xref: /openbsd/sys/arch/hppa/spmath/dbl_float.h (revision 36fd90dc)
1 /*	$OpenBSD: dbl_float.h,v 1.13 2021/03/11 11:16:57 jsg Exp $	*/
2 /*
3   (c) Copyright 1986 HEWLETT-PACKARD COMPANY
4   To anyone who acknowledges that this file is provided "AS IS"
5   without any express or implied warranty:
6       permission to use, copy, modify, and distribute this file
7   for any purpose is hereby granted without fee, provided that
8   the above copyright notice and this notice appears in all
9   copies, and that the name of Hewlett-Packard Company not be
10   used in advertising or publicity pertaining to distribution
11   of the software without specific, written prior permission.
12   Hewlett-Packard Company makes no representations about the
13   suitability of this software for any purpose.
14 */
15 /* @(#)dbl_float.h: Revision: 2.9.88.1 Date: 93/12/07 15:05:32 */
16 
17 /**************************************
18  * Declare double precision functions *
19  **************************************/
20 
21 /* 32-bit word grabbing functions */
22 #define Dbl_firstword(value) Dallp1(value)
23 #define Dbl_secondword(value) Dallp2(value)
24 #define Dbl_thirdword(value) dummy_location
25 #define Dbl_fourthword(value) dummy_location
26 
27 #define Dbl_sign(object) Dsign(object)
28 #define Dbl_exponent(object) Dexponent(object)
29 #define Dbl_signexponent(object) Dsignexponent(object)
30 #define Dbl_mantissap1(object) Dmantissap1(object)
31 #define Dbl_mantissap2(object) Dmantissap2(object)
32 #define Dbl_exponentmantissap1(object) Dexponentmantissap1(object)
33 #define Dbl_allp1(object) Dallp1(object)
34 #define Dbl_allp2(object) Dallp2(object)
35 
36 /* dbl_and_signs ands the sign bits of each argument and puts the result
37  * into the first argument. dbl_or_signs ors those same sign bits */
38 #define Dbl_and_signs( src1dst, src2)		\
39     Dallp1(src1dst) = (Dallp1(src2)|~(1<<31)) & Dallp1(src1dst)
40 #define Dbl_or_signs( src1dst, src2)		\
41     Dallp1(src1dst) = (Dallp1(src2)&(1<<31)) | Dallp1(src1dst)
42 
43 /* The hidden bit is always the low bit of the exponent */
44 #define Dbl_clear_exponent_set_hidden(srcdst) Deposit_dexponent(srcdst,1)
45 #define Dbl_clear_signexponent_set_hidden(srcdst) \
46     Deposit_dsignexponent(srcdst,1)
47 #define Dbl_clear_sign(srcdst) Dallp1(srcdst) &= ~(1<<31)
48 #define Dbl_clear_signexponent(srcdst) \
49     Dallp1(srcdst) &= Dmantissap1((unsigned)-1)
50 
51 /* Exponent field for doubles has already been cleared and may be
52  * included in the shift.  Here we need to generate two double width
53  * variable shifts.  The insignificant bits can be ignored.
54  *      MTSAR f(varamount)
55  *      VSHD	srcdst.high,srcdst.low => srcdst.low
56  *	VSHD	0,srcdst.high => srcdst.high
57  * This is very difficult to model with C expressions since the shift amount
58  * could exceed 32.  */
59 /* varamount must be less than 64 */
60 #define Dbl_rightshift(srcdstA, srcdstB, varamount)			\
61     {if((varamount) >= 32) {						\
62 	Dallp2(srcdstB) = Dallp1(srcdstA) >> (varamount-32);		\
63 	Dallp1(srcdstA)=0;						\
64     }									\
65     else if(varamount > 0) {						\
66 	Variable_shift_double(Dallp1(srcdstA), Dallp2(srcdstB),		\
67 	  (varamount), Dallp2(srcdstB));				\
68 	Dallp1(srcdstA) >>= varamount;					\
69     } }
70 /* varamount must be less than 64 */
71 #define Dbl_rightshift_exponentmantissa(srcdstA, srcdstB, varamount)	\
72     {if((varamount) >= 32) {						\
73 	Dallp2(srcdstB) = Dexponentmantissap1(srcdstA) >> ((varamount)-32); \
74 	Dallp1(srcdstA) &= (1<<31);  /* clear exponentmantissa field */ \
75     }									\
76     else if(varamount > 0) {						\
77 	Variable_shift_double(Dexponentmantissap1(srcdstA), Dallp2(srcdstB), \
78 	(varamount), Dallp2(srcdstB));					\
79 	Deposit_dexponentmantissap1(srcdstA,				\
80 	    (Dexponentmantissap1(srcdstA)>>(varamount)));			\
81     } }
82 /* varamount must be less than 64 */
83 #define Dbl_leftshift(srcdstA, srcdstB, varamount)			\
84     {if((varamount) >= 32) {						\
85 	Dallp1(srcdstA) = Dallp2(srcdstB) << (varamount-32);		\
86 	Dallp2(srcdstB)=0;						\
87     }									\
88     else {								\
89 	if ((varamount) > 0) {						\
90 	    Dallp1(srcdstA) = (Dallp1(srcdstA) << (varamount)) |	\
91 		(Dallp2(srcdstB) >> (32-(varamount)));			\
92 	    Dallp2(srcdstB) <<= varamount;				\
93 	}								\
94     } }
95 #define Dbl_leftshiftby1_withextent(lefta,leftb,right,resulta,resultb)	\
96     Shiftdouble(Dallp1(lefta), Dallp2(leftb), 31, Dallp1(resulta));	\
97     Shiftdouble(Dallp2(leftb), Extall(right), 31, Dallp2(resultb))
98 
99 #define Dbl_rightshiftby1_withextent(leftb,right,dst)		\
100     Extall(dst) = (Dallp2(leftb) << 31) | ((unsigned)Extall(right) >> 1) | \
101 		  Extlow(right)
102 
103 #define Dbl_arithrightshiftby1(srcdstA,srcdstB)			\
104     Shiftdouble(Dallp1(srcdstA),Dallp2(srcdstB),1,Dallp2(srcdstB));\
105     Dallp1(srcdstA) = (int)Dallp1(srcdstA) >> 1
106 
107 /* Sign extend the sign bit with an integer destination */
108 #define Dbl_signextendedsign(value)  Dsignedsign(value)
109 
110 #define Dbl_isone_hidden(dbl_value) (Is_dhidden(dbl_value)!=0)
111 /* Singles and doubles may include the sign and exponent fields.  The
112  * hidden bit and the hidden overflow must be included. */
113 #define Dbl_increment(dbl_valueA,dbl_valueB) \
114     if( (Dallp2(dbl_valueB) += 1) == 0 )  Dallp1(dbl_valueA) += 1
115 #define Dbl_increment_mantissa(dbl_valueA,dbl_valueB) \
116     if( (Dmantissap2(dbl_valueB) += 1) == 0 )  \
117     Deposit_dmantissap1(dbl_valueA,dbl_valueA+1)
118 #define Dbl_decrement(dbl_valueA,dbl_valueB) \
119     if( Dallp2(dbl_valueB) == 0 )  Dallp1(dbl_valueA) -= 1; \
120     Dallp2(dbl_valueB) -= 1
121 
122 #define Dbl_isone_sign(dbl_value) (Is_dsign(dbl_value)!=0)
123 #define Dbl_isone_hiddenoverflow(dbl_value) (Is_dhiddenoverflow(dbl_value)!=0)
124 #define Dbl_isone_lowmantissap1(dbl_valueA) (Is_dlowp1(dbl_valueA)!=0)
125 #define Dbl_isone_lowmantissap2(dbl_valueB) (Is_dlowp2(dbl_valueB)!=0)
126 #define Dbl_isone_signaling(dbl_value) (Is_dsignaling(dbl_value)!=0)
127 #define Dbl_is_signalingnan(dbl_value) (Dsignalingnan(dbl_value)==0xfff)
128 #define Dbl_isnotzero(dbl_valueA,dbl_valueB) \
129     (Dallp1(dbl_valueA) || Dallp2(dbl_valueB))
130 #define Dbl_isnotzero_hiddenhigh7mantissa(dbl_value) \
131     (Dhiddenhigh7mantissa(dbl_value)!=0)
132 #define Dbl_isnotzero_exponent(dbl_value) (Dexponent(dbl_value)!=0)
133 #define Dbl_isnotzero_mantissa(dbl_valueA,dbl_valueB) \
134     (Dmantissap1(dbl_valueA) || Dmantissap2(dbl_valueB))
135 #define Dbl_isnotzero_mantissap1(dbl_valueA) (Dmantissap1(dbl_valueA)!=0)
136 #define Dbl_isnotzero_mantissap2(dbl_valueB) (Dmantissap2(dbl_valueB)!=0)
137 #define Dbl_isnotzero_exponentmantissa(dbl_valueA,dbl_valueB) \
138     (Dexponentmantissap1(dbl_valueA) || Dmantissap2(dbl_valueB))
139 #define Dbl_isnotzero_low4p2(dbl_value) (Dlow4p2(dbl_value)!=0)
140 #define Dbl_iszero(dbl_valueA,dbl_valueB) (Dallp1(dbl_valueA)==0 && \
141     Dallp2(dbl_valueB)==0)
142 #define Dbl_iszero_allp1(dbl_value) (Dallp1(dbl_value)==0)
143 #define Dbl_iszero_allp2(dbl_value) (Dallp2(dbl_value)==0)
144 #define Dbl_iszero_hidden(dbl_value) (Is_dhidden(dbl_value)==0)
145 #define Dbl_iszero_hiddenoverflow(dbl_value) (Is_dhiddenoverflow(dbl_value)==0)
146 #define Dbl_iszero_hiddenhigh3mantissa(dbl_value) \
147     (Dhiddenhigh3mantissa(dbl_value)==0)
148 #define Dbl_iszero_hiddenhigh7mantissa(dbl_value) \
149     (Dhiddenhigh7mantissa(dbl_value)==0)
150 #define Dbl_iszero_sign(dbl_value) (Is_dsign(dbl_value)==0)
151 #define Dbl_iszero_exponent(dbl_value) (Dexponent(dbl_value)==0)
152 #define Dbl_iszero_mantissa(dbl_valueA,dbl_valueB) \
153     (Dmantissap1(dbl_valueA)==0 && Dmantissap2(dbl_valueB)==0)
154 #define Dbl_iszero_exponentmantissa(dbl_valueA,dbl_valueB) \
155     (Dexponentmantissap1(dbl_valueA)==0 && Dmantissap2(dbl_valueB)==0)
156 #define Dbl_isinfinity_exponent(dbl_value)		\
157     (Dexponent(dbl_value)==DBL_INFINITY_EXPONENT)
158 #define Dbl_isnotinfinity_exponent(dbl_value)		\
159     (Dexponent(dbl_value)!=DBL_INFINITY_EXPONENT)
160 #define Dbl_isinfinity(dbl_valueA,dbl_valueB)			\
161     (Dexponent(dbl_valueA)==DBL_INFINITY_EXPONENT &&	\
162     Dmantissap1(dbl_valueA)==0 && Dmantissap2(dbl_valueB)==0)
163 #define Dbl_isnan(dbl_valueA,dbl_valueB)		\
164     (Dexponent(dbl_valueA)==DBL_INFINITY_EXPONENT &&	\
165     (Dmantissap1(dbl_valueA)!=0 || Dmantissap2(dbl_valueB)!=0))
166 #define Dbl_isnotnan(dbl_valueA,dbl_valueB)		\
167     (Dexponent(dbl_valueA)!=DBL_INFINITY_EXPONENT ||	\
168     (Dmantissap1(dbl_valueA)==0 && Dmantissap2(dbl_valueB)==0))
169 
170 #define Dbl_islessthan(dbl_op1a,dbl_op1b,dbl_op2a,dbl_op2b)	\
171     (Dallp1(dbl_op1a) < Dallp1(dbl_op2a) ||			\
172      (Dallp1(dbl_op1a) == Dallp1(dbl_op2a) &&			\
173       Dallp2(dbl_op1b) < Dallp2(dbl_op2b)))
174 #define Dbl_isgreaterthan(dbl_op1a,dbl_op1b,dbl_op2a,dbl_op2b)	\
175     (Dallp1(dbl_op1a) > Dallp1(dbl_op2a) ||			\
176      (Dallp1(dbl_op1a) == Dallp1(dbl_op2a) &&			\
177       Dallp2(dbl_op1b) > Dallp2(dbl_op2b)))
178 #define Dbl_isnotlessthan(dbl_op1a,dbl_op1b,dbl_op2a,dbl_op2b)	\
179     (Dallp1(dbl_op1a) > Dallp1(dbl_op2a) ||			\
180      (Dallp1(dbl_op1a) == Dallp1(dbl_op2a) &&			\
181       Dallp2(dbl_op1b) >= Dallp2(dbl_op2b)))
182 #define Dbl_isnotgreaterthan(dbl_op1a,dbl_op1b,dbl_op2a,dbl_op2b) \
183     (Dallp1(dbl_op1a) < Dallp1(dbl_op2a) ||			\
184      (Dallp1(dbl_op1a) == Dallp1(dbl_op2a) &&			\
185       Dallp2(dbl_op1b) <= Dallp2(dbl_op2b)))
186 #define Dbl_isequal(dbl_op1a,dbl_op1b,dbl_op2a,dbl_op2b)	\
187      ((Dallp1(dbl_op1a) == Dallp1(dbl_op2a)) &&			\
188       (Dallp2(dbl_op1b) == Dallp2(dbl_op2b)))
189 
190 #define Dbl_leftshiftby8(dbl_valueA,dbl_valueB) \
191     Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),24,Dallp1(dbl_valueA)); \
192     Dallp2(dbl_valueB) <<= 8
193 #define Dbl_leftshiftby7(dbl_valueA,dbl_valueB) \
194     Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),25,Dallp1(dbl_valueA)); \
195     Dallp2(dbl_valueB) <<= 7
196 #define Dbl_leftshiftby4(dbl_valueA,dbl_valueB) \
197     Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),28,Dallp1(dbl_valueA)); \
198     Dallp2(dbl_valueB) <<= 4
199 #define Dbl_leftshiftby3(dbl_valueA,dbl_valueB) \
200     Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),29,Dallp1(dbl_valueA)); \
201     Dallp2(dbl_valueB) <<= 3
202 #define Dbl_leftshiftby2(dbl_valueA,dbl_valueB) \
203     Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),30,Dallp1(dbl_valueA)); \
204     Dallp2(dbl_valueB) <<= 2
205 #define Dbl_leftshiftby1(dbl_valueA,dbl_valueB) \
206     Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),31,Dallp1(dbl_valueA)); \
207     Dallp2(dbl_valueB) <<= 1
208 
209 #define Dbl_rightshiftby8(dbl_valueA,dbl_valueB) \
210     Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),8,Dallp2(dbl_valueB)); \
211     Dallp1(dbl_valueA) >>= 8
212 #define Dbl_rightshiftby4(dbl_valueA,dbl_valueB) \
213     Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),4,Dallp2(dbl_valueB)); \
214     Dallp1(dbl_valueA) >>= 4
215 #define Dbl_rightshiftby2(dbl_valueA,dbl_valueB) \
216     Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),2,Dallp2(dbl_valueB)); \
217     Dallp1(dbl_valueA) >>= 2
218 #define Dbl_rightshiftby1(dbl_valueA,dbl_valueB) \
219     Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),1,Dallp2(dbl_valueB)); \
220     Dallp1(dbl_valueA) >>= 1
221 
222 /* This magnitude comparison uses the signless first words and
223  * the regular part2 words.  The comparison is graphically:
224  *
225  *       1st greater?  -------------
226  *				   |
227  *       1st less?-----------------+---------
228  *				   |	    |
229  *       2nd greater or equal----->|	    |
230  *				 False     True
231  */
232 #define Dbl_ismagnitudeless(leftB,rightB,signlessleft,signlessright)	\
233       ((signlessleft <= signlessright) &&				\
234        ( (signlessleft < signlessright) || (Dallp2(leftB)<Dallp2(rightB)) ))
235 
236 #define Dbl_copytoint_exponentmantissap1(src,dest) \
237     dest = Dexponentmantissap1(src)
238 
239 /* A quiet NaN has the high mantissa bit clear and at least on other (in this
240  * case the adjacent bit) bit set. */
241 #define Dbl_set_quiet(dbl_value) Deposit_dhigh2mantissa(dbl_value,1)
242 #define Dbl_set_exponent(dbl_value, exp) Deposit_dexponent(dbl_value,exp)
243 
244 #define Dbl_set_mantissa(desta,destb,valuea,valueb)	\
245     Deposit_dmantissap1(desta,valuea);			\
246     Dmantissap2(destb) = Dmantissap2(valueb)
247 #define Dbl_set_mantissap1(desta,valuea)		\
248     Deposit_dmantissap1(desta,valuea)
249 #define Dbl_set_mantissap2(destb,valueb)		\
250     Dmantissap2(destb) = Dmantissap2(valueb)
251 
252 #define Dbl_set_exponentmantissa(desta,destb,valuea,valueb)	\
253     Deposit_dexponentmantissap1(desta,valuea);			\
254     Dmantissap2(destb) = Dmantissap2(valueb)
255 #define Dbl_set_exponentmantissap1(dest,value)			\
256     Deposit_dexponentmantissap1(dest,value)
257 
258 #define Dbl_copyfromptr(src,desta,destb) \
259     Dallp1(desta) = src->wd0;		\
260     Dallp2(destb) = src->wd1
261 #define Dbl_copytoptr(srca,srcb,dest)	\
262     dest->wd0 = Dallp1(srca);		\
263     dest->wd1 = Dallp2(srcb)
264 
265 /*  An infinity is represented with the max exponent and a zero mantissa */
266 #define Dbl_setinfinity_exponent(dbl_value) \
267     Deposit_dexponent(dbl_value,DBL_INFINITY_EXPONENT)
268 #define Dbl_setinfinity_exponentmantissa(dbl_valueA,dbl_valueB)	\
269     Deposit_dexponentmantissap1(dbl_valueA,			\
270     (DBL_INFINITY_EXPONENT << (32-(1+DBL_EXP_LENGTH))));	\
271     Dmantissap2(dbl_valueB) = 0
272 #define Dbl_setinfinitypositive(dbl_valueA,dbl_valueB)		\
273     Dallp1(dbl_valueA)						\
274 	= (DBL_INFINITY_EXPONENT << (32-(1+DBL_EXP_LENGTH)));	\
275     Dmantissap2(dbl_valueB) = 0
276 #define Dbl_setinfinitynegative(dbl_valueA,dbl_valueB)		\
277     Dallp1(dbl_valueA) = (1<<31) |				\
278 	(DBL_INFINITY_EXPONENT << (32-(1+DBL_EXP_LENGTH)));	\
279     Dmantissap2(dbl_valueB) = 0
280 #define Dbl_setinfinity(dbl_valueA,dbl_valueB,sign)		\
281     Dallp1(dbl_valueA) = (sign << 31) |				\
282 	(DBL_INFINITY_EXPONENT << (32-(1+DBL_EXP_LENGTH)));	\
283     Dmantissap2(dbl_valueB) = 0
284 
285 #define Dbl_sethigh4bits(dbl_value, extsign) Deposit_dhigh4p1(dbl_value,extsign)
286 #define Dbl_set_sign(dbl_value,sign) Deposit_dsign(dbl_value,sign)
287 #define Dbl_invert_sign(dbl_value) Deposit_dsign(dbl_value,~Dsign(dbl_value))
288 #define Dbl_setone_sign(dbl_value) Deposit_dsign(dbl_value,1)
289 #define Dbl_setone_lowmantissap2(dbl_value) Deposit_dlowp2(dbl_value,1)
290 #define Dbl_setzero_sign(dbl_value) Dallp1(dbl_value) &= 0x7fffffff
291 #define Dbl_setzero_exponent(dbl_value)			\
292     Dallp1(dbl_value) &= 0x800fffff
293 #define Dbl_setzero_mantissa(dbl_valueA,dbl_valueB)	\
294     Dallp1(dbl_valueA) &= 0xfff00000;			\
295     Dallp2(dbl_valueB) = 0
296 #define Dbl_setzero_mantissap1(dbl_value) Dallp1(dbl_value) &= 0xfff00000
297 #define Dbl_setzero_mantissap2(dbl_value) Dallp2(dbl_value) = 0
298 #define Dbl_setzero_exponentmantissa(dbl_valueA,dbl_valueB)	\
299     Dallp1(dbl_valueA) &= 0x80000000;		\
300     Dallp2(dbl_valueB) = 0
301 #define Dbl_setzero_exponentmantissap1(dbl_valueA)	\
302     Dallp1(dbl_valueA) &= 0x80000000
303 #define Dbl_setzero(dbl_valueA,dbl_valueB) \
304     Dallp1(dbl_valueA) = 0; Dallp2(dbl_valueB) = 0
305 #define Dbl_setzerop1(dbl_value) Dallp1(dbl_value) = 0
306 #define Dbl_setzerop2(dbl_value) Dallp2(dbl_value) = 0
307 #define Dbl_setnegativezero(dbl_value) \
308     Dallp1(dbl_value) = 1U << 31; Dallp2(dbl_value) = 0
309 #define Dbl_setnegativezerop1(dbl_value) Dallp1(dbl_value) = 1U << 31
310 
311 /* Use the following macro for both overflow & underflow conditions */
312 #define ovfl -
313 #define unfl +
314 #define Dbl_setwrapped_exponent(dbl_value,exponent,op) \
315     Deposit_dexponent(dbl_value,(exponent op DBL_WRAP))
316 
317 #define Dbl_setlargestpositive(dbl_valueA,dbl_valueB)			\
318     Dallp1(dbl_valueA) = ((DBL_EMAX+DBL_BIAS) << (32-(1+DBL_EXP_LENGTH))) \
319 			| ((1<<(32-(1+DBL_EXP_LENGTH))) - 1 );		\
320     Dallp2(dbl_valueB) = 0xFFFFFFFF
321 #define Dbl_setlargestnegative(dbl_valueA,dbl_valueB)			\
322     Dallp1(dbl_valueA) = ((DBL_EMAX+DBL_BIAS) << (32-(1+DBL_EXP_LENGTH))) \
323 			| ((1<<(32-(1+DBL_EXP_LENGTH))) - 1 ) | (1<<31); \
324     Dallp2(dbl_valueB) = 0xFFFFFFFF
325 #define Dbl_setlargest_exponentmantissa(dbl_valueA,dbl_valueB)		\
326     Deposit_dexponentmantissap1(dbl_valueA,				\
327 	(((DBL_EMAX+DBL_BIAS) << (32-(1+DBL_EXP_LENGTH)))		\
328 			| ((1<<(32-(1+DBL_EXP_LENGTH))) - 1 )));	\
329     Dallp2(dbl_valueB) = 0xFFFFFFFF
330 
331 #define Dbl_setnegativeinfinity(dbl_valueA,dbl_valueB)			\
332     Dallp1(dbl_valueA) = ((1<<DBL_EXP_LENGTH) | DBL_INFINITY_EXPONENT)	\
333 			 << (32-(1+DBL_EXP_LENGTH)) ;			\
334     Dallp2(dbl_valueB) = 0
335 #define Dbl_setlargest(dbl_valueA,dbl_valueB,sign)			\
336     Dallp1(dbl_valueA) = (sign << 31) |					\
337 	((DBL_EMAX+DBL_BIAS) << (32-(1+DBL_EXP_LENGTH))) |		\
338 	 ((1 << (32-(1+DBL_EXP_LENGTH))) - 1 );				\
339     Dallp2(dbl_valueB) = 0xFFFFFFFF
340 
341 
342 /* The high bit is always zero so arithmetic or logical shifts will work. */
343 #define Dbl_right_align(srcdstA,srcdstB,shift,extent)			\
344     if( shift >= 32 )							\
345 	{								\
346 	/* Big shift requires examining the portion shift off		\
347 	the end to properly set inexact.  */				\
348 	if(shift < 64)							\
349 	    {								\
350 	    if(shift > 32)						\
351 		{							\
352 		Variable_shift_double(Dallp1(srcdstA),Dallp2(srcdstB),	\
353 		 shift-32, Extall(extent));				\
354 		if(Dallp2(srcdstB) << (64 - (shift))) Ext_setone_low(extent); \
355 		}							\
356 	    else Extall(extent) = Dallp2(srcdstB);			\
357 	    Dallp2(srcdstB) = Dallp1(srcdstA) >> (shift - 32);		\
358 	    }								\
359 	else								\
360 	    {								\
361 	    Extall(extent) = Dallp1(srcdstA);				\
362 	    if(Dallp2(srcdstB)) Ext_setone_low(extent);			\
363 	    Dallp2(srcdstB) = 0;					\
364 	    }								\
365 	Dallp1(srcdstA) = 0;						\
366 	}								\
367     else								\
368 	{								\
369 	/* Small alignment is simpler.  Extension is easily set. */	\
370 	if (shift > 0)							\
371 	    {								\
372 	    Extall(extent) = Dallp2(srcdstB) << (32 - (shift));		\
373 	    Variable_shift_double(Dallp1(srcdstA),Dallp2(srcdstB),shift, \
374 	     Dallp2(srcdstB));						\
375 	    Dallp1(srcdstA) >>= shift;					\
376 	    }								\
377 	else Extall(extent) = 0;					\
378 	}
379 
380 /*
381  * Here we need to shift the result right to correct for an overshift
382  * (due to the exponent becoming negative) during normalization.
383  */
384 #define Dbl_fix_overshift(srcdstA,srcdstB,shift,extent)			\
385 	    Extall(extent) = Dallp2(srcdstB) << (32 - (shift));		\
386 	    Dallp2(srcdstB) = (Dallp1(srcdstA) << (32 - (shift))) |	\
387 		(Dallp2(srcdstB) >> (shift));				\
388 	    Dallp1(srcdstA) = Dallp1(srcdstA) >> shift
389 
390 #define Dbl_hiddenhigh3mantissa(dbl_value) Dhiddenhigh3mantissa(dbl_value)
391 #define Dbl_hidden(dbl_value) Dhidden(dbl_value)
392 #define Dbl_lowmantissap2(dbl_value) Dlowp2(dbl_value)
393 
394 /* The left argument is never smaller than the right argument */
395 #define Dbl_subtract(lefta,leftb,righta,rightb,resulta,resultb)			\
396     if( Dallp2(rightb) > Dallp2(leftb) ) Dallp1(lefta)--;	\
397     Dallp2(resultb) = Dallp2(leftb) - Dallp2(rightb);		\
398     Dallp1(resulta) = Dallp1(lefta) - Dallp1(righta)
399 
400 /* Subtract right augmented with extension from left augmented with zeros and
401  * store into result and extension. */
402 #define Dbl_subtract_withextension(lefta,leftb,righta,rightb,extent,resulta,resultb)	\
403     Dbl_subtract(lefta,leftb,righta,rightb,resulta,resultb);		\
404     if( (Extall(extent) = 0-Extall(extent)) )				\
405 	{								\
406 	if((Dallp2(resultb)--) == 0) Dallp1(resulta)--;			\
407 	}
408 
409 #define Dbl_addition(lefta,leftb,righta,rightb,resulta,resultb)		\
410     /* If the sum of the low words is less than either source, then	\
411      * an overflow into the next word occurred. */			\
412     Dallp1(resulta) = Dallp1(lefta) + Dallp1(righta);			\
413     if((Dallp2(resultb) = Dallp2(leftb) + Dallp2(rightb)) < Dallp2(rightb)) \
414 	Dallp1(resulta)++
415 
416 #define Dbl_xortointp1(left,right,result)			\
417     result = Dallp1(left) XOR Dallp1(right)
418 
419 #define Dbl_xorfromintp1(left,right,result)			\
420     Dallp1(result) = left XOR Dallp1(right)
421 
422 #define Dbl_swap_lower(left,right)				\
423     Dallp2(left)  = Dallp2(left) XOR Dallp2(right);		\
424     Dallp2(right) = Dallp2(left) XOR Dallp2(right);		\
425     Dallp2(left)  = Dallp2(left) XOR Dallp2(right)
426 
427 /* Need to Initialize */
428 #define Dbl_makequietnan(desta,destb)					\
429     Dallp1(desta) = ((DBL_EMAX+DBL_BIAS)+1)<< (32-(1+DBL_EXP_LENGTH))	\
430 		| (1<<(32-(1+DBL_EXP_LENGTH+2)));			\
431     Dallp2(destb) = 0
432 #define Dbl_makesignalingnan(desta,destb)				\
433     Dallp1(desta) = ((DBL_EMAX+DBL_BIAS)+1)<< (32-(1+DBL_EXP_LENGTH))	\
434 		| (1<<(32-(1+DBL_EXP_LENGTH+1)));			\
435     Dallp2(destb) = 0
436 
437 #define Dbl_normalize(dbl_opndA,dbl_opndB,exponent)			\
438 	while(Dbl_iszero_hiddenhigh7mantissa(dbl_opndA)) {		\
439 		Dbl_leftshiftby8(dbl_opndA,dbl_opndB);			\
440 		exponent -= 8;						\
441 	}								\
442 	if(Dbl_iszero_hiddenhigh3mantissa(dbl_opndA)) {			\
443 		Dbl_leftshiftby4(dbl_opndA,dbl_opndB);			\
444 		exponent -= 4;						\
445 	}								\
446 	while(Dbl_iszero_hidden(dbl_opndA)) {				\
447 		Dbl_leftshiftby1(dbl_opndA,dbl_opndB);			\
448 		exponent -= 1;						\
449 	}
450 
451 #define Twoword_add(src1dstA,src1dstB,src2A,src2B)		\
452 	/*							\
453 	 * want this macro to generate:				\
454 	 *	ADD	src1dstB,src2B,src1dstB;		\
455 	 *	ADDC	src1dstA,src2A,src1dstA;		\
456 	 */							\
457 	if ((src1dstB) + (src2B) < (src1dstB)) Dallp1(src1dstA)++; \
458 	Dallp1(src1dstA) += (src2A);				\
459 	Dallp2(src1dstB) += (src2B)
460 
461 #define Twoword_subtract(src1dstA,src1dstB,src2A,src2B)		\
462 	/*							\
463 	 * want this macro to generate:				\
464 	 *	SUB	src1dstB,src2B,src1dstB;		\
465 	 *	SUBB	src1dstA,src2A,src1dstA;		\
466 	 */							\
467 	if ((src1dstB) < (src2B)) Dallp1(src1dstA)--;		\
468 	Dallp1(src1dstA) -= (src2A);				\
469 	Dallp2(src1dstB) -= (src2B)
470 
471 #define Dbl_setoverflow(resultA,resultB)				\
472 	/* set result to infinity or largest number */			\
473 	switch (Rounding_mode()) {					\
474 		case ROUNDPLUS:						\
475 			if (Dbl_isone_sign(resultA)) {			\
476 				Dbl_setlargestnegative(resultA,resultB); \
477 			}						\
478 			else {						\
479 				Dbl_setinfinitypositive(resultA,resultB); \
480 			}						\
481 			break;						\
482 		case ROUNDMINUS:					\
483 			if (Dbl_iszero_sign(resultA)) {			\
484 				Dbl_setlargestpositive(resultA,resultB); \
485 			}						\
486 			else {						\
487 				Dbl_setinfinitynegative(resultA,resultB); \
488 			}						\
489 			break;						\
490 		case ROUNDNEAREST:					\
491 			Dbl_setinfinity_exponentmantissa(resultA,resultB); \
492 			break;						\
493 		case ROUNDZERO:						\
494 			Dbl_setlargest_exponentmantissa(resultA,resultB); \
495 	}
496 
497 #define Dbl_denormalize(opndp1,opndp2,exponent,guard,sticky,inexact)	\
498     Dbl_clear_signexponent_set_hidden(opndp1);				\
499     if (exponent >= (1-DBL_P)) {					\
500 	if (exponent >= -31) {						\
501 	    guard = (Dallp2(opndp2) >> (-(exponent))) & 1;		\
502 	    if (exponent < 0) sticky |= Dallp2(opndp2) << (32+exponent); \
503 	    if (exponent > -31) {					\
504 		Variable_shift_double(opndp1,opndp2,1-exponent,opndp2);	\
505 		Dallp1(opndp1) >>= 1-exponent;				\
506 	    }								\
507 	    else {							\
508 		Dallp2(opndp2) = Dallp1(opndp1);			\
509 		Dbl_setzerop1(opndp1);					\
510 	    }								\
511 	}								\
512 	else {								\
513 	    guard = (Dallp1(opndp1) >> (-32-(exponent))) & 1;		\
514 	    if (exponent == -32) sticky |= Dallp2(opndp2);		\
515 	    else sticky |= (Dallp2(opndp2) | Dallp1(opndp1) << (64+(exponent))); \
516 	    Dallp2(opndp2) = Dallp1(opndp1) >> (-31-(exponent));	\
517 	    Dbl_setzerop1(opndp1);					\
518 	}								\
519 	inexact = guard | sticky;					\
520     }									\
521     else {								\
522 	guard = 0;							\
523 	sticky |= (Dallp1(opndp1) | Dallp2(opndp2));			\
524 	Dbl_setzero(opndp1,opndp2);					\
525 	inexact = sticky;						\
526     }
527 
528 
529 int dbl_fadd(dbl_floating_point *, dbl_floating_point *, dbl_floating_point *, unsigned int *);
530 int dbl_fcmp(dbl_floating_point *, dbl_floating_point *, unsigned int, unsigned int *);
531 int dbl_fdiv(dbl_floating_point *, dbl_floating_point *, dbl_floating_point *, unsigned int *);
532 int dbl_fmpy(dbl_floating_point *, dbl_floating_point *, dbl_floating_point *, unsigned int *);
533 int dbl_frem(dbl_floating_point *, dbl_floating_point *, dbl_floating_point *, unsigned int *);
534 int dbl_fsqrt(dbl_floating_point *, dbl_floating_point *, dbl_floating_point *, unsigned int *);
535 int dbl_fsub(dbl_floating_point *, dbl_floating_point *, dbl_floating_point *, unsigned int *);
536 
537 int sgl_to_dbl_fcnvff(sgl_floating_point *, sgl_floating_point *, dbl_floating_point *, unsigned int *);
538 int dbl_to_sgl_fcnvff(dbl_floating_point *, dbl_floating_point *, sgl_floating_point *, unsigned int *);
539 
540 int dbl_frnd(dbl_floating_point *, dbl_floating_point *, dbl_floating_point *, unsigned int *);
541