1 /*
2 * Copyright 1998, 2000 Marshall Kirk McKusick. All Rights Reserved.
3 *
4 * The soft updates code is derived from the appendix of a University
5 * of Michigan technical report (Gregory R. Ganger and Yale N. Patt,
6 * "Soft Updates: A Solution to the Metadata Update Problem in File
7 * Systems", CSE-TR-254-95, August 1995).
8 *
9 * Further information about soft updates can be obtained from:
10 *
11 * Marshall Kirk McKusick http://www.mckusick.com/softdep/
12 * 1614 Oxford Street mckusick@mckusick.com
13 * Berkeley, CA 94709-1608 +1-510-843-9542
14 * USA
15 *
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 *
20 * 1. Redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer.
22 * 2. Redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution.
25 *
26 * THIS SOFTWARE IS PROVIDED BY MARSHALL KIRK MCKUSICK ``AS IS'' AND ANY
27 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
28 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
29 * DISCLAIMED. IN NO EVENT SHALL MARSHALL KIRK MCKUSICK BE LIABLE FOR
30 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 * from: @(#)ffs_softdep.c 9.59 (McKusick) 6/21/00
39 * $FreeBSD: src/sys/ufs/ffs/ffs_softdep.c,v 1.57.2.11 2002/02/05 18:46:53 dillon Exp $
40 */
41
42 /*
43 * For now we want the safety net that the DIAGNOSTIC and DEBUG flags provide.
44 */
45 #ifndef DIAGNOSTIC
46 #define DIAGNOSTIC
47 #endif
48 #ifndef DEBUG
49 #define DEBUG
50 #endif
51
52 #include <sys/param.h>
53 #include <sys/kernel.h>
54 #include <sys/systm.h>
55 #include <sys/buf.h>
56 #include <sys/malloc.h>
57 #include <sys/mount.h>
58 #include <sys/proc.h>
59 #include <sys/spinlock2.h>
60 #include <sys/syslog.h>
61 #include <sys/vnode.h>
62 #include <sys/conf.h>
63 #include <machine/inttypes.h>
64 #include "dir.h"
65 #include "quota.h"
66 #include "inode.h"
67 #include "ufsmount.h"
68 #include "fs.h"
69 #include "softdep.h"
70 #include "ffs_extern.h"
71 #include "ufs_extern.h"
72
73 #include <sys/buf2.h>
74 #include <sys/lock.h>
75
76 /*
77 * These definitions need to be adapted to the system to which
78 * this file is being ported.
79 */
80 /*
81 * malloc types defined for the softdep system.
82 */
83 MALLOC_DEFINE(M_PAGEDEP, "pagedep","File page dependencies");
84 MALLOC_DEFINE(M_INODEDEP, "inodedep","Inode dependencies");
85 MALLOC_DEFINE(M_NEWBLK, "newblk","New block allocation");
86 MALLOC_DEFINE(M_BMSAFEMAP, "bmsafemap","Block or frag allocated from cyl group map");
87 MALLOC_DEFINE(M_ALLOCDIRECT, "allocdirect","Block or frag dependency for an inode");
88 MALLOC_DEFINE(M_INDIRDEP, "indirdep","Indirect block dependencies");
89 MALLOC_DEFINE(M_ALLOCINDIR, "allocindir","Block dependency for an indirect block");
90 MALLOC_DEFINE(M_FREEFRAG, "freefrag","Previously used frag for an inode");
91 MALLOC_DEFINE(M_FREEBLKS, "freeblks","Blocks freed from an inode");
92 MALLOC_DEFINE(M_FREEFILE, "freefile","Inode deallocated");
93 MALLOC_DEFINE(M_DIRADD, "diradd","New directory entry");
94 MALLOC_DEFINE(M_MKDIR, "mkdir","New directory");
95 MALLOC_DEFINE(M_DIRREM, "dirrem","Directory entry deleted");
96
97 #define M_SOFTDEP_FLAGS (M_WAITOK | M_USE_RESERVE)
98
99 #define D_PAGEDEP 0
100 #define D_INODEDEP 1
101 #define D_NEWBLK 2
102 #define D_BMSAFEMAP 3
103 #define D_ALLOCDIRECT 4
104 #define D_INDIRDEP 5
105 #define D_ALLOCINDIR 6
106 #define D_FREEFRAG 7
107 #define D_FREEBLKS 8
108 #define D_FREEFILE 9
109 #define D_DIRADD 10
110 #define D_MKDIR 11
111 #define D_DIRREM 12
112 #define D_LAST D_DIRREM
113
114 /*
115 * translate from workitem type to memory type
116 * MUST match the defines above, such that memtype[D_XXX] == M_XXX
117 */
118 static struct malloc_type *memtype[] = {
119 M_PAGEDEP,
120 M_INODEDEP,
121 M_NEWBLK,
122 M_BMSAFEMAP,
123 M_ALLOCDIRECT,
124 M_INDIRDEP,
125 M_ALLOCINDIR,
126 M_FREEFRAG,
127 M_FREEBLKS,
128 M_FREEFILE,
129 M_DIRADD,
130 M_MKDIR,
131 M_DIRREM
132 };
133
134 #define DtoM(type) (memtype[type])
135
136 /*
137 * Names of malloc types.
138 */
139 #define TYPENAME(type) \
140 ((unsigned)(type) < D_LAST ? memtype[type]->ks_shortdesc : "???")
141 /*
142 * End system adaptaion definitions.
143 */
144
145 /*
146 * Internal function prototypes.
147 */
148 static void softdep_error(char *, int);
149 static void drain_output(struct vnode *, int);
150 static int getdirtybuf(struct buf **, int);
151 static void clear_remove(struct thread *);
152 static void clear_inodedeps(struct thread *);
153 static int flush_pagedep_deps(struct vnode *, struct mount *,
154 struct diraddhd *);
155 static int flush_inodedep_deps(struct fs *, ino_t);
156 static int handle_written_filepage(struct pagedep *, struct buf *);
157 static void diradd_inode_written(struct diradd *, struct inodedep *);
158 static int handle_written_inodeblock(struct inodedep *, struct buf *);
159 static void handle_allocdirect_partdone(struct allocdirect *);
160 static void handle_allocindir_partdone(struct allocindir *);
161 static void initiate_write_filepage(struct pagedep *, struct buf *);
162 static void handle_written_mkdir(struct mkdir *, int);
163 static void initiate_write_inodeblock(struct inodedep *, struct buf *);
164 static void handle_workitem_freefile(struct freefile *);
165 static void handle_workitem_remove(struct dirrem *);
166 static struct dirrem *newdirrem(struct buf *, struct inode *,
167 struct inode *, int, struct dirrem **);
168 static void free_diradd(struct diradd *);
169 static void free_allocindir(struct allocindir *, struct inodedep *);
170 static int indir_trunc (struct inode *, off_t, int, ufs_lbn_t, long *);
171 static void deallocate_dependencies(struct buf *, struct inodedep *);
172 static void free_allocdirect(struct allocdirectlst *,
173 struct allocdirect *, int);
174 static int check_inode_unwritten(struct inodedep *);
175 static int free_inodedep(struct inodedep *);
176 static void handle_workitem_freeblocks(struct freeblks *);
177 static void merge_inode_lists(struct inodedep *);
178 static void setup_allocindir_phase2(struct buf *, struct inode *,
179 struct allocindir *);
180 static struct allocindir *newallocindir(struct inode *, int, ufs_daddr_t,
181 ufs_daddr_t);
182 static void handle_workitem_freefrag(struct freefrag *);
183 static struct freefrag *newfreefrag(struct inode *, ufs_daddr_t, long);
184 static void allocdirect_merge(struct allocdirectlst *,
185 struct allocdirect *, struct allocdirect *);
186 static struct bmsafemap *bmsafemap_lookup(struct buf *);
187 static int newblk_lookup(struct fs *, ufs_daddr_t, int,
188 struct newblk **);
189 static int inodedep_lookup(struct fs *, ino_t, int, struct inodedep **);
190 static int pagedep_lookup(struct inode *, ufs_lbn_t, int,
191 struct pagedep **);
192 static int request_cleanup(int);
193 static int process_worklist_item(struct mount *, int);
194 static void add_to_worklist(struct worklist *);
195
196 /*
197 * Exported softdep operations.
198 */
199 static void softdep_disk_io_initiation(struct buf *);
200 static void softdep_disk_write_complete(struct buf *);
201 static void softdep_deallocate_dependencies(struct buf *);
202 static int softdep_fsync(struct vnode *);
203 static int softdep_process_worklist(struct mount *);
204 static void softdep_move_dependencies(struct buf *, struct buf *);
205 static int softdep_count_dependencies(struct buf *bp, int);
206 static int softdep_checkread(struct buf *bp);
207 static int softdep_checkwrite(struct buf *bp);
208
209 static struct bio_ops softdep_bioops = {
210 .io_start = softdep_disk_io_initiation,
211 .io_complete = softdep_disk_write_complete,
212 .io_deallocate = softdep_deallocate_dependencies,
213 .io_fsync = softdep_fsync,
214 .io_sync = softdep_process_worklist,
215 .io_movedeps = softdep_move_dependencies,
216 .io_countdeps = softdep_count_dependencies,
217 .io_checkread = softdep_checkread,
218 .io_checkwrite = softdep_checkwrite
219 };
220
221 /*
222 * Locking primitives.
223 */
224 static void acquire_lock(struct lock *);
225 static void free_lock(struct lock *);
226 #ifdef INVARIANTS
227 static int lock_held(struct lock *);
228 #endif
229
230 static struct lock lk;
231
232 #define ACQUIRE_LOCK(lkp) acquire_lock(lkp)
233 #define FREE_LOCK(lkp) free_lock(lkp)
234
235 static void
acquire_lock(struct lock * lkp)236 acquire_lock(struct lock *lkp)
237 {
238 lockmgr(lkp, LK_EXCLUSIVE);
239 }
240
241 static void
free_lock(struct lock * lkp)242 free_lock(struct lock *lkp)
243 {
244 lockmgr(lkp, LK_RELEASE);
245 }
246
247 #ifdef INVARIANTS
248 static int
lock_held(struct lock * lkp)249 lock_held(struct lock *lkp)
250 {
251 return lockinuse(lkp);
252 }
253 #endif
254
255 /*
256 * Place holder for real semaphores.
257 */
258 struct sema {
259 int value;
260 thread_t holder;
261 char *name;
262 int timo;
263 struct spinlock spin;
264 };
265 static void sema_init(struct sema *, char *, int);
266 static int sema_get(struct sema *, struct lock *);
267 static void sema_release(struct sema *, struct lock *);
268
269 #define NOHOLDER ((struct thread *) -1)
270
271 static void
sema_init(struct sema * semap,char * name,int timo)272 sema_init(struct sema *semap, char *name, int timo)
273 {
274 semap->holder = NOHOLDER;
275 semap->value = 0;
276 semap->name = name;
277 semap->timo = timo;
278 spin_init(&semap->spin, "ufssema");
279 }
280
281 /*
282 * Obtain exclusive access, semaphore is protected by the interlock.
283 * If interlock is NULL we must protect the semaphore ourselves.
284 */
285 static int
sema_get(struct sema * semap,struct lock * interlock)286 sema_get(struct sema *semap, struct lock *interlock)
287 {
288 int rv;
289
290 if (interlock) {
291 if (semap->value > 0) {
292 ++semap->value; /* serves as wakeup flag */
293 lksleep(semap, interlock, 0,
294 semap->name, semap->timo);
295 rv = 0;
296 } else {
297 semap->value = 1; /* serves as owned flag */
298 semap->holder = curthread;
299 rv = 1;
300 }
301 } else {
302 spin_lock(&semap->spin);
303 if (semap->value > 0) {
304 ++semap->value; /* serves as wakeup flag */
305 ssleep(semap, &semap->spin, 0,
306 semap->name, semap->timo);
307 spin_unlock(&semap->spin);
308 rv = 0;
309 } else {
310 semap->value = 1; /* serves as owned flag */
311 semap->holder = curthread;
312 spin_unlock(&semap->spin);
313 rv = 1;
314 }
315 }
316 return (rv);
317 }
318
319 static void
sema_release(struct sema * semap,struct lock * lk)320 sema_release(struct sema *semap, struct lock *lk)
321 {
322 if (semap->value <= 0 || semap->holder != curthread)
323 panic("sema_release: not held");
324 if (lk) {
325 semap->holder = NOHOLDER;
326 if (--semap->value > 0) {
327 semap->value = 0;
328 wakeup(semap);
329 }
330 } else {
331 spin_lock(&semap->spin);
332 semap->holder = NOHOLDER;
333 if (--semap->value > 0) {
334 semap->value = 0;
335 spin_unlock(&semap->spin);
336 wakeup(semap);
337 } else {
338 spin_unlock(&semap->spin);
339 }
340 }
341 }
342
343 /*
344 * Worklist queue management.
345 * These routines require that the lock be held.
346 */
347 static void worklist_insert(struct workhead *, struct worklist *);
348 static void worklist_remove(struct worklist *);
349 static void workitem_free(struct worklist *, int);
350
351 #define WORKLIST_INSERT_BP(bp, item) do { \
352 (bp)->b_ops = &softdep_bioops; \
353 worklist_insert(&(bp)->b_dep, item); \
354 } while (0)
355
356 #define WORKLIST_INSERT(head, item) worklist_insert(head, item)
357 #define WORKLIST_REMOVE(item) worklist_remove(item)
358 #define WORKITEM_FREE(item, type) workitem_free((struct worklist *)item, type)
359
360 static void
worklist_insert(struct workhead * head,struct worklist * item)361 worklist_insert(struct workhead *head, struct worklist *item)
362 {
363 KKASSERT(lock_held(&lk));
364
365 if (item->wk_state & ONWORKLIST) {
366 panic("worklist_insert: already on list");
367 }
368 item->wk_state |= ONWORKLIST;
369 LIST_INSERT_HEAD(head, item, wk_list);
370 }
371
372 static void
worklist_remove(struct worklist * item)373 worklist_remove(struct worklist *item)
374 {
375
376 KKASSERT(lock_held(&lk));
377 if ((item->wk_state & ONWORKLIST) == 0)
378 panic("worklist_remove: not on list");
379
380 item->wk_state &= ~ONWORKLIST;
381 LIST_REMOVE(item, wk_list);
382 }
383
384 static void
workitem_free(struct worklist * item,int type)385 workitem_free(struct worklist *item, int type)
386 {
387
388 if (item->wk_state & ONWORKLIST)
389 panic("workitem_free: still on list");
390 if (item->wk_type != type)
391 panic("workitem_free: type mismatch");
392
393 kfree(item, DtoM(type));
394 }
395
396 /*
397 * Workitem queue management
398 */
399 static struct workhead softdep_workitem_pending;
400 static int num_on_worklist; /* number of worklist items to be processed */
401 static int softdep_worklist_busy; /* 1 => trying to do unmount */
402 static int softdep_worklist_req; /* serialized waiters */
403 static int max_softdeps; /* maximum number of structs before slowdown */
404 static int tickdelay = 2; /* number of ticks to pause during slowdown */
405 static int *stat_countp; /* statistic to count in proc_waiting timeout */
406 static int proc_waiting; /* tracks whether we have a timeout posted */
407 static struct thread *filesys_syncer; /* proc of filesystem syncer process */
408 static int req_clear_inodedeps; /* syncer process flush some inodedeps */
409 #define FLUSH_INODES 1
410 static int req_clear_remove; /* syncer process flush some freeblks */
411 #define FLUSH_REMOVE 2
412 /*
413 * runtime statistics
414 */
415 static int stat_worklist_push; /* number of worklist cleanups */
416 static int stat_blk_limit_push; /* number of times block limit neared */
417 static int stat_ino_limit_push; /* number of times inode limit neared */
418 static int stat_blk_limit_hit; /* number of times block slowdown imposed */
419 static int stat_ino_limit_hit; /* number of times inode slowdown imposed */
420 static int stat_sync_limit_hit; /* number of synchronous slowdowns imposed */
421 static int stat_indir_blk_ptrs; /* bufs redirtied as indir ptrs not written */
422 static int stat_inode_bitmap; /* bufs redirtied as inode bitmap not written */
423 static int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */
424 static int stat_dir_entry; /* bufs redirtied as dir entry cannot write */
425 #ifdef DEBUG
426 #include <vm/vm.h>
427 #include <sys/sysctl.h>
428 SYSCTL_INT(_debug, OID_AUTO, max_softdeps, CTLFLAG_RW, &max_softdeps, 0,
429 "Maximum soft dependencies before slowdown occurs");
430 SYSCTL_INT(_debug, OID_AUTO, tickdelay, CTLFLAG_RW, &tickdelay, 0,
431 "Ticks to delay before allocating during slowdown");
432 SYSCTL_INT(_debug, OID_AUTO, worklist_push, CTLFLAG_RW, &stat_worklist_push, 0,
433 "Number of worklist cleanups");
434 SYSCTL_INT(_debug, OID_AUTO, blk_limit_push, CTLFLAG_RW, &stat_blk_limit_push, 0,
435 "Number of times block limit neared");
436 SYSCTL_INT(_debug, OID_AUTO, ino_limit_push, CTLFLAG_RW, &stat_ino_limit_push, 0,
437 "Number of times inode limit neared");
438 SYSCTL_INT(_debug, OID_AUTO, blk_limit_hit, CTLFLAG_RW, &stat_blk_limit_hit, 0,
439 "Number of times block slowdown imposed");
440 SYSCTL_INT(_debug, OID_AUTO, ino_limit_hit, CTLFLAG_RW, &stat_ino_limit_hit, 0,
441 "Number of times inode slowdown imposed ");
442 SYSCTL_INT(_debug, OID_AUTO, sync_limit_hit, CTLFLAG_RW, &stat_sync_limit_hit, 0,
443 "Number of synchronous slowdowns imposed");
444 SYSCTL_INT(_debug, OID_AUTO, indir_blk_ptrs, CTLFLAG_RW, &stat_indir_blk_ptrs, 0,
445 "Bufs redirtied as indir ptrs not written");
446 SYSCTL_INT(_debug, OID_AUTO, inode_bitmap, CTLFLAG_RW, &stat_inode_bitmap, 0,
447 "Bufs redirtied as inode bitmap not written");
448 SYSCTL_INT(_debug, OID_AUTO, direct_blk_ptrs, CTLFLAG_RW, &stat_direct_blk_ptrs, 0,
449 "Bufs redirtied as direct ptrs not written");
450 SYSCTL_INT(_debug, OID_AUTO, dir_entry, CTLFLAG_RW, &stat_dir_entry, 0,
451 "Bufs redirtied as dir entry cannot write");
452 #endif /* DEBUG */
453
454 /*
455 * Add an item to the end of the work queue.
456 * This routine requires that the lock be held.
457 * This is the only routine that adds items to the list.
458 * The following routine is the only one that removes items
459 * and does so in order from first to last.
460 */
461 static void
add_to_worklist(struct worklist * wk)462 add_to_worklist(struct worklist *wk)
463 {
464 static struct worklist *worklist_tail;
465
466 if (wk->wk_state & ONWORKLIST) {
467 panic("add_to_worklist: already on list");
468 }
469 wk->wk_state |= ONWORKLIST;
470 if (LIST_FIRST(&softdep_workitem_pending) == NULL)
471 LIST_INSERT_HEAD(&softdep_workitem_pending, wk, wk_list);
472 else
473 LIST_INSERT_AFTER(worklist_tail, wk, wk_list);
474 worklist_tail = wk;
475 num_on_worklist += 1;
476 }
477
478 /*
479 * Process that runs once per second to handle items in the background queue.
480 *
481 * Note that we ensure that everything is done in the order in which they
482 * appear in the queue. The code below depends on this property to ensure
483 * that blocks of a file are freed before the inode itself is freed. This
484 * ordering ensures that no new <vfsid, inum, lbn> triples will be generated
485 * until all the old ones have been purged from the dependency lists.
486 *
487 * bioops callback - hold io_token
488 */
489 static int
softdep_process_worklist(struct mount * matchmnt)490 softdep_process_worklist(struct mount *matchmnt)
491 {
492 thread_t td = curthread;
493 int matchcnt, loopcount;
494 int starttime;
495
496 ACQUIRE_LOCK(&lk);
497
498 /*
499 * Record the process identifier of our caller so that we can give
500 * this process preferential treatment in request_cleanup below.
501 */
502 filesys_syncer = td;
503 matchcnt = 0;
504
505 /*
506 * There is no danger of having multiple processes run this
507 * code, but we have to single-thread it when softdep_flushfiles()
508 * is in operation to get an accurate count of the number of items
509 * related to its mount point that are in the list.
510 */
511 if (matchmnt == NULL) {
512 if (softdep_worklist_busy < 0) {
513 matchcnt = -1;
514 goto done;
515 }
516 softdep_worklist_busy += 1;
517 }
518
519 /*
520 * If requested, try removing inode or removal dependencies.
521 */
522 if (req_clear_inodedeps) {
523 clear_inodedeps(td);
524 req_clear_inodedeps -= 1;
525 wakeup_one(&proc_waiting);
526 }
527 if (req_clear_remove) {
528 clear_remove(td);
529 req_clear_remove -= 1;
530 wakeup_one(&proc_waiting);
531 }
532 loopcount = 1;
533 starttime = ticks;
534 while (num_on_worklist > 0) {
535 matchcnt += process_worklist_item(matchmnt, 0);
536
537 /*
538 * If a umount operation wants to run the worklist
539 * accurately, abort.
540 */
541 if (softdep_worklist_req && matchmnt == NULL) {
542 matchcnt = -1;
543 break;
544 }
545
546 /*
547 * If requested, try removing inode or removal dependencies.
548 */
549 if (req_clear_inodedeps) {
550 clear_inodedeps(td);
551 req_clear_inodedeps -= 1;
552 wakeup_one(&proc_waiting);
553 }
554 if (req_clear_remove) {
555 clear_remove(td);
556 req_clear_remove -= 1;
557 wakeup_one(&proc_waiting);
558 }
559 /*
560 * We do not generally want to stop for buffer space, but if
561 * we are really being a buffer hog, we will stop and wait.
562 */
563 if (loopcount++ % 128 == 0) {
564 FREE_LOCK(&lk);
565 bwillinode(1);
566 ACQUIRE_LOCK(&lk);
567 }
568
569 /*
570 * Never allow processing to run for more than one
571 * second. Otherwise the other syncer tasks may get
572 * excessively backlogged.
573 *
574 * Use ticks to avoid boundary condition w/time_second or
575 * time_uptime.
576 */
577 if ((ticks - starttime) > hz && matchmnt == NULL) {
578 matchcnt = -1;
579 break;
580 }
581 }
582 if (matchmnt == NULL) {
583 --softdep_worklist_busy;
584 if (softdep_worklist_req && softdep_worklist_busy == 0)
585 wakeup(&softdep_worklist_req);
586 }
587 done:
588 FREE_LOCK(&lk);
589 return (matchcnt);
590 }
591
592 /*
593 * Process one item on the worklist.
594 */
595 static int
process_worklist_item(struct mount * matchmnt,int flags)596 process_worklist_item(struct mount *matchmnt, int flags)
597 {
598 struct ufsmount *ump;
599 struct worklist *wk;
600 struct dirrem *dirrem;
601 struct fs *matchfs;
602 struct vnode *vp;
603 int matchcnt = 0;
604
605 KKASSERT(lock_held(&lk));
606
607 matchfs = NULL;
608 if (matchmnt != NULL)
609 matchfs = VFSTOUFS(matchmnt)->um_fs;
610
611 /*
612 * Normally we just process each item on the worklist in order.
613 * However, if we are in a situation where we cannot lock any
614 * inodes, we have to skip over any dirrem requests whose
615 * vnodes are resident and locked.
616 */
617 LIST_FOREACH(wk, &softdep_workitem_pending, wk_list) {
618 if ((flags & LK_NOWAIT) == 0 || wk->wk_type != D_DIRREM)
619 break;
620 dirrem = WK_DIRREM(wk);
621 ump = VFSTOUFS(dirrem->dm_mnt);
622 lwkt_gettoken(&ump->um_mountp->mnt_token);
623 vp = ufs_ihashlookup(ump, ump->um_dev, dirrem->dm_oldinum);
624 lwkt_reltoken(&ump->um_mountp->mnt_token);
625 if (vp == NULL || !vn_islocked(vp))
626 break;
627 }
628 if (wk == NULL) {
629 return (0);
630 }
631 WORKLIST_REMOVE(wk);
632 num_on_worklist -= 1;
633 FREE_LOCK(&lk);
634 switch (wk->wk_type) {
635 case D_DIRREM:
636 /* removal of a directory entry */
637 if (WK_DIRREM(wk)->dm_mnt == matchmnt)
638 matchcnt += 1;
639 handle_workitem_remove(WK_DIRREM(wk));
640 break;
641
642 case D_FREEBLKS:
643 /* releasing blocks and/or fragments from a file */
644 if (WK_FREEBLKS(wk)->fb_fs == matchfs)
645 matchcnt += 1;
646 handle_workitem_freeblocks(WK_FREEBLKS(wk));
647 break;
648
649 case D_FREEFRAG:
650 /* releasing a fragment when replaced as a file grows */
651 if (WK_FREEFRAG(wk)->ff_fs == matchfs)
652 matchcnt += 1;
653 handle_workitem_freefrag(WK_FREEFRAG(wk));
654 break;
655
656 case D_FREEFILE:
657 /* releasing an inode when its link count drops to 0 */
658 if (WK_FREEFILE(wk)->fx_fs == matchfs)
659 matchcnt += 1;
660 handle_workitem_freefile(WK_FREEFILE(wk));
661 break;
662
663 default:
664 panic("%s_process_worklist: Unknown type %s",
665 "softdep", TYPENAME(wk->wk_type));
666 /* NOTREACHED */
667 }
668 ACQUIRE_LOCK(&lk);
669 return (matchcnt);
670 }
671
672 /*
673 * Move dependencies from one buffer to another.
