	u8 halt_on_queue;
147 	u8 halt_pending;
148 	u8 do_split;
149 	u8 complete_split;
150 	u8 hub_addr;
151 	u8 hub_port;
152 	u8 xact_pos;
153 #define DWC2_HCSPLT_XACTPOS_MID	HCSPLT_XACTPOS_MID
154 #define DWC2_HCSPLT_XACTPOS_END	HCSPLT_XACTPOS_END
155 #define DWC2_HCSPLT_XACTPOS_BEGIN HCSPLT_XACTPOS_BEGIN
156 #define DWC2_HCSPLT_XACTPOS_ALL	HCSPLT_XACTPOS_ALL
157 
158 	u8 requests;
159 	u8 schinfo;
160 	u16 ntd;
161 	enum dwc2_halt_status halt_status;
162 	u32 hcint;
163 	struct dwc2_qh *qh;
164 	struct list_head hc_list_entry;
165 	usb_dma_t desc_list_usbdma;
166 	dma_addr_t desc_list_addr;
167 	u32 desc_list_sz;
168 };
169 
170 struct dwc2_hcd_pipe_info {
171 	u8 dev_addr;
172 	u8 ep_num;
173 	u8 pipe_type;
174 	u8 pipe_dir;
175 	u16 mps;
176 };
177 
178 struct dwc2_hcd_iso_packet_desc {
179 	u32 offset;
180 	u32 length;
181 	u32 actual_length;
182 	u32 status;
183 };
184 
185 struct dwc2_qtd;
186 
187 struct dwc2_hcd_urb {
188 	void *priv;		/* the xfer handle */
189 	struct dwc2_qtd *qtd;
190 	usb_dma_t *usbdma;
191 	u8 *buf;
192 	dma_addr_t dma;
193 	usb_dma_t *setup_usbdma;
194 	void *setup_packet;
195 	dma_addr_t setup_dma;
196 	u32 length;
197 	u32 actual_length;
198 	u32 status;
199 	u32 error_count;
200 	u32 packet_count;
201 	u32 flags;
202 	u16 interval;
203 	struct dwc2_hcd_pipe_info pipe_info;
204 	struct dwc2_hcd_iso_packet_desc iso_descs[0];
205 };
206 
207 /* Phases for control transfers */
208 enum dwc2_control_phase {
209 	DWC2_CONTROL_SETUP,
210 	DWC2_CONTROL_DATA,
211 	DWC2_CONTROL_STATUS,
212 };
213 
214 /* Transaction types */
215 enum dwc2_transaction_type {
216 	DWC2_TRANSACTION_NONE,
217 	DWC2_TRANSACTION_PERIODIC,
218 	DWC2_TRANSACTION_NON_PERIODIC,
219 	DWC2_TRANSACTION_ALL,
220 };
221 
222 /**
223  * struct dwc2_qh - Software queue head structure
224  *
225  * @hsotg:              The HCD state structure for the DWC OTG controller
226  * @ep_type:            Endpoint type. One of the following values:
227  *                       - USB_ENDPOINT_XFER_CONTROL
228  *                       - USB_ENDPOINT_XFER_BULK
229  *                       - USB_ENDPOINT_XFER_INT
230  *                       - USB_ENDPOINT_XFER_ISOC
231  * @ep_is_in:           Endpoint direction
232  * @maxp:               Value from wMaxPacketSize field of Endpoint Descriptor
233  * @dev_speed:          Device speed. One of the following values:
234  *                       - USB_SPEED_LOW
235  *                       - USB_SPEED_FULL
236  *                       - USB_SPEED_HIGH
237  * @data_toggle:        Determines the PID of the next data packet for
238  *                      non-controltransfers. Ignored for control transfers.
