1 //===-- UnrollLoopRuntime.cpp - Runtime Loop unrolling utilities ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements some loop unrolling utilities for loops with run-time
10 // trip counts. See LoopUnroll.cpp for unrolling loops with compile-time
11 // trip counts.
12 //
13 // The functions in this file are used to generate extra code when the
14 // run-time trip count modulo the unroll factor is not 0. When this is the
15 // case, we need to generate code to execute these 'left over' iterations.
16 //
17 // The current strategy generates an if-then-else sequence prior to the
18 // unrolled loop to execute the 'left over' iterations before or after the
19 // unrolled loop.
20 //
21 //===----------------------------------------------------------------------===//
22
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/Analysis/DomTreeUpdater.h"
25 #include "llvm/Analysis/InstructionSimplify.h"
26 #include "llvm/Analysis/LoopIterator.h"
27 #include "llvm/Analysis/ScalarEvolution.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/IR/BasicBlock.h"
30 #include "llvm/IR/Dominators.h"
31 #include "llvm/IR/MDBuilder.h"
32 #include "llvm/IR/Module.h"
33 #include "llvm/IR/ProfDataUtils.h"
34 #include "llvm/Support/CommandLine.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
38 #include "llvm/Transforms/Utils/Cloning.h"
39 #include "llvm/Transforms/Utils/Local.h"
40 #include "llvm/Transforms/Utils/LoopUtils.h"
41 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
42 #include "llvm/Transforms/Utils/UnrollLoop.h"
43 #include <algorithm>
44
45 using namespace llvm;
46
47 #define DEBUG_TYPE "loop-unroll"
48
49 STATISTIC(NumRuntimeUnrolled,
50 "Number of loops unrolled with run-time trip counts");
51 static cl::opt<bool> UnrollRuntimeMultiExit(
52 "unroll-runtime-multi-exit", cl::init(false), cl::Hidden,
53 cl::desc("Allow runtime unrolling for loops with multiple exits, when "
54 "epilog is generated"));
55 static cl::opt<bool> UnrollRuntimeOtherExitPredictable(
56 "unroll-runtime-other-exit-predictable", cl::init(false), cl::Hidden,
57 cl::desc("Assume the non latch exit block to be predictable"));
58
59 /// Connect the unrolling prolog code to the original loop.
60 /// The unrolling prolog code contains code to execute the
61 /// 'extra' iterations if the run-time trip count modulo the
62 /// unroll count is non-zero.
63 ///
64 /// This function performs the following:
65 /// - Create PHI nodes at prolog end block to combine values
66 /// that exit the prolog code and jump around the prolog.
67 /// - Add a PHI operand to a PHI node at the loop exit block
68 /// for values that exit the prolog and go around the loop.
69 /// - Branch around the original loop if the trip count is less
70 /// than the unroll factor.
71 ///
ConnectProlog(Loop * L,Value * BECount,unsigned Count,BasicBlock * PrologExit,BasicBlock * OriginalLoopLatchExit,BasicBlock * PreHeader,BasicBlock * NewPreHeader,ValueToValueMapTy & VMap,DominatorTree * DT,LoopInfo * LI,bool PreserveLCSSA,ScalarEvolution & SE)72 static void ConnectProlog(Loop *L, Value *BECount, unsigned Count,
73 BasicBlock *PrologExit,
74 BasicBlock *OriginalLoopLatchExit,
75 BasicBlock *PreHeader, BasicBlock *NewPreHeader,
76 ValueToValueMapTy &VMap, DominatorTree *DT,
77 LoopInfo *LI, bool PreserveLCSSA,
78 ScalarEvolution &SE) {
79 // Loop structure should be the following:
80 // Preheader
81 // PrologHeader
82 // ...
83 // PrologLatch
84 // PrologExit
85 // NewPreheader
86 // Header
87 // ...
88 // Latch
89 // LatchExit
90 BasicBlock *Latch = L->getLoopLatch();
91 assert(Latch && "Loop must have a latch");
92 BasicBlock *PrologLatch = cast<BasicBlock>(VMap[Latch]);
93
94 // Create a PHI node for each outgoing value from the original loop
95 // (which means it is an outgoing value from the prolog code too).
96 // The new PHI node is inserted in the prolog end basic block.
97 // The new PHI node value is added as an operand of a PHI node in either
98 // the loop header or the loop exit block.
99 for (BasicBlock *Succ : successors(Latch)) {
100 for (PHINode &PN : Succ->phis()) {
101 // Add a new PHI node to the prolog end block and add the
102 // appropriate incoming values.
103 // TODO: This code assumes that the PrologExit (or the LatchExit block for
104 // prolog loop) contains only one predecessor from the loop, i.e. the
105 // PrologLatch. When supporting multiple-exiting block loops, we can have
106 // two or more blocks that have the LatchExit as the target in the
107 // original loop.
108 PHINode *NewPN = PHINode::Create(PN.getType(), 2, PN.getName() + ".unr",
109 PrologExit->getFirstNonPHI());
110 // Adding a value to the new PHI node from the original loop preheader.
111 // This is the value that skips all the prolog code.
112 if (L->contains(&PN)) {
113 // Succ is loop header.
114 NewPN->addIncoming(PN.getIncomingValueForBlock(NewPreHeader),
115 PreHeader);
116 } else {
117 // Succ is LatchExit.
118 NewPN->addIncoming(UndefValue::get(PN.getType()), PreHeader);
119 }
120
121 Value *V = PN.getIncomingValueForBlock(Latch);
122 if (Instruction *I = dyn_cast<Instruction>(V)) {
123 if (L->contains(I)) {
124 V = VMap.lookup(I);
125 }
126 }
127 // Adding a value to the new PHI node from the last prolog block
128 // that was created.
129 NewPN->addIncoming(V, PrologLatch);
130
131 // Update the existing PHI node operand with the value from the
132 // new PHI node. How this is done depends on if the existing
133 // PHI node is in the original loop block, or the exit block.