674 *
675 * bioops callback - hold io_token
676 */
677 static void
softdep_move_dependencies(struct buf * oldbp,struct buf * newbp)678 softdep_move_dependencies(struct buf *oldbp, struct buf *newbp)
679 {
680 struct worklist *wk, *wktail;
681
682 if (LIST_FIRST(&newbp->b_dep) != NULL)
683 panic("softdep_move_dependencies: need merge code");
684 wktail = NULL;
685 ACQUIRE_LOCK(&lk);
686 while ((wk = LIST_FIRST(&oldbp->b_dep)) != NULL) {
687 LIST_REMOVE(wk, wk_list);
688 if (wktail == NULL)
689 LIST_INSERT_HEAD(&newbp->b_dep, wk, wk_list);
690 else
691 LIST_INSERT_AFTER(wktail, wk, wk_list);
692 wktail = wk;
693 newbp->b_ops = &softdep_bioops;
694 }
695 FREE_LOCK(&lk);
696 }
697
698 /*
699 * Purge the work list of all items associated with a particular mount point.
700 */
701 int
softdep_flushfiles(struct mount * oldmnt,int flags)702 softdep_flushfiles(struct mount *oldmnt, int flags)
703 {
704 struct vnode *devvp;
705 int error, loopcnt;
706
707 /*
708 * Await our turn to clear out the queue, then serialize access.
709 */
710 ACQUIRE_LOCK(&lk);
711 while (softdep_worklist_busy != 0) {
712 softdep_worklist_req += 1;
713 lksleep(&softdep_worklist_req, &lk, 0, "softflush", 0);
714 softdep_worklist_req -= 1;
715 }
716 softdep_worklist_busy = -1;
717 FREE_LOCK(&lk);
718
719 if ((error = ffs_flushfiles(oldmnt, flags)) != 0) {
720 softdep_worklist_busy = 0;
721 if (softdep_worklist_req)
722 wakeup(&softdep_worklist_req);
723 return (error);
724 }
725 /*
726 * Alternately flush the block device associated with the mount
727 * point and process any dependencies that the flushing
728 * creates. In theory, this loop can happen at most twice,
729 * but we give it a few extra just to be sure.
730 */
731 devvp = VFSTOUFS(oldmnt)->um_devvp;
732 for (loopcnt = 10; loopcnt > 0; ) {
733 if (softdep_process_worklist(oldmnt) == 0) {
734 loopcnt--;
735 /*
736 * Do another flush in case any vnodes were brought in
737 * as part of the cleanup operations.
738 */
739 if ((error = ffs_flushfiles(oldmnt, flags)) != 0)
740 break;
741 /*
742 * If we still found nothing to do, we are really done.
743 */
744 if (softdep_process_worklist(oldmnt) == 0)
745 break;
746 }
747 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
748 error = VOP_FSYNC(devvp, MNT_WAIT, 0);
749 vn_unlock(devvp);
750 if (error)
751 break;
752 }
753 ACQUIRE_LOCK(&lk);
754 softdep_worklist_busy = 0;
755 if (softdep_worklist_req)
756 wakeup(&softdep_worklist_req);
757 FREE_LOCK(&lk);
758
759 /*
760 * If we are unmounting then it is an error to fail. If we
761 * are simply trying to downgrade to read-only, then filesystem
762 * activity can keep us busy forever, so we just fail with EBUSY.
763 */
764 if (loopcnt == 0) {
765 if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT)
766 panic("softdep_flushfiles: looping");
767 error = EBUSY;
768 }
769 return (error);
770 }
771
772 /*
773 * Structure hashing.
774 *
775 * There are three types of structures that can be looked up:
776 * 1) pagedep structures identified by mount point, inode number,
777 * and logical block.
778 * 2) inodedep structures identified by mount point and inode number.
779 * 3) newblk structures identified by mount point and
780 * physical block number.
781 *
782 * The "pagedep" and "inodedep" dependency structures are hashed
783 * separately from the file blocks and inodes to which they correspond.
784 * This separation helps when the in-memory copy of an inode or
785 * file block must be replaced. It also obviates the need to access
786 * an inode or file page when simply updating (or de-allocating)
787 * dependency structures. Lookup of newblk structures is needed to
788 * find newly allocated blocks when trying to associate them with
789 * their allocdirect or allocindir structure.
790 *
791 * The lookup routines optionally create and hash a new instance when
792 * an existing entry is not found.
793 */
794 #define DEPALLOC 0x0001 /* allocate structure if lookup fails */
795 #define NODELAY 0x0002 /* cannot do background work */
796
797 /*
798 * Structures and routines associated with pagedep caching.
799 */
800 LIST_HEAD(pagedep_hashhead, pagedep) *pagedep_hashtbl;
801 u_long pagedep_hash; /* size of hash table - 1 */
802 #define PAGEDEP_HASH(mp, inum, lbn) \
803 (&pagedep_hashtbl[((((register_t)(mp)) >> 13) + (inum) + (lbn)) & \
804 pagedep_hash])
805 static struct sema pagedep_in_progress;
806
807 /*
808 * Helper routine for pagedep_lookup()
809 */
810 static __inline
811 struct pagedep *
pagedep_find(struct pagedep_hashhead * pagedephd,ino_t ino,ufs_lbn_t lbn,struct mount * mp)812 pagedep_find(struct pagedep_hashhead *pagedephd, ino_t ino, ufs_lbn_t lbn,
813 struct mount *mp)
814 {
815 struct pagedep *pagedep;
816
817 LIST_FOREACH(pagedep, pagedephd, pd_hash) {
818 if (ino == pagedep->pd_ino &&
819 lbn == pagedep->pd_lbn &&
820 mp == pagedep->pd_mnt) {
821 return (pagedep);
822 }
823 }
824 return(NULL);
825 }
826
827 /*
828 * Look up a pagedep. Return 1 if found, 0 if not found.
829 * If not found, allocate if DEPALLOC flag is passed.
830 * Found or allocated entry is returned in pagedeppp.
831 * This routine must be called with splbio interrupts blocked.
832 */
833 static int
pagedep_lookup(struct inode * ip,ufs_lbn_t lbn,int flags,struct pagedep ** pagedeppp)834 pagedep_lookup(struct inode *ip, ufs_lbn_t lbn, int flags,
835 struct pagedep **pagedeppp)
836 {
837 struct pagedep *pagedep;
838 struct pagedep_hashhead *pagedephd;
839 struct mount *mp;
840 int i;
841
842 KKASSERT(lock_held(&lk));
843
844 mp = ITOV(ip)->v_mount;
845 pagedephd = PAGEDEP_HASH(mp, ip->i_number, lbn);
846 top:
847 *pagedeppp = pagedep_find(pagedephd, ip->i_number, lbn, mp);
848 if (*pagedeppp)
849 return(1);
850 if ((flags & DEPALLOC) == 0)
851 return (0);
852 if (sema_get(&pagedep_in_progress, &lk) == 0)
853 goto top;
854
855 FREE_LOCK(&lk);
856 pagedep = kmalloc(sizeof(struct pagedep), M_PAGEDEP,
857 M_SOFTDEP_FLAGS | M_ZERO);
858 ACQUIRE_LOCK(&lk);
859 if (pagedep_find(pagedephd, ip->i_number, lbn, mp)) {
860 kprintf("pagedep_lookup: blocking race avoided\n");
861 sema_release(&pagedep_in_progress, &lk);
862 kfree(pagedep, M_PAGEDEP);
863 goto top;
864 }
865
866 pagedep->pd_list.wk_type = D_PAGEDEP;
867 pagedep->pd_mnt = mp;
868 pagedep->pd_ino = ip->i_number;
869 pagedep->pd_lbn = lbn;
870 LIST_INIT(&pagedep->pd_dirremhd);
871 LIST_INIT(&pagedep->pd_pendinghd);
872 for (i = 0; i < DAHASHSZ; i++)
873 LIST_INIT(&pagedep->pd_diraddhd[i]);
874 LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash);
875 sema_release(&pagedep_in_progress, &lk);
876 *pagedeppp = pagedep;
877 return (0);
878 }
879
880 /*
881 * Structures and routines associated with inodedep caching.
882 */
883 LIST_HEAD(inodedep_hashhead, inodedep) *inodedep_hashtbl;
884 static u_long inodedep_hash; /* size of hash table - 1 */
885 static long num_inodedep; /* number of inodedep allocated */
886 #define INODEDEP_HASH(fs, inum) \
887 (&inodedep_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & inodedep_hash])
888 static struct sema inodedep_in_progress;
889
890 /*
891 * Helper routine for inodedep_lookup()
892 */
893 static __inline
894 struct inodedep *
inodedep_find(struct inodedep_hashhead * inodedephd,struct fs * fs,ino_t inum)895 inodedep_find(struct inodedep_hashhead *inodedephd, struct fs *fs, ino_t inum)
896 {
897 struct inodedep *inodedep;
898
899 LIST_FOREACH(inodedep, inodedephd, id_hash) {
900 if (inum == inodedep->id_ino && fs == inodedep->id_fs)
901 return(inodedep);
902 }
903 return (NULL);
904 }
905
906 /*
907 * Look up a inodedep. Return 1 if found, 0 if not found.
908 * If not found, allocate if DEPALLOC flag is passed.
909 * Found or allocated entry is returned in inodedeppp.
910 * This routine must be called with splbio interrupts blocked.
911 */
912 static int
inodedep_lookup(struct fs * fs,ino_t inum,int flags,struct inodedep ** inodedeppp)913 inodedep_lookup(struct fs *fs, ino_t inum, int flags,
914 struct inodedep **inodedeppp)
915 {
916 struct inodedep *inodedep;
917 struct inodedep_hashhead *inodedephd;
918
919 KKASSERT(lock_held(&lk));
920
921 inodedephd = INODEDEP_HASH(fs, inum);
922 top:
923 *inodedeppp = inodedep_find(inodedephd, fs, inum);
924 if (*inodedeppp)
925 return (1);
926 if ((flags & DEPALLOC) == 0)
927 return (0);
928
929 /*
930 * If we are over our limit, try to improve the situation.
931 */
932 if (num_inodedep > max_softdeps / 2)
933 speedup_syncer(NULL);
934 if (num_inodedep > max_softdeps &&
935 (flags & NODELAY) == 0 &&
936 request_cleanup(FLUSH_INODES)) {
937 goto top;
938 }
939 if (sema_get(&inodedep_in_progress, &lk) == 0)
940 goto top;
941
942 FREE_LOCK(&lk);
943 inodedep = kmalloc(sizeof(struct inodedep), M_INODEDEP,
944 M_SOFTDEP_FLAGS | M_ZERO);
945 ACQUIRE_LOCK(&lk);
946 if (inodedep_find(inodedephd, fs, inum)) {
947 kprintf("inodedep_lookup: blocking race avoided\n");
948 sema_release(&inodedep_in_progress, &lk);
949 kfree(inodedep, M_INODEDEP);
950 goto top;
951 }
952 inodedep->id_list.wk_type = D_INODEDEP;
953 inodedep->id_fs = fs;
954 inodedep->id_ino = inum;
955 inodedep->id_state = ALLCOMPLETE;
956 inodedep->id_nlinkdelta = 0;
957 inodedep->id_savedino = NULL;
958 inodedep->id_savedsize = -1;
959 inodedep->id_buf = NULL;
960 LIST_INIT(&inodedep->id_pendinghd);
961 LIST_INIT(&inodedep->id_inowait);
962 LIST_INIT(&inodedep->id_bufwait);
963 TAILQ_INIT(&inodedep->id_inoupdt);
964 TAILQ_INIT(&inodedep->id_newinoupdt);
965 num_inodedep += 1;
966 LIST_INSERT_HEAD(inodedephd, inodedep, id_hash);
967 sema_release(&inodedep_in_progress, &lk);
968 *inodedeppp = inodedep;
969 return (0);
970 }
971
972 /*
973 * Structures and routines associated with newblk caching.
974 */
975 LIST_HEAD(newblk_hashhead, newblk) *newblk_hashtbl;
976 u_long newblk_hash; /* size of hash table - 1 */
977 #define NEWBLK_HASH(fs, inum) \
978 (&newblk_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & newblk_hash])
979 static struct sema newblk_in_progress;
980
981 /*
982 * Helper routine for newblk_lookup()
983 */
984 static __inline
985 struct newblk *
newblk_find(struct newblk_hashhead * newblkhd,struct fs * fs,ufs_daddr_t newblkno)986 newblk_find(struct newblk_hashhead *newblkhd, struct fs *fs,
987 ufs_daddr_t newblkno)
988 {
989 struct newblk *newblk;
990
991 LIST_FOREACH(newblk, newblkhd, nb_hash) {
992 if (newblkno == newblk->nb_newblkno && fs == newblk->nb_fs)
993 return (newblk);
994 }
995 return(NULL);
996 }
997
998 /*
999 * Look up a newblk. Return 1 if found, 0 if not found.
1000 * If not found, allocate if DEPALLOC flag is passed.
1001 * Found or allocated entry is returned in newblkpp.
1002 */
1003 static int
newblk_lookup(struct fs * fs,ufs_daddr_t newblkno,int flags,struct newblk ** newblkpp)1004 newblk_lookup(struct fs *fs, ufs_daddr_t newblkno, int flags,
1005 struct newblk **newblkpp)
1006 {
1007 struct newblk *newblk;
1008 struct newblk_hashhead *newblkhd;
1009
1010 newblkhd = NEWBLK_HASH(fs, newblkno);
1011 top:
1012 *newblkpp = newblk_find(newblkhd, fs, newblkno);
1013 if (*newblkpp)
1014 return(1);
1015 if ((flags & DEPALLOC) == 0)
1016 return (0);
1017 if (sema_get(&newblk_in_progress, NULL) == 0)
1018 goto top;
1019
1020 newblk = kmalloc(sizeof(struct newblk), M_NEWBLK,
1021 M_SOFTDEP_FLAGS | M_ZERO);
1022
1023 if (newblk_find(newblkhd, fs, newblkno)) {
1024 kprintf("newblk_lookup: blocking race avoided\n");
1025 sema_release(&pagedep_in_progress, NULL);
1026 kfree(newblk, M_NEWBLK);
1027 goto top;
1028 }
1029 newblk->nb_state = 0;
1030 newblk->nb_fs = fs;
1031 newblk->nb_newblkno = newblkno;
1032 LIST_INSERT_HEAD(newblkhd, newblk, nb_hash);
1033 sema_release(&newblk_in_progress, NULL);
1034 *newblkpp = newblk;
1035 return (0);
1036 }
1037
1038 /*
1039 * Executed during filesystem system initialization before
1040 * mounting any filesystems.
1041 */
1042 void
softdep_initialize(void)1043 softdep_initialize(void)
1044 {
1045 size_t idsize = sizeof(struct inodedep);
1046 int hsize = vfs_inodehashsize();
1047
1048 LIST_INIT(&mkdirlisthd);
1049 LIST_INIT(&softdep_workitem_pending);
1050 max_softdeps = min(maxvnodes * 8, M_INODEDEP->ks_limit / (2 * idsize));
1051
1052 /*
1053 * Cap it at 100,000, having more just gets kinda silly.
1054 */
1055 max_softdeps = min(max_softdeps, 100000);
1056
1057 pagedep_hashtbl = hashinit(hsize / 4, M_PAGEDEP, &pagedep_hash);
1058 lockinit(&lk, "ffs_softdep", 0, LK_CANRECURSE);
1059 sema_init(&pagedep_in_progress, "pagedep", 0);
1060 inodedep_hashtbl = hashinit(hsize, M_INODEDEP, &inodedep_hash);
1061 sema_init(&inodedep_in_progress, "inodedep", 0);
1062 newblk_hashtbl = hashinit(64, M_NEWBLK, &newblk_hash);
1063 sema_init(&newblk_in_progress, "newblk", 0);
1064 add_bio_ops(&softdep_bioops);
1065 }
1066
1067 /*
1068 * Called at mount time to notify the dependency code that a
1069 * filesystem wishes to use it.
1070 */
1071 int
softdep_mount(struct vnode * devvp,struct mount * mp,struct fs * fs)1072 softdep_mount(struct vnode *devvp, struct mount *mp, struct fs *fs)
1073 {
1074 struct csum cstotal;
1075 struct cg *cgp;
1076 struct buf *bp;
1077 int error, cyl;
1078
1079 mp->mnt_flag &= ~MNT_ASYNC;
1080 mp->mnt_flag |= MNT_SOFTDEP;
1081 mp->mnt_bioops = &softdep_bioops;
1082 /*
1083 * When doing soft updates, the counters in the
1084 * superblock may have gotten out of sync, so we have
1085 * to scan the cylinder groups and recalculate them.
1086 */
1087 if (fs->fs_clean != 0)
1088 return (0);
1089 bzero(&cstotal, sizeof cstotal);
1090 for (cyl = 0; cyl < fs->fs_ncg; cyl++) {
1091 if ((error = bread(devvp, fsbtodoff(fs, cgtod(fs, cyl)),
1092 fs->fs_cgsize, &bp)) != 0) {
1093 brelse(bp);
1094 return (error);
1095 }
1096 cgp = (struct cg *)bp->b_data;
1097 cstotal.cs_nffree += cgp->cg_cs.cs_nffree;
1098 cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree;
1099 cstotal.cs_nifree += cgp->cg_cs.cs_nifree;
1100 cstotal.cs_ndir += cgp->cg_cs.cs_ndir;
1101 fs->fs_cs(fs, cyl) = cgp->cg_cs;
1102 brelse(bp);
1103 }
1104 #ifdef DEBUG
1105 if (bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal))
1106 kprintf("ffs_mountfs: superblock updated for soft updates\n");
1107 #endif
1108 bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal);
1109 return (0);
1110 }
1111
1112 /*
1113 * Protecting the freemaps (or bitmaps).
1114 *
1115 * To eliminate the need to execute fsck before mounting a filesystem
1116 * after a power failure, one must (conservatively) guarantee that the
1117 * on-disk copy of the bitmaps never indicate that a live inode or block is
1118 * free. So, when a block or inode is allocated, the bitmap should be
1119 * updated (on disk) before any new pointers. When a block or inode is
1120 * freed, the bitmap should not be updated until all pointers have been
1121 * reset. The latter dependency is handled by the delayed de-allocation
1122 * approach described below for block and inode de-allocation. The former
1123 * dependency is handled by calling the following procedure when a block or
1124 * inode is allocated. When an inode is allocated an "inodedep" is created
1125 * with its DEPCOMPLETE flag cleared until its bitmap is written to disk.
1126 * Each "inodedep" is also inserted into the hash indexing structure so
1127 * that any additional link additions can be made dependent on the inode
1128 * allocation.
1129 *
1130 * The ufs filesystem maintains a number of free block counts (e.g., per
1131 * cylinder group, per cylinder and per <cylinder, rotational position> pair)
1132 * in addition to the bitmaps. These counts are used to improve efficiency
1133 * during allocation and therefore must be consistent with the bitmaps.
1134 * There is no convenient way to guarantee post-crash consistency of these
1135 * counts with simple update ordering, for two main reasons: (1) The counts
1136 * and bitmaps for a single cylinder group block are not in the same disk
1137 * sector. If a disk write is interrupted (e.g., by power failure), one may
1138 * be written and the other not. (2) Some of the counts are located in the
1139 * superblock rather than the cylinder group block. So, we focus our soft
1140 * updates implementation on protecting the bitmaps. When mounting a
1141 * filesystem, we recompute the auxiliary counts from the bitmaps.
1142 */
1143
1144 /*
1145 * Called just after updating the cylinder group block to allocate an inode.
1146 *
1147 * Parameters:
1148 * bp: buffer for cylgroup block with inode map
1149 * ip: inode related to allocation
1150 * newinum: new inode number being allocated
1151 */
1152 void
softdep_setup_inomapdep(struct buf * bp,struct inode * ip,ino_t newinum)1153 softdep_setup_inomapdep(struct buf *bp, struct inode *ip, ino_t newinum)
1154 {
1155 struct inodedep *inodedep;
1156 struct bmsafemap *bmsafemap;
1157
1158 /*
1159 * Create a dependency for the newly allocated inode.
1160 * Panic if it already exists as something is seriously wrong.
1161 * Otherwise add it to the dependency list for the buffer holding
1162 * the cylinder group map from which it was allocated.
1163 */
1164 ACQUIRE_LOCK(&lk);
1165 if ((inodedep_lookup(ip->i_fs, newinum, DEPALLOC|NODELAY, &inodedep))) {
1166 panic("softdep_setup_inomapdep: found inode");
1167 }
1168 inodedep->id_buf = bp;
1169 inodedep->id_state &= ~DEPCOMPLETE;
1170 bmsafemap = bmsafemap_lookup(bp);
1171 LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps);
1172 FREE_LOCK(&lk);
1173 }
1174
1175 /*
1176 * Called just after updating the cylinder group block to
1177 * allocate block or fragment.
1178 *
1179 * Parameters:
1180 * bp: buffer for cylgroup block with block map
1181 * fs: filesystem doing allocation
1182 * newblkno: number of newly allocated block
1183 */
1184 void
softdep_setup_blkmapdep(struct buf * bp,struct fs * fs,ufs_daddr_t newblkno)1185 softdep_setup_blkmapdep(struct buf *bp, struct fs *fs,
1186 ufs_daddr_t newblkno)
1187 {
1188 struct newblk *newblk;
1189 struct bmsafemap *bmsafemap;
1190
1191 /*
1192 * Create a dependency for the newly allocated block.
1193 * Add it to the dependency list for the buffer holding
1194 * the cylinder group map from which it was allocated.
1195 */
1196 if (newblk_lookup(fs, newblkno, DEPALLOC, &newblk) != 0)
1197 panic("softdep_setup_blkmapdep: found block");
1198 ACQUIRE_LOCK(&lk);
1199 newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(bp);
1200 LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps);
1201 FREE_LOCK(&lk);
1202 }
1203
1204 /*
1205 * Find the bmsafemap associated with a cylinder group buffer.
1206 * If none exists, create one. The buffer must be locked when
1207 * this routine is called and this routine must be called with
1208 * splbio interrupts blocked.
1209 */
1210 static struct bmsafemap *
bmsafemap_lookup(struct buf * bp)1211 bmsafemap_lookup(struct buf *bp)
1212 {
1213 struct bmsafemap *bmsafemap;
1214 struct worklist *wk;
1215
1216 KKASSERT(lock_held(&lk));
1217
1218 LIST_FOREACH(wk, &bp->b_dep, wk_list) {
1219 if (wk->wk_type == D_BMSAFEMAP)
1220 return (WK_BMSAFEMAP(wk));
1221 }
1222 FREE_LOCK(&lk);
1223 bmsafemap = kmalloc(sizeof(struct bmsafemap), M_BMSAFEMAP,
1224 M_SOFTDEP_FLAGS);
1225 bmsafemap->sm_list.wk_type = D_BMSAFEMAP;
1226 bmsafemap->sm_list.wk_state = 0;
1227 bmsafemap->sm_buf = bp;
1228 LIST_INIT(&bmsafemap->sm_allocdirecthd);
1229 LIST_INIT(&bmsafemap->sm_allocindirhd);
1230 LIST_INIT(&bmsafemap->sm_inodedephd);
1231 LIST_INIT(&bmsafemap->sm_newblkhd);
1232 ACQUIRE_LOCK(&lk);
1233 WORKLIST_INSERT_BP(bp, &bmsafemap->sm_list);
1234 return (bmsafemap);
1235 }
1236
1237 /*
1238 * Direct block allocation dependencies.
1239 *
1240 * When a new block is allocated, the corresponding disk locations must be
1241 * initialized (with zeros or new data) before the on-disk inode points to
1242 * them. Also, the freemap from which the block was allocated must be
1243 * updated (on disk) before the inode's pointer. These two dependencies are
1244 * independent of each other and are needed for all file blocks and indirect
1245 * blocks that are pointed to directly by the inode. Just before the
1246 * "in-core" version of the inode is updated with a newly allocated block
1247 * number, a procedure (below) is called to setup allocation dependency
1248 * structures. These structures are removed when the corresponding
1249 * dependencies are satisfied or when the block allocation becomes obsolete
1250 * (i.e., the file is deleted, the block is de-allocated, or the block is a
1251 * fragment that gets upgraded). All of these cases are handled in
1252 * procedures described later.
1253 *
1254 * When a file extension causes a fragment to be upgraded, either to a larger
1255 * fragment or to a full block, the on-disk location may change (if the
1256 * previous fragment could not simply be extended). In this case, the old
1257 * fragment must be de-allocated, but not until after the inode's pointer has
1258 * been updated. In most cases, this is handled by later procedures, which
1259 * will construct a "freefrag" structure to be added to the workitem queue
1260 * when the inode update is complete (or obsolete). The main exception to
1261 * this is when an allocation occurs while a pending allocation dependency
1262 * (for the same block pointer) remains. This case is handled in the main
1263 * allocation dependency setup procedure by immediately freeing the
1264 * unreferenced fragments.
1265 *
1266 * Parameters:
1267 * ip: inode to which block is being added
1268 * lbn: block pointer within inode
1269 * newblkno: disk block number being added
1270 * oldblkno: previous block number, 0 unless frag
1271 * newsize: size of new block
1272 * oldsize: size of new block
1273 * bp: bp for allocated block
1274 */
1275 void
softdep_setup_allocdirect(struct inode * ip,ufs_lbn_t lbn,ufs_daddr_t newblkno,ufs_daddr_t oldblkno,long newsize,long oldsize,struct buf * bp)1276 softdep_setup_allocdirect(struct inode *ip, ufs_lbn_t lbn, ufs_daddr_t newblkno,
1277 ufs_daddr_t oldblkno, long newsize, long oldsize,
1278 struct buf *bp)
1279 {
1280 struct allocdirect *adp, *oldadp;
1281 struct allocdirectlst *adphead;
1282 struct bmsafemap *bmsafemap;
1283 struct inodedep *inodedep;
1284 struct pagedep *pagedep;
1285 struct newblk *newblk;
1286
1287 adp = kmalloc(sizeof(struct allocdirect), M_ALLOCDIRECT,
1288 M_SOFTDEP_FLAGS | M_ZERO);
1289 adp->ad_list.wk_type = D_ALLOCDIRECT;
1290 adp->ad_lbn = lbn;
1291 adp->ad_newblkno = newblkno;
1292 adp->ad_oldblkno = oldblkno;
1293 adp->ad_newsize = newsize;
1294 adp->ad_oldsize = oldsize;
1295 adp->ad_state = ATTACHED;
1296 if (newblkno == oldblkno)
1297 adp->ad_freefrag = NULL;
1298 else
1299 adp->ad_freefrag = newfreefrag(ip, oldblkno, oldsize);
1300
1301 if (newblk_lookup(ip->i_fs, newblkno, 0, &newblk) == 0)
1302 panic("softdep_setup_allocdirect: lost block");
1303
1304 ACQUIRE_LOCK(&lk);
1305 inodedep_lookup(ip->i_fs, ip->i_number, DEPALLOC | NODELAY, &inodedep);
1306 adp->ad_inodedep = inodedep;
1307
1308 if (newblk->nb_state == DEPCOMPLETE) {
1309 adp->ad_state |= DEPCOMPLETE;
1310 adp->ad_buf = NULL;
1311 } else {
1312 bmsafemap = newblk->nb_bmsafemap;
1313 adp->ad_buf = bmsafemap->sm_buf;
1314 LIST_REMOVE(newblk, nb_deps);
1315 LIST_INSERT_HEAD(&bmsafemap->sm_allocdirecthd, adp, ad_deps);
1316 }
1317 LIST_REMOVE(newblk, nb_hash);
1318 kfree(newblk, M_NEWBLK);
1319
1320 WORKLIST_INSERT_BP(bp, &adp->ad_list);
1321 if (lbn >= UFS_NDADDR) {
1322 /* allocating an indirect block */
1323 if (oldblkno != 0) {
1324 panic("softdep_setup_allocdirect: non-zero indir");
1325 }
1326 } else {
1327 /*
1328 * Allocating a direct block.
1329 *
1330 * If we are allocating a directory block, then we must
1331 * allocate an associated pagedep to track additions and
1332 * deletions.
1333 */
1334 if ((ip->i_mode & IFMT) == IFDIR &&
1335 pagedep_lookup(ip, lbn, DEPALLOC, &pagedep) == 0) {
1336 WORKLIST_INSERT_BP(bp, &pagedep->pd_list);
1337 }
1338 }
1339 /*
1340 * The list of allocdirects must be kept in sorted and ascending
1341 * order so that the rollback routines can quickly determine the
1342 * first uncommitted block (the size of the file stored on disk
1343 * ends at the end of the lowest committed fragment, or if there
1344 * are no fragments, at the end of the highest committed block).
1345 * Since files generally grow, the typical case is that the new
1346 * block is to be added at the end of the list. We speed this
1347 * special case by checking against the last allocdirect in the
1348 * list before laboriously traversing the list looking for the
1349 * insertion point.
1350 */
1351 adphead = &inodedep->id_newinoupdt;
1352 oldadp = TAILQ_LAST(adphead, allocdirectlst);
1353 if (oldadp == NULL || oldadp->ad_lbn <= lbn) {
1354 /* insert at end of list */
1355 TAILQ_INSERT_TAIL(adphead, adp, ad_next);
1356 if (oldadp != NULL && oldadp->ad_lbn == lbn)
1357 allocdirect_merge(adphead, adp, oldadp);
1358 FREE_LOCK(&lk);
1359 return;
1360 }
1361 TAILQ_FOREACH(oldadp, adphead, ad_next) {
1362 if (oldadp->ad_lbn >= lbn)
1363 break;
1364 }
1365 if (oldadp == NULL) {
1366 panic("softdep_setup_allocdirect: lost entry");
1367 }
1368 /* insert in middle of list */
1369 TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
1370 if (oldadp->ad_lbn == lbn)
1371 allocdirect_merge(adphead, adp, oldadp);
1372 FREE_LOCK(&lk);
1373 }
1374
1375 /*
1376 * Replace an old allocdirect dependency with a newer one.
1377 * This routine must be called with splbio interrupts blocked.
1378 *
1379 * Parameters:
1380 * adphead: head of list holding allocdirects
1381 * newadp: allocdirect being added
1382 * oldadp: existing allocdirect being checked
1383 */
1384 static void
allocdirect_merge(struct allocdirectlst * adphead,struct allocdirect * newadp,struct allocdirect * oldadp)1385 allocdirect_merge(struct allocdirectlst *adphead,
1386 struct allocdirect *newadp,
1387 struct allocdirect *oldadp)
1388 {
1389 struct freefrag *freefrag;
1390
1391 KKASSERT(lock_held(&lk));
1392
1393 if (newadp->ad_oldblkno != oldadp->ad_newblkno ||
1394 newadp->ad_oldsize != oldadp->ad_newsize ||
1395 newadp->ad_lbn >= UFS_NDADDR) {
1396 panic("allocdirect_check: old %d != new %d || lbn %ld >= %d",
1397 newadp->ad_oldblkno, oldadp->ad_newblkno, newadp->ad_lbn,
1398 UFS_NDADDR);
1399 }
1400 newadp->ad_oldblkno = oldadp->ad_oldblkno;
1401 newadp->ad_oldsize = oldadp->ad_oldsize;
1402 /*
1403 * If the old dependency had a fragment to free or had never
1404 * previously had a block allocated, then the new dependency
1405 * can immediately post its freefrag and adopt the old freefrag.
1406 * This action is done by swapping the freefrag dependencies.
1407 * The new dependency gains the old one's freefrag, and the
1408 * old one gets the new one and then immediately puts it on
1409 * the worklist when it is freed by free_allocdirect. It is
1410 * not possible to do this swap when the old dependency had a
1411 * non-zero size but no previous fragment to free. This condition
1412 * arises when the new block is an extension of the old block.
1413 * Here, the first part of the fragment allocated to the new
1414 * dependency is part of the block currently claimed on disk by
1415 * the old dependency, so cannot legitimately be freed until the
1416 * conditions for the new dependency are fulfilled.
1417 */
1418 if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) {
1419 freefrag = newadp->ad_freefrag;
1420 newadp->ad_freefrag = oldadp->ad_freefrag;
1421 oldadp->ad_freefrag = freefrag;
1422 }
1423 free_allocdirect(adphead, oldadp, 0);
1424 }
1425
1426 /*
1427 * Allocate a new freefrag structure if needed.
1428 */
1429 static struct freefrag *
newfreefrag(struct inode * ip,ufs_daddr_t blkno,long size)1430 newfreefrag(struct inode *ip, ufs_daddr_t blkno, long size)
1431 {
1432 struct freefrag *freefrag;
1433 struct fs *fs;
1434
1435 if (blkno == 0)
1436 return (NULL);
1437 fs = ip->i_fs;
1438 if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag)
1439 panic("newfreefrag: frag size");
1440 freefrag = kmalloc(sizeof(struct freefrag), M_FREEFRAG,
1441 M_SOFTDEP_FLAGS);
1442 freefrag->ff_list.wk_type = D_FREEFRAG;
1443 freefrag->ff_state = ip->i_uid & ~ONWORKLIST; /* XXX - used below */
1444 freefrag->ff_inum = ip->i_number;
1445 freefrag->ff_fs = fs;
1446 freefrag->ff_devvp = ip->i_devvp;
1447 freefrag->ff_blkno = blkno;
1448 freefrag->ff_fragsize = size;
1449 return (freefrag);
1450 }
1451
1452 /*
1453 * This workitem de-allocates fragments that were replaced during
1454 * file block allocation.
1455 */
1456 static void
handle_workitem_freefrag(struct freefrag * freefrag)1457 handle_workitem_freefrag(struct freefrag *freefrag)
1458 {
1459 struct inode tip;
1460
1461 tip.i_fs = freefrag->ff_fs;
1462 tip.i_devvp = freefrag->ff_devvp;
1463 tip.i_dev = freefrag->ff_devvp->v_rdev;
1464 tip.i_number = freefrag->ff_inum;
1465 tip.i_uid = freefrag->ff_state & ~ONWORKLIST; /* XXX - set above */
1466 ffs_blkfree(&tip, freefrag->ff_blkno, freefrag->ff_fragsize);
1467 kfree(freefrag, M_FREEFRAG);
1468 }
1469
1470 /*
1471 * Indirect block allocation dependencies.
1472 *
1473 * The same dependencies that exist for a direct block also exist when
1474 * a new block is allocated and pointed to by an entry in a block of
1475 * indirect pointers. The undo/redo states described above are also
1476 * used here. Because an indirect block contains many pointers that
1477 * may have dependencies, a second copy of the entire in-memory indirect
1478 * block is kept. The buffer cache copy is always completely up-to-date.
1479 * The second copy, which is used only as a source for disk writes,
1480 * contains only the safe pointers (i.e., those that have no remaining
1481 * update dependencies). The second copy is freed when all pointers
1482 * are safe. The cache is not allowed to replace indirect blocks with
1483 * pending update dependencies. If a buffer containing an indirect
1484 * block with dependencies is written, these routines will mark it
1485 * dirty again. It can only be successfully written once all the
1486 * dependencies are removed. The ffs_fsync routine in conjunction with
1487 * softdep_sync_metadata work together to get all the dependencies
1488 * removed so that a file can be successfully written to disk. Three
1489 * procedures are used when setting up indirect block pointer
1490 * dependencies. The division is necessary because of the organization
1491 * of the "balloc" routine and because of the distinction between file
1492 * pages and file metadata blocks.
1493 */
1494
1495 /*
1496 * Allocate a new allocindir structure.
1497 *
1498 * Parameters:
1499 * ip: inode for file being extended
1500 * ptrno: offset of pointer in indirect block
1501 * newblkno: disk block number being added
1502 * oldblkno: previous block number, 0 if none
1503 */
1504 static struct allocindir *
newallocindir(struct inode * ip,int ptrno,ufs_daddr_t newblkno,ufs_daddr_t oldblkno)1505 newallocindir(struct inode *ip, int ptrno, ufs_daddr_t newblkno,
1506 ufs_daddr_t oldblkno)
1507 {
1508 struct allocindir *aip;
1509
1510 aip = kmalloc(sizeof(struct allocindir), M_ALLOCINDIR,
1511 M_SOFTDEP_FLAGS | M_ZERO);
1512 aip->ai_list.wk_type = D_ALLOCINDIR;
1513 aip->ai_state = ATTACHED;
1514 aip->ai_offset = ptrno;
1515 aip->ai_newblkno = newblkno;
1516 aip->ai_oldblkno = oldblkno;
1517 aip->ai_freefrag = newfreefrag(ip, oldblkno, ip->i_fs->fs_bsize);
1518 return (aip);
1519 }
1520
1521 /*
1522 * Called just before setting an indirect block pointer
1523 * to a newly allocated file page.
1524 *
1525 * Parameters:
1526 * ip: inode for file being extended
1527 * lbn: allocated block number within file
1528 * bp: buffer with indirect blk referencing page
1529 * ptrno: offset of pointer in indirect block
1530 * newblkno: disk block number being added
1531 * oldblkno: previous block number, 0 if none
1532 * nbp: buffer holding allocated page
1533 */
1534 void
softdep_setup_allocindir_page(struct inode * ip,ufs_lbn_t lbn,struct buf * bp,int ptrno,ufs_daddr_t newblkno,ufs_daddr_t oldblkno,struct buf * nbp)1535 softdep_setup_allocindir_page(struct inode *ip, ufs_lbn_t lbn,
1536 struct buf *bp, int ptrno,
1537 ufs_daddr_t newblkno, ufs_daddr_t oldblkno,
1538 struct buf *nbp)
1539 {
1540 struct allocindir *aip;
1541 struct pagedep *pagedep;
1542
1543 aip = newallocindir(ip, ptrno, newblkno, oldblkno);
1544 ACQUIRE_LOCK(&lk);
1545 /*
1546 * If we are allocating a directory page, then we must
1547 * allocate an associated pagedep to track additions and
1548 * deletions.
1549 */
1550 if ((ip->i_mode & IFMT) == IFDIR &&
1551 pagedep_lookup(ip, lbn, DEPALLOC, &pagedep) == 0)
1552 WORKLIST_INSERT_BP(nbp, &pagedep->pd_list);
1553 WORKLIST_INSERT_BP(nbp, &aip->ai_list);
1554 FREE_LOCK(&lk);
1555 setup_allocindir_phase2(bp, ip, aip);
1556 }
1557
1558 /*
1559 * Called just before setting an indirect block pointer to a
1560 * newly allocated indirect block.
1561 * Parameters:
1562 * nbp: newly allocated indirect block
1563 * ip: inode for file being extended
1564 * bp: indirect block referencing allocated block
1565 * ptrno: offset of pointer in indirect block
1566 * newblkno: disk block number being added
1567 */
1568 void
softdep_setup_allocindir_meta(struct buf * nbp,struct inode * ip,struct buf * bp,int ptrno,ufs_daddr_t newblkno)1569 softdep_setup_allocindir_meta(struct buf *nbp, struct inode *ip,
1570 struct buf *bp, int ptrno,
1571 ufs_daddr_t newblkno)
1572 {
1573 struct allocindir *aip;
1574
1575 aip = newallocindir(ip, ptrno, newblkno, 0);
1576 ACQUIRE_LOCK(&lk);
1577 WORKLIST_INSERT_BP(nbp, &aip->ai_list);
1578 FREE_LOCK(&lk);
1579 setup_allocindir_phase2(bp, ip, aip);
1580 }
1581
1582 /*
1583 * Called to finish the allocation of the "aip" allocated
1584 * by one of the two routines above.
1585 *
1586 * Parameters:
1587 * bp: in-memory copy of the indirect block
1588 * ip: inode for file being extended
1589 * aip: allocindir allocated by the above routines
1590 */
1591 static void
setup_allocindir_phase2(struct buf * bp,struct inode * ip,struct allocindir * aip)1592 setup_allocindir_phase2(struct buf *bp, struct inode *ip,
1593 struct allocindir *aip)
1594 {
1595 struct worklist *wk;
1596 struct indirdep *indirdep, *newindirdep;
1597 struct bmsafemap *bmsafemap;
1598 struct allocindir *oldaip;
1599 struct freefrag *freefrag;
1600 struct newblk *newblk;
1601
1602 if (bp->b_loffset >= 0)
1603 panic("setup_allocindir_phase2: not indir blk");
1604 for (indirdep = NULL, newindirdep = NULL; ; ) {
1605 ACQUIRE_LOCK(&lk);
1606 LIST_FOREACH(wk, &bp->b_dep, wk_list) {
1607 if (wk->wk_type != D_INDIRDEP)
1608 continue;
1609 indirdep = WK_INDIRDEP(wk);
1610 break;
1611 }
1612 if (indirdep == NULL && newindirdep) {
1613 indirdep = newindirdep;
1614 WORKLIST_INSERT_BP(bp, &indirdep->ir_list);
1615 newindirdep = NULL;
1616 }
1617 FREE_LOCK(&lk);
1618 if (indirdep) {
1619 if (newblk_lookup(ip->i_fs, aip->ai_newblkno, 0,
1620 &newblk) == 0)
1621 panic("setup_allocindir: lost block");
1622 ACQUIRE_LOCK(&lk);
1623 if (newblk->nb_state == DEPCOMPLETE) {
1624 aip->ai_state |= DEPCOMPLETE;
1625 aip->ai_buf = NULL;
1626 } else {
1627 bmsafemap = newblk->nb_bmsafemap;
1628 aip->ai_buf = bmsafemap->sm_buf;
1629 LIST_REMOVE(newblk, nb_deps);
1630 LIST_INSERT_HEAD(&bmsafemap->sm_allocindirhd,
1631 aip, ai_deps);
1632 }
1633 LIST_REMOVE(newblk, nb_hash);
1634 kfree(newblk, M_NEWBLK);
1635 aip->ai_indirdep = indirdep;
1636 /*
1637 * Check to see if there is an existing dependency
1638 * for this block. If there is, merge the old
1639 * dependency into the new one.
1640 */
1641 if (aip->ai_oldblkno == 0)
1642 oldaip = NULL;
1643 else
1644
1645 LIST_FOREACH(oldaip, &indirdep->ir_deplisthd, ai_next)
1646 if (oldaip->ai_offset == aip->ai_offset)
1647 break;
1648 if (oldaip != NULL) {
1649 if (oldaip->ai_newblkno != aip->ai_oldblkno) {
1650 panic("setup_allocindir_phase2: blkno");
1651 }
1652 aip->ai_oldblkno = oldaip->ai_oldblkno;
1653 freefrag = oldaip->ai_freefrag;
1654 oldaip->ai_freefrag = aip->ai_freefrag;
1655 aip->ai_freefrag = freefrag;
1656 free_allocindir(oldaip, NULL);
1657 }
1658 LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next);
1659 ((ufs_daddr_t *)indirdep->ir_savebp->b_data)
1660 [aip->ai_offset] = aip->ai_oldblkno;
1661 FREE_LOCK(&lk);
1662 }
1663 if (newindirdep) {
1664 /*
1665 * Avoid any possibility of data corruption by
1666 * ensuring that our old version is thrown away.
1667 */
1668 newindirdep->ir_savebp->b_flags |= B_INVAL | B_NOCACHE;
1669 brelse(newindirdep->ir_savebp);
1670 WORKITEM_FREE((caddr_t)newindirdep, D_INDIRDEP);
1671 }
1672 if (indirdep)
1673 break;
1674 newindirdep = kmalloc(sizeof(struct indirdep), M_INDIRDEP,
1675 M_SOFTDEP_FLAGS);
1676 newindirdep->ir_list.wk_type = D_INDIRDEP;
1677 newindirdep->ir_state = ATTACHED;
1678 LIST_INIT(&newindirdep->ir_deplisthd);
1679 LIST_INIT(&newindirdep->ir_donehd);
1680 if (bp->b_bio2.bio_offset == NOOFFSET) {
1681 VOP_BMAP(bp->b_vp, bp->b_bio1.bio_offset,
1682 &bp->b_bio2.bio_offset, NULL, NULL,
1683 BUF_CMD_WRITE);
1684 }
1685 KKASSERT(bp->b_bio2.bio_offset != NOOFFSET);
1686 newindirdep->ir_savebp = getblk(ip->i_devvp,
1687 bp->b_bio2.bio_offset,
1688 bp->b_bcount, 0, 0);
1689 BUF_KERNPROC(newindirdep->ir_savebp);
1690 bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount);
1691 }
1692 }
1693
1694 /*
1695 * Block de-allocation dependencies.
1696 *
1697 * When blocks are de-allocated, the on-disk pointers must be nullified before
1698 * the blocks are made available for use by other files. (The true
1699 * requirement is that old pointers must be nullified before new on-disk
1700 * pointers are set. We chose this slightly more stringent requirement to
1701 * reduce complexity.) Our implementation handles this dependency by updating
1702 * the inode (or indirect block) appropriately but delaying the actual block
1703 * de-allocation (i.e., freemap and free space count manipulation) until
1704 * after the updated versions reach stable storage. After the disk is
1705 * updated, the blocks can be safely de-allocated whenever it is convenient.
1706 * This implementation handles only the common case of reducing a file's
1707 * length to zero. Other cases are handled by the conventional synchronous
1708 * write approach.
1709 *
1710 * The ffs implementation with which we worked double-checks
1711 * the state of the block pointers and file size as it reduces
1712 * a file's length. Some of this code is replicated here in our
1713 * soft updates implementation. The freeblks->fb_chkcnt field is
1714 * used to transfer a part of this information to the procedure
1715 * that eventually de-allocates the blocks.
1716 *
1717 * This routine should be called from the routine that shortens
1718 * a file's length, before the inode's size or block pointers
1719 * are modified. It will save the block pointer information for
1720 * later release and zero the inode so that the calling routine
1721 * can release it.
1722 */
1723 struct softdep_setup_freeblocks_info {
1724 struct fs *fs;
1725 struct inode *ip;
1726 };
1727
1728 static int softdep_setup_freeblocks_bp(struct buf *bp, void *data);
1729
1730 /*
1731 * Parameters:
1732 * ip: The inode whose length is to be reduced
1733 * length: The new length for the file
1734 */
1735 void
softdep_setup_freeblocks(struct inode * ip,off_t length)1736 softdep_setup_freeblocks(struct inode *ip, off_t length)
1737 {
1738 struct softdep_setup_freeblocks_info info;
1739 struct freeblks *freeblks;
1740 struct inodedep *inodedep;
1741 struct allocdirect *adp;
1742 struct vnode *vp;
1743 struct buf *bp;
1744 struct fs *fs;
1745 int i, error, delay;
1746 int count;
1747
1748 fs = ip->i_fs;
1749 if (length != 0)
1750 panic("softde_setup_freeblocks: non-zero length");
1751 freeblks = kmalloc(sizeof(struct freeblks), M_FREEBLKS,
1752 M_SOFTDEP_FLAGS | M_ZERO);
1753 freeblks->fb_list.wk_type = D_FREEBLKS;
1754 freeblks->fb_state = ATTACHED;
1755 freeblks->fb_uid = ip->i_uid;
1756 freeblks->fb_previousinum = ip->i_number;
1757 freeblks->fb_devvp = ip->i_devvp;
1758 freeblks->fb_fs = fs;
1759 freeblks->fb_oldsize = ip->i_size;
1760 freeblks->fb_newsize = length;
1761 freeblks->fb_chkcnt = ip->i_blocks;
1762 for (i = 0; i < UFS_NDADDR; i++) {
1763 freeblks->fb_dblks[i] = ip->i_db[i];
1764 ip->i_db[i] = 0;
1765 }
1766 for (i = 0; i < UFS_NIADDR; i++) {
1767 freeblks->fb_iblks[i] = ip->i_ib[i];
1768 ip->i_ib[i] = 0;
1769 }
1770 ip->i_blocks = 0;
1771 ip->i_size = 0;
1772 /*
1773 * Push the zero'ed inode to to its disk buffer so that we are free
1774 * to delete its dependencies below. Once the dependencies are gone
1775 * the buffer can be safely released.
1776 */
1777 if ((error = bread(ip->i_devvp,
1778 fsbtodoff(fs, ino_to_fsba(fs, ip->i_number)),
1779 (int)fs->fs_bsize, &bp)) != 0)
1780 softdep_error("softdep_setup_freeblocks", error);
1781 *((struct ufs1_dinode *)bp->b_data + ino_to_fsbo(fs, ip->i_number)) =
1782 ip->i_din;
1783 /*
1784 * Find and eliminate any inode dependencies.
1785 */
1786 ACQUIRE_LOCK(&lk);
1787 (void) inodedep_lookup(fs, ip->i_number, DEPALLOC, &inodedep);
1788 if ((inodedep->id_state & IOSTARTED) != 0) {
1789 panic("softdep_setup_freeblocks: inode busy");
1790 }
1791 /*
1792 * Add the freeblks structure to the list of operations that
1793 * must await the zero'ed inode being written to disk. If we
1794 * still have a bitmap dependency (delay == 0), then the inode
1795 * has never been written to disk, so we can process the
1796 * freeblks below once we have deleted the dependencies.
1797 */
1798 delay = (inodedep->id_state & DEPCOMPLETE);
1799 if (delay)
1800 WORKLIST_INSERT(&inodedep->id_bufwait, &freeblks->fb_list);
1801 /*
1802 * Because the file length has been truncated to zero, any
1803 * pending block allocation dependency structures associated
1804 * with this inode are obsolete and can simply be de-allocated.
1805 * We must first merge the two dependency lists to get rid of
1806 * any duplicate freefrag structures, then purge the merged list.
1807 */
1808 merge_inode_lists(inodedep);
1809 while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL)
1810 free_allocdirect(&inodedep->id_inoupdt, adp, 1);
1811 FREE_LOCK(&lk);
1812 bdwrite(bp);
1813 /*
1814 * We must wait for any I/O in progress to finish so that
1815 * all potential buffers on the dirty list will be visible.
1816 * Once they are all there, walk the list and get rid of
1817 * any dependencies.
1818 */
1819 vp = ITOV(ip);
1820 ACQUIRE_LOCK(&lk);
1821 drain_output(vp, 1);
1822
1823 info.fs = fs;
1824 info.ip = ip;
1825 lwkt_gettoken(&vp->v_token);
1826 do {
1827 count = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
1828 softdep_setup_freeblocks_bp, &info);
1829 } while (count != 0);
1830 lwkt_reltoken(&vp->v_token);
1831
1832 if (inodedep_lookup(fs, ip->i_number, 0, &inodedep) != 0)
1833 (void)free_inodedep(inodedep);
1834
1835 if (delay) {
1836 freeblks->fb_state |= DEPCOMPLETE;
1837 /*
1838 * If the inode with zeroed block pointers is now on disk
1839 * we can start freeing blocks. Add freeblks to the worklist
1840 * instead of calling handle_workitem_freeblocks directly as
1841 * it is more likely that additional IO is needed to complete
1842 * the request here than in the !delay case.
1843 */
1844 if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE)
1845 add_to_worklist(&freeblks->fb_list);
1846 }
1847
1848 FREE_LOCK(&lk);
1849 /*
1850 * If the inode has never been written to disk (delay == 0),
1851 * then we can process the freeblks now that we have deleted
1852 * the dependencies.
1853 */
1854 if (!delay)
1855 handle_workitem_freeblocks(freeblks);
1856 }
1857
1858 static int
softdep_setup_freeblocks_bp(struct buf * bp,void * data)1859 softdep_setup_freeblocks_bp(struct buf *bp, void *data)
1860 {
1861 struct softdep_setup_freeblocks_info *info = data;
1862 struct inodedep *inodedep;
1863
1864 if (getdirtybuf(&bp, MNT_WAIT) == 0) {
1865 kprintf("softdep_setup_freeblocks_bp(1): caught bp %p going away\n", bp);
1866 return(-1);
1867 }
1868 if (bp->b_vp != ITOV(info->ip) || (bp->b_flags & B_DELWRI) == 0) {
1869 kprintf("softdep_setup_freeblocks_bp(2): caught bp %p going away\n", bp);
1870 BUF_UNLOCK(bp);
1871 return(-1);
1872 }
1873 (void) inodedep_lookup(info->fs, info->ip->i_number, 0, &inodedep);
1874 deallocate_dependencies(bp, inodedep);
1875 bp->b_flags |= B_INVAL | B_NOCACHE;
1876 FREE_LOCK(&lk);
1877 brelse(bp);
1878 ACQUIRE_LOCK(&lk);
1879 return(1);
1880 }
1881
1882 /*
1883 * Reclaim any dependency structures from a buffer that is about to
1884 * be reallocated to a new vnode. The buffer must be locked, thus,
1885 * no I/O completion operations can occur while we are manipulating
1886 * its associated dependencies. The mutex is held so that other I/O's
1887 * associated with related dependencies do not occur.
1888 */
1889 static void
deallocate_dependencies(struct buf * bp,struct inodedep * inodedep)1890 deallocate_dependencies(struct buf *bp, struct inodedep *inodedep)
1891 {
1892 struct worklist *wk;
1893 struct indirdep *indirdep;
1894 struct allocindir *aip;
1895 struct pagedep *pagedep;
1896 struct dirrem *dirrem;
1897 struct diradd *dap;
1898 int i;
1899
1900 while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) {
1901 switch (wk->wk_type) {
1902
1903 case D_INDIRDEP:
1904 indirdep = WK_INDIRDEP(wk);
1905 /*
1906 * None of the indirect pointers will ever be visible,
1907 * so they can simply be tossed. GOINGAWAY ensures
1908 * that allocated pointers will be saved in the buffer
1909 * cache until they are freed. Note that they will
1910 * only be able to be found by their physical address
1911 * since the inode mapping the logical address will
1912 * be gone. The save buffer used for the safe copy
1913 * was allocated in setup_allocindir_phase2 using
1914 * the physical address so it could be used for this
1915 * purpose. Hence we swap the safe copy with the real
1916 * copy, allowing the safe copy to be freed and holding
1917 * on to the real copy for later use in indir_trunc.
1918 *
1919 * NOTE: ir_savebp is relative to the block device
1920 * so b_bio1 contains the device block number.
1921 */
1922 if (indirdep->ir_state & GOINGAWAY) {
1923 panic("deallocate_dependencies: already gone");
1924 }
1925 indirdep->ir_state |= GOINGAWAY;
1926 while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != NULL)
1927 free_allocindir(aip, inodedep);
1928 if (bp->b_bio1.bio_offset >= 0 ||
1929 bp->b_bio2.bio_offset != indirdep->ir_savebp->b_bio1.bio_offset) {
1930 panic("deallocate_dependencies: not indir");
1931 }
1932 bcopy(bp->b_data, indirdep->ir_savebp->b_data,
1933 bp->b_bcount);
1934 WORKLIST_REMOVE(wk);
1935 WORKLIST_INSERT_BP(indirdep->ir_savebp, wk);
1936 continue;
1937
1938 case D_PAGEDEP:
1939 pagedep = WK_PAGEDEP(wk);
1940 /*
1941 * None of the directory additions will ever be
1942 * visible, so they can simply be tossed.
1943 */
1944 for (i = 0; i < DAHASHSZ; i++)
1945 while ((dap =
1946 LIST_FIRST(&pagedep->pd_diraddhd[i])))
1947 free_diradd(dap);
1948 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
1949 free_diradd(dap);
1950 /*
1951 * Copy any directory remove dependencies to the list
1952 * to be processed after the zero'ed inode is written.
1953 * If the inode has already been written, then they
1954 * can be dumped directly onto the work list.
1955 */
1956 LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) {
1957 LIST_REMOVE(dirrem, dm_next);
1958 dirrem->dm_dirinum = pagedep->pd_ino;
1959 if (inodedep == NULL ||
1960 (inodedep->id_state & ALLCOMPLETE) ==
1961 ALLCOMPLETE)
1962 add_to_worklist(&dirrem->dm_list);
1963 else
1964 WORKLIST_INSERT(&inodedep->id_bufwait,
1965 &dirrem->dm_list);
1966 }
1967 WORKLIST_REMOVE(&pagedep->pd_list);
1968 LIST_REMOVE(pagedep, pd_hash);
1969 WORKITEM_FREE(pagedep, D_PAGEDEP);
1970 continue;
1971
1972 case D_ALLOCINDIR:
1973 free_allocindir(WK_ALLOCINDIR(wk), inodedep);
1974 continue;
1975
1976 case D_ALLOCDIRECT:
1977 case D_INODEDEP:
1978 panic("deallocate_dependencies: Unexpected type %s",
1979 TYPENAME(wk->wk_type));
1980 /* NOTREACHED */
1981
1982 default:
1983 panic("deallocate_dependencies: Unknown type %s",
1984 TYPENAME(wk->wk_type));
1985 /* NOTREACHED */
1986 }
1987 }
1988 }
1989
1990 /*
1991 * Free an allocdirect. Generate a new freefrag work request if appropriate.
1992 * This routine must be called with splbio interrupts blocked.
1993 */
1994 static void
free_allocdirect(struct allocdirectlst * adphead,struct allocdirect * adp,int delay)1995 free_allocdirect(struct allocdirectlst *adphead,
1996 struct allocdirect *adp, int delay)
1997 {
1998 KKASSERT(lock_held(&lk));
1999
2000 if ((adp->ad_state & DEPCOMPLETE) == 0)
2001 LIST_REMOVE(adp, ad_deps);
2002 TAILQ_REMOVE(adphead, adp, ad_next);
2003 if ((adp->ad_state & COMPLETE) == 0)
2004 WORKLIST_REMOVE(&adp->ad_list);
2005 if (adp->ad_freefrag != NULL) {
2006 if (delay)
2007 WORKLIST_INSERT(&adp->ad_inodedep->id_bufwait,
2008 &adp->ad_freefrag->ff_list);
2009 else
2010 add_to_worklist(&adp->ad_freefrag->ff_list);
2011 }
2012 WORKITEM_FREE(adp, D_ALLOCDIRECT);
2013 }
2014
2015 /*
2016 * Prepare an inode to be freed. The actual free operation is not
2017 * done until the zero'ed inode has been written to disk.
2018 */
2019 void
softdep_freefile(struct vnode * pvp,ino_t ino,int mode)2020 softdep_freefile(struct vnode *pvp, ino_t ino, int mode)
2021 {
2022 struct inode *ip = VTOI(pvp);
2023 struct inodedep *inodedep;
2024 struct freefile *freefile;
2025
2026 /*
2027 * This sets up the inode de-allocation dependency.
2028 */
2029 freefile = kmalloc(sizeof(struct freefile), M_FREEFILE,
2030 M_SOFTDEP_FLAGS);
2031 freefile->fx_list.wk_type = D_FREEFILE;
2032 freefile->fx_list.wk_state = 0;
2033 freefile->fx_mode = mode;
2034 freefile->fx_oldinum = ino;
2035 freefile->fx_devvp = ip->i_devvp;
2036 freefile->fx_fs = ip->i_fs;
2037
2038 /*
2039 * If the inodedep does not exist, then the zero'ed inode has
2040 * been written to disk. If the allocated inode has never been
2041 * written to disk, then the on-disk inode is zero'ed. In either
2042 * case we can free the file immediately.
2043 */
2044 ACQUIRE_LOCK(&lk);
2045 if (inodedep_lookup(ip->i_fs, ino, 0, &inodedep) == 0 ||
2046 check_inode_unwritten(inodedep)) {
2047 FREE_LOCK(&lk);
2048 handle_workitem_freefile(freefile);
2049 return;
2050 }
2051 WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list);
2052 FREE_LOCK(&lk);
2053 }
2054
2055 /*
2056 * Check to see if an inode has never been written to disk. If
2057 * so free the inodedep and return success, otherwise return failure.
2058 * This routine must be called with splbio interrupts blocked.
2059 *
2060 * If we still have a bitmap dependency, then the inode has never
2061 * been written to disk. Drop the dependency as it is no longer
2062 * necessary since the inode is being deallocated. We set the
2063 * ALLCOMPLETE flags since the bitmap now properly shows that the
2064 * inode is not allocated. Even if the inode is actively being
2065 * written, it has been rolled back to its zero'ed state, so we
2066 * are ensured that a zero inode is what is on the disk. For short
2067 * lived files, this change will usually result in removing all the
2068 * dependencies from the inode so that it can be freed immediately.
2069 */
2070 static int
check_inode_unwritten(struct inodedep * inodedep)2071 check_inode_unwritten(struct inodedep *inodedep)
2072 {
2073
2074 if ((inodedep->id_state & DEPCOMPLETE) != 0 ||
2075 LIST_FIRST(&inodedep->id_pendinghd) != NULL ||
2076 LIST_FIRST(&inodedep->id_bufwait) != NULL ||
2077 LIST_FIRST(&inodedep->id_inowait) != NULL ||
2078 TAILQ_FIRST(&inodedep->id_inoupdt) != NULL ||
2079 TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL ||
2080 inodedep->id_nlinkdelta != 0)
2081 return (0);
2082
2083 /*
2084 * Another process might be in initiate_write_inodeblock
2085 * trying to allocate memory without holding "Softdep Lock".
2086 */
2087 if ((inodedep->id_state & IOSTARTED) != 0 &&
2088 inodedep->id_savedino == NULL)
2089 return(0);
2090
2091 inodedep->id_state |= ALLCOMPLETE;
2092 LIST_REMOVE(inodedep, id_deps);
2093 inodedep->id_buf = NULL;
2094 if (inodedep->id_state & ONWORKLIST)
2095 WORKLIST_REMOVE(&inodedep->id_list);
2096 if (inodedep->id_savedino != NULL) {
2097 kfree(inodedep->id_savedino, M_INODEDEP);
2098 inodedep->id_savedino = NULL;
2099 }
2100 if (free_inodedep(inodedep) == 0) {
2101 panic("check_inode_unwritten: busy inode");
2102 }
2103 return (1);
2104 }
2105
2106 /*
2107 * Try to free an inodedep structure. Return 1 if it could be freed.
2108 */
2109 static int
free_inodedep(struct inodedep * inodedep)2110 free_inodedep(struct inodedep *inodedep)
2111 {
2112
2113 if ((inodedep->id_state & ONWORKLIST) != 0 ||
2114 (inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE ||
2115 LIST_FIRST(&inodedep->id_pendinghd) != NULL ||
2116 LIST_FIRST(&inodedep->id_bufwait) != NULL ||
2117 LIST_FIRST(&inodedep->id_inowait) != NULL ||
2118 TAILQ_FIRST(&inodedep->id_inoupdt) != NULL ||
2119 TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL ||
2120 inodedep->id_nlinkdelta != 0 || inodedep->id_savedino != NULL)
2121 return (0);
2122 LIST_REMOVE(inodedep, id_hash);
2123 WORKITEM_FREE(inodedep, D_INODEDEP);
2124 num_inodedep -= 1;
2125 return (1);
2126 }
2127
2128 /*
2129 * This workitem routine performs the block de-allocation.
2130 * The workitem is added to the pending list after the updated
2131 * inode block has been written to disk. As mentioned above,
2132 * checks regarding the number of blocks de-allocated (compared
2133 * to the number of blocks allocated for the file) are also
2134 * performed in this function.
2135 */
2136 static void
handle_workitem_freeblocks(struct freeblks * freeblks)2137 handle_workitem_freeblocks(struct freeblks *freeblks)
2138 {
2139 struct inode tip;
2140 ufs_daddr_t bn;
2141 struct fs *fs;
2142 int i, level, bsize;
2143 long nblocks, blocksreleased = 0;
2144 int error, allerror = 0;
2145 ufs_lbn_t baselbns[UFS_NIADDR], tmpval;
2146
2147 tip.i_number = freeblks->fb_previousinum;
2148 tip.i_devvp = freeblks->fb_devvp;
2149 tip.i_dev = freeblks->fb_devvp->v_rdev;
2150 tip.i_fs = freeblks->fb_fs;
2151 tip.i_size = freeblks->fb_oldsize;
2152 tip.i_uid = freeblks->fb_uid;
2153 fs = freeblks->fb_fs;
2154 tmpval = 1;
2155 baselbns[0] = UFS_NDADDR;
2156 for (i = 1; i < UFS_NIADDR; i++) {
2157 tmpval *= NINDIR(fs);
2158 baselbns[i] = baselbns[i - 1] + tmpval;
2159 }
2160 nblocks = btodb(fs->fs_bsize);
2161 blocksreleased = 0;
2162 /*
2163 * Indirect blocks first.
2164 */
2165 for (level = (UFS_NIADDR - 1); level >= 0; level--) {
2166 if ((bn = freeblks->fb_iblks[level]) == 0)
2167 continue;
2168 if ((error = indir_trunc(&tip, fsbtodoff(fs, bn), level,
2169 baselbns[level], &blocksreleased)) == 0)
2170 allerror = error;
2171 ffs_blkfree(&tip, bn, fs->fs_bsize);
2172 blocksreleased += nblocks;
2173 }
2174 /*
2175 * All direct blocks or frags.
2176 */
2177 for (i = (UFS_NDADDR - 1); i >= 0; i--) {
2178 if ((bn = freeblks->fb_dblks[i]) == 0)
2179 continue;
2180 bsize = blksize(fs, &tip, i);
2181 ffs_blkfree(&tip, bn, bsize);
2182 blocksreleased += btodb(bsize);
2183 }
2184
2185 #ifdef DIAGNOSTIC
2186 if (freeblks->fb_chkcnt != blocksreleased)
2187 kprintf("handle_workitem_freeblocks: block count\n");
2188 if (allerror)
2189 softdep_error("handle_workitem_freeblks", allerror);
2190 #endif /* DIAGNOSTIC */
2191 WORKITEM_FREE(freeblks, D_FREEBLKS);
2192 }
2193
2194 /*
2195 * Release blocks associated with the inode ip and stored in the indirect
2196 * block at doffset. If level is greater than SINGLE, the block is an
2197 * indirect block and recursive calls to indirtrunc must be used to
2198 * cleanse other indirect blocks.
2199 */
2200 static int
indir_trunc(struct inode * ip,off_t doffset,int level,ufs_lbn_t lbn,long * countp)2201 indir_trunc(struct inode *ip, off_t doffset, int level, ufs_lbn_t lbn,
2202 long *countp)
2203 {
2204 struct buf *bp;
2205 ufs_daddr_t *bap;
2206 ufs_daddr_t nb;
2207 struct fs *fs;
2208 struct worklist *wk;
2209 struct indirdep *indirdep;
2210 int i, lbnadd, nblocks;
2211 int error, allerror = 0;
2212
2213 fs = ip->i_fs;
2214 lbnadd = 1;
2215 for (i = level; i > 0; i--)
2216 lbnadd *= NINDIR(fs);
2217 /*
2218 * Get buffer of block pointers to be freed. This routine is not
2219 * called until the zero'ed inode has been written, so it is safe
2220 * to free blocks as they are encountered. Because the inode has
2221 * been zero'ed, calls to bmap on these blocks will fail. So, we
2222 * have to use the on-disk address and the block device for the
2223 * filesystem to look them up. If the file was deleted before its
2224 * indirect blocks were all written to disk, the routine that set
2225 * us up (deallocate_dependencies) will have arranged to leave
2226 * a complete copy of the indirect block in memory for our use.
2227 * Otherwise we have to read the blocks in from the disk.
2228 */
2229 ACQUIRE_LOCK(&lk);
2230 if ((bp = findblk(ip->i_devvp, doffset, FINDBLK_TEST)) != NULL &&
2231 (wk = LIST_FIRST(&bp->b_dep)) != NULL) {
2232 /*
2233 * bp must be ir_savebp, which is held locked for our use.
2234 */
2235 if (wk->wk_type != D_INDIRDEP ||
2236 (indirdep = WK_INDIRDEP(wk))->ir_savebp != bp ||
2237 (indirdep->ir_state & GOINGAWAY) == 0) {
2238 panic("indir_trunc: lost indirdep");
2239 }
2240 WORKLIST_REMOVE(wk);
2241 WORKITEM_FREE(indirdep, D_INDIRDEP);
2242 if (LIST_FIRST(&bp->b_dep) != NULL) {
2243 panic("indir_trunc: dangling dep");
2244 }
2245 FREE_LOCK(&lk);
2246 } else {
2247 FREE_LOCK(&lk);
2248 error = bread(ip->i_devvp, doffset, (int)fs->fs_bsize, &bp);
2249 if (error)
2250 return (error);
2251 }
2252 /*
2253 * Recursively free indirect blocks.
2254 */
2255 bap = (ufs_daddr_t *)bp->b_data;
2256 nblocks = btodb(fs->fs_bsize);
2257 for (i = NINDIR(fs) - 1; i >= 0; i--) {
2258 if ((nb = bap[i]) == 0)
2259 continue;
2260 if (level != 0) {
2261 if ((error = indir_trunc(ip, fsbtodoff(fs, nb),
2262 level - 1, lbn + (i * lbnadd), countp)) != 0)
2263 allerror = error;
2264 }
2265 ffs_blkfree(ip, nb, fs->fs_bsize);
2266 *countp += nblocks;
2267 }
2268 bp->b_flags |= B_INVAL | B_NOCACHE;
2269 brelse(bp);
2270 return (allerror);
2271 }
2272
2273 /*
2274 * Free an allocindir.
2275 * This routine must be called with splbio interrupts blocked.
2276 */
2277 static void
free_allocindir(struct allocindir * aip,struct inodedep * inodedep)2278 free_allocindir(struct allocindir *aip, struct inodedep *inodedep)
2279 {
2280 struct freefrag *freefrag;
2281
2282 KKASSERT(lock_held(&lk));
2283
2284 if ((aip->ai_state & DEPCOMPLETE) == 0)
2285 LIST_REMOVE(aip, ai_deps);
2286 if (aip->ai_state & ONWORKLIST)
2287 WORKLIST_REMOVE(&aip->ai_list);
2288 LIST_REMOVE(aip, ai_next);
2289 if ((freefrag = aip->ai_freefrag) != NULL) {
2290 if (inodedep == NULL)
2291 add_to_worklist(&freefrag->ff_list);
2292 else
2293 WORKLIST_INSERT(&inodedep->id_bufwait,
2294 &freefrag->ff_list);
2295 }
2296 WORKITEM_FREE(aip, D_ALLOCINDIR);
2297 }
2298
2299 /*
2300 * Directory entry addition dependencies.
2301 *
2302 * When adding a new directory entry, the inode (with its incremented link
2303 * count) must be written to disk before the directory entry's pointer to it.
2304 * Also, if the inode is newly allocated, the corresponding freemap must be
2305 * updated (on disk) before the directory entry's pointer. These requirements
2306 * are met via undo/redo on the directory entry's pointer, which consists
2307 * simply of the inode number.
2308 *
2309 * As directory entries are added and deleted, the free space within a
2310 * directory block can become fragmented. The ufs filesystem will compact
2311 * a fragmented directory block to make space for a new entry. When this
2312 * occurs, the offsets of previously added entries change. Any "diradd"
2313 * dependency structures corresponding to these entries must be updated with
2314 * the new offsets.
2315 */
2316
2317 /*
2318 * This routine is called after the in-memory inode's link
2319 * count has been incremented, but before the directory entry's
2320 * pointer to the inode has been set.
2321 *
2322 * Parameters:
2323 * bp: buffer containing directory block
2324 * dp: inode for directory
2325 * diroffset: offset of new entry in directory
2326 * newinum: inode referenced by new directory entry
2327 * newdirbp: non-NULL => contents of new mkdir
2328 */
2329 void
softdep_setup_directory_add(struct buf * bp,struct inode * dp,off_t diroffset,ino_t newinum,struct buf * newdirbp)2330 softdep_setup_directory_add(struct buf *bp, struct inode *dp, off_t diroffset,
2331 ino_t newinum, struct buf *newdirbp)
2332 {
2333 int offset; /* offset of new entry within directory block */
2334 ufs_lbn_t lbn; /* block in directory containing new entry */
2335 struct fs *fs;
2336 struct diradd *dap;
2337 struct pagedep *pagedep;
2338 struct inodedep *inodedep;
2339 struct mkdir *mkdir1, *mkdir2;
2340
2341 /*
2342 * Whiteouts have no dependencies.
2343 */
2344 if (newinum == UFS_WINO) {
2345 if (newdirbp != NULL)
2346 bdwrite(newdirbp);
2347 return;
2348 }
2349
2350 fs = dp->i_fs;
2351 lbn = lblkno(fs, diroffset);
2352 offset = blkoff(fs, diroffset);
2353 dap = kmalloc(sizeof(struct diradd), M_DIRADD,
2354 M_SOFTDEP_FLAGS | M_ZERO);
2355 dap->da_list.wk_type = D_DIRADD;
2356 dap->da_offset = offset;
2357 dap->da_newinum = newinum;
2358 dap->da_state = ATTACHED;
2359 if (newdirbp == NULL) {
2360 dap->da_state |= DEPCOMPLETE;
2361 ACQUIRE_LOCK(&lk);
2362 } else {
2363 dap->da_state |= MKDIR_BODY | MKDIR_PARENT;
2364 mkdir1 = kmalloc(sizeof(struct mkdir), M_MKDIR,
2365 M_SOFTDEP_FLAGS);
2366 mkdir1->md_list.wk_type = D_MKDIR;
2367 mkdir1->md_state = MKDIR_BODY;
2368 mkdir1->md_diradd = dap;
2369 mkdir2 = kmalloc(sizeof(struct mkdir), M_MKDIR,
2370 M_SOFTDEP_FLAGS);
2371 mkdir2->md_list.wk_type = D_MKDIR;
2372 mkdir2->md_state = MKDIR_PARENT;
2373 mkdir2->md_diradd = dap;
2374 /*
2375 * Dependency on "." and ".." being written to disk.
2376 */
2377 mkdir1->md_buf = newdirbp;
2378 ACQUIRE_LOCK(&lk);
2379 LIST_INSERT_HEAD(&mkdirlisthd, mkdir1, md_mkdirs);
2380 WORKLIST_INSERT_BP(newdirbp, &mkdir1->md_list);
2381 FREE_LOCK(&lk);
2382 bdwrite(newdirbp);
2383 /*
2384 * Dependency on link count increase for parent directory
2385 */
2386 ACQUIRE_LOCK(&lk);
2387 if (inodedep_lookup(dp->i_fs, dp->i_number, 0, &inodedep) == 0
2388 || (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
2389 dap->da_state &= ~MKDIR_PARENT;
2390 WORKITEM_FREE(mkdir2, D_MKDIR);
2391 } else {
2392 LIST_INSERT_HEAD(&mkdirlisthd, mkdir2, md_mkdirs);
2393 WORKLIST_INSERT(&inodedep->id_bufwait,&mkdir2->md_list);
2394 }
2395 }
2396 /*
2397 * Link into parent directory pagedep to await its being written.
2398 */
2399 if (pagedep_lookup(dp, lbn, DEPALLOC, &pagedep) == 0)
2400 WORKLIST_INSERT_BP(bp, &pagedep->pd_list);
2401 dap->da_pagedep = pagedep;
2402 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap,
2403 da_pdlist);
2404 /*
2405 * Link into its inodedep. Put it on the id_bufwait list if the inode
2406 * is not yet written. If it is written, do the post-inode write
2407 * processing to put it on the id_pendinghd list.
2408 */
2409 (void) inodedep_lookup(fs, newinum, DEPALLOC, &inodedep);
2410 if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE)
2411 diradd_inode_written(dap, inodedep);
2412 else
2413 WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
2414 FREE_LOCK(&lk);
2415 }
2416
2417 /*
2418 * This procedure is called to change the offset of a directory
2419 * entry when compacting a directory block which must be owned
2420 * exclusively by the caller. Note that the actual entry movement
2421 * must be done in this procedure to ensure that no I/O completions
2422 * occur while the move is in progress.
2423 *
2424 * Parameters:
2425 * dp: inode for directory
2426 * base: address of dp->i_offset
2427 * oldloc: address of old directory location
2428 * newloc: address of new directory location
2429 * entrysize: size of directory entry
2430 */
2431 void
softdep_change_directoryentry_offset(struct inode * dp,caddr_t base,caddr_t oldloc,caddr_t newloc,int entrysize)2432 softdep_change_directoryentry_offset(struct inode *dp, caddr_t base,
2433 caddr_t oldloc, caddr_t newloc,
2434 int entrysize)
2435 {
2436 int offset, oldoffset, newoffset;
2437 struct pagedep *pagedep;
2438 struct diradd *dap;
2439 ufs_lbn_t lbn;
2440
2441 ACQUIRE_LOCK(&lk);
2442 lbn = lblkno(dp->i_fs, dp->i_offset);
2443 offset = blkoff(dp->i_fs, dp->i_offset);
2444 if (pagedep_lookup(dp, lbn, 0, &pagedep) == 0)
2445 goto done;
2446 oldoffset = offset + (oldloc - base);
2447 newoffset = offset + (newloc - base);
2448
2449 LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(oldoffset)], da_pdlist) {
2450 if (dap->da_offset != oldoffset)
2451 continue;
2452 dap->da_offset = newoffset;
2453 if (DIRADDHASH(newoffset) == DIRADDHASH(oldoffset))
2454 break;
2455 LIST_REMOVE(dap, da_pdlist);
2456 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(newoffset)],
2457 dap, da_pdlist);
2458 break;
2459 }
2460 if (dap == NULL) {
2461
2462 LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist) {
2463 if (dap->da_offset == oldoffset) {
2464 dap->da_offset = newoffset;
2465 break;
2466 }
2467 }
2468 }
2469 done:
2470 bcopy(oldloc, newloc, entrysize);
2471 FREE_LOCK(&lk);
2472 }
2473
2474 /*
2475 * Free a diradd dependency structure. This routine must be called
2476 * with splbio interrupts blocked.
2477 */
2478 static void
free_diradd(struct diradd * dap)2479 free_diradd(struct diradd *dap)
2480 {
2481 struct dirrem *dirrem;
2482 struct pagedep *pagedep;
2483 struct inodedep *inodedep;
2484 struct mkdir *mkdir, *nextmd;
2485
2486 KKASSERT(lock_held(&lk));
2487
2488 WORKLIST_REMOVE(&dap->da_list);
2489 LIST_REMOVE(dap, da_pdlist);
2490 if ((dap->da_state & DIRCHG) == 0) {
2491 pagedep = dap->da_pagedep;
2492 } else {
2493 dirrem = dap->da_previous;
2494 pagedep = dirrem->dm_pagedep;
2495 dirrem->dm_dirinum = pagedep->pd_ino;
2496 add_to_worklist(&dirrem->dm_list);
2497 }
2498 if (inodedep_lookup(VFSTOUFS(pagedep->pd_mnt)->um_fs, dap->da_newinum,
2499 0, &inodedep) != 0)
2500 (void) free_inodedep(inodedep);
2501 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
2502 for (mkdir = LIST_FIRST(&mkdirlisthd); mkdir; mkdir = nextmd) {
2503 nextmd = LIST_NEXT(mkdir, md_mkdirs);
2504 if (mkdir->md_diradd != dap)
2505 continue;
2506 dap->da_state &= ~mkdir->md_state;
2507 WORKLIST_REMOVE(&mkdir->md_list);
2508 LIST_REMOVE(mkdir, md_mkdirs);
2509 WORKITEM_FREE(mkdir, D_MKDIR);
2510 }
2511 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
2512 panic("free_diradd: unfound ref");
2513 }
2514 }
2515 WORKITEM_FREE(dap, D_DIRADD);
2516 }
2517
2518 /*
2519 * Directory entry removal dependencies.
2520 *
2521 * When removing a directory entry, the entry's inode pointer must be
2522 * zero'ed on disk before the corresponding inode's link count is decremented
2523 * (possibly freeing the inode for re-use). This dependency is handled by
2524 * updating the directory entry but delaying the inode count reduction until
2525 * after the directory block has been written to disk. After this point, the
2526 * inode count can be decremented whenever it is convenient.
2527 */
2528
2529 /*
2530 * This routine should be called immediately after removing
2531 * a directory entry. The inode's link count should not be
2532 * decremented by the calling procedure -- the soft updates
2533 * code will do this task when it is safe.
2534 *
2535 * Parameters:
2536 * bp: buffer containing directory block
2537 * dp: inode for the directory being modified
2538 * ip: inode for directory entry being removed
2539 * isrmdir: indicates if doing RMDIR
2540 */
2541 void
softdep_setup_remove(struct buf * bp,struct inode * dp,struct inode * ip,int isrmdir)2542 softdep_setup_remove(struct buf *bp, struct inode *dp, struct inode *ip,
2543 int isrmdir)
2544 {
2545 struct dirrem *dirrem, *prevdirrem;
2546
2547 /*
2548 * Allocate a new dirrem if appropriate and ACQUIRE_LOCK.
2549 */
2550 dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
2551
2552 /*
2553 * If the COMPLETE flag is clear, then there were no active
2554 * entries and we want to roll back to a zeroed entry until
2555 * the new inode is committed to disk. If the COMPLETE flag is
2556 * set then we have deleted an entry that never made it to
2557 * disk. If the entry we deleted resulted from a name change,
2558 * then the old name still resides on disk. We cannot delete
2559 * its inode (returned to us in prevdirrem) until the zeroed
2560 * directory entry gets to disk. The new inode has never been
2561 * referenced on the disk, so can be deleted immediately.
2562 */
2563 if ((dirrem->dm_state & COMPLETE) == 0) {
2564 LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem,
2565 dm_next);
2566 FREE_LOCK(&lk);
2567 } else {
2568 if (prevdirrem != NULL)
2569 LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd,
2570 prevdirrem, dm_next);
2571 dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino;
2572 FREE_LOCK(&lk);
2573 handle_workitem_remove(dirrem);
2574 }
2575 }
2576
2577 /*
2578 * Allocate a new dirrem if appropriate and return it along with
2579 * its associated pagedep. Called without a lock, returns with lock.
2580 */
2581 static long num_dirrem; /* number of dirrem allocated */
2582
2583 /*
2584 * Parameters:
2585 * bp: buffer containing directory block
2586 * dp: inode for the directory being modified
2587 * ip: inode for directory entry being removed
2588 * isrmdir: indicates if doing RMDIR
2589 * prevdirremp: previously referenced inode, if any
2590 */
2591 static struct dirrem *
newdirrem(struct buf * bp,struct inode * dp,struct inode * ip,int isrmdir,struct dirrem ** prevdirremp)2592 newdirrem(struct buf *bp, struct inode *dp, struct inode *ip,
2593 int isrmdir, struct dirrem **prevdirremp)
2594 {
2595 int offset;
2596 ufs_lbn_t lbn;
2597 struct diradd *dap;
2598 struct dirrem *dirrem;
2599 struct pagedep *pagedep;
2600
2601 /*
2602 * Whiteouts have no deletion dependencies.
2603 */
2604 if (ip == NULL)
2605 panic("newdirrem: whiteout");
2606 /*
2607 * If we are over our limit, try to improve the situation.
2608 * Limiting the number of dirrem structures will also limit
2609 * the number of freefile and freeblks structures.
2610 */
2611 if (num_dirrem > max_softdeps / 4)
2612 speedup_syncer(NULL);
2613 if (num_dirrem > max_softdeps / 2) {
2614 ACQUIRE_LOCK(&lk);
2615 request_cleanup(FLUSH_REMOVE);
2616 FREE_LOCK(&lk);
2617 }
2618
2619 num_dirrem += 1;
2620 dirrem = kmalloc(sizeof(struct dirrem), M_DIRREM,
2621 M_SOFTDEP_FLAGS | M_ZERO);
2622 dirrem->dm_list.wk_type = D_DIRREM;
2623 dirrem->dm_state = isrmdir ? RMDIR : 0;
2624 dirrem->dm_mnt = ITOV(ip)->v_mount;
2625 dirrem->dm_oldinum = ip->i_number;
2626 *prevdirremp = NULL;
2627
2628 ACQUIRE_LOCK(&lk);
2629 lbn = lblkno(dp->i_fs, dp->i_offset);
2630 offset = blkoff(dp->i_fs, dp->i_offset);
2631 if (pagedep_lookup(dp, lbn, DEPALLOC, &pagedep) == 0)
2632 WORKLIST_INSERT_BP(bp, &pagedep->pd_list);
2633 dirrem->dm_pagedep = pagedep;
2634 /*
2635 * Check for a diradd dependency for the same directory entry.
2636 * If present, then both dependencies become obsolete and can
2637 * be de-allocated. Check for an entry on both the pd_dirraddhd
2638 * list and the pd_pendinghd list.
2639 */
2640
2641 LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(offset)], da_pdlist)
2642 if (dap->da_offset == offset)
2643 break;
2644 if (dap == NULL) {
2645
2646 LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist)
2647 if (dap->da_offset == offset)
2648 break;
2649 if (dap == NULL)
2650 return (dirrem);
2651 }
2652 /*
2653 * Must be ATTACHED at this point.
2654 */
2655 if ((dap->da_state & ATTACHED) == 0) {
2656 panic("newdirrem: not ATTACHED");
2657 }
2658 if (dap->da_newinum != ip->i_number) {
2659 panic("newdirrem: inum %"PRId64" should be %"PRId64,
2660 ip->i_number, dap->da_newinum);
2661 }
2662 /*
2663 * If we are deleting a changed name that never made it to disk,
2664 * then return the dirrem describing the previous inode (which
2665 * represents the inode currently referenced from this entry on disk).
2666 */
2667 if ((dap->da_state & DIRCHG) != 0) {
2668 *prevdirremp = dap->da_previous;
2669 dap->da_state &= ~DIRCHG;
2670 dap->da_pagedep = pagedep;
2671 }
2672 /*
2673 * We are deleting an entry that never made it to disk.
2674 * Mark it COMPLETE so we can delete its inode immediately.
2675 */
2676 dirrem->dm_state |= COMPLETE;
2677 free_diradd(dap);
2678 return (dirrem);
2679 }
2680
2681 /*
2682 * Directory entry change dependencies.
2683 *
2684 * Changing an existing directory entry requires that an add operation
2685 * be completed first followed by a deletion. The semantics for the addition
2686 * are identical to the description of adding a new entry above except
2687 * that the rollback is to the old inode number rather than zero. Once
2688 * the addition dependency is completed, the removal is done as described
2689 * in the removal routine above.
2690 */
2691
2692 /*
2693 * This routine should be called immediately after changing
2694 * a directory entry. The inode's link count should not be
2695 * decremented by the calling procedure -- the soft updates
2696 * code will perform this task when it is safe.
2697 *
2698 * Parameters:
2699 * bp: buffer containing directory block
2700 * dp: inode for the directory being modified
2701 * ip: inode for directory entry being removed
2702 * newinum: new inode number for changed entry
2703 * isrmdir: indicates if doing RMDIR
2704 */
2705 void
softdep_setup_directory_change(struct buf * bp,struct inode * dp,struct inode * ip,ino_t newinum,int isrmdir)2706 softdep_setup_directory_change(struct buf *bp, struct inode *dp,
2707 struct inode *ip, ino_t newinum,
2708 int isrmdir)
2709 {
2710 int offset;
2711 struct diradd *dap = NULL;
2712 struct dirrem *dirrem, *prevdirrem;
2713 struct pagedep *pagedep;
2714 struct inodedep *inodedep;
2715
2716 offset = blkoff(dp->i_fs, dp->i_offset);
2717
2718 /*
2719 * Whiteouts do not need diradd dependencies.
2720 */
2721 if (newinum != UFS_WINO) {
2722 dap = kmalloc(sizeof(struct diradd), M_DIRADD,
2723 M_SOFTDEP_FLAGS | M_ZERO);
2724 dap->da_list.wk_type = D_DIRADD;
2725 dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE;
2726 dap->da_offset = offset;
2727 dap->da_newinum = newinum;
2728 }
2729
2730 /*
2731 * Allocate a new dirrem and ACQUIRE_LOCK.
2732 */
2733 dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
2734 pagedep = dirrem->dm_pagedep;
2735 /*
2736 * The possible values for isrmdir:
2737 * 0 - non-directory file rename
2738 * 1 - directory rename within same directory
2739 * inum - directory rename to new directory of given inode number
2740 * When renaming to a new directory, we are both deleting and
2741 * creating a new directory entry, so the link count on the new
2742 * directory should not change. Thus we do not need the followup
2743 * dirrem which is usually done in handle_workitem_remove. We set
2744 * the DIRCHG flag to tell handle_workitem_remove to skip the
2745 * followup dirrem.
2746 */
2747 if (isrmdir > 1)
2748 dirrem->dm_state |= DIRCHG;
2749
2750 /*
2751 * Whiteouts have no additional dependencies,
2752 * so just put the dirrem on the correct list.
2753 */
2754 if (newinum == UFS_WINO) {
2755 if ((dirrem->dm_state & COMPLETE) == 0) {
2756 LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem,
2757 dm_next);
2758 } else {
2759 dirrem->dm_dirinum = pagedep->pd_ino;
2760 add_to_worklist(&dirrem->dm_list);
2761 }
2762 FREE_LOCK(&lk);
2763 return;
2764 }
2765
2766 /*
2767 * If the COMPLETE flag is clear, then there were no active
2768 * entries and we want to roll back to the previous inode until
2769 * the new inode is committed to disk. If the COMPLETE flag is
2770 * set, then we have deleted an entry that never made it to disk.
2771 * If the entry we deleted resulted from a name change, then the old
2772 * inode reference still resides on disk. Any rollback that we do
2773 * needs to be to that old inode (returned to us in prevdirrem). If
2774 * the entry we deleted resulted from a create, then there is
2775 * no entry on the disk, so we want to roll back to zero rather
2776 * than the uncommitted inode. In either of the COMPLETE cases we
2777 * want to immediately free the unwritten and unreferenced inode.
2778 */
2779 if ((dirrem->dm_state & COMPLETE) == 0) {
2780 dap->da_previous = dirrem;
2781 } else {
2782 if (prevdirrem != NULL) {
2783 dap->da_previous = prevdirrem;
2784 } else {
2785 dap->da_state &= ~DIRCHG;
2786 dap->da_pagedep = pagedep;
2787 }
2788 dirrem->dm_dirinum = pagedep->pd_ino;
2789 add_to_worklist(&dirrem->dm_list);
2790 }
2791 /*
2792 * Link into its inodedep. Put it on the id_bufwait list if the inode
2793 * is not yet written. If it is written, do the post-inode write
2794 * processing to put it on the id_pendinghd list.
2795 */
2796 if (inodedep_lookup(dp->i_fs, newinum, DEPALLOC, &inodedep) == 0 ||
2797 (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
2798 dap->da_state |= COMPLETE;
2799 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
2800 WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
2801 } else {
2802 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
2803 dap, da_pdlist);
2804 WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
2805 }
2806 FREE_LOCK(&lk);
2807 }
2808
2809 /*
2810 * Called whenever the link count on an inode is changed.
2811 * It creates an inode dependency so that the new reference(s)
2812 * to the inode cannot be committed to disk until the updated
2813 * inode has been written.
2814 *
2815 * Parameters:
2816 * ip: the inode with the increased link count
2817 */
2818 void
softdep_change_linkcnt(struct inode * ip)2819 softdep_change_linkcnt(struct inode *ip)
2820 {
2821 struct inodedep *inodedep;
2822
2823 ACQUIRE_LOCK(&lk);
2824 (void) inodedep_lookup(ip->i_fs, ip->i_number, DEPALLOC, &inodedep);
2825 if (ip->i_nlink < ip->i_effnlink) {
2826 panic("softdep_change_linkcnt: bad delta");
2827 }
2828 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
2829 FREE_LOCK(&lk);
2830 }
2831
2832 /*
2833 * This workitem decrements the inode's link count.
2834 * If the link count reaches zero, the file is removed.
2835 */
2836 static void
handle_workitem_remove(struct dirrem * dirrem)2837 handle_workitem_remove(struct dirrem *dirrem)
2838 {
2839 struct inodedep *inodedep;
2840 struct vnode *vp;
2841 struct inode *ip;
2842 ino_t oldinum;
2843 int error;
2844
2845 error = VFS_VGET(dirrem->dm_mnt, NULL, dirrem->dm_oldinum, &vp);
2846 if (error) {
2847 softdep_error("handle_workitem_remove: vget", error);
2848 return;
2849 }
2850 ip = VTOI(vp);
2851 ACQUIRE_LOCK(&lk);
2852 if ((inodedep_lookup(ip->i_fs, dirrem->dm_oldinum, 0, &inodedep)) == 0){
2853 panic("handle_workitem_remove: lost inodedep");
2854 }
2855 /*
2856 * Normal file deletion.
2857 */
2858 if ((dirrem->dm_state & RMDIR) == 0) {
2859 ip->i_nlink--;
2860 ip->i_flag |= IN_CHANGE;
2861 if (ip->i_nlink < ip->i_effnlink) {
2862 panic("handle_workitem_remove: bad file delta");
2863 }
2864 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
2865 FREE_LOCK(&lk);
2866 vput(vp);
2867 num_dirrem -= 1;
2868 WORKITEM_FREE(dirrem, D_DIRREM);
2869 return;
2870 }
2871 /*
2872 * Directory deletion. Decrement reference count for both the
2873 * just deleted parent directory entry and the reference for ".".
2874 * Next truncate the directory to length zero. When the
2875 * truncation completes, arrange to have the reference count on
2876 * the parent decremented to account for the loss of "..".
2877 */
2878 ip->i_nlink -= 2;
2879 ip->i_flag |= IN_CHANGE;
2880 if (ip->i_nlink < ip->i_effnlink) {
2881 panic("handle_workitem_remove: bad dir delta");
2882 }
2883 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
2884 FREE_LOCK(&lk);
2885 if ((error = ffs_truncate(vp, (off_t)0, 0, proc0.p_ucred)) != 0)
2886 softdep_error("handle_workitem_remove: truncate", error);
2887 /*
2888 * Rename a directory to a new parent. Since, we are both deleting
2889 * and creating a new directory entry, the link count on the new
2890 * directory should not change. Thus we skip the followup dirrem.
2891 */
2892 if (dirrem->dm_state & DIRCHG) {
2893 vput(vp);
2894 num_dirrem -= 1;
2895 WORKITEM_FREE(dirrem, D_DIRREM);
2896 return;
2897 }
2898 /*
2899 * If the inodedep does not exist, then the zero'ed inode has
2900 * been written to disk. If the allocated inode has never been
2901 * written to disk, then the on-disk inode is zero'ed. In either
2902 * case we can remove the file immediately.
2903 */
2904 ACQUIRE_LOCK(&lk);
2905 dirrem->dm_state = 0;
2906 oldinum = dirrem->dm_oldinum;
2907 dirrem->dm_oldinum = dirrem->dm_dirinum;
2908 if (inodedep_lookup(ip->i_fs, oldinum, 0, &inodedep) == 0 ||
2909 check_inode_unwritten(inodedep)) {
2910 FREE_LOCK(&lk);
2911 vput(vp);
2912 handle_workitem_remove(dirrem);
2913 return;
2914 }
2915 WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list);
2916 FREE_LOCK(&lk);
2917 ip->i_flag |= IN_CHANGE;
2918 ffs_update(vp, 0);
2919 vput(vp);
2920 }
2921
2922 /*
2923 * Inode de-allocation dependencies.
2924 *
2925 * When an inode's link count is reduced to zero, it can be de-allocated. We
2926 * found it convenient to postpone de-allocation until after the inode is
2927 * written to disk with its new link count (zero). At this point, all of the
2928 * on-disk inode's block pointers are nullified and, with careful dependency
2929 * list ordering, all dependencies related to the inode will be satisfied and
2930 * the corresponding dependency structures de-allocated. So, if/when the
2931 * inode is reused, there will be no mixing of old dependencies with new
2932 * ones. This artificial dependency is set up by the block de-allocation
2933 * procedure above (softdep_setup_freeblocks) and completed by the
2934 * following procedure.
2935 */
2936 static void
handle_workitem_freefile(struct freefile * freefile)2937 handle_workitem_freefile(struct freefile *freefile)
2938 {
2939 struct vnode vp;
2940 struct inode tip;
2941 struct inodedep *idp;
2942 int error;
2943
2944 #ifdef DEBUG
2945 ACQUIRE_LOCK(&lk);
2946 error = inodedep_lookup(freefile->fx_fs, freefile->fx_oldinum, 0, &idp);
2947 FREE_LOCK(&lk);
2948 if (error)
2949 panic("handle_workitem_freefile: inodedep survived");
2950 #endif
2951 tip.i_devvp = freefile->fx_devvp;
2952 tip.i_dev = freefile->fx_devvp->v_rdev;
2953 tip.i_fs = freefile->fx_fs;
2954 vp.v_data = &tip;
2955 if ((error = ffs_freefile(&vp, freefile->fx_oldinum, freefile->fx_mode)) != 0)
2956 softdep_error("handle_workitem_freefile", error);
2957 WORKITEM_FREE(freefile, D_FREEFILE);
2958 }
2959
2960 /*
2961 * Helper function which unlinks marker element from work list and returns
2962 * the next element on the list.
2963 */
2964 static __inline struct worklist *
markernext(struct worklist * marker)2965 markernext(struct worklist *marker)
2966 {
2967 struct worklist *next;
2968
2969 next = LIST_NEXT(marker, wk_list);
2970 LIST_REMOVE(marker, wk_list);
2971 return next;
2972 }
2973
2974 /*
2975 * checkread, checkwrite
2976 *
2977 * bioops callback - hold io_token
2978 */
2979 static int
softdep_checkread(struct buf * bp)2980 softdep_checkread(struct buf *bp)
2981 {
2982 /* nothing to do, mp lock not needed */
2983 return(0);
2984 }
2985
2986 /*
2987 * bioops callback - hold io_token
2988 */
2989 static int
softdep_checkwrite(struct buf * bp)2990 softdep_checkwrite(struct buf *bp)
2991 {
2992 /* nothing to do, mp lock not needed */
2993 return(0);
2994 }
2995
2996 /*
2997 * Disk writes.
2998 *
2999 * The dependency structures constructed above are most actively used when file
3000 * system blocks are written to disk. No constraints are placed on when a
3001 * block can be written, but unsatisfied update dependencies are made safe by
3002 * modifying (or replacing) the source memory for the duration of the disk
3003 * write. When the disk write completes, the memory block is again brought
3004 * up-to-date.
3005 *
3006 * In-core inode structure reclamation.
3007 *
3008 * Because there are a finite number of "in-core" inode structures, they are
3009 * reused regularly. By transferring all inode-related dependencies to the
3010 * in-memory inode block and indexing them separately (via "inodedep"s), we
3011 * can allow "in-core" inode structures to be reused at any time and avoid
3012 * any increase in contention.
3013 *
3014 * Called just before entering the device driver to initiate a new disk I/O.
3015 * The buffer must be locked, thus, no I/O completion operations can occur
3016 * while we are manipulating its associated dependencies.
3017 *
3018 * bioops callback - hold io_token
3019 *
3020 * Parameters:
3021 * bp: structure describing disk write to occur
3022 */
3023 static void
softdep_disk_io_initiation(struct buf * bp)3024 softdep_disk_io_initiation(struct buf *bp)
3025 {
3026 struct worklist *wk;
3027 struct worklist marker;
3028 struct indirdep *indirdep;
3029
3030 /*
3031 * We only care about write operations. There should never
3032 * be dependencies for reads.
3033 */
3034 if (bp->b_cmd == BUF_CMD_READ)
3035 panic("softdep_disk_io_initiation: read");
3036
3037 ACQUIRE_LOCK(&lk);
3038 marker.wk_type = D_LAST + 1; /* Not a normal workitem */
3039
3040 /*
3041 * Do any necessary pre-I/O processing.
3042 */
3043 for (wk = LIST_FIRST(&bp->b_dep); wk; wk = markernext(&marker)) {
3044 LIST_INSERT_AFTER(wk, &marker, wk_list);
3045
3046 switch (wk->wk_type) {
3047 case D_PAGEDEP:
3048 initiate_write_filepage(WK_PAGEDEP(wk), bp);
3049 continue;
3050
3051 case D_INODEDEP:
3052 initiate_write_inodeblock(WK_INODEDEP(wk), bp);
3053 continue;
3054
3055 case D_INDIRDEP:
3056 indirdep = WK_INDIRDEP(wk);
3057 if (indirdep->ir_state & GOINGAWAY)
3058 panic("disk_io_initiation: indirdep gone");
3059 /*
3060 * If there are no remaining dependencies, this
3061 * will be writing the real pointers, so the
3062 * dependency can be freed.
3063 */
3064 if (LIST_FIRST(&indirdep->ir_deplisthd) == NULL) {
3065 indirdep->ir_savebp->b_flags |= B_INVAL | B_NOCACHE;
3066 brelse(indirdep->ir_savebp);
3067 /* inline expand WORKLIST_REMOVE(wk); */
3068 wk->wk_state &= ~ONWORKLIST;
3069 LIST_REMOVE(wk, wk_list);
3070 WORKITEM_FREE(indirdep, D_INDIRDEP);
3071 continue;
3072 }
3073 /*
3074 * Replace up-to-date version with safe version.
3075 */
3076 indirdep->ir_saveddata = kmalloc(bp->b_bcount,
3077 M_INDIRDEP,
3078 M_SOFTDEP_FLAGS);
3079 ACQUIRE_LOCK(&lk);
3080 indirdep->ir_state &= ~ATTACHED;
3081 indirdep->ir_state |= UNDONE;
3082 bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount);
3083 bcopy(indirdep->ir_savebp->b_data, bp->b_data,
3084 bp->b_bcount);
3085 FREE_LOCK(&lk);
3086 continue;
3087
3088 case D_MKDIR:
3089 case D_BMSAFEMAP:
3090 case D_ALLOCDIRECT:
3091 case D_ALLOCINDIR:
3092 continue;
3093
3094 default:
3095 panic("handle_disk_io_initiation: Unexpected type %s",
3096 TYPENAME(wk->wk_type));
3097 /* NOTREACHED */
3098 }
3099 }
3100 FREE_LOCK(&lk);
3101 }
3102
3103 /*
3104 * Called from within the procedure above to deal with unsatisfied
3105 * allocation dependencies in a directory. The buffer must be locked,
3106 * thus, no I/O completion operations can occur while we are
3107 * manipulating its associated dependencies.
3108 */
3109 static void
initiate_write_filepage(struct pagedep * pagedep,struct buf * bp)3110 initiate_write_filepage(struct pagedep *pagedep, struct buf *bp)
3111 {
3112 struct diradd *dap;
3113 struct direct *ep;
3114 int i;
3115
3116 if (pagedep->pd_state & IOSTARTED) {
3117 /*
3118 * This can only happen if there is a driver that does not
3119 * understand chaining. Here biodone will reissue the call
3120 * to strategy for the incomplete buffers.
3121 */
3122 kprintf("initiate_write_filepage: already started\n");
3123 return;
3124 }
3125 pagedep->pd_state |= IOSTARTED;
3126 ACQUIRE_LOCK(&lk);
3127 for (i = 0; i < DAHASHSZ; i++) {
3128 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
3129 ep = (struct direct *)
3130 ((char *)bp->b_data + dap->da_offset);
3131 if (ep->d_ino != dap->da_newinum) {
3132 panic("%s: dir inum %d != new %"PRId64,
3133 "initiate_write_filepage",
3134 ep->d_ino, dap->da_newinum);
3135 }
3136 if (dap->da_state & DIRCHG)
3137 ep->d_ino = dap->da_previous->dm_oldinum;
3138 else
3139 ep->d_ino = 0;
3140 dap->da_state &= ~ATTACHED;
3141 dap->da_state |= UNDONE;
3142 }
3143 }
3144 FREE_LOCK(&lk);
3145 }
3146
3147 /*
3148 * Called from within the procedure above to deal with unsatisfied
3149 * allocation dependencies in an inodeblock. The buffer must be
3150 * locked, thus, no I/O completion operations can occur while we
3151 * are manipulating its associated dependencies.
3152 *
3153 * Parameters:
3154 * bp: The inode block
3155 */
3156 static void
initiate_write_inodeblock(struct inodedep * inodedep,struct buf * bp)3157 initiate_write_inodeblock(struct inodedep *inodedep, struct buf *bp)
3158 {
3159 struct allocdirect *adp, *lastadp;
3160 struct ufs1_dinode *dp;
3161 struct ufs1_dinode *sip;
3162 struct fs *fs;
3163 ufs_lbn_t prevlbn = 0;
3164 int i, deplist;
3165
3166 if (inodedep->id_state & IOSTARTED)
3167 panic("initiate_write_inodeblock: already started");
3168 inodedep->id_state |= IOSTARTED;
3169 fs = inodedep->id_fs;
3170 dp = (struct ufs1_dinode *)bp->b_data +
3171 ino_to_fsbo(fs, inodedep->id_ino);
3172 /*
3173 * If the bitmap is not yet written, then the allocated
3174 * inode cannot be written to disk.
3175 */
3176 if ((inodedep->id_state & DEPCOMPLETE) == 0) {
3177 if (inodedep->id_savedino != NULL)
3178 panic("initiate_write_inodeblock: already doing I/O");
3179 sip = kmalloc(sizeof(struct ufs1_dinode), M_INODEDEP,
3180 M_SOFTDEP_FLAGS);
3181 inodedep->id_savedino = sip;
3182 *inodedep->id_savedino = *dp;
3183 bzero((caddr_t)dp, sizeof(struct ufs1_dinode));
3184 dp->di_gen = inodedep->id_savedino->di_gen;
3185 return;
3186 }
3187 /*
3188 * If no dependencies, then there is nothing to roll back.
3189 */
3190 inodedep->id_savedsize = dp->di_size;
3191 if (TAILQ_FIRST(&inodedep->id_inoupdt) == NULL)
3192 return;
3193 /*
3194 * Set the dependencies to busy.
3195 */
3196 ACQUIRE_LOCK(&lk);
3197 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
3198 adp = TAILQ_NEXT(adp, ad_next)) {
3199 #ifdef DIAGNOSTIC
3200 if (deplist != 0 && prevlbn >= adp->ad_lbn) {
3201 panic("softdep_write_inodeblock: lbn order");
3202 }
3203 prevlbn = adp->ad_lbn;
3204 if (adp->ad_lbn < UFS_NDADDR &&
3205 dp->di_db[adp->ad_lbn] != adp->ad_newblkno) {
3206 panic("%s: direct pointer #%ld mismatch %d != %d",
3207 "softdep_write_inodeblock", adp->ad_lbn,
3208 dp->di_db[adp->ad_lbn], adp->ad_newblkno);
3209 }
3210 if (adp->ad_lbn >= UFS_NDADDR &&
3211 dp->di_ib[adp->ad_lbn - UFS_NDADDR] != adp->ad_newblkno) {
3212 panic("%s: indirect pointer #%ld mismatch %d != %d",
3213 "softdep_write_inodeblock",
3214 adp->ad_lbn - UFS_NDADDR,
3215 dp->di_ib[adp->ad_lbn - UFS_NDADDR],
3216 adp->ad_newblkno);
3217 }
3218 deplist |= 1 << adp->ad_lbn;
3219 if ((adp->ad_state & ATTACHED) == 0) {
3220 panic("softdep_write_inodeblock: Unknown state 0x%x",
3221 adp->ad_state);
3222 }
3223 #endif /* DIAGNOSTIC */
3224 adp->ad_state &= ~ATTACHED;
3225 adp->ad_state |= UNDONE;
3226 }
3227 /*
3228 * The on-disk inode cannot claim to be any larger than the last
3229 * fragment that has been written. Otherwise, the on-disk inode
3230 * might have fragments that were not the last block in the file
3231 * which would corrupt the filesystem.
3232 */
3233 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
3234 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
3235 if (adp->ad_lbn >= UFS_NDADDR)
3236 break;
3237 dp->di_db[adp->ad_lbn] = adp->ad_oldblkno;
3238 /* keep going until hitting a rollback to a frag */
3239 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
3240 continue;
3241 dp->di_size = fs->fs_bsize * adp->ad_lbn + adp->ad_oldsize;
3242 for (i = adp->ad_lbn + 1; i < UFS_NDADDR; i++) {
3243 #ifdef DIAGNOSTIC
3244 if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0) {
3245 panic("softdep_write_inodeblock: lost dep1");
3246 }
3247 #endif /* DIAGNOSTIC */
3248 dp->di_db[i] = 0;
3249 }
3250 for (i = 0; i < UFS_NIADDR; i++) {
3251 #ifdef DIAGNOSTIC
3252 if (dp->di_ib[i] != 0 &&
3253 (deplist & ((1 << UFS_NDADDR) << i)) == 0) {
3254 panic("softdep_write_inodeblock: lost dep2");
3255 }
3256 #endif /* DIAGNOSTIC */
3257 dp->di_ib[i] = 0;
3258 }
3259 FREE_LOCK(&lk);
3260 return;
3261 }
3262 /*
3263 * If we have zero'ed out the last allocated block of the file,
3264 * roll back the size to the last currently allocated block.
3265 * We know that this last allocated block is a full-sized as
3266 * we already checked for fragments in the loop above.
3267 */
3268 if (lastadp != NULL &&
3269 dp->di_size <= (lastadp->ad_lbn + 1) * fs->fs_bsize) {
3270 for (i = lastadp->ad_lbn; i >= 0; i--)
3271 if (dp->di_db[i] != 0)
3272 break;
3273 dp->di_size = (i + 1) * fs->fs_bsize;
3274 }
3275 /*
3276 * The only dependencies are for indirect blocks.
3277 *
3278 * The file size for indirect block additions is not guaranteed.
3279 * Such a guarantee would be non-trivial to achieve. The conventional
3280 * synchronous write implementation also does not make this guarantee.
3281 * Fsck should catch and fix discrepancies. Arguably, the file size
3282 * can be over-estimated without destroying integrity when the file
3283 * moves into the indirect blocks (i.e., is large). If we want to
3284 * postpone fsck, we are stuck with this argument.
3285 */
3286 for (; adp; adp = TAILQ_NEXT(adp, ad_next))
3287 dp->di_ib[adp->ad_lbn - UFS_NDADDR] = 0;
3288 FREE_LOCK(&lk);
3289 }
3290
3291 /*
3292 * This routine is called during the completion interrupt
3293 * service routine for a disk write (from the procedure called
3294 * by the device driver to inform the filesystem caches of
3295 * a request completion). It should be called early in this
3296 * procedure, before the block is made available to other
3297 * processes or other routines are called.
3298 *
3299 * bioops callback - hold io_token
3300 *
3301 * Parameters:
3302 * bp: describes the completed disk write
3303 */
3304 static void
softdep_disk_write_complete(struct buf * bp)3305 softdep_disk_write_complete(struct buf *bp)
3306 {
3307 struct worklist *wk;
3308 struct workhead reattach;
3309 struct newblk *newblk;
3310 struct allocindir *aip;
3311 struct allocdirect *adp;
3312 struct indirdep *indirdep;
3313 struct inodedep *inodedep;
3314 struct bmsafemap *bmsafemap;
3315
3316 ACQUIRE_LOCK(&lk);
3317
3318 LIST_INIT(&reattach);
3319 while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) {
3320 WORKLIST_REMOVE(wk);
3321 switch (wk->wk_type) {
3322
3323 case D_PAGEDEP:
3324 if (handle_written_filepage(WK_PAGEDEP(wk), bp))
3325 WORKLIST_INSERT(&reattach, wk);
3326 continue;
3327
3328 case D_INODEDEP:
3329 if (handle_written_inodeblock(WK_INODEDEP(wk), bp))
3330 WORKLIST_INSERT(&reattach, wk);
3331 continue;
3332
3333 case D_BMSAFEMAP:
3334 bmsafemap = WK_BMSAFEMAP(wk);
3335 while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkhd))) {
3336 newblk->nb_state |= DEPCOMPLETE;
3337 newblk->nb_bmsafemap = NULL;
3338 LIST_REMOVE(newblk, nb_deps);
3339 }
3340 while ((adp =
3341 LIST_FIRST(&bmsafemap->sm_allocdirecthd))) {
3342 adp->ad_state |= DEPCOMPLETE;
3343 adp->ad_buf = NULL;
3344 LIST_REMOVE(adp, ad_deps);
3345 handle_allocdirect_partdone(adp);
3346 }
3347 while ((aip =
3348 LIST_FIRST(&bmsafemap->sm_allocindirhd))) {
3349 aip->ai_state |= DEPCOMPLETE;
3350 aip->ai_buf = NULL;
3351 LIST_REMOVE(aip, ai_deps);
3352 handle_allocindir_partdone(aip);
3353 }
3354 while ((inodedep =
3355 LIST_FIRST(&bmsafemap->sm_inodedephd)) != NULL) {
3356 inodedep->id_state |= DEPCOMPLETE;
3357 LIST_REMOVE(inodedep, id_deps);
3358 inodedep->id_buf = NULL;
3359 }
3360 WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
3361 continue;
3362
3363 case D_MKDIR:
3364 handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
3365 continue;
3366
3367 case D_ALLOCDIRECT:
3368 adp = WK_ALLOCDIRECT(wk);
3369 adp->ad_state |= COMPLETE;
3370 handle_allocdirect_partdone(adp);
3371 continue;
3372
3373 case D_ALLOCINDIR:
3374 aip = WK_ALLOCINDIR(wk);
3375 aip->ai_state |= COMPLETE;
3376 handle_allocindir_partdone(aip);
3377 continue;
3378
3379 case D_INDIRDEP:
3380 indirdep = WK_INDIRDEP(wk);
3381 if (indirdep->ir_state & GOINGAWAY) {
3382 panic("disk_write_complete: indirdep gone");
3383 }
3384 bcopy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount);
3385 kfree(indirdep->ir_saveddata, M_INDIRDEP);
3386 indirdep->ir_saveddata = NULL;
3387 indirdep->ir_state &= ~UNDONE;
3388 indirdep->ir_state |= ATTACHED;
3389 while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != NULL) {
3390 handle_allocindir_partdone(aip);
3391 if (aip == LIST_FIRST(&indirdep->ir_donehd)) {
3392 panic("disk_write_complete: not gone");
3393 }
3394 }
3395 WORKLIST_INSERT(&reattach, wk);
3396 if ((bp->b_flags & B_DELWRI) == 0)
3397 stat_indir_blk_ptrs++;
3398 bdirty(bp);
3399 continue;
3400
3401 default:
3402 panic("handle_disk_write_complete: Unknown type %s",
3403 TYPENAME(wk->wk_type));
3404 /* NOTREACHED */
3405 }
3406 }
3407 /*
3408 * Reattach any requests that must be redone.
3409 */
3410 while ((wk = LIST_FIRST(&reattach)) != NULL) {
3411 WORKLIST_REMOVE(wk);
3412 WORKLIST_INSERT_BP(bp, wk);
3413 }
3414
3415 FREE_LOCK(&lk);
3416 }
3417
3418 /*
3419 * Called from within softdep_disk_write_complete above. Note that
3420 * this routine is always called from interrupt level with further
3421 * splbio interrupts blocked.
3422 *
3423 * Parameters:
3424 * adp: the completed allocdirect
3425 */
3426 static void
handle_allocdirect_partdone(struct allocdirect * adp)3427 handle_allocdirect_partdone(struct allocdirect *adp)
3428 {
3429 struct allocdirect *listadp;
3430 struct inodedep *inodedep;
3431 long bsize;
3432
3433 if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
3434 return;
3435 if (adp->ad_buf != NULL)
3436 panic("handle_allocdirect_partdone: dangling dep");
3437
3438 /*
3439 * The on-disk inode cannot claim to be any larger than the last
3440 * fragment that has been written. Otherwise, the on-disk inode
3441 * might have fragments that were not the last block in the file
3442 * which would corrupt the filesystem. Thus, we cannot free any
3443 * allocdirects after one whose ad_oldblkno claims a fragment as
3444 * these blocks must be rolled back to zero before writing the inode.
3445 * We check the currently active set of allocdirects in id_inoupdt.
3446 */
3447 inodedep = adp->ad_inodedep;
3448 bsize = inodedep->id_fs->fs_bsize;
3449 TAILQ_FOREACH(listadp, &inodedep->id_inoupdt, ad_next) {
3450 /* found our block */
3451 if (listadp == adp)
3452 break;
3453 /* continue if ad_oldlbn is not a fragment */
3454 if (listadp->ad_oldsize == 0 ||
3455 listadp->ad_oldsize == bsize)
3456 continue;
3457 /* hit a fragment */
3458 return;
3459 }
3460 /*
3461 * If we have reached the end of the current list without
3462 * finding the just finished dependency, then it must be
3463 * on the future dependency list. Future dependencies cannot
3464 * be freed until they are moved to the current list.
3465 */
3466 if (listadp == NULL) {
3467 #ifdef DEBUG
3468 TAILQ_FOREACH(listadp, &inodedep->id_newinoupdt, ad_next)
3469 /* found our block */
3470 if (listadp == adp)
3471 break;
3472 if (listadp == NULL)
3473 panic("handle_allocdirect_partdone: lost dep");
3474 #endif /* DEBUG */
3475 return;
3476 }
3477 /*
3478 * If we have found the just finished dependency, then free
3479 * it along with anything that follows it that is complete.
3480 */
3481 for (; adp; adp = listadp) {
3482 listadp = TAILQ_NEXT(adp, ad_next);
3483 if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
3484 return;
3485 free_allocdirect(&inodedep->id_inoupdt, adp, 1);
3486 }
3487 }
3488
3489 /*
3490 * Called from within softdep_disk_write_complete above. Note that
3491 * this routine is always called from interrupt level with further
3492 * splbio interrupts blocked.
3493 *
3494 * Parameters:
3495 * aip: the completed allocindir
3496 */
3497 static void
handle_allocindir_partdone(struct allocindir * aip)3498 handle_allocindir_partdone(struct allocindir *aip)
3499 {
3500 struct indirdep *indirdep;
3501
3502 if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE)
3503 return;
3504 if (aip->ai_buf != NULL)
3505 panic("handle_allocindir_partdone: dangling dependency");
3506
3507 indirdep = aip->ai_indirdep;
3508 if (indirdep->ir_state & UNDONE) {
3509 LIST_REMOVE(aip, ai_next);
3510 LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next);
3511 return;
3512 }
3513 ((ufs_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
3514 aip->ai_newblkno;
3515 LIST_REMOVE(aip, ai_next);
3516 if (aip->ai_freefrag != NULL)
3517 add_to_worklist(&aip->ai_freefrag->ff_list);
3518 WORKITEM_FREE(aip, D_ALLOCINDIR);
3519 }
3520
3521 /*
3522 * Called from within softdep_disk_write_complete above to restore
3523 * in-memory inode block contents to their most up-to-date state. Note
3524 * that this routine is always called from interrupt level with further
3525 * splbio interrupts blocked.
3526 *
3527 * Parameters:
3528 * bp: buffer containing the inode block
3529 */
3530 static int
handle_written_inodeblock(struct inodedep * inodedep,struct buf * bp)3531 handle_written_inodeblock(struct inodedep *inodedep, struct buf *bp)
3532 {
3533 struct worklist *wk, *filefree;
3534 struct allocdirect *adp, *nextadp;
3535 struct ufs1_dinode *dp;
3536 int hadchanges;
3537
3538 if ((inodedep->id_state & IOSTARTED) == 0)
3539 panic("handle_written_inodeblock: not started");
3540
3541 inodedep->id_state &= ~IOSTARTED;
3542 dp = (struct ufs1_dinode *)bp->b_data +
3543 ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
3544 /*
3545 * If we had to rollback the inode allocation because of
3546 * bitmaps being incomplete, then simply restore it.
3547 * Keep the block dirty so that it will not be reclaimed until
3548 * all associated dependencies have been cleared and the
3549 * corresponding updates written to disk.
3550 */
3551 if (inodedep->id_savedino != NULL) {
3552 *dp = *inodedep->id_savedino;
3553 kfree(inodedep->id_savedino, M_INODEDEP);
3554 inodedep->id_savedino = NULL;
3555 if ((bp->b_flags & B_DELWRI) == 0)
3556 stat_inode_bitmap++;
3557 bdirty(bp);
3558 return (1);
3559 }
3560 inodedep->id_state |= COMPLETE;
3561 /*
3562 * Roll forward anything that had to be rolled back before
3563 * the inode could be updated.
3564 */
3565 hadchanges = 0;
3566 for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) {
3567 nextadp = TAILQ_NEXT(adp, ad_next);
3568 if (adp->ad_state & ATTACHED)
3569 panic("handle_written_inodeblock: new entry");
3570
3571 if (adp->ad_lbn < UFS_NDADDR) {
3572 if (dp->di_db[adp->ad_lbn] != adp->ad_oldblkno) {
3573 panic("%s: %s #%ld mismatch %d != %d",
3574 "handle_written_inodeblock",
3575 "direct pointer", adp->ad_lbn,
3576 dp->di_db[adp->ad_lbn], adp->ad_oldblkno);
3577 }
3578 dp->di_db[adp->ad_lbn] = adp->ad_newblkno;
3579 } else {
3580 if (dp->di_ib[adp->ad_lbn - UFS_NDADDR] != 0) {
3581 panic("%s: %s #%ld allocated as %d",
3582 "handle_written_inodeblock",
3583 "indirect pointer",
3584 adp->ad_lbn - UFS_NDADDR,
3585 dp->di_ib[adp->ad_lbn - UFS_NDADDR]);
3586 }
3587 dp->di_ib[adp->ad_lbn - UFS_NDADDR] = adp->ad_newblkno;
3588 }
3589 adp->ad_state &= ~UNDONE;
3590 adp->ad_state |= ATTACHED;
3591 hadchanges = 1;
3592 }
3593 if (hadchanges && (bp->b_flags & B_DELWRI) == 0)
3594 stat_direct_blk_ptrs++;
3595 /*
3596 * Reset the file size to its most up-to-date value.
3597 */
3598 if (inodedep->id_savedsize == -1) {
3599 panic("handle_written_inodeblock: bad size");
3600 }
3601 if (dp->di_size != inodedep->id_savedsize) {
3602 dp->di_size = inodedep->id_savedsize;
3603 hadchanges = 1;
3604 }
3605 inodedep->id_savedsize = -1;
3606 /*
3607 * If there were any rollbacks in the inode block, then it must be
3608 * marked dirty so that its will eventually get written back in
3609 * its correct form.
3610 */
3611 if (hadchanges)
3612 bdirty(bp);
3613 /*
3614 * Process any allocdirects that completed during the update.
3615 */
3616 if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL)
3617 handle_allocdirect_partdone(adp);
3618 /*
3619 * Process deallocations that were held pending until the
3620 * inode had been written to disk. Freeing of the inode
3621 * is delayed until after all blocks have been freed to
3622 * avoid creation of new <vfsid, inum, lbn> triples
3623 * before the old ones have been deleted.
3624 */
3625 filefree = NULL;
3626 while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) {
3627 WORKLIST_REMOVE(wk);
3628 switch (wk->wk_type) {
3629
3630 case D_FREEFILE:
3631 /*
3632 * We defer adding filefree to the worklist until
3633 * all other additions have been made to ensure
3634 * that it will be done after all the old blocks
3635 * have been freed.
3636 */
3637 if (filefree != NULL) {
3638 panic("handle_written_inodeblock: filefree");
3639 }
3640 filefree = wk;
3641 continue;
3642
3643 case D_MKDIR:
3644 handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT);
3645 continue;
3646
3647 case D_DIRADD:
3648 diradd_inode_written(WK_DIRADD(wk), inodedep);
3649 continue;
3650
3651 case D_FREEBLKS:
3652 wk->wk_state |= COMPLETE;
3653 if ((wk->wk_state & ALLCOMPLETE) != ALLCOMPLETE)
3654 continue;
3655 /* -- fall through -- */
3656 case D_FREEFRAG:
3657 case D_DIRREM:
3658 add_to_worklist(wk);
3659 continue;
3660
3661 default:
3662 panic("handle_written_inodeblock: Unknown type %s",
3663 TYPENAME(wk->wk_type));
3664 /* NOTREACHED */
3665 }
3666 }
3667 if (filefree != NULL) {
3668 if (free_inodedep(inodedep) == 0) {
3669 panic("handle_written_inodeblock: live inodedep");
3670 }
3671 add_to_worklist(filefree);
3672 return (0);
3673 }
3674
3675 /*
3676 * If no outstanding dependencies, free it.
3677 */
3678 if (free_inodedep(inodedep) || TAILQ_FIRST(&inodedep->id_inoupdt) == NULL)
3679 return (0);
3680 return (hadchanges);
3681 }
3682
3683 /*
3684 * Process a diradd entry after its dependent inode has been written.
3685 * This routine must be called with splbio interrupts blocked.
3686 */
3687 static void
diradd_inode_written(struct diradd * dap,struct inodedep * inodedep)3688 diradd_inode_written(struct diradd *dap, struct inodedep *inodedep)
3689 {
3690 struct pagedep *pagedep;
3691
3692 dap->da_state |= COMPLETE;
3693 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
3694 if (dap->da_state & DIRCHG)
3695 pagedep = dap->da_previous->dm_pagedep;
3696 else
3697 pagedep = dap->da_pagedep;
3698 LIST_REMOVE(dap, da_pdlist);
3699 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
3700 }
3701 WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
3702 }
3703
3704 /*
3705 * Handle the completion of a mkdir dependency.
3706 */
3707 static void
handle_written_mkdir(struct mkdir * mkdir,int type)3708 handle_written_mkdir(struct mkdir *mkdir, int type)
3709 {
3710 struct diradd *dap;
3711 struct pagedep *pagedep;
3712
3713 if (mkdir->md_state != type) {
3714 panic("handle_written_mkdir: bad type");
3715 }
3716 dap = mkdir->md_diradd;
3717 dap->da_state &= ~type;
3718 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0)
3719 dap->da_state |= DEPCOMPLETE;
3720 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
3721 if (dap->da_state & DIRCHG)
3722 pagedep = dap->da_previous->dm_pagedep;
3723 else
3724 pagedep = dap->da_pagedep;
3725 LIST_REMOVE(dap, da_pdlist);
3726 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
3727 }
3728 LIST_REMOVE(mkdir, md_mkdirs);
3729 WORKITEM_FREE(mkdir, D_MKDIR);
3730 }
3731
3732 /*
3733 * Called from within softdep_disk_write_complete above.
3734 * A write operation was just completed. Removed inodes can
3735 * now be freed and associated block pointers may be committed.
3736 * Note that this routine is always called from interrupt level
3737 * with further splbio interrupts blocked.
3738 *
3739 * Parameters:
3740 * bp: buffer containing the written page
3741 */
3742 static int
handle_written_filepage(struct pagedep * pagedep,struct buf * bp)3743 handle_written_filepage(struct pagedep *pagedep, struct buf *bp)
3744 {
3745 struct dirrem *dirrem;
3746 struct diradd *dap, *nextdap;
3747 struct direct *ep;
3748 int i, chgs;
3749
3750 if ((pagedep->pd_state & IOSTARTED) == 0) {
3751 panic("handle_written_filepage: not started");
3752 }
3753 pagedep->pd_state &= ~IOSTARTED;
3754 /*
3755 * Process any directory removals that have been committed.
3756 */
3757 while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) {
3758 LIST_REMOVE(dirrem, dm_next);
3759 dirrem->dm_dirinum = pagedep->pd_ino;
3760 add_to_worklist(&dirrem->dm_list);
3761 }
3762 /*
3763 * Free any directory additions that have been committed.
3764 */
3765 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
3766 free_diradd(dap);
3767 /*
3768 * Uncommitted directory entries must be restored.
3769 */
3770 for (chgs = 0, i = 0; i < DAHASHSZ; i++) {
3771 for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap;
3772 dap = nextdap) {
3773 nextdap = LIST_NEXT(dap, da_pdlist);
3774 if (dap->da_state & ATTACHED) {
3775 panic("handle_written_filepage: attached");
3776 }
3777 ep = (struct direct *)
3778 ((char *)bp->b_data + dap->da_offset);
3779 ep->d_ino = dap->da_newinum;
3780 dap->da_state &= ~UNDONE;
3781 dap->da_state |= ATTACHED;
3782 chgs = 1;
3783 /*
3784 * If the inode referenced by the directory has
3785 * been written out, then the dependency can be
3786 * moved to the pending list.
3787 */
3788 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
3789 LIST_REMOVE(dap, da_pdlist);
3790 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap,
3791 da_pdlist);
3792 }
3793 }
3794 }
3795 /*
3796 * If there were any rollbacks in the directory, then it must be
3797 * marked dirty so that its will eventually get written back in
3798 * its correct form.
3799 */
3800 if (chgs) {
3801 if ((bp->b_flags & B_DELWRI) == 0)
3802 stat_dir_entry++;
3803 bdirty(bp);
3804 }
3805 /*
3806 * If no dependencies remain, the pagedep will be freed.
3807 * Otherwise it will remain to update the page before it
3808 * is written back to disk.
3809 */
3810 if (LIST_FIRST(&pagedep->pd_pendinghd) == NULL) {
3811 for (i = 0; i < DAHASHSZ; i++)
3812 if (LIST_FIRST(&pagedep->pd_diraddhd[i]) != NULL)
3813 break;
3814 if (i == DAHASHSZ) {
3815 LIST_REMOVE(pagedep, pd_hash);
3816 WORKITEM_FREE(pagedep, D_PAGEDEP);
3817 return (0);
3818 }
3819 }
3820 return (1);
3821 }
3822
3823 /*
3824 * Writing back in-core inode structures.
3825 *
3826 * The filesystem only accesses an inode's contents when it occupies an
3827 * "in-core" inode structure. These "in-core" structures are separate from
3828 * the page frames used to cache inode blocks. Only the latter are
3829 * transferred to/from the disk. So, when the updated contents of the
3830 * "in-core" inode structure are copied to the corresponding in-memory inode
3831 * block, the dependencies are also transferred. The following procedure is
3832 * called when copying a dirty "in-core" inode to a cached inode block.
3833 */
3834
3835 /*
3836 * Called when an inode is loaded from disk. If the effective link count
3837 * differed from the actual link count when it was last flushed, then we
3838 * need to ensure that the correct effective link count is put back.
3839 *
3840 * Parameters:
3841 * ip: the "in_core" copy of the inode
3842 */
3843 void
softdep_load_inodeblock(struct inode * ip)3844 softdep_load_inodeblock(struct inode *ip)
3845 {
3846 struct inodedep *inodedep;
3847
3848 /*
3849 * Check for alternate nlink count.
3850 */
3851 ip->i_effnlink = ip->i_nlink;
3852 ACQUIRE_LOCK(&lk);
3853 if (inodedep_lookup(ip->i_fs, ip->i_number, 0, &inodedep) == 0) {
3854 FREE_LOCK(&lk);
3855 return;
3856 }
3857 ip->i_effnlink -= inodedep->id_nlinkdelta;
3858 FREE_LOCK(&lk);
3859 }
3860
3861 /*
3862 * This routine is called just before the "in-core" inode
3863 * information is to be copied to the in-memory inode block.
3864 * Recall that an inode block contains several inodes. If
3865 * the force flag is set, then the dependencies will be
3866 * cleared so that the update can always be made. Note that
3867 * the buffer is locked when this routine is called, so we
3868 * will never be in the middle of writing the inode block
3869 * to disk.
3870 *
3871 * Parameters:
3872 * ip: the "in_core" copy of the inode
3873 * bp: the buffer containing the inode block
3874 * waitfor: nonzero => update must be allowed
3875 */
3876 void
softdep_update_inodeblock(struct inode * ip,struct buf * bp,int waitfor)3877 softdep_update_inodeblock(struct inode *ip, struct buf *bp,
3878 int waitfor)
3879 {
3880 struct inodedep *inodedep;
3881 struct worklist *wk;
3882 struct buf *ibp;
3883 int error, gotit;
3884
3885 /*
3886 * If the effective link count is not equal to the actual link
3887 * count, then we must track the difference in an inodedep while
3888 * the inode is (potentially) tossed out of the cache. Otherwise,
3889 * if there is no existing inodedep, then there are no dependencies
3890 * to track.
3891 */
3892 ACQUIRE_LOCK(&lk);
3893 if (inodedep_lookup(ip->i_fs, ip->i_number, 0, &inodedep) == 0) {
3894 FREE_LOCK(&lk);
3895 if (ip->i_effnlink != ip->i_nlink)
3896 panic("softdep_update_inodeblock: bad link count");
3897 return;
3898 }
3899 if (inodedep->id_nlinkdelta != ip->i_nlink - ip->i_effnlink) {
3900 panic("softdep_update_inodeblock: bad delta");
3901 }
3902 /*
3903 * Changes have been initiated. Anything depending on these
3904 * changes cannot occur until this inode has been written.
3905 */
3906 inodedep->id_state &= ~COMPLETE;
3907 if ((inodedep->id_state & ONWORKLIST) == 0)
3908 WORKLIST_INSERT_BP(bp, &inodedep->id_list);
3909 /*
3910 * Any new dependencies associated with the incore inode must
3911 * now be moved to the list associated with the buffer holding
3912 * the in-memory copy of the inode. Once merged process any
3913 * allocdirects that are completed by the merger.
3914 */
3915 merge_inode_lists(inodedep);
3916 if (TAILQ_FIRST(&inodedep->id_inoupdt) != NULL)
3917 handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt));
3918 /*
3919 * Now that the inode has been pushed into the buffer, the
3920 * operations dependent on the inode being written to disk
3921 * can be moved to the id_bufwait so that they will be
3922 * processed when the buffer I/O completes.
3923 */
3924 while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) {
3925 WORKLIST_REMOVE(wk);
3926 WORKLIST_INSERT(&inodedep->id_bufwait, wk);
3927 }
3928 /*
3929 * Newly allocated inodes cannot be written until the bitmap
3930 * that allocates them have been written (indicated by
3931 * DEPCOMPLETE being set in id_state). If we are doing a
3932 * forced sync (e.g., an fsync on a file), we force the bitmap
3933 * to be written so that the update can be done.
3934 */
3935 if (waitfor == 0) {
3936 FREE_LOCK(&lk);
3937 return;
3938 }
3939 retry:
3940 if ((inodedep->id_state & DEPCOMPLETE) != 0) {
3941 FREE_LOCK(&lk);
3942 return;
3943 }
3944 gotit = getdirtybuf(&inodedep->id_buf, MNT_WAIT);
3945 if (gotit == 0) {
3946 if (inodedep_lookup(ip->i_fs, ip->i_number, 0, &inodedep) != 0)
3947 goto retry;
3948 FREE_LOCK(&lk);
3949 return;
3950 }
3951 ibp = inodedep->id_buf;
3952 FREE_LOCK(&lk);
3953 if ((error = bwrite(ibp)) != 0)
3954 softdep_error("softdep_update_inodeblock: bwrite", error);
3955 }
3956
3957 /*
3958 * Merge the new inode dependency list (id_newinoupdt) into the old
3959 * inode dependency list (id_inoupdt). This routine must be called
3960 * with splbio interrupts blocked.
3961 */
3962 static void
merge_inode_lists(struct inodedep * inodedep)3963 merge_inode_lists(struct inodedep *inodedep)
3964 {
3965 struct allocdirect *listadp, *newadp;
3966
3967 newadp = TAILQ_FIRST(&inodedep->id_newinoupdt);
3968 for (listadp = TAILQ_FIRST(&inodedep->id_inoupdt); listadp && newadp;) {
3969 if (listadp->ad_lbn < newadp->ad_lbn) {
3970 listadp = TAILQ_NEXT(listadp, ad_next);
3971 continue;
3972 }
3973 TAILQ_REMOVE(&inodedep->id_newinoupdt, newadp, ad_next);
3974 TAILQ_INSERT_BEFORE(listadp, newadp, ad_next);
3975 if (listadp->ad_lbn == newadp->ad_lbn) {
3976 allocdirect_merge(&inodedep->id_inoupdt, newadp,
3977 listadp);
3978 listadp = newadp;
3979 }
3980 newadp = TAILQ_FIRST(&inodedep->id_newinoupdt);
3981 }
3982 while ((newadp = TAILQ_FIRST(&inodedep->id_newinoupdt)) != NULL) {
3983 TAILQ_REMOVE(&inodedep->id_newinoupdt, newadp, ad_next);
3984 TAILQ_INSERT_TAIL(&inodedep->id_inoupdt, newadp, ad_next);
3985 }
3986 }
3987
3988 /*
3989 * If we are doing an fsync, then we must ensure that any directory
3990 * entries for the inode have been written after the inode gets to disk.
3991 *
3992 * bioops callback - hold io_token
3993 *
3994 * Parameters:
3995 * vp: the "in_core" copy of the inode
3996 */
3997 static int
softdep_fsync(struct vnode * vp)3998 softdep_fsync(struct vnode *vp)
3999 {
4000 struct inodedep *inodedep;
4001 struct pagedep *pagedep;
4002 struct worklist *wk;
4003 struct diradd *dap;
4004 struct mount *mnt;
4005 struct vnode *pvp;
4006 struct inode *ip;
4007 struct buf *bp;
4008 struct fs *fs;
4009 int error, flushparent;
4010 ino_t parentino;
4011 ufs_lbn_t lbn;
4012
4013 /*
4014 * Move check from original kernel code, possibly not needed any
4015 * more with the per-mount bioops.
4016 */
4017 if ((vp->v_mount->mnt_flag & MNT_SOFTDEP) == 0)
4018 return (0);
4019
4020 ip = VTOI(vp);
4021 fs = ip->i_fs;
4022 ACQUIRE_LOCK(&lk);
4023 if (inodedep_lookup(fs, ip->i_number, 0, &inodedep) == 0) {
4024 FREE_LOCK(&lk);
4025 return (0);
4026 }
4027 if (LIST_FIRST(&inodedep->id_inowait) != NULL ||
4028 LIST_FIRST(&inodedep->id_bufwait) != NULL ||
4029 TAILQ_FIRST(&inodedep->id_inoupdt) != NULL ||
4030 TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL) {
4031 panic("softdep_fsync: pending ops");
4032 }
4033 for (error = 0, flushparent = 0; ; ) {
4034 if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL)
4035 break;
4036 if (wk->wk_type != D_DIRADD) {
4037 panic("softdep_fsync: Unexpected type %s",
4038 TYPENAME(wk->wk_type));
4039 }
4040 dap = WK_DIRADD(wk);
4041 /*
4042 * Flush our parent if this directory entry
4043 * has a MKDIR_PARENT dependency.
4044 */
4045 if (dap->da_state & DIRCHG)
4046 pagedep = dap->da_previous->dm_pagedep;
4047 else
4048 pagedep = dap->da_pagedep;
4049 mnt = pagedep->pd_mnt;
4050 parentino = pagedep->pd_ino;
4051 lbn = pagedep->pd_lbn;
4052 if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE) {
4053 panic("softdep_fsync: dirty");
4054 }
4055 flushparent = dap->da_state & MKDIR_PARENT;
4056 /*
4057 * If we are being fsync'ed as part of vgone'ing this vnode,
4058 * then we will not be able to release and recover the
4059 * vnode below, so we just have to give up on writing its
4060 * directory entry out. It will eventually be written, just
4061 * not now, but then the user was not asking to have it
4062 * written, so we are not breaking any promises.
4063 */
4064 if (vp->v_flag & VRECLAIMED)
4065 break;
4066 /*
4067 * We prevent deadlock by always fetching inodes from the
4068 * root, moving down the directory tree. Thus, when fetching
4069 * our parent directory, we must unlock ourselves before
4070 * requesting the lock on our parent. See the comment in
4071 * ufs_lookup for details on possible races.
4072 */
4073 FREE_LOCK(&lk);
4074 vn_unlock(vp);
4075 error = VFS_VGET(mnt, NULL, parentino, &pvp);
4076 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
4077 if (error != 0) {
4078 return (error);
4079 }
4080 if (flushparent) {
4081 if ((error = ffs_update(pvp, 1)) != 0) {
4082 vput(pvp);
4083 return (error);
4084 }
4085 }
4086 /*
4087 * Flush directory page containing the inode's name.
4088 */
4089 error = bread(pvp, lblktodoff(fs, lbn), blksize(fs, VTOI(pvp), lbn), &bp);
4090 if (error == 0)
4091 error = bwrite(bp);
4092 vput(pvp);
4093 if (error != 0) {
4094 return (error);
4095 }
4096 ACQUIRE_LOCK(&lk);
4097 if (inodedep_lookup(fs, ip->i_number, 0, &inodedep) == 0)
4098 break;
4099 }
4100 FREE_LOCK(&lk);
4101 return (0);
4102 }
4103
4104 /*
4105 * Flush all the dirty bitmaps associated with the block device
4106 * before flushing the rest of the dirty blocks so as to reduce
4107 * the number of dependencies that will have to be rolled back.
4108 */
4109 static int softdep_fsync_mountdev_bp(struct buf *bp, void *data);
4110
4111 void
softdep_fsync_mountdev(struct vnode * vp)4112 softdep_fsync_mountdev(struct vnode *vp)
4113 {
4114 if (!vn_isdisk(vp, NULL))
4115 panic("softdep_fsync_mountdev: vnode not a disk");
4116 ACQUIRE_LOCK(&lk);
4117 lwkt_gettoken(&vp->v_token);
4118 RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
4119 softdep_fsync_mountdev_bp, vp);
4120 lwkt_reltoken(&vp->v_token);
4121 drain_output(vp, 1);
4122 FREE_LOCK(&lk);
4123 }
4124
4125 static int
softdep_fsync_mountdev_bp(struct buf * bp,void * data)4126 softdep_fsync_mountdev_bp(struct buf *bp, void *data)
4127 {
4128 struct worklist *wk;
4129 struct vnode *vp = data;
4130
4131 /*
4132 * If it is already scheduled, skip to the next buffer.
4133 */
4134 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT))
4135 return(0);
4136 if (bp->b_vp != vp || (bp->b_flags & B_DELWRI) == 0) {
4137 BUF_UNLOCK(bp);
4138 kprintf("softdep_fsync_mountdev_bp: warning, buffer %p ripped out from under vnode %p\n", bp, vp);
4139 return(0);
4140 }
4141 /*
4142 * We are only interested in bitmaps with outstanding
4143 * dependencies.
4144 */
4145 if ((wk = LIST_FIRST(&bp->b_dep)) == NULL ||
4146 wk->wk_type != D_BMSAFEMAP) {
4147 BUF_UNLOCK(bp);
4148 return(0);
4149 }
4150 bremfree(bp);
4151 FREE_LOCK(&lk);
4152 (void) bawrite(bp);
4153 ACQUIRE_LOCK(&lk);
4154 return(0);
4155 }
4156
4157 /*
4158 * This routine is called when we are trying to synchronously flush a
4159 * file. This routine must eliminate any filesystem metadata dependencies
4160 * so that the syncing routine can succeed by pushing the dirty blocks
4161 * associated with the file. If any I/O errors occur, they are returned.
4162 */
4163 struct softdep_sync_metadata_info {
4164 struct vnode *vp;
4165 int waitfor;
4166 };
4167
4168 static int softdep_sync_metadata_bp(struct buf *bp, void *data);
4169
4170 int
softdep_sync_metadata(struct vnode * vp,struct thread * td)4171 softdep_sync_metadata(struct vnode *vp, struct thread *td)
4172 {
4173 struct softdep_sync_metadata_info info;
4174 int error, waitfor;
4175
4176 /*
4177 * Check whether this vnode is involved in a filesystem
4178 * that is doing soft dependency processing.
4179 */
4180 if (!vn_isdisk(vp, NULL)) {
4181 if (!DOINGSOFTDEP(vp))
4182 return (0);
4183 } else
4184 if (vp->v_rdev->si_mountpoint == NULL ||
4185 (vp->v_rdev->si_mountpoint->mnt_flag & MNT_SOFTDEP) == 0)
4186 return (0);
4187 /*
4188 * Ensure that any direct block dependencies have been cleared.
4189 */
4190 ACQUIRE_LOCK(&lk);
4191 if ((error = flush_inodedep_deps(VTOI(vp)->i_fs, VTOI(vp)->i_number))) {
4192 FREE_LOCK(&lk);
4193 return (error);
4194 }
4195 /*
4196 * For most files, the only metadata dependencies are the
4197 * cylinder group maps that allocate their inode or blocks.
4198 * The block allocation dependencies can be found by traversing
4199 * the dependency lists for any buffers that remain on their
4200 * dirty buffer list. The inode allocation dependency will
4201 * be resolved when the inode is updated with MNT_WAIT.
4202 * This work is done in two passes. The first pass grabs most
4203 * of the buffers and begins asynchronously writing them. The
4204 * only way to wait for these asynchronous writes is to sleep
4205 * on the filesystem vnode which may stay busy for a long time
4206 * if the filesystem is active. So, instead, we make a second
4207 * pass over the dependencies blocking on each write. In the
4208 * usual case we will be blocking against a write that we
4209 * initiated, so when it is done the dependency will have been
4210 * resolved. Thus the second pass is expected to end quickly.
4211 */
4212 waitfor = MNT_NOWAIT;
4213 top:
4214 /*
4215 * We must wait for any I/O in progress to finish so that
4216 * all potential buffers on the dirty list will be visible.
4217 */
4218 drain_output(vp, 1);
4219
4220 info.vp = vp;
4221 info.waitfor = waitfor;
4222 lwkt_gettoken(&vp->v_token);
4223 error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
4224 softdep_sync_metadata_bp, &info);
4225 lwkt_reltoken(&vp->v_token);
4226 if (error < 0) {
4227 FREE_LOCK(&lk);
4228 return(-error); /* error code */
4229 }
4230
4231 /*
4232 * The brief unlock is to allow any pent up dependency
4233 * processing to be done. Then proceed with the second pass.
4234 */
4235 if (waitfor & MNT_NOWAIT) {
4236 waitfor = MNT_WAIT;
4237 FREE_LOCK(&lk);
4238 ACQUIRE_LOCK(&lk);
4239 goto top;
4240 }
4241
4242 /*
4243 * If we have managed to get rid of all the dirty buffers,
4244 * then we are done. For certain directories and block
4245 * devices, we may need to do further work.
4246 *
4247 * We must wait for any I/O in progress to finish so that
4248 * all potential buffers on the dirty list will be visible.
4249 */
4250 drain_output(vp, 1);
4251 if (RB_EMPTY(&vp->v_rbdirty_tree)) {
4252 FREE_LOCK(&lk);
4253 return (0);
4254 }
4255
4256 FREE_LOCK(&lk);
4257 /*
4258 * If we are trying to sync a block device, some of its buffers may
4259 * contain metadata that cannot be written until the contents of some
4260 * partially written files have been written to disk. The only easy
4261 * way to accomplish this is to sync the entire filesystem (luckily
4262 * this happens rarely).
4263 */
4264 if (vn_isdisk(vp, NULL) &&
4265 vp->v_rdev &&
4266 vp->v_rdev->si_mountpoint && !vn_islocked(vp) &&
4267 (error = VFS_SYNC(vp->v_rdev->si_mountpoint, MNT_WAIT)) != 0)
4268 return (error);
4269 return (0);
4270 }
4271
4272 static int
softdep_sync_metadata_bp(struct buf * bp,void * data)4273 softdep_sync_metadata_bp(struct buf *bp, void *data)
4274 {
4275 struct softdep_sync_metadata_info *info = data;
4276 struct pagedep *pagedep;
4277 struct allocdirect *adp;
4278 struct allocindir *aip;
4279 struct worklist *wk;
4280 struct buf *nbp;
4281 int error;
4282 int i;
4283
4284 if (getdirtybuf(&bp, MNT_WAIT) == 0) {
4285 kprintf("softdep_sync_metadata_bp(1): caught buf %p going away\n", bp);
4286 return (1);
4287 }
4288 if (bp->b_vp != info->vp || (bp->b_flags & B_DELWRI) == 0) {
4289 kprintf("softdep_sync_metadata_bp(2): caught buf %p going away vp %p\n", bp, info->vp);
4290 BUF_UNLOCK(bp);
4291 return(1);
4292 }
4293
4294 /*
4295 * As we hold the buffer locked, none of its dependencies
4296 * will disappear.
4297 */
4298 LIST_FOREACH(wk, &bp->b_dep, wk_list) {
4299 switch (wk->wk_type) {
4300
4301 case D_ALLOCDIRECT:
4302 adp = WK_ALLOCDIRECT(wk);
4303 if (adp->ad_state & DEPCOMPLETE)
4304 break;
4305 nbp = adp->ad_buf;
4306 if (getdirtybuf(&nbp, info->waitfor) == 0)
4307 break;
4308 FREE_LOCK(&lk);
4309 if (info->waitfor & MNT_NOWAIT) {
4310 bawrite(nbp);
4311 } else if ((error = bwrite(nbp)) != 0) {
4312 bawrite(bp);
4313 ACQUIRE_LOCK(&lk);
4314 return (-error);
4315 }
4316 ACQUIRE_LOCK(&lk);
4317 break;
4318
4319 case D_ALLOCINDIR:
4320 aip = WK_ALLOCINDIR(wk);
4321 if (aip->ai_state & DEPCOMPLETE)
4322 break;
4323 nbp = aip->ai_buf;
4324 if (getdirtybuf(&nbp, info->waitfor) == 0)
4325 break;
4326 FREE_LOCK(&lk);
4327 if (info->waitfor & MNT_NOWAIT) {
4328 bawrite(nbp);
4329 } else if ((error = bwrite(nbp)) != 0) {
4330 bawrite(bp);
4331 ACQUIRE_LOCK(&lk);
4332 return (-error);
4333 }
4334 ACQUIRE_LOCK(&lk);
4335 break;
4336
4337 case D_INDIRDEP:
4338 restart:
4339
4340 LIST_FOREACH(aip, &WK_INDIRDEP(wk)->ir_deplisthd, ai_next) {
4341 if (aip->ai_state & DEPCOMPLETE)
4342 continue;
4343 nbp = aip->ai_buf;
4344 if (getdirtybuf(&nbp, MNT_WAIT) == 0)
4345 goto restart;
4346 FREE_LOCK(&lk);
4347 if ((error = bwrite(nbp)) != 0) {
4348 bawrite(bp);
4349 ACQUIRE_LOCK(&lk);
4350 return (-error);
4351 }
4352 ACQUIRE_LOCK(&lk);
4353 goto restart;
4354 }
4355 break;
4356
4357 case D_INODEDEP:
4358 if ((error = flush_inodedep_deps(WK_INODEDEP(wk)->id_fs,
4359 WK_INODEDEP(wk)->id_ino)) != 0) {
4360 FREE_LOCK(&lk);
4361 bawrite(bp);
4362 ACQUIRE_LOCK(&lk);
4363 return (-error);
4364 }
4365 break;
4366
4367 case D_PAGEDEP:
4368 /*
4369 * We are trying to sync a directory that may
4370 * have dependencies on both its own metadata
4371 * and/or dependencies on the inodes of any
4372 * recently allocated files. We walk its diradd
4373 * lists pushing out the associated inode.
4374 */
4375 pagedep = WK_PAGEDEP(wk);
4376 for (i = 0; i < DAHASHSZ; i++) {
4377 if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == NULL)
4378 continue;
4379 if ((error =
4380 flush_pagedep_deps(info->vp,
4381 pagedep->pd_mnt,
4382 &pagedep->pd_diraddhd[i]))) {
4383 FREE_LOCK(&lk);
4384 bawrite(bp);
4385 ACQUIRE_LOCK(&lk);
4386 return (-error);
4387 }
4388 }
4389 break;
4390
4391 case D_MKDIR:
4392 /*
4393 * This case should never happen if the vnode has
4394 * been properly sync'ed. However, if this function
4395 * is used at a place where the vnode has not yet
4396 * been sync'ed, this dependency can show up. So,
4397 * rather than panic, just flush it.
4398 */
4399 nbp = WK_MKDIR(wk)->md_buf;
4400 if (getdirtybuf(&nbp, info->waitfor) == 0)
4401 break;
4402 FREE_LOCK(&lk);
4403 if (info->waitfor & MNT_NOWAIT) {
4404 bawrite(nbp);
4405 } else if ((error = bwrite(nbp)) != 0) {
4406 bawrite(bp);
4407 ACQUIRE_LOCK(&lk);
4408 return (-error);
4409 }
4410 ACQUIRE_LOCK(&lk);
4411 break;
4412
4413 case D_BMSAFEMAP:
4414 /*
4415 * This case should never happen if the vnode has
4416 * been properly sync'ed. However, if this function
4417 * is used at a place where the vnode has not yet
4418 * been sync'ed, this dependency can show up. So,
4419 * rather than panic, just flush it.
4420 *
4421 * nbp can wind up == bp if a device node for the
4422 * same filesystem is being fsynced at the same time,
4423 * leading to a panic if we don't catch the case.
4424 */
4425 nbp = WK_BMSAFEMAP(wk)->sm_buf;
4426 if (nbp == bp)
4427 break;
4428 if (getdirtybuf(&nbp, info->waitfor) == 0)
4429 break;
4430 FREE_LOCK(&lk);
4431 if (info->waitfor & MNT_NOWAIT) {
4432 bawrite(nbp);
4433 } else if ((error = bwrite(nbp)) != 0) {
4434 bawrite(bp);
4435 ACQUIRE_LOCK(&lk);
4436 return (-error);
4437 }
4438 ACQUIRE_LOCK(&lk);
4439 break;
4440
4441 default:
4442 panic("softdep_sync_metadata: Unknown type %s",
4443 TYPENAME(wk->wk_type));
4444 /* NOTREACHED */
4445 }
4446 }
4447 FREE_LOCK(&lk);
4448 bawrite(bp);
4449 ACQUIRE_LOCK(&lk);
4450 return(0);
4451 }
4452
4453 /*
4454 * Flush the dependencies associated with an inodedep.
4455 * Called with splbio blocked.
4456 */
4457 static int
flush_inodedep_deps(struct fs * fs,ino_t ino)4458 flush_inodedep_deps(struct fs *fs, ino_t ino)
4459 {
4460 struct inodedep *inodedep;
4461 struct allocdirect *adp;
4462 int error, waitfor;
4463 struct buf *bp;
4464
4465 /*
4466 * This work is done in two passes. The first pass grabs most
4467 * of the buffers and begins asynchronously writing them. The
4468 * only way to wait for these asynchronous writes is to sleep
4469 * on the filesystem vnode which may stay busy for a long time
4470 * if the filesystem is active. So, instead, we make a second
4471 * pass over the dependencies blocking on each write. In the
4472 * usual case we will be blocking against a write that we
4473 * initiated, so when it is done the dependency will have been
4474 * resolved. Thus the second pass is expected to end quickly.
4475 * We give a brief window at the top of the loop to allow
4476 * any pending I/O to complete.
4477 */
4478 for (waitfor = MNT_NOWAIT; ; ) {
4479 FREE_LOCK(&lk);
4480 ACQUIRE_LOCK(&lk);
4481 if (inodedep_lookup(fs, ino, 0, &inodedep) == 0)
4482 return (0);
4483 TAILQ_FOREACH(adp, &inodedep->id_inoupdt, ad_next) {
4484 if (adp->ad_state & DEPCOMPLETE)
4485 continue;
4486 bp = adp->ad_buf;
4487 if (getdirtybuf(&bp, waitfor) == 0) {
4488 if (waitfor & MNT_NOWAIT)
4489 continue;
4490 break;
4491 }
4492 FREE_LOCK(&lk);
4493 if (waitfor & MNT_NOWAIT) {
4494 bawrite(bp);
4495 } else if ((error = bwrite(bp)) != 0) {
4496 ACQUIRE_LOCK(&lk);
4497 return (error);
4498 }
4499 ACQUIRE_LOCK(&lk);
4500 break;
4501 }
4502 if (adp != NULL)
4503 continue;
4504 TAILQ_FOREACH(adp, &inodedep->id_newinoupdt, ad_next) {
4505 if (adp->ad_state & DEPCOMPLETE)
4506 continue;
4507 bp = adp->ad_buf;
4508 if (getdirtybuf(&bp, waitfor) == 0) {
4509 if (waitfor & MNT_NOWAIT)
4510 continue;
4511 break;
4512 }
4513 FREE_LOCK(&lk);
4514 if (waitfor & MNT_NOWAIT) {
4515 bawrite(bp);
4516 } else if ((error = bwrite(bp)) != 0) {
4517 ACQUIRE_LOCK(&lk);
4518 return (error);
4519 }
4520 ACQUIRE_LOCK(&lk);
4521 break;
4522 }
4523 if (adp != NULL)
4524 continue;
4525 /*
4526 * If pass2, we are done, otherwise do pass 2.
4527 */
4528 if (waitfor == MNT_WAIT)
4529 break;
4530 waitfor = MNT_WAIT;
4531 }
4532 /*
4533 * Try freeing inodedep in case all dependencies have been removed.
4534 */
4535 if (inodedep_lookup(fs, ino, 0, &inodedep) != 0)
4536 (void) free_inodedep(inodedep);
4537 return (0);
4538 }
4539
4540 /*
4541 * Eliminate a pagedep dependency by flushing out all its diradd dependencies.
4542 * Called with splbio blocked.
4543 */
4544 static int
flush_pagedep_deps(struct vnode * pvp,struct mount * mp,struct diraddhd * diraddhdp)4545 flush_pagedep_deps(struct vnode *pvp, struct mount *mp,
4546 struct diraddhd *diraddhdp)
4547 {
4548 struct inodedep *inodedep;
4549 struct ufsmount *ump;
4550 struct diradd *dap;
4551 struct worklist *wk;
4552 struct vnode *vp;
4553 int gotit, error = 0;
4554 struct buf *bp;
4555 ino_t inum;
4556
4557 ump = VFSTOUFS(mp);
4558 while ((dap = LIST_FIRST(diraddhdp)) != NULL) {
4559 /*
4560 * Flush ourselves if this directory entry
4561 * has a MKDIR_PARENT dependency.
4562 */
4563 if (dap->da_state & MKDIR_PARENT) {
4564 FREE_LOCK(&lk);
4565 if ((error = ffs_update(pvp, 1)) != 0)
4566 break;
4567 ACQUIRE_LOCK(&lk);
4568 /*
4569 * If that cleared dependencies, go on to next.
4570 */
4571 if (dap != LIST_FIRST(diraddhdp))
4572 continue;
4573 if (dap->da_state & MKDIR_PARENT) {
4574 panic("flush_pagedep_deps: MKDIR_PARENT");
4575 }
4576 }
4577 /*
4578 * A newly allocated directory must have its "." and
4579 * ".." entries written out before its name can be
4580 * committed in its parent. We do not want or need
4581 * the full semantics of a synchronous VOP_FSYNC as
4582 * that may end up here again, once for each directory
4583 * level in the filesystem. Instead, we push the blocks
4584 * and wait for them to clear. We have to fsync twice
4585 * because the first call may choose to defer blocks
4586 * that still have dependencies, but deferral will
4587 * happen at most once.
4588 */
4589 inum = dap->da_newinum;
4590 if (dap->da_state & MKDIR_BODY) {
4591 FREE_LOCK(&lk);
4592 if ((error = VFS_VGET(mp, NULL, inum, &vp)) != 0)
4593 break;
4594 if ((error=VOP_FSYNC(vp, MNT_NOWAIT, 0)) ||
4595 (error=VOP_FSYNC(vp, MNT_NOWAIT, 0))) {
4596 vput(vp);
4597 break;
4598 }
4599 drain_output(vp, 0);
4600 /*
4601 * If first block is still dirty with a D_MKDIR
4602 * dependency then it needs to be written now.
4603 */
4604 error = 0;
4605 ACQUIRE_LOCK(&lk);
4606 bp = findblk(vp, 0, FINDBLK_TEST);
4607 if (bp == NULL) {
4608 FREE_LOCK(&lk);
4609 goto mkdir_body_continue;
4610 }
4611 LIST_FOREACH(wk, &bp->b_dep, wk_list)
4612 if (wk->wk_type == D_MKDIR) {
4613 gotit = getdirtybuf(&bp, MNT_WAIT);
4614 FREE_LOCK(&lk);
4615 if (gotit && (error = bwrite(bp)) != 0)
4616 goto mkdir_body_continue;
4617 break;
4618 }
4619 if (wk == NULL)
4620 FREE_LOCK(&lk);
4621 mkdir_body_continue:
4622 vput(vp);
4623 /* Flushing of first block failed. */
4624 if (error)
4625 break;
4626 ACQUIRE_LOCK(&lk);
4627 /*
4628 * If that cleared dependencies, go on to next.
4629 */
4630 if (dap != LIST_FIRST(diraddhdp))
4631 continue;
4632 if (dap->da_state & MKDIR_BODY) {
4633 panic("flush_pagedep_deps: %p MKDIR_BODY", dap);
4634 }
4635 }
4636 /*
4637 * Flush the inode on which the directory entry depends.
4638 * Having accounted for MKDIR_PARENT and MKDIR_BODY above,
4639 * the only remaining dependency is that the updated inode
4640 * count must get pushed to disk. The inode has already
4641 * been pushed into its inode buffer (via VOP_UPDATE) at
4642 * the time of the reference count change. So we need only
4643 * locate that buffer, ensure that there will be no rollback
4644 * caused by a bitmap dependency, then write the inode buffer.
4645 */
4646 retry_lookup:
4647 if (inodedep_lookup(ump->um_fs, inum, 0, &inodedep) == 0) {
4648 panic("flush_pagedep_deps: lost inode");
4649 }
4650 /*
4651 * If the inode still has bitmap dependencies,
4652 * push them to disk.
4653 */
4654 if ((inodedep->id_state & DEPCOMPLETE) == 0) {
4655 gotit = getdirtybuf(&inodedep->id_buf, MNT_WAIT);
4656 if (gotit == 0)
4657 goto retry_lookup;
4658 FREE_LOCK(&lk);
4659 if (gotit && (error = bwrite(inodedep->id_buf)) != 0)
4660 break;
4661 ACQUIRE_LOCK(&lk);
4662 if (dap != LIST_FIRST(diraddhdp))
4663 continue;
4664 }
4665 /*
4666 * If the inode is still sitting in a buffer waiting
4667 * to be written, push it to disk.
4668 */
4669 FREE_LOCK(&lk);
4670 if ((error = bread(ump->um_devvp,
4671 fsbtodoff(ump->um_fs, ino_to_fsba(ump->um_fs, inum)),
4672 (int)ump->um_fs->fs_bsize, &bp)) != 0)
4673 break;
4674 if ((error = bwrite(bp)) != 0)
4675 break;
4676 ACQUIRE_LOCK(&lk);
4677 /*
4678 * If we have failed to get rid of all the dependencies
4679 * then something is seriously wrong.
4680 */
4681 if (dap == LIST_FIRST(diraddhdp)) {
4682 panic("flush_pagedep_deps: flush failed");
4683 }
4684 }
4685 if (error)
4686 ACQUIRE_LOCK(&lk);
4687 return (error);
4688 }
4689
4690 /*
4691 * A large burst of file addition or deletion activity can drive the
4692 * memory load excessively high. First attempt to slow things down
4693 * using the techniques below. If that fails, this routine requests
4694 * the offending operations to fall back to running synchronously
4695 * until the memory load returns to a reasonable level.
4696 */
4697 int
softdep_slowdown(struct vnode * vp)4698 softdep_slowdown(struct vnode *vp)
4699 {
4700 int max_softdeps_hard;
4701
4702 max_softdeps_hard = max_softdeps * 11 / 10;
4703 if (num_dirrem < max_softdeps_hard / 2 &&
4704 num_inodedep < max_softdeps_hard)
4705 return (0);
4706 stat_sync_limit_hit += 1;
4707 return (1);
4708 }
4709
4710 /*
4711 * If memory utilization has gotten too high, deliberately slow things
4712 * down and speed up the I/O processing.
4713 */
4714 static int
request_cleanup(int resource)4715 request_cleanup(int resource)
4716 {
4717 struct thread *td = curthread; /* XXX */
4718
4719 KKASSERT(lock_held(&lk));
4720
4721 /*
4722 * We never hold up the filesystem syncer process.
4723 */
4724 if (td == filesys_syncer)
4725 return (0);
4726 /*
4727 * First check to see if the work list has gotten backlogged.
4728 * If it has, co-opt this process to help clean up two entries.
4729 * Because this process may hold inodes locked, we cannot
4730 * handle any remove requests that might block on a locked
4731 * inode as that could lead to deadlock.
4732 */
4733 if (num_on_worklist > max_softdeps / 10) {
4734 process_worklist_item(NULL, LK_NOWAIT);
4735 process_worklist_item(NULL, LK_NOWAIT);
4736 stat_worklist_push += 2;
4737 return(1);
4738 }
4739
4740 /*
4741 * If we are resource constrained on inode dependencies, try
4742 * flushing some dirty inodes. Otherwise, we are constrained
4743 * by file deletions, so try accelerating flushes of directories
4744 * with removal dependencies. We would like to do the cleanup
4745 * here, but we probably hold an inode locked at this point and
4746 * that might deadlock against one that we try to clean. So,
4747 * the best that we can do is request the syncer daemon to do
4748 * the cleanup for us.
4749 */
4750 switch (resource) {
4751
4752 case FLUSH_INODES:
4753 stat_ino_limit_push += 1;
4754 req_clear_inodedeps += 1;
4755 stat_countp = &stat_ino_limit_hit;
4756 break;
4757
4758 case FLUSH_REMOVE:
4759 stat_blk_limit_push += 1;
4760 req_clear_remove += 1;
4761 stat_countp = &stat_blk_limit_hit;
4762 break;
4763
4764 default:
4765 panic("request_cleanup: unknown type");
4766 }
4767 /*
4768 * Hopefully the syncer daemon will catch up and awaken us.
4769 * We wait at most tickdelay before proceeding in any case.
4770 */
4771 lksleep(&proc_waiting, &lk, 0, "softupdate",
4772 tickdelay > 2 ? tickdelay : 2);
4773 return (1);
4774 }
4775
4776 /*
4777 * Flush out a directory with at least one removal dependency in an effort to
4778 * reduce the number of dirrem, freefile, and freeblks dependency structures.
4779 */
4780 static void
clear_remove(struct thread * td)4781 clear_remove(struct thread *td)
4782 {
4783 struct pagedep_hashhead *pagedephd;
4784 struct pagedep *pagedep;
4785 static int next = 0;
4786 struct mount *mp;
4787 struct vnode *vp;
4788 int error, cnt;
4789 ino_t ino;
4790
4791 ACQUIRE_LOCK(&lk);
4792 for (cnt = 0; cnt < pagedep_hash; cnt++) {
4793 pagedephd = &pagedep_hashtbl[next++];
4794 if (next >= pagedep_hash)
4795 next = 0;
4796 LIST_FOREACH(pagedep, pagedephd, pd_hash) {
4797 if (LIST_FIRST(&pagedep->pd_dirremhd) == NULL)
4798 continue;
4799 mp = pagedep->pd_mnt;
4800 ino = pagedep->pd_ino;
4801 FREE_LOCK(&lk);
4802 if ((error = VFS_VGET(mp, NULL, ino, &vp)) != 0) {
4803 softdep_error("clear_remove: vget", error);
4804 return;
4805 }
4806 if ((error = VOP_FSYNC(vp, MNT_NOWAIT, 0)))
4807 softdep_error("clear_remove: fsync", error);
4808 drain_output(vp, 0);
4809 vput(vp);
4810 return;
4811 }
4812 }
4813 FREE_LOCK(&lk);
4814 }
4815
4816 /*
4817 * Clear out a block of dirty inodes in an effort to reduce
4818 * the number of inodedep dependency structures.
4819 */
4820 struct clear_inodedeps_info {
4821 struct fs *fs;
4822 struct mount *mp;
4823 };
4824
4825 static int
clear_inodedeps_mountlist_callback(struct mount * mp,void * data)4826 clear_inodedeps_mountlist_callback(struct mount *mp, void *data)
4827 {
4828 struct clear_inodedeps_info *info = data;
4829
4830 if ((mp->mnt_flag & MNT_SOFTDEP) && info->fs == VFSTOUFS(mp)->um_fs) {
4831 info->mp = mp;
4832 return(-1);
4833 }
4834 return(0);
4835 }
4836
4837 static void
clear_inodedeps(struct thread * td)4838 clear_inodedeps(struct thread *td)
4839 {
4840 struct clear_inodedeps_info info;
4841 struct inodedep_hashhead *inodedephd;
4842 struct inodedep *inodedep;
4843 static int next = 0;
4844 struct vnode *vp;
4845 struct fs *fs;
4846 int error, cnt;
4847 ino_t firstino, lastino, ino;
4848
4849 ACQUIRE_LOCK(&lk);
4850 /*
4851 * Pick a random inode dependency to be cleared.
4852 * We will then gather up all the inodes in its block
4853 * that have dependencies and flush them out.
4854 */
4855 inodedep = NULL; /* avoid gcc warnings */
4856 for (cnt = 0; cnt < inodedep_hash; cnt++) {
4857 inodedephd = &inodedep_hashtbl[next++];
4858 if (next >= inodedep_hash)
4859 next = 0;
4860 if ((inodedep = LIST_FIRST(inodedephd)) != NULL)
4861 break;
4862 }
4863 if (inodedep == NULL) {
4864 FREE_LOCK(&lk);
4865 return;
4866 }
4867 /*
4868 * Ugly code to find mount point given pointer to superblock.
4869 */
4870 fs = inodedep->id_fs;
4871 info.mp = NULL;
4872 info.fs = fs;
4873 mountlist_scan(clear_inodedeps_mountlist_callback,
4874 &info, MNTSCAN_FORWARD|MNTSCAN_NOBUSY);
4875 /*
4876 * Find the last inode in the block with dependencies.
4877 */
4878 firstino = rounddown2(inodedep->id_ino, INOPB(fs));
4879 for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--)
4880 if (inodedep_lookup(fs, lastino, 0, &inodedep) != 0)
4881 break;
4882 /*
4883 * Asynchronously push all but the last inode with dependencies.
4884 * Synchronously push the last inode with dependencies to ensure
4885 * that the inode block gets written to free up the inodedeps.
4886 */
4887 for (ino = firstino; ino <= lastino; ino++) {
4888 if (inodedep_lookup(fs, ino, 0, &inodedep) == 0)
4889 continue;
4890 FREE_LOCK(&lk);
4891 if ((error = VFS_VGET(info.mp, NULL, ino, &vp)) != 0) {
4892 softdep_error("clear_inodedeps: vget", error);
4893 return;
4894 }
4895 if (ino == lastino) {
4896 if ((error = VOP_FSYNC(vp, MNT_WAIT, 0)))
4897 softdep_error("clear_inodedeps: fsync1", error);
4898 } else {
4899 if ((error = VOP_FSYNC(vp, MNT_NOWAIT, 0)))
4900 softdep_error("clear_inodedeps: fsync2", error);
4901 drain_output(vp, 0);
4902 }
4903 vput(vp);
4904 ACQUIRE_LOCK(&lk);
4905 }
4906 FREE_LOCK(&lk);
4907 }
4908
4909 /*
4910 * Function to determine if the buffer has outstanding dependencies
4911 * that will cause a roll-back if the buffer is written. If wantcount
4912 * is set, return number of dependencies, otherwise just yes or no.
4913 *
4914 * bioops callback - hold io_token
4915 */
4916 static int
softdep_count_dependencies(struct buf * bp,int wantcount)4917 softdep_count_dependencies(struct buf *bp, int wantcount)
4918 {
4919 struct worklist *wk;
4920 struct inodedep *inodedep;
4921 struct indirdep *indirdep;
4922 struct allocindir *aip;
4923 struct pagedep *pagedep;
4924 struct diradd *dap;
4925 int i, retval;
4926
4927 retval = 0;
4928 ACQUIRE_LOCK(&lk);
4929
4930 LIST_FOREACH(wk, &bp->b_dep, wk_list) {
4931 switch (wk->wk_type) {
4932
4933 case D_INODEDEP:
4934 inodedep = WK_INODEDEP(wk);
4935 if ((inodedep->id_state & DEPCOMPLETE) == 0) {
4936 /* bitmap allocation dependency */
4937 retval += 1;
4938 if (!wantcount)
4939 goto out;
4940 }
4941 if (TAILQ_FIRST(&inodedep->id_inoupdt)) {
4942 /* direct block pointer dependency */
4943 retval += 1;
4944 if (!wantcount)
4945 goto out;
4946 }
4947 continue;
4948
4949 case D_INDIRDEP:
4950 indirdep = WK_INDIRDEP(wk);
4951
4952 LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) {
4953 /* indirect block pointer dependency */
4954 retval += 1;
4955 if (!wantcount)
4956 goto out;
4957 }
4958 continue;
4959
4960 case D_PAGEDEP:
4961 pagedep = WK_PAGEDEP(wk);
4962 for (i = 0; i < DAHASHSZ; i++) {
4963
4964 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
4965 /* directory entry dependency */
4966 retval += 1;
4967 if (!wantcount)
4968 goto out;
4969 }
4970 }
4971 continue;
4972
4973 case D_BMSAFEMAP:
4974 case D_ALLOCDIRECT:
4975 case D_ALLOCINDIR:
4976 case D_MKDIR:
4977 /* never a dependency on these blocks */
4978 continue;
4979
4980 default:
4981 panic("softdep_check_for_rollback: Unexpected type %s",
4982 TYPENAME(wk->wk_type));
4983 /* NOTREACHED */
4984 }
4985 }
4986 out:
4987 FREE_LOCK(&lk);
4988
4989 return retval;
4990 }
4991
4992 /*
4993 * Acquire exclusive access to a buffer. Requires softdep lock
4994 * to be held on entry. If waitfor is MNT_WAIT, may release/reacquire
4995 * softdep lock.
4996 *
4997 * Returns 1 if the buffer was locked, 0 if it was not locked or
4998 * if we had to block.
4999 *
5000 * NOTE! In order to return 1 we must acquire the buffer lock prior
5001 * to any release of &lk. Once we release &lk it's all over.
5002 * We may still have to block on the (type-stable) bp in that
5003 * case, but we must then unlock it and return 0.
5004 */
5005 static int
getdirtybuf(struct buf ** bpp,int waitfor)5006 getdirtybuf(struct buf **bpp, int waitfor)
5007 {
5008 struct buf *bp;
5009 int error;
5010
5011 /*
5012 * If the contents of *bpp is NULL the caller presumably lost a race.
5013 */
5014 bp = *bpp;
5015 if (bp == NULL)
5016 return (0);
5017
5018 /*
5019 * Try to obtain the buffer lock without deadlocking on &lk.
5020 */
5021 KKASSERT(lock_held(&lk));
5022 error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT);
5023 if (error == 0) {
5024 /*
5025 * If the buffer is no longer dirty the OS already wrote it
5026 * out, return failure.
5027 */
5028 if ((bp->b_flags & B_DELWRI) == 0) {
5029 BUF_UNLOCK(bp);
5030 return (0);
5031 }
5032
5033 /*
5034 * Finish nominal buffer locking sequence return success.
5035 *
5036 * Since we are not using a normal getblk(), and UFS
5037 * isn't KVABIO aware, we must make sure that the bp
5038 * is synchronized before returning it.
5039 */
5040 bremfree(bp);
5041 bkvasync_all(bp);
5042 return (1);
5043 }
5044
5045 /*
5046 * Failure case.
5047 *
5048 * If we are not being asked to wait, return 0 immediately.
5049 */
5050 if (waitfor != MNT_WAIT)
5051 return (0);
5052
5053 /*
5054 * Once we release the softdep lock we can never return success,
5055 * but we still have to block on the type-stable buf for the caller
5056 * to be able to retry without livelocking the system.
5057 *
5058 * The caller will normally retry in this case.
5059 */
5060 FREE_LOCK(&lk);
5061 error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL);
5062 ACQUIRE_LOCK(&lk);
5063 if (error == 0)
5064 BUF_UNLOCK(bp);
5065 return (0);
5066 }
5067
5068 /*
5069 * Wait for pending output on a vnode to complete.
5070 * Must be called with vnode locked.
5071 */
5072 static void
drain_output(struct vnode * vp,int islocked)5073 drain_output(struct vnode *vp, int islocked)
5074 {
5075
5076 if (!islocked)
5077 ACQUIRE_LOCK(&lk);
5078 while (bio_track_active(&vp->v_track_write)) {
5079 FREE_LOCK(&lk);
5080 bio_track_wait(&vp->v_track_write, 0, 0);
5081 ACQUIRE_LOCK(&lk);
5082 }
5083 if (!islocked)
5084 FREE_LOCK(&lk);
5085 }
5086
5087 /*
5088 * Called whenever a buffer that is being invalidated or reallocated
5089 * contains dependencies. This should only happen if an I/O error has
5090 * occurred. The routine is called with the buffer locked.
5091 *
5092 * bioops callback - hold io_token
5093 */
5094 static void
softdep_deallocate_dependencies(struct buf * bp)5095 softdep_deallocate_dependencies(struct buf *bp)
5096 {
5097 /* nothing to do, mp lock not needed */
5098 if ((bp->b_flags & B_ERROR) == 0)
5099 panic("softdep_deallocate_dependencies: dangling deps");
5100 softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntfromname, bp->b_error);
5101 panic("softdep_deallocate_dependencies: unrecovered I/O error");
5102 }
5103
5104 /*
5105 * Function to handle asynchronous write errors in the filesystem.
5106 */
5107 void
softdep_error(char * func,int error)5108 softdep_error(char *func, int error)
5109 {
5110 /* XXX should do something better! */
5111 kprintf("%s: got error %d while accessing filesystem\n", func, error);
5112 }
5113