239  *                      One of the following values:
240  *                       - DWC2_HC_PID_DATA0
241  *                       - DWC2_HC_PID_DATA1
242  * @ping_state:         Ping state
243  * @do_split:           Full/low speed endpoint on high-speed hub requires split
244  * @td_first:           Index of first activated isochronous transfer descriptor
245  * @td_last:            Index of last activated isochronous transfer descriptor
246  * @usecs:              Bandwidth in microseconds per (micro)frame
247  * @interval:           Interval between transfers in (micro)frames
248  * @sched_frame:        (Micro)frame to initialize a periodic transfer.
249  *                      The transfer executes in the following (micro)frame.
250  * @nak_frame:          Internal variable used by the NAK holdoff code
251  * @frame_usecs:        Internal variable used by the microframe scheduler
252  * @start_split_frame:  (Micro)frame at which last start split was initialized
253  * @ntd:                Actual number of transfer descriptors in a list
254  * @dw_align_buf:       Used instead of original buffer if its physical address
255  *                      is not dword-aligned
256  * @dw_align_buf_size:  Size of dw_align_buf
257  * @dw_align_buf_dma:   DMA address for dw_align_buf
258  * @qtd_list:           List of QTDs for this QH
259  * @channel:            Host channel currently processing transfers for this QH
260  * @qh_list_entry:      Entry for QH in either the periodic or non-periodic
261  *                      schedule
262  * @desc_list:          List of transfer descriptors
263  * @desc_list_dma:      Physical address of desc_list
264  * @desc_list_sz:       Size of descriptors list
265  * @n_bytes:            Xfer Bytes array. Each element corresponds to a transfer
266  *                      descriptor and indicates original XferSize value for the
267  *                      descriptor
268  * @wait_timer:         Timer used to wait before re-queuing.
269  * @tt_buffer_dirty     True if clear_tt_buffer_complete is pending
270  * @want_wait:          We should wait before re-queuing; only matters for non-
271  *                      periodic transfers and is ignored for periodic ones.
272  * @wait_timer_cancel:  Set to true to cancel the wait_timer.
273  *
274  * A Queue Head (QH) holds the static characteristics of an endpoint and
275  * maintains a list of transfers (QTDs) for that endpoint. A QH structure may
276  * be entered in either the non-periodic or periodic schedule.
277  */
278 struct dwc2_qh {
279 	struct dwc2_hsotg *hsotg;
280 	u8 ep_type;
281 	u8 ep_is_in;
282 	u16 maxp;
283 	u8 dev_speed;
284 	u8 data_toggle;
285 	u8 ping_state;
286 	u8 do_split;
287 	u8 td_first;
288 	u8 td_last;
289 	u16 usecs;
290 	u16 interval;
291 	u16 sched_frame;
292 	u16 nak_frame;
293 	u16 frame_usecs[8];
294 	u16 start_split_frame;
295 	u16 ntd;
296 	usb_dma_t dw_align_buf_usbdma;
297 	u8 *dw_align_buf;
298 	int dw_align_buf_size;
299 	dma_addr_t dw_align_buf_dma;
300 	struct list_head qtd_list;
301 	struct dwc2_host_chan *channel;
302 	struct list_head qh_list_entry;
303 	usb_dma_t desc_list_usbdma;
304 	struct dwc2_hcd_dma_desc *desc_list;
305 	dma_addr_t desc_list_dma;
306 	u32 desc_list_sz;
307 	u32 *n_bytes;
308 	/* XXX struct timer_list wait_timer; */
309 	callout_t wait_timer;
310 	unsigned tt_buffer_dirty:1;
311 	unsigned want_wait:1;
312 	unsigned wait_timer_cancel:1;
313 };
314 
315 /**
316  * struct dwc2_qtd - Software queue transfer descriptor (QTD)
317  *
318  * @control_phase:      Current phase for control transfers (Setup, Data, or
319  *                      Status)
320  * @in_process:         Indicates if this QTD is currently processed by HW
321  * @data_toggle:        Determines the PID of the next data packet for the
322  *                      data phase of control transfers. Ignored for other
323  *                      transfer types. One of the following values:
324  *                       - DWC2_HC_PID_DATA0
325  *                       - DWC2_HC_PID_DATA1
326  * @complete_split:     Keeps track of the current split type for FS/LS
327  *                      endpoints on a HS Hub
328  * @isoc_split_pos:     Position of the ISOC split in full/low speed
329  * @isoc_frame_index:   Index of the next frame descriptor for an isochronous
330  *                      transfer. A frame descriptor describes the buffer
331  *                      position and length of the data to be transferred in the
332  *                      next scheduled (micro)frame of an isochronous transfer.
333  *                      It also holds status for that transaction. The frame
334  *                      index starts at 0.
335  * @isoc_split_offset:  Position of the ISOC split in the buffer for the
336  *                      current frame
337  * @ssplit_out_xfer_count: How many bytes transferred during SSPLIT OUT
338  * @error_count:        Holds the number of bus errors that have occurred for
339  *                      a transaction within this transfer
340  * @n_desc:             Number of DMA descriptors for this QTD
341  * @isoc_frame_index_last: Last activated frame (packet) index, used in
342  *                      descriptor DMA mode only
343  * @num_naks:           Number of NAKs received on this QTD.
344  * @urb:                URB for this transfer
345  * @qh:                 Queue head for this QTD
346  * @qtd_list_entry:     For linking to the QH's list of QTDs
347  *
348  * A Queue Transfer Descriptor (QTD) holds the state of a bulk, control,
349  * interrupt, or isochronous transfer. A single QTD is created for each URB
350  * (of one of these types) submitted to the HCD. The transfer associated with
351  * a QTD may require one or multiple transactions.
352  *
353  * A QTD is linked to a Queue Head, which is entered in either the
354  * non-periodic or periodic schedule for execution. When a QTD is chosen for
355  * execution, some or all of its transactions may be executed. After
356  * execution, the state of the QTD is updated. The QTD may be retired if all
357  * its transactions are complete or if an error occurred. Otherwise, it
358  * remains in the schedule so more transactions can be executed later.
359  */
360 struct dwc2_qtd {
361 	enum dwc2_control_phase control_phase;
362 	u8 in_process;
363 	u8 data_toggle;
364 	u8 complete_split;
365 	u8 isoc_split_pos;
366 	u16 isoc_frame_index;
367 	u16 isoc_split_offset;
368 	u16 isoc_td_last;
369 	u16 isoc_td_first;
370 	u32 ssplit_out_xfer_count;
371 	u8 error_count;
372 	u8 n_desc;
373 	u16 isoc_frame_index_last;
374 	u16 num_naks;
375 	struct dwc2_hcd_urb *urb;
376 	struct dwc2_qh *qh;
377 	struct list_head qtd_list_entry;
378 };
379 
380 #ifdef DEBUG
381 struct hc_xfer_info {
382 	struct dwc2_hsotg *hsotg;
383 	struct dwc2_host_chan *chan;
384 };
385 #endif
386 
387 /* Gets the struct usb_hcd that contains a struct dwc2_hsotg */
dwc2_hsotg_to_hcd(struct dwc2_hsotg * hsotg)388 static inline struct usb_hcd *dwc2_hsotg_to_hcd(struct dwc2_hsotg *hsotg)
389 {
390 	return (struct usb_hcd *)hsotg->priv;
391 }
392 
393 /*
394  * Inline used to disable one channel interrupt. Channel interrupts are
395  * disabled when the channel is halted or released by the interrupt handler.
396  * There is no need to handle further interrupts of that type until the
397  * channel is re-assigned. In fact, subsequent handling may cause crashes
398  * because the channel structures are cleaned up when the channel is released.
399  */
disable_hc_int(struct dwc2_hsotg * hsotg,int chnum,u32 intr)400 static inline void disable_hc_int(struct dwc2_hsotg *hsotg, int chnum, u32 intr)
401 {
402 	u32 mask = DWC2_READ_4(hsotg, HCINTMSK(chnum));
403 
404 	mask &= ~intr;
405 	DWC2_WRITE_4(hsotg, HCINTMSK(chnum), mask);
406 }
407 
408 /*
409  * Reads HPRT0 in preparation to modify. It keeps the WC bits 0 so that if they
410  * are read as 1, they won't clear when written back.