134 if (L->contains(&PN))
135 PN.setIncomingValueForBlock(NewPreHeader, NewPN);
136 else
137 PN.addIncoming(NewPN, PrologExit);
138 SE.forgetValue(&PN);
139 }
140 }
141
142 // Make sure that created prolog loop is in simplified form
143 SmallVector<BasicBlock *, 4> PrologExitPreds;
144 Loop *PrologLoop = LI->getLoopFor(PrologLatch);
145 if (PrologLoop) {
146 for (BasicBlock *PredBB : predecessors(PrologExit))
147 if (PrologLoop->contains(PredBB))
148 PrologExitPreds.push_back(PredBB);
149
150 SplitBlockPredecessors(PrologExit, PrologExitPreds, ".unr-lcssa", DT, LI,
151 nullptr, PreserveLCSSA);
152 }
153
154 // Create a branch around the original loop, which is taken if there are no
155 // iterations remaining to be executed after running the prologue.
156 Instruction *InsertPt = PrologExit->getTerminator();
157 IRBuilder<> B(InsertPt);
158
159 assert(Count != 0 && "nonsensical Count!");
160
161 // If BECount <u (Count - 1) then (BECount + 1) % Count == (BECount + 1)
162 // This means %xtraiter is (BECount + 1) and all of the iterations of this
163 // loop were executed by the prologue. Note that if BECount <u (Count - 1)
164 // then (BECount + 1) cannot unsigned-overflow.
165 Value *BrLoopExit =
166 B.CreateICmpULT(BECount, ConstantInt::get(BECount->getType(), Count - 1));
167 // Split the exit to maintain loop canonicalization guarantees
168 SmallVector<BasicBlock *, 4> Preds(predecessors(OriginalLoopLatchExit));
169 SplitBlockPredecessors(OriginalLoopLatchExit, Preds, ".unr-lcssa", DT, LI,
170 nullptr, PreserveLCSSA);
171 // Add the branch to the exit block (around the unrolled loop)
172 B.CreateCondBr(BrLoopExit, OriginalLoopLatchExit, NewPreHeader);
173 InsertPt->eraseFromParent();
174 if (DT) {
175 auto *NewDom = DT->findNearestCommonDominator(OriginalLoopLatchExit,
176 PrologExit);
177 DT->changeImmediateDominator(OriginalLoopLatchExit, NewDom);
178 }
179 }
180
181 /// Connect the unrolling epilog code to the original loop.
182 /// The unrolling epilog code contains code to execute the
183 /// 'extra' iterations if the run-time trip count modulo the
184 /// unroll count is non-zero.
185 ///
186 /// This function performs the following:
187 /// - Update PHI nodes at the unrolling loop exit and epilog loop exit
188 /// - Create PHI nodes at the unrolling loop exit to combine
189 /// values that exit the unrolling loop code and jump around it.
190 /// - Update PHI operands in the epilog loop by the new PHI nodes
191 /// - Branch around the epilog loop if extra iters (ModVal) is zero.
192 ///
ConnectEpilog(Loop * L,Value * ModVal,BasicBlock * NewExit,BasicBlock * Exit,BasicBlock * PreHeader,BasicBlock * EpilogPreHeader,BasicBlock * NewPreHeader,ValueToValueMapTy & VMap,DominatorTree * DT,LoopInfo * LI,bool PreserveLCSSA,ScalarEvolution & SE)193 static void ConnectEpilog(Loop *L, Value *ModVal, BasicBlock *NewExit,
194 BasicBlock *Exit, BasicBlock *PreHeader,
195 BasicBlock *EpilogPreHeader, BasicBlock *NewPreHeader,
196 ValueToValueMapTy &VMap, DominatorTree *DT,
197 LoopInfo *LI, bool PreserveLCSSA,
198 ScalarEvolution &SE) {
199 BasicBlock *Latch = L->getLoopLatch();
200 assert(Latch && "Loop must have a latch");
201 BasicBlock *EpilogLatch = cast<BasicBlock>(VMap[Latch]);
202
203 // Loop structure should be the following:
204 //
205 // PreHeader
206 // NewPreHeader
207 // Header
208 // ...
209 // Latch
210 // NewExit (PN)
211 // EpilogPreHeader
212 // EpilogHeader
213 // ...
214 // EpilogLatch
215 // Exit (EpilogPN)
216
217 // Update PHI nodes at NewExit and Exit.
218 for (PHINode &PN : NewExit->phis()) {
219 // PN should be used in another PHI located in Exit block as
220 // Exit was split by SplitBlockPredecessors into Exit and NewExit
221 // Basically it should look like:
222 // NewExit:
223 // PN = PHI [I, Latch]
224 // ...
225 // Exit:
226 // EpilogPN = PHI [PN, EpilogPreHeader], [X, Exit2], [Y, Exit2.epil]
227 //
228 // Exits from non-latch blocks point to the original exit block and the
229 // epilogue edges have already been added.
230 //
231 // There is EpilogPreHeader incoming block instead of NewExit as
232 // NewExit was spilt 1 more time to get EpilogPreHeader.
233 assert(PN.hasOneUse() && "The phi should have 1 use");
234 PHINode *EpilogPN = cast<PHINode>(PN.use_begin()->getUser());
235 assert(EpilogPN->getParent() == Exit && "EpilogPN should be in Exit block");
236
237 // Add incoming PreHeader from branch around the Loop
238 PN.addIncoming(UndefValue::get(PN.getType()), PreHeader);
239 SE.forgetValue(&PN);
240
241 Value *V = PN.getIncomingValueForBlock(Latch);
242 Instruction *I = dyn_cast<Instruction>(V);
243 if (I && L->contains(I))
244 // If value comes from an instruction in the loop add VMap value.
245 V = VMap.lookup(I);
246 // For the instruction out of the loop, constant or undefined value
247 // insert value itself.
248 EpilogPN->addIncoming(V, EpilogLatch);
249
250 assert(EpilogPN->getBasicBlockIndex(EpilogPreHeader) >= 0 &&
251 "EpilogPN should have EpilogPreHeader incoming block");
252 // Change EpilogPreHeader incoming block to NewExit.
253 EpilogPN->setIncomingBlock(EpilogPN->getBasicBlockIndex(EpilogPreHeader),
254 NewExit);
255 // Now PHIs should look like:
256 // NewExit:
257 // PN = PHI [I, Latch], [undef, PreHeader]
258 // ...
259 // Exit:
260 // EpilogPN = PHI [PN, NewExit], [VMap[I], EpilogLatch]
261 }
262
263 // Create PHI nodes at NewExit (from the unrolling loop Latch and PreHeader).