411  */
dwc2_read_hprt0(struct dwc2_hsotg * hsotg)412 static inline u32 dwc2_read_hprt0(struct dwc2_hsotg *hsotg)
413 {
414 	u32 hprt0 = DWC2_READ_4(hsotg, HPRT0);
415 
416 	hprt0 &= ~(HPRT0_ENA | HPRT0_CONNDET | HPRT0_ENACHG | HPRT0_OVRCURRCHG);
417 	return hprt0;
418 }
419 
dwc2_hcd_get_ep_num(struct dwc2_hcd_pipe_info * pipe)420 static inline u8 dwc2_hcd_get_ep_num(struct dwc2_hcd_pipe_info *pipe)
421 {
422 	return pipe->ep_num;
423 }
424 
dwc2_hcd_get_pipe_type(struct dwc2_hcd_pipe_info * pipe)425 static inline u8 dwc2_hcd_get_pipe_type(struct dwc2_hcd_pipe_info *pipe)
426 {
427 	return pipe->pipe_type;
428 }
429 
dwc2_hcd_get_mps(struct dwc2_hcd_pipe_info * pipe)430 static inline u16 dwc2_hcd_get_mps(struct dwc2_hcd_pipe_info *pipe)
431 {
432 	return pipe->mps;
433 }
434 
dwc2_hcd_get_dev_addr(struct dwc2_hcd_pipe_info * pipe)435 static inline u8 dwc2_hcd_get_dev_addr(struct dwc2_hcd_pipe_info *pipe)
436 {
437 	return pipe->dev_addr;
438 }
439 
dwc2_hcd_is_pipe_isoc(struct dwc2_hcd_pipe_info * pipe)440 static inline u8 dwc2_hcd_is_pipe_isoc(struct dwc2_hcd_pipe_info *pipe)
441 {
442 	return pipe->pipe_type == USB_ENDPOINT_XFER_ISOC;
443 }
444 
dwc2_hcd_is_pipe_int(struct dwc2_hcd_pipe_info * pipe)445 static inline u8 dwc2_hcd_is_pipe_int(struct dwc2_hcd_pipe_info *pipe)
446 {
447 	return pipe->pipe_type == USB_ENDPOINT_XFER_INT;
448 }
449 
dwc2_hcd_is_pipe_bulk(struct dwc2_hcd_pipe_info * pipe)450 static inline u8 dwc2_hcd_is_pipe_bulk(struct dwc2_hcd_pipe_info *pipe)
451 {
452 	return pipe->pipe_type == USB_ENDPOINT_XFER_BULK;
453 }
454 
dwc2_hcd_is_pipe_control(struct dwc2_hcd_pipe_info * pipe)455 static inline u8 dwc2_hcd_is_pipe_control(struct dwc2_hcd_pipe_info *pipe)
456 {
457 	return pipe->pipe_type == USB_ENDPOINT_XFER_CONTROL;
458 }
459 
dwc2_hcd_is_pipe_in(struct dwc2_hcd_pipe_info * pipe)460 static inline u8 dwc2_hcd_is_pipe_in(struct dwc2_hcd_pipe_info *pipe)
461 {
462 	return pipe->pipe_dir == USB_DIR_IN;
463 }
464 
dwc2_hcd_is_pipe_out(struct dwc2_hcd_pipe_info * pipe)465 static inline u8 dwc2_hcd_is_pipe_out(struct dwc2_hcd_pipe_info *pipe)
466 {
467 	return !dwc2_hcd_is_pipe_in(pipe);
468 }
469 
470 extern int dwc2_hcd_init(struct dwc2_hsotg *hsotg);
471 extern void dwc2_hcd_remove(struct dwc2_hsotg *hsotg);
472 
473 /* Transaction Execution Functions */
474 extern enum dwc2_transaction_type dwc2_hcd_select_transactions(
475 						struct dwc2_hsotg *hsotg);
476 extern void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg,
477 					enum dwc2_transaction_type tr_type);
478 
479 /* Schedule Queue Functions */
480 /* Implemented in hcd_queue.c */
481 extern void dwc2_hcd_init_usecs(struct dwc2_hsotg *hsotg);
482 extern struct dwc2_qh *dwc2_hcd_qh_create(struct dwc2_hsotg *hsotg,
483 					  struct dwc2_hcd_urb *urb,
484 					  gfp_t mem_flags);
485 extern void dwc2_hcd_qh_free(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
486 extern int dwc2_hcd_qh_add(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
487 extern void dwc2_hcd_qh_unlink(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
488 extern void dwc2_hcd_qh_deactivate(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
489 				   int sched_csplit);
490 
491 extern void dwc2_hcd_qtd_init(struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb);
492 extern int dwc2_hcd_qtd_add(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
493 			    struct dwc2_qh *qh);
494 
495 /* Removes and frees a QTD */
496 extern void dwc2_hcd_qtd_unlink_and_free(struct dwc2_hsotg *hsotg,
497 					 struct dwc2_qtd *qtd,
498 					 struct dwc2_qh *qh);
499 
500 /* Descriptor DMA support functions */
501 extern void dwc2_hcd_start_xfer_ddma(struct dwc2_hsotg *hsotg,
502 				     struct dwc2_qh *qh);
503 extern void dwc2_hcd_complete_xfer_ddma(struct dwc2_hsotg *hsotg,
504 					struct dwc2_host_chan *chan, int chnum,
505 					enum dwc2_halt_status halt_status);
506 
507 extern int dwc2_hcd_qh_init_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
508 				 gfp_t mem_flags);
509 extern void dwc2_hcd_qh_free_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
510 
511 /* Check if QH is non-periodic */
512 #define dwc2_qh_is_non_per(_qh_ptr_) \
513 	((_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_BULK || \
514 	 (_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_CONTROL)
515 
516 #ifdef CONFIG_USB_DWC2_DEBUG_PERIODIC
dbg_hc(struct dwc2_host_chan * hc)517 static inline bool dbg_hc(struct dwc2_host_chan *hc) { return true; }
dbg_qh(struct dwc2_qh * qh)518 static inline bool dbg_qh(struct dwc2_qh *qh) { return true; }
dbg_perio(void)519 static inline bool dbg_perio(void) { return true; }
520 #else /* !CONFIG_USB_DWC2_DEBUG_PERIODIC */
dbg_hc(struct dwc2_host_chan * hc)521 static inline bool dbg_hc(struct dwc2_host_chan *hc)
522 {
523 	return hc->ep_type == USB_ENDPOINT_XFER_BULK ||
524 	       hc->ep_type == USB_ENDPOINT_XFER_CONTROL;
525 }
526 
dbg_qh(struct dwc2_qh * qh)527 static inline bool dbg_qh(struct dwc2_qh *qh)
528 {
529 	return qh->ep_type == USB_ENDPOINT_XFER_BULK ||
530 	       qh->ep_type == USB_ENDPOINT_XFER_CONTROL;
531 }
532 
533 
dbg_perio(void)534 static inline bool dbg_perio(void) { return false; }
535 #endif
536 
537 /* High bandwidth multiplier as encoded in highspeed endpoint descriptors */
538 #define dwc2_hb_mult(wmaxpacketsize) (1 + (((wmaxpacketsize) >> 11) & 0x03))
539 
540 /* Packet size for any kind of endpoint descriptor */
541 #define dwc2_max_packet(wmaxpacketsize) ((wmaxpacketsize) & 0x07ff)
542 
543 /*
544  * Returns true if frame1 index is greater than frame2 index. The comparison
545  * is done modulo FRLISTEN_64_SIZE. This accounts for the rollover of the
546  * frame number when the max index frame number is reached.
547  */
dwc2_frame_idx_num_gt(u16 fr_idx1,u16 fr_idx2)548 static inline bool dwc2_frame_idx_num_gt(u16 fr_idx1, u16 fr_idx2)
549 {
550 	u16 diff = fr_idx1 - fr_idx2;
551 	u16 sign = diff & (FRLISTEN_64_SIZE >> 1);
552 
553 	return diff && !sign;
554 }
555 
556 /*
557  * Returns true if frame1 is less than or equal to frame2. The comparison is
558  * done modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the
559  * frame number when the max frame number is reached.
560  */
dwc2_frame_num_le(u16 frame1,u16 frame2)561 static inline int dwc2_frame_num_le(u16 frame1, u16 frame2)
562 {
563 	return ((frame2 - frame1) & HFNUM_MAX_FRNUM) <= (HFNUM_MAX_FRNUM >> 1);
564 }
565 
566 /*
567  * Returns true if frame1 is greater than frame2. The comparison is done
568  * modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the frame
569  * number when the max frame number is reached.
570  */
dwc2_frame_num_gt(u16 frame1,u16 frame2)571 static inline int dwc2_frame_num_gt(u16 frame1, u16 frame2)
572 {
573 	return (frame1 != frame2) &&
574 	       ((frame1 - frame2) & HFNUM_MAX_FRNUM) < (HFNUM_MAX_FRNUM >> 1);
575 }
576 
577 /*
578  * Increments frame by the amount specified by inc. The addition is done
579  * modulo HFNUM_MAX_FRNUM. Returns the incremented value.
580  */
dwc2_frame_num_inc(u16 frame,u16 inc)581 static inline u16 dwc2_frame_num_inc(u16 frame, u16 inc)
582 {
583 	return (frame + inc) & HFNUM_MAX_FRNUM;
584 }
585 
dwc2_full_frame_num(u16 frame)586 static inline u16 dwc2_full_frame_num(u16 frame)
587 {
588 	return (frame & HFNUM_MAX_FRNUM) >> 3;
589 }
590 
dwc2_micro_frame_num(u16 frame)591 static inline u16 dwc2_micro_frame_num(u16 frame)
592 {
593 	return frame & 0x7;
594 }
595 
596 /*
597  * Returns the Core Interrupt Status register contents, ANDed with the Core
598  * Interrupt Mask register contents
599  */
dwc2_read_core_intr(struct dwc2_hsotg * hsotg)600 static inline u32 dwc2_read_core_intr(struct dwc2_hsotg *hsotg)
601 {
602 	return DWC2_READ_4(hsotg, GINTSTS) & DWC2_READ_4(hsotg, GINTMSK);
603 }
604 
dwc2_hcd_urb_get_status(struct dwc2_hcd_urb * dwc2_urb)605 static inline u32 dwc2_hcd_urb_get_status(struct dwc2_hcd_urb *dwc2_urb)
606 {
607 	return dwc2_urb->status;
608 }
609 
dwc2_hcd_urb_get_actual_length(struct dwc2_hcd_urb * dwc2_urb)610 static inline u32 dwc2_hcd_urb_get_actual_length(
611 		struct dwc2_hcd_urb *dwc2_urb)
612 {
613 	return dwc2_urb->actual_length;
614 }
615 
dwc2_hcd_urb_get_error_count(struct dwc2_hcd_urb * dwc2_urb)616 static inline u32 dwc2_hcd_urb_get_error_count(struct dwc2_hcd_urb *dwc2_urb)
617 {
618 	return dwc2_urb->error_count;
619 }
620 
dwc2_hcd_urb_set_iso_desc_params(struct dwc2_hcd_urb * dwc2_urb,int desc_num,u32 offset,u32 length)621 static inline void dwc2_hcd_urb_set_iso_desc_params(
622 		struct dwc2_hcd_urb *dwc2_urb, int desc_num, u32 offset,
623 		u32 length)
624 {
625 	dwc2_urb->iso_descs[desc_num].offset = offset;
626 	dwc2_urb->iso_descs[desc_num].length = length;
627 }
628 
dwc2_hcd_urb_get_iso_desc_status(struct dwc2_hcd_urb * dwc2_urb,int desc_num)629 static inline u32 dwc2_hcd_urb_get_iso_desc_status(
630 		struct dwc2_hcd_urb *dwc2_urb, int desc_num)
631 {
632 	return dwc2_urb->iso_descs[desc_num].status;
633 }
634 
dwc2_hcd_urb_get_iso_desc_actual_length(struct dwc2_hcd_urb * dwc2_urb,int desc_num)635 static inline u32 dwc2_hcd_urb_get_iso_desc_actual_length(
636 		struct dwc2_hcd_urb *dwc2_urb, int desc_num)
637 {
638 	return dwc2_urb->iso_descs[desc_num].actual_length;
639 }
640 
dwc2_hcd_is_bandwidth_allocated(struct dwc2_hsotg * hsotg,struct usbd_xfer * xfer)641 static inline int dwc2_hcd_is_bandwidth_allocated(struct dwc2_hsotg *hsotg,
642 						  struct usbd_xfer *xfer)
643 {
644 	struct dwc2_pipe *dpipe = DWC2_XFER2DPIPE(xfer);
645 	struct dwc2_qh *qh = dpipe->priv;
646 
647 	if (qh && !list_empty(&qh->qh_list_entry))
648 		return 1;
649 
650 	return 0;
651 }
652 
dwc2_hcd_get_ep_bandwidth(struct dwc2_hsotg * hsotg,struct dwc2_pipe * dpipe)653 static inline u16 dwc2_hcd_get_ep_bandwidth(struct dwc2_hsotg *hsotg,
654 					    struct dwc2_pipe *dpipe)
655 {
656 	struct dwc2_qh *qh = dpipe->priv;
657 
658 	if (!qh) {
659 		WARN_ON(1);
660 		return 0;
661 	}
662 
663 	return qh->usecs;
664 }
665 
666 extern void dwc2_hcd_save_data_toggle(struct dwc2_hsotg *hsotg,
667 				      struct dwc2_host_chan *chan, int chnum,
668 				      struct dwc2_qtd *qtd);
669 
670 /* HCD Core API */
671 
672 /**
673  * dwc2_handle_hcd_intr() - Called on every hardware interrupt
674  *
675  * @hsotg: The DWC2 HCD
676  *
677  * Returns IRQ_HANDLED if interrupt is handled
678  * Return IRQ_NONE if interrupt is not handled
679  */
680 extern irqreturn_t dwc2_handle_hcd_intr(struct dwc2_hsotg *hsotg);
681 
682 /**
683  * dwc2_hcd_stop() - Halts the DWC_otg host mode operation
684  *
685  * @hsotg: The DWC2 HCD
686  */
687 extern void dwc2_hcd_stop(struct dwc2_hsotg *hsotg);
688 
689 /**
690  * dwc2_hcd_is_b_host() - Returns 1 if core currently is acting as B host,
691  * and 0 otherwise
692  *
693  * @hsotg: The DWC2 HCD
694  */
695 extern int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg);
696 
697 /**
698  * dwc2_hcd_dump_state() - Dumps hsotg state
699  *
700  * @hsotg: The DWC2 HCD
701  *
702  * NOTE: This function will be removed once the peripheral controller code
703  * is integrated and the driver is stable
704  */
705 extern void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg);
706 
707 /**
708  * dwc2_hcd_dump_frrem() - Dumps the average frame remaining at SOF
709  *
710  * @hsotg: The DWC2 HCD
711  *
712  * This can be used to determine average interrupt latency. Frame remaining is
713  * also shown for start transfer and two additional sample points.
714  *
715  * NOTE: This function will be removed once the peripheral controller code
716  * is integrated and the driver is stable
717  */
718 extern void dwc2_hcd_dump_frrem(struct dwc2_hsotg *hsotg);
719 
720 /* URB interface */
721 
722 /* Transfer flags */
723 #define URB_GIVEBACK_ASAP	0x1
724 #define URB_SEND_ZERO_PACKET	0x2
725 
726 /* Host driver callbacks */
727 
728 extern void dwc2_host_start(struct dwc2_hsotg *hsotg);
729 extern void dwc2_host_disconnect(struct dwc2_hsotg *hsotg);
730 extern void dwc2_host_hub_info(struct dwc2_hsotg *hsotg, void *context,
731 			       int *hub_addr, int *hub_port);
732 extern int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context);
733 extern void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
734 			       int status);
735 
736 #ifdef DEBUG
737 /*
738  * Macro to sample the remaining PHY clocks left in the current frame. This
739  * may be used during debugging to determine the average time it takes to
740  * execute sections of code. There are two possible sample points, "a" and
741  * "b", so the _letter_ argument must be one of these values.
742  *
743  * To dump the average sample times, read the "hcd_frrem" sysfs attribute. For
744  * example, "cat /sys/devices/lm0/hcd_frrem".
745  */
746 #define dwc2_sample_frrem(_hcd_, _qh_, _letter_)			\
747 do {									\
748 	struct hfnum_data _hfnum_;					\
749 	struct dwc2_qtd *_qtd_;						\
750 									\
751 	_qtd_ = list_entry((_qh_)->qtd_list.next, struct dwc2_qtd,	\
752 			   qtd_list_entry);				\
753 	if (usb_pipeint(_qtd_->urb->pipe) &&				\
754 	    (_qh_)->start_split_frame != 0 && !_qtd_->complete_split) {	\
755 		_hfnum_.d32 = DWC2_READ_4((_hcd_), HFNUM);		\
756 		switch (_hfnum_.b.frnum & 0x7) {			\
757 		case 7:							\
758 			(_hcd_)->hfnum_7_samples_##_letter_++;		\
759 			(_hcd_)->hfnum_7_frrem_accum_##_letter_ +=	\
760 				_hfnum_.b.frrem;			\
761 			break;						\
762 		case 0:							\
763 			(_hcd_)->hfnum_0_samples_##_letter_++;		\
764 			(_hcd_)->hfnum_0_frrem_accum_##_letter_ +=	\
765 				_hfnum_.b.frrem;			\
766 			break;						\
767 		default:						\
768 			(_hcd_)->hfnum_other_samples_##_letter_++;	\
769 			(_hcd_)->hfnum_other_frrem_accum_##_letter_ +=	\
770 				_hfnum_.b.frrem;			\
771 			break;						\
772 		}							\
773 	}								\
774 } while (0)
775 #else
776 #define dwc2_sample_frrem(_hcd_, _qh_, _letter_)	do {} while (0)
777 #endif
778 
779 
780 void dwc2_wakeup_detected(void *);
781 
782 int dwc2_hcd_urb_dequeue(struct dwc2_hsotg *, struct dwc2_hcd_urb *);
783 void dwc2_hcd_reinit(struct dwc2_hsotg *);
784 int dwc2_hcd_hub_control(struct dwc2_hsotg *, u16, u16, u16, char *, u16);
785 struct dwc2_hsotg *dwc2_hcd_to_hsotg(struct usb_hcd *);
786 int dwc2_hcd_urb_enqueue(struct dwc2_hsotg *hsotg,
787 				struct dwc2_hcd_urb *urb, struct dwc2_qh *qh,
788 				struct dwc2_qtd *qtd);
789 void dwc2_hcd_urb_set_pipeinfo(struct dwc2_hsotg *, struct dwc2_hcd_urb *,
790 			       u8 ,u8, u8, u8, u16);
791 
792 struct dwc2_hcd_urb * dwc2_hcd_urb_alloc(struct dwc2_hsotg *, int, gfp_t);
793 void dwc2_hcd_urb_free(struct dwc2_hsotg *, struct dwc2_hcd_urb *, int);
794 
795 int _dwc2_hcd_start(struct dwc2_hsotg *);
796 
797 int dwc2_host_is_b_hnp_enabled(struct dwc2_hsotg *);
798 
799 #endif /* __DWC2_HCD_H__ */
800