264 // Update corresponding PHI nodes in epilog loop.
265 for (BasicBlock *Succ : successors(Latch)) {
266 // Skip this as we already updated phis in exit blocks.
267 if (!L->contains(Succ))
268 continue;
269 for (PHINode &PN : Succ->phis()) {
270 // Add new PHI nodes to the loop exit block and update epilog
271 // PHIs with the new PHI values.
272 PHINode *NewPN = PHINode::Create(PN.getType(), 2, PN.getName() + ".unr",
273 NewExit->getFirstNonPHI());
274 // Adding a value to the new PHI node from the unrolling loop preheader.
275 NewPN->addIncoming(PN.getIncomingValueForBlock(NewPreHeader), PreHeader);
276 // Adding a value to the new PHI node from the unrolling loop latch.
277 NewPN->addIncoming(PN.getIncomingValueForBlock(Latch), Latch);
278
279 // Update the existing PHI node operand with the value from the new PHI
280 // node. Corresponding instruction in epilog loop should be PHI.
281 PHINode *VPN = cast<PHINode>(VMap[&PN]);
282 VPN->setIncomingValueForBlock(EpilogPreHeader, NewPN);
283 }
284 }
285
286 Instruction *InsertPt = NewExit->getTerminator();
287 IRBuilder<> B(InsertPt);
288 Value *BrLoopExit = B.CreateIsNotNull(ModVal, "lcmp.mod");
289 assert(Exit && "Loop must have a single exit block only");
290 // Split the epilogue exit to maintain loop canonicalization guarantees
291 SmallVector<BasicBlock*, 4> Preds(predecessors(Exit));
292 SplitBlockPredecessors(Exit, Preds, ".epilog-lcssa", DT, LI, nullptr,
293 PreserveLCSSA);
294 // Add the branch to the exit block (around the unrolling loop)
295 B.CreateCondBr(BrLoopExit, EpilogPreHeader, Exit);
296 InsertPt->eraseFromParent();
297 if (DT) {
298 auto *NewDom = DT->findNearestCommonDominator(Exit, NewExit);
299 DT->changeImmediateDominator(Exit, NewDom);
300 }
301
302 // Split the main loop exit to maintain canonicalization guarantees.
303 SmallVector<BasicBlock*, 4> NewExitPreds{Latch};
304 SplitBlockPredecessors(NewExit, NewExitPreds, ".loopexit", DT, LI, nullptr,
305 PreserveLCSSA);
306 }
307
308 /// Create a clone of the blocks in a loop and connect them together. A new
309 /// loop will be created including all cloned blocks, and the iterator of the
310 /// new loop switched to count NewIter down to 0.
311 /// The cloned blocks should be inserted between InsertTop and InsertBot.
312 /// InsertTop should be new preheader, InsertBot new loop exit.
313 /// Returns the new cloned loop that is created.
314 static Loop *
CloneLoopBlocks(Loop * L,Value * NewIter,const bool UseEpilogRemainder,const bool UnrollRemainder,BasicBlock * InsertTop,BasicBlock * InsertBot,BasicBlock * Preheader,std::vector<BasicBlock * > & NewBlocks,LoopBlocksDFS & LoopBlocks,ValueToValueMapTy & VMap,DominatorTree * DT,LoopInfo * LI)315 CloneLoopBlocks(Loop *L, Value *NewIter, const bool UseEpilogRemainder,
316 const bool UnrollRemainder,
317 BasicBlock *InsertTop,
318 BasicBlock *InsertBot, BasicBlock *Preheader,
319 std::vector<BasicBlock *> &NewBlocks, LoopBlocksDFS &LoopBlocks,
320 ValueToValueMapTy &VMap, DominatorTree *DT, LoopInfo *LI) {
321 StringRef suffix = UseEpilogRemainder ? "epil" : "prol";
322 BasicBlock *Header = L->getHeader();
323 BasicBlock *Latch = L->getLoopLatch();
324 Function *F = Header->getParent();
325 LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO();
326 LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO();
327 Loop *ParentLoop = L->getParentLoop();
328 NewLoopsMap NewLoops;
329 NewLoops[ParentLoop] = ParentLoop;
330
331 // For each block in the original loop, create a new copy,
332 // and update the value map with the newly created values.
333 for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
334 BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, "." + suffix, F);
335 NewBlocks.push_back(NewBB);
336
337 addClonedBlockToLoopInfo(*BB, NewBB, LI, NewLoops);
338
339 VMap[*BB] = NewBB;
340 if (Header == *BB) {
341 // For the first block, add a CFG connection to this newly
342 // created block.
343 InsertTop->getTerminator()->setSuccessor(0, NewBB);
344 }
345
346 if (DT) {
347 if (Header == *BB) {
348 // The header is dominated by the preheader.
349 DT->addNewBlock(NewBB, InsertTop);
350 } else {
351 // Copy information from original loop to unrolled loop.
352 BasicBlock *IDomBB = DT->getNode(*BB)->getIDom()->getBlock();
353 DT->addNewBlock(NewBB, cast<BasicBlock>(VMap[IDomBB]));
354 }
355 }
356
357 if (Latch == *BB) {
358 // For the last block, create a loop back to cloned head.
359 VMap.erase((*BB)->getTerminator());
360 // Use an incrementing IV. Pre-incr/post-incr is backedge/trip count.
361 // Subtle: NewIter can be 0 if we wrapped when computing the trip count,
362 // thus we must compare the post-increment (wrapping) value.
363 BasicBlock *FirstLoopBB = cast<BasicBlock>(VMap[Header]);
364 BranchInst *LatchBR = cast<BranchInst>(NewBB->getTerminator());
365 IRBuilder<> Builder(LatchBR);
366 PHINode *NewIdx = PHINode::Create(NewIter->getType(), 2,
367 suffix + ".iter",
368 FirstLoopBB->getFirstNonPHI());
369 auto *Zero = ConstantInt::get(NewIdx->getType(), 0);
370 auto *One = ConstantInt::get(NewIdx->getType(), 1);
371 Value *IdxNext = Builder.CreateAdd(NewIdx, One, NewIdx->getName() + ".next");
372 Value *IdxCmp = Builder.CreateICmpNE(IdxNext, NewIter, NewIdx->getName() + ".cmp");
373 Builder.CreateCondBr(IdxCmp, FirstLoopBB, InsertBot);
374 NewIdx->addIncoming(Zero, InsertTop);
375 NewIdx->addIncoming(IdxNext, NewBB);
376 LatchBR->eraseFromParent();
377 }
378 }
379
380 // Change the incoming values to the ones defined in the preheader or
381 // cloned loop.
382 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
383 PHINode *NewPHI = cast<PHINode>(VMap[&*I]);
384 unsigned idx = NewPHI->getBasicBlockIndex(Preheader);
385 NewPHI->setIncomingBlock(idx, InsertTop);
386 BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]);
387 idx = NewPHI->getBasicBlockIndex(Latch);
388 Value *InVal = NewPHI->getIncomingValue(idx);
389 NewPHI->setIncomingBlock(idx, NewLatch);
390 if (Value *V = VMap.lookup(InVal))
391 NewPHI->setIncomingValue(idx, V);
392 }
393
394 Loop *NewLoop = NewLoops[L];
395 assert(NewLoop && "L should have been cloned");
396 MDNode *LoopID = NewLoop->getLoopID();
397
398 // Only add loop metadata if the loop is not going to be completely
399 // unrolled.
400 if (UnrollRemainder)
401 return NewLoop;
402
403 std::optional<MDNode *> NewLoopID = makeFollowupLoopID(
404 LoopID, {LLVMLoopUnrollFollowupAll, LLVMLoopUnrollFollowupRemainder});
405 if (NewLoopID) {
406 NewLoop->setLoopID(*NewLoopID);
407
408 // Do not setLoopAlreadyUnrolled if loop attributes have been defined
409 // explicitly.
410 return NewLoop;
411 }
412
413 // Add unroll disable metadata to disable future unrolling for this loop.
414 NewLoop->setLoopAlreadyUnrolled();
415 return NewLoop;
416 }
417
418 /// Returns true if we can profitably unroll the multi-exit loop L. Currently,
419 /// we return true only if UnrollRuntimeMultiExit is set to true.
canProfitablyUnrollMultiExitLoop(Loop * L,SmallVectorImpl<BasicBlock * > & OtherExits,BasicBlock * LatchExit,bool UseEpilogRemainder)420 static bool canProfitablyUnrollMultiExitLoop(
421 Loop *L, SmallVectorImpl<BasicBlock *> &OtherExits, BasicBlock *LatchExit,
422 bool UseEpilogRemainder) {
423
424 // Priority goes to UnrollRuntimeMultiExit if it's supplied.
425 if (UnrollRuntimeMultiExit.getNumOccurrences())
426 return UnrollRuntimeMultiExit;
427
428 // The main pain point with multi-exit loop unrolling is that once unrolled,
429 // we will not be able to merge all blocks into a straight line code.
430 // There are branches within the unrolled loop that go to the OtherExits.
431 // The second point is the increase in code size, but this is true
432 // irrespective of multiple exits.
433
434 // Note: Both the heuristics below are coarse grained. We are essentially
435 // enabling unrolling of loops that have a single side exit other than the
436 // normal LatchExit (i.e. exiting into a deoptimize block).
437 // The heuristics considered are:
438 // 1. low number of branches in the unrolled version.
439 // 2. high predictability of these extra branches.
440 // We avoid unrolling loops that have more than two exiting blocks. This
441 // limits the total number of branches in the unrolled loop to be atmost
442 // the unroll factor (since one of the exiting blocks is the latch block).
443 SmallVector<BasicBlock*, 4> ExitingBlocks;
444 L->getExitingBlocks(ExitingBlocks);
445 if (ExitingBlocks.size() > 2)
446 return false;
447
448 // Allow unrolling of loops with no non latch exit blocks.
449 if (OtherExits.size() == 0)
450 return true;
451
452 // The second heuristic is that L has one exit other than the latchexit and
453 // that exit is a deoptimize block. We know that deoptimize blocks are rarely
454 // taken, which also implies the branch leading to the deoptimize block is
455 // highly predictable. When UnrollRuntimeOtherExitPredictable is specified, we
456 // assume the other exit branch is predictable even if it has no deoptimize
457 // call.
458 return (OtherExits.size() == 1 &&
459 (UnrollRuntimeOtherExitPredictable ||
460 OtherExits[0]->getTerminatingDeoptimizeCall()));
461 // TODO: These can be fine-tuned further to consider code size or deopt states
462 // that are captured by the deoptimize exit block.
463 // Also, we can extend this to support more cases, if we actually
464 // know of kinds of multiexit loops that would benefit from unrolling.
465 }
466
467 // Assign the maximum possible trip count as the back edge weight for the
468 // remainder loop if the original loop comes with a branch weight.
updateLatchBranchWeightsForRemainderLoop(Loop * OrigLoop,Loop * RemainderLoop,uint64_t UnrollFactor)469 static void updateLatchBranchWeightsForRemainderLoop(Loop *OrigLoop,
470 Loop *RemainderLoop,
471 uint64_t UnrollFactor) {
472 uint64_t TrueWeight, FalseWeight;
473 BranchInst *LatchBR =
474 cast<BranchInst>(OrigLoop->getLoopLatch()->getTerminator());
475 if (!extractBranchWeights(*LatchBR, TrueWeight, FalseWeight))
476 return;
477 uint64_t ExitWeight = LatchBR->getSuccessor(0) == OrigLoop->getHeader()
478 ? FalseWeight
479 : TrueWeight;
480 assert(UnrollFactor > 1);
481 uint64_t BackEdgeWeight = (UnrollFactor - 1) * ExitWeight;
482 BasicBlock *Header = RemainderLoop->getHeader();
483 BasicBlock *Latch = RemainderLoop->getLoopLatch();
484 auto *RemainderLatchBR = cast<BranchInst>(Latch->getTerminator());
485 unsigned HeaderIdx = (RemainderLatchBR->getSuccessor(0) == Header ? 0 : 1);
486 MDBuilder MDB(RemainderLatchBR->getContext());
487 MDNode *WeightNode =
488 HeaderIdx ? MDB.createBranchWeights(ExitWeight, BackEdgeWeight)
489 : MDB.createBranchWeights(BackEdgeWeight, ExitWeight);
490 RemainderLatchBR->setMetadata(LLVMContext::MD_prof, WeightNode);
491 }
492
493 /// Calculate ModVal = (BECount + 1) % Count on the abstract integer domain
494 /// accounting for the possibility of unsigned overflow in the 2s complement
495 /// domain. Preconditions:
496 /// 1) TripCount = BECount + 1 (allowing overflow)
497 /// 2) Log2(Count) <= BitWidth(BECount)
CreateTripRemainder(IRBuilder<> & B,Value * BECount,Value * TripCount,unsigned Count)498 static Value *CreateTripRemainder(IRBuilder<> &B, Value *BECount,
499 Value *TripCount, unsigned Count) {
500 // Note that TripCount is BECount + 1.
501 if (isPowerOf2_32(Count))
502 // If the expression is zero, then either:
503 // 1. There are no iterations to be run in the prolog/epilog loop.
504 // OR
505 // 2. The addition computing TripCount overflowed.
506 //
507 // If (2) is true, we know that TripCount really is (1 << BEWidth) and so
508 // the number of iterations that remain to be run in the original loop is a
509 // multiple Count == (1 << Log2(Count)) because Log2(Count) <= BEWidth (a
510 // precondition of this method).
511 return B.CreateAnd(TripCount, Count - 1, "xtraiter");
512
513 // As (BECount + 1) can potentially unsigned overflow we count
514 // (BECount % Count) + 1 which is overflow safe as BECount % Count < Count.
515 Constant *CountC = ConstantInt::get(BECount->getType(), Count);
516 Value *ModValTmp = B.CreateURem(BECount, CountC);
517 Value *ModValAdd = B.CreateAdd(ModValTmp,
518 ConstantInt::get(ModValTmp->getType(), 1));
519 // At that point (BECount % Count) + 1 could be equal to Count.
520 // To handle this case we need to take mod by Count one more time.
521 return B.CreateURem(ModValAdd, CountC, "xtraiter");
522 }
523
524
525 /// Insert code in the prolog/epilog code when unrolling a loop with a
526 /// run-time trip-count.
527 ///
528 /// This method assumes that the loop unroll factor is total number
529 /// of loop bodies in the loop after unrolling. (Some folks refer
530 /// to the unroll factor as the number of *extra* copies added).
531 /// We assume also that the loop unroll factor is a power-of-two. So, after
532 /// unrolling the loop, the number of loop bodies executed is 2,
533 /// 4, 8, etc. Note - LLVM converts the if-then-sequence to a switch
534 /// instruction in SimplifyCFG.cpp. Then, the backend decides how code for
535 /// the switch instruction is generated.
536 ///
537 /// ***Prolog case***
538 /// extraiters = tripcount % loopfactor
539 /// if (extraiters == 0) jump Loop:
540 /// else jump Prol:
541 /// Prol: LoopBody;
542 /// extraiters -= 1 // Omitted if unroll factor is 2.
543 /// if (extraiters != 0) jump Prol: // Omitted if unroll factor is 2.
544 /// if (tripcount < loopfactor) jump End:
545 /// Loop:
546 /// ...
547 /// End:
548 ///
549 /// ***Epilog case***
550 /// extraiters = tripcount % loopfactor
551 /// if (tripcount < loopfactor) jump LoopExit:
552 /// unroll_iters = tripcount - extraiters
553 /// Loop: LoopBody; (executes unroll_iter times);
554 /// unroll_iter -= 1
555 /// if (unroll_iter != 0) jump Loop:
556 /// LoopExit:
557 /// if (extraiters == 0) jump EpilExit:
558 /// Epil: LoopBody; (executes extraiters times)
559 /// extraiters -= 1 // Omitted if unroll factor is 2.
560 /// if (extraiters != 0) jump Epil: // Omitted if unroll factor is 2.
561 /// EpilExit:
562
UnrollRuntimeLoopRemainder(Loop * L,unsigned Count,bool AllowExpensiveTripCount,bool UseEpilogRemainder,bool UnrollRemainder,bool ForgetAllSCEV,LoopInfo * LI,ScalarEvolution * SE,DominatorTree * DT,AssumptionCache * AC,const TargetTransformInfo * TTI,bool PreserveLCSSA,Loop ** ResultLoop)563 bool llvm::UnrollRuntimeLoopRemainder(
564 Loop *L, unsigned Count, bool AllowExpensiveTripCount,
565 bool UseEpilogRemainder, bool UnrollRemainder, bool ForgetAllSCEV,
566 LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, AssumptionCache *AC,
567 const TargetTransformInfo *TTI, bool PreserveLCSSA, Loop **ResultLoop) {
568 LLVM_DEBUG(dbgs() << "Trying runtime unrolling on Loop: \n");
569 LLVM_DEBUG(L->dump());
570 LLVM_DEBUG(UseEpilogRemainder ? dbgs() << "Using epilog remainder.\n"
571 : dbgs() << "Using prolog remainder.\n");
572
573 // Make sure the loop is in canonical form.
574 if (!L->isLoopSimplifyForm()) {
575 LLVM_DEBUG(dbgs() << "Not in simplify form!\n");
576 return false;
577 }
578
579 // Guaranteed by LoopSimplifyForm.
580 BasicBlock *Latch = L->getLoopLatch();
581 BasicBlock *Header = L->getHeader();
582
583 BranchInst *LatchBR = cast<BranchInst>(Latch->getTerminator());
584
585 if (!LatchBR || LatchBR->isUnconditional()) {
586 // The loop-rotate pass can be helpful to avoid this in many cases.
587 LLVM_DEBUG(
588 dbgs()
589 << "Loop latch not terminated by a conditional branch.\n");
590 return false;
591 }
592
593 unsigned ExitIndex = LatchBR->getSuccessor(0) == Header ? 1 : 0;
594 BasicBlock *LatchExit = LatchBR->getSuccessor(ExitIndex);
595
596 if (L->contains(LatchExit)) {
597 // Cloning the loop basic blocks (`CloneLoopBlocks`) requires that one of the
598 // targets of the Latch be an exit block out of the loop.
599 LLVM_DEBUG(
600 dbgs()
601 << "One of the loop latch successors must be the exit block.\n");
602 return false;
603 }
604
605 // These are exit blocks other than the target of the latch exiting block.
606 SmallVector<BasicBlock *, 4> OtherExits;
607 L->getUniqueNonLatchExitBlocks(OtherExits);
608 // Support only single exit and exiting block unless multi-exit loop
609 // unrolling is enabled.
610 if (!L->getExitingBlock() || OtherExits.size()) {
611 // We rely on LCSSA form being preserved when the exit blocks are transformed.
612 // (Note that only an off-by-default mode of the old PM disables PreserveLCCA.)
613 if (!PreserveLCSSA)
614 return false;
615
616 if (!canProfitablyUnrollMultiExitLoop(L, OtherExits, LatchExit,
617 UseEpilogRemainder)) {
618 LLVM_DEBUG(
619 dbgs()
620 << "Multiple exit/exiting blocks in loop and multi-exit unrolling not "
621 "enabled!\n");
622 return false;
623 }
624 }
625 // Use Scalar Evolution to compute the trip count. This allows more loops to
626 // be unrolled than relying on induction var simplification.
627 if (!SE)
628 return false;
629
630 // Only unroll loops with a computable trip count.
631 // We calculate the backedge count by using getExitCount on the Latch block,
632 // which is proven to be the only exiting block in this loop. This is same as
633 // calculating getBackedgeTakenCount on the loop (which computes SCEV for all
634 // exiting blocks).
635 const SCEV *BECountSC = SE->getExitCount(L, Latch);
636 if (isa<SCEVCouldNotCompute>(BECountSC)) {
637 LLVM_DEBUG(dbgs() << "Could not compute exit block SCEV\n");
638 return false;
639 }
640
641 unsigned BEWidth = cast<IntegerType>(BECountSC->getType())->getBitWidth();
642
643 // Add 1 since the backedge count doesn't include the first loop iteration.
644 // (Note that overflow can occur, this is handled explicitly below)
645 const SCEV *TripCountSC =
646 SE->getAddExpr(BECountSC, SE->getConstant(BECountSC->getType(), 1));
647 if (isa<SCEVCouldNotCompute>(TripCountSC)) {
648 LLVM_DEBUG(dbgs() << "Could not compute trip count SCEV.\n");
649 return false;
650 }
651
652 BasicBlock *PreHeader = L->getLoopPreheader();
653 BranchInst *PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator());
654 const DataLayout &DL = Header->getModule()->getDataLayout();
655 SCEVExpander Expander(*SE, DL, "loop-unroll");
656 if (!AllowExpensiveTripCount &&
657 Expander.isHighCostExpansion(TripCountSC, L, SCEVCheapExpansionBudget,
658 TTI, PreHeaderBR)) {
659 LLVM_DEBUG(dbgs() << "High cost for expanding trip count scev!\n");
660 return false;
661 }
662
663 // This constraint lets us deal with an overflowing trip count easily; see the
664 // comment on ModVal below.
665 if (Log2_32(Count) > BEWidth) {
666 LLVM_DEBUG(
667 dbgs()
668 << "Count failed constraint on overflow trip count calculation.\n");
669 return false;
670 }
671
672 // Loop structure is the following:
673 //
674 // PreHeader
675 // Header
676 // ...
677 // Latch
678 // LatchExit
679
680 BasicBlock *NewPreHeader;
681 BasicBlock *NewExit = nullptr;
682 BasicBlock *PrologExit = nullptr;
683 BasicBlock *EpilogPreHeader = nullptr;
684 BasicBlock *PrologPreHeader = nullptr;
685
686 if (UseEpilogRemainder) {
687 // If epilog remainder
688 // Split PreHeader to insert a branch around loop for unrolling.
689 NewPreHeader = SplitBlock(PreHeader, PreHeader->getTerminator(), DT, LI);
690 NewPreHeader->setName(PreHeader->getName() + ".new");
691 // Split LatchExit to create phi nodes from branch above.
692 NewExit = SplitBlockPredecessors(LatchExit, {Latch}, ".unr-lcssa", DT, LI,
693 nullptr, PreserveLCSSA);
694 // NewExit gets its DebugLoc from LatchExit, which is not part of the
695 // original Loop.
696 // Fix this by setting Loop's DebugLoc to NewExit.
697 auto *NewExitTerminator = NewExit->getTerminator();
698 NewExitTerminator->setDebugLoc(Header->getTerminator()->getDebugLoc());
699 // Split NewExit to insert epilog remainder loop.
700 EpilogPreHeader = SplitBlock(NewExit, NewExitTerminator, DT, LI);
701 EpilogPreHeader->setName(Header->getName() + ".epil.preheader");
702
703 // If the latch exits from multiple level of nested loops, then
704 // by assumption there must be another loop exit which branches to the
705 // outer loop and we must adjust the loop for the newly inserted blocks
706 // to account for the fact that our epilogue is still in the same outer
707 // loop. Note that this leaves loopinfo temporarily out of sync with the
708 // CFG until the actual epilogue loop is inserted.
709 if (auto *ParentL = L->getParentLoop())
710 if (LI->getLoopFor(LatchExit) != ParentL) {
711 LI->removeBlock(NewExit);
712 ParentL->addBasicBlockToLoop(NewExit, *LI);
713 LI->removeBlock(EpilogPreHeader);
714 ParentL->addBasicBlockToLoop(EpilogPreHeader, *LI);
715 }
716
717 } else {
718 // If prolog remainder
719 // Split the original preheader twice to insert prolog remainder loop
720 PrologPreHeader = SplitEdge(PreHeader, Header, DT, LI);
721 PrologPreHeader->setName(Header->getName() + ".prol.preheader");
722 PrologExit = SplitBlock(PrologPreHeader, PrologPreHeader->getTerminator(),
723 DT, LI);
724 PrologExit->setName(Header->getName() + ".prol.loopexit");
725 // Split PrologExit to get NewPreHeader.
726 NewPreHeader = SplitBlock(PrologExit, PrologExit->getTerminator(), DT, LI);
727 NewPreHeader->setName(PreHeader->getName() + ".new");
728 }
729 // Loop structure should be the following:
730 // Epilog Prolog
731 //
732 // PreHeader PreHeader
733 // *NewPreHeader *PrologPreHeader
734 // Header *PrologExit
735 // ... *NewPreHeader
736 // Latch Header
737 // *NewExit ...
738 // *EpilogPreHeader Latch
739 // LatchExit LatchExit
740
741 // Calculate conditions for branch around loop for unrolling
742 // in epilog case and around prolog remainder loop in prolog case.
743 // Compute the number of extra iterations required, which is:
744 // extra iterations = run-time trip count % loop unroll factor
745 PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator());
746 IRBuilder<> B(PreHeaderBR);
747 Value *TripCount = Expander.expandCodeFor(TripCountSC, TripCountSC->getType(),
748 PreHeaderBR);
749 Value *BECount;
750 // If there are other exits before the latch, that may cause the latch exit
751 // branch to never be executed, and the latch exit count may be poison.
752 // In this case, freeze the TripCount and base BECount on the frozen
753 // TripCount. We will introduce two branches using these values, and it's
754 // important that they see a consistent value (which would not be guaranteed
755 // if were frozen independently.)
756 if ((!OtherExits.empty() || !SE->loopHasNoAbnormalExits(L)) &&
757 !isGuaranteedNotToBeUndefOrPoison(TripCount, AC, PreHeaderBR, DT)) {
758 TripCount = B.CreateFreeze(TripCount);
759 BECount =
760 B.CreateAdd(TripCount, ConstantInt::get(TripCount->getType(), -1));
761 } else {
762 // If we don't need to freeze, use SCEVExpander for BECount as well, to
763 // allow slightly better value reuse.
764 BECount =
765 Expander.expandCodeFor(BECountSC, BECountSC->getType(), PreHeaderBR);
766 }
767
768 Value * const ModVal = CreateTripRemainder(B, BECount, TripCount, Count);
769
770 Value *BranchVal =
771 UseEpilogRemainder ? B.CreateICmpULT(BECount,
772 ConstantInt::get(BECount->getType(),
773 Count - 1)) :
774 B.CreateIsNotNull(ModVal, "lcmp.mod");
775 BasicBlock *RemainderLoop = UseEpilogRemainder ? NewExit : PrologPreHeader;
776 BasicBlock *UnrollingLoop = UseEpilogRemainder ? NewPreHeader : PrologExit;
777 // Branch to either remainder (extra iterations) loop or unrolling loop.
778 B.CreateCondBr(BranchVal, RemainderLoop, UnrollingLoop);
779 PreHeaderBR->eraseFromParent();
780 if (DT) {
781 if (UseEpilogRemainder)
782 DT->changeImmediateDominator(NewExit, PreHeader);
783 else
784 DT->changeImmediateDominator(PrologExit, PreHeader);
785 }
786 Function *F = Header->getParent();
787 // Get an ordered list of blocks in the loop to help with the ordering of the
788 // cloned blocks in the prolog/epilog code
789 LoopBlocksDFS LoopBlocks(L);
790 LoopBlocks.perform(LI);
791
792 //
793 // For each extra loop iteration, create a copy of the loop's basic blocks
794 // and generate a condition that branches to the copy depending on the
795 // number of 'left over' iterations.
796 //
797 std::vector<BasicBlock *> NewBlocks;
798 ValueToValueMapTy VMap;
799
800 // Clone all the basic blocks in the loop. If Count is 2, we don't clone
801 // the loop, otherwise we create a cloned loop to execute the extra
802 // iterations. This function adds the appropriate CFG connections.
803 BasicBlock *InsertBot = UseEpilogRemainder ? LatchExit : PrologExit;
804 BasicBlock *InsertTop = UseEpilogRemainder ? EpilogPreHeader : PrologPreHeader;
805 Loop *remainderLoop = CloneLoopBlocks(
806 L, ModVal, UseEpilogRemainder, UnrollRemainder, InsertTop, InsertBot,
807 NewPreHeader, NewBlocks, LoopBlocks, VMap, DT, LI);
808
809 // Assign the maximum possible trip count as the back edge weight for the
810 // remainder loop if the original loop comes with a branch weight.
811 if (remainderLoop && !UnrollRemainder)
812 updateLatchBranchWeightsForRemainderLoop(L, remainderLoop, Count);
813
814 // Insert the cloned blocks into the function.
815 F->splice(InsertBot->getIterator(), F, NewBlocks[0]->getIterator(), F->end());
816
817 // Now the loop blocks are cloned and the other exiting blocks from the
818 // remainder are connected to the original Loop's exit blocks. The remaining
819 // work is to update the phi nodes in the original loop, and take in the
820 // values from the cloned region.
821 for (auto *BB : OtherExits) {
822 // Given we preserve LCSSA form, we know that the values used outside the
823 // loop will be used through these phi nodes at the exit blocks that are
824 // transformed below.
825 for (PHINode &PN : BB->phis()) {
826 unsigned oldNumOperands = PN.getNumIncomingValues();
827 // Add the incoming values from the remainder code to the end of the phi
828 // node.
829 for (unsigned i = 0; i < oldNumOperands; i++){
830 auto *PredBB =PN.getIncomingBlock(i);
831 if (PredBB == Latch)
832 // The latch exit is handled seperately, see connectX
833 continue;
834 if (!L->contains(PredBB))
835 // Even if we had dedicated exits, the code above inserted an
836 // extra branch which can reach the latch exit.
837 continue;
838
839 auto *V = PN.getIncomingValue(i);
840 if (Instruction *I = dyn_cast<Instruction>(V))
841 if (L->contains(I))
842 V = VMap.lookup(I);
843 PN.addIncoming(V, cast<BasicBlock>(VMap[PredBB]));
844 }
845 }
846 #if defined(EXPENSIVE_CHECKS) && !defined(NDEBUG)
847 for (BasicBlock *SuccBB : successors(BB)) {
848 assert(!(llvm::is_contained(OtherExits, SuccBB) || SuccBB == LatchExit) &&
849 "Breaks the definition of dedicated exits!");
850 }
851 #endif
852 }
853
854 // Update the immediate dominator of the exit blocks and blocks that are
855 // reachable from the exit blocks. This is needed because we now have paths
856 // from both the original loop and the remainder code reaching the exit
857 // blocks. While the IDom of these exit blocks were from the original loop,
858 // now the IDom is the preheader (which decides whether the original loop or
859 // remainder code should run).
860 if (DT && !L->getExitingBlock()) {
861 SmallVector<BasicBlock *, 16> ChildrenToUpdate;
862 // NB! We have to examine the dom children of all loop blocks, not just
863 // those which are the IDom of the exit blocks. This is because blocks
864 // reachable from the exit blocks can have their IDom as the nearest common
865 // dominator of the exit blocks.
866 for (auto *BB : L->blocks()) {
867 auto *DomNodeBB = DT->getNode(BB);
868 for (auto *DomChild : DomNodeBB->children()) {
869 auto *DomChildBB = DomChild->getBlock();
870 if (!L->contains(LI->getLoopFor(DomChildBB)))
871 ChildrenToUpdate.push_back(DomChildBB);
872 }
873 }
874 for (auto *BB : ChildrenToUpdate)
875 DT->changeImmediateDominator(BB, PreHeader);
876 }
877
878 // Loop structure should be the following:
879 // Epilog Prolog
880 //
881 // PreHeader PreHeader
882 // NewPreHeader PrologPreHeader
883 // Header PrologHeader
884 // ... ...
885 // Latch PrologLatch
886 // NewExit PrologExit
887 // EpilogPreHeader NewPreHeader
888 // EpilogHeader Header
889 // ... ...
890 // EpilogLatch Latch
891 // LatchExit LatchExit
892
893 // Rewrite the cloned instruction operands to use the values created when the
894 // clone is created.
895 for (BasicBlock *BB : NewBlocks) {
896 for (Instruction &I : *BB) {
897 RemapInstruction(&I, VMap,
898 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
899 }
900 }
901
902 if (UseEpilogRemainder) {
903 // Connect the epilog code to the original loop and update the
904 // PHI functions.
905 ConnectEpilog(L, ModVal, NewExit, LatchExit, PreHeader, EpilogPreHeader,
906 NewPreHeader, VMap, DT, LI, PreserveLCSSA, *SE);
907
908 // Update counter in loop for unrolling.
909 // Use an incrementing IV. Pre-incr/post-incr is backedge/trip count.
910 // Subtle: TestVal can be 0 if we wrapped when computing the trip count,
911 // thus we must compare the post-increment (wrapping) value.
912 IRBuilder<> B2(NewPreHeader->getTerminator());
913 Value *TestVal = B2.CreateSub(TripCount, ModVal, "unroll_iter");
914 BranchInst *LatchBR = cast<BranchInst>(Latch->getTerminator());
915 PHINode *NewIdx = PHINode::Create(TestVal->getType(), 2, "niter",
916 Header->getFirstNonPHI());
917 B2.SetInsertPoint(LatchBR);
918 auto *Zero = ConstantInt::get(NewIdx->getType(), 0);
919 auto *One = ConstantInt::get(NewIdx->getType(), 1);
920 Value *IdxNext = B2.CreateAdd(NewIdx, One, NewIdx->getName() + ".next");
921 auto Pred = LatchBR->getSuccessor(0) == Header ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ;
922 Value *IdxCmp = B2.CreateICmp(Pred, IdxNext, TestVal, NewIdx->getName() + ".ncmp");
923 NewIdx->addIncoming(Zero, NewPreHeader);
924 NewIdx->addIncoming(IdxNext, Latch);
925 LatchBR->setCondition(IdxCmp);
926 } else {
927 // Connect the prolog code to the original loop and update the
928 // PHI functions.
929 ConnectProlog(L, BECount, Count, PrologExit, LatchExit, PreHeader,
930 NewPreHeader, VMap, DT, LI, PreserveLCSSA, *SE);
931 }
932
933 // If this loop is nested, then the loop unroller changes the code in the any
934 // of its parent loops, so the Scalar Evolution pass needs to be run again.
935 SE->forgetTopmostLoop(L);
936
937 // Verify that the Dom Tree and Loop Info are correct.
938 #if defined(EXPENSIVE_CHECKS) && !defined(NDEBUG)
939 if (DT) {
940 assert(DT->verify(DominatorTree::VerificationLevel::Full));
941 LI->verify(*DT);
942 }
943 #endif
944
945 // For unroll factor 2 remainder loop will have 1 iteration.
946 if (Count == 2 && DT && LI && SE) {
947 // TODO: This code could probably be pulled out into a helper function
948 // (e.g. breakLoopBackedgeAndSimplify) and reused in loop-deletion.
949 BasicBlock *RemainderLatch = remainderLoop->getLoopLatch();
950 assert(RemainderLatch);
951 SmallVector<BasicBlock*> RemainderBlocks(remainderLoop->getBlocks().begin(),
952 remainderLoop->getBlocks().end());
953 breakLoopBackedge(remainderLoop, *DT, *SE, *LI, nullptr);
954 remainderLoop = nullptr;
955
956 // Simplify loop values after breaking the backedge
957 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
958 SmallVector<WeakTrackingVH, 16> DeadInsts;
959 for (BasicBlock *BB : RemainderBlocks) {
960 for (Instruction &Inst : llvm::make_early_inc_range(*BB)) {
961 if (Value *V = simplifyInstruction(&Inst, {DL, nullptr, DT, AC}))
962 if (LI->replacementPreservesLCSSAForm(&Inst, V))
963 Inst.replaceAllUsesWith(V);
964 if (isInstructionTriviallyDead(&Inst))
965 DeadInsts.emplace_back(&Inst);
966 }
967 // We can't do recursive deletion until we're done iterating, as we might
968 // have a phi which (potentially indirectly) uses instructions later in
969 // the block we're iterating through.
970 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts);
971 }
972
973 // Merge latch into exit block.
974 auto *ExitBB = RemainderLatch->getSingleSuccessor();
975 assert(ExitBB && "required after breaking cond br backedge");
976 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
977 MergeBlockIntoPredecessor(ExitBB, &DTU, LI);
978 }
979
980 // Canonicalize to LoopSimplifyForm both original and remainder loops. We
981 // cannot rely on the LoopUnrollPass to do this because it only does
982 // canonicalization for parent/subloops and not the sibling loops.
983 if (OtherExits.size() > 0) {
984 // Generate dedicated exit blocks for the original loop, to preserve
985 // LoopSimplifyForm.
986 formDedicatedExitBlocks(L, DT, LI, nullptr, PreserveLCSSA);
987 // Generate dedicated exit blocks for the remainder loop if one exists, to
988 // preserve LoopSimplifyForm.
989 if (remainderLoop)
990 formDedicatedExitBlocks(remainderLoop, DT, LI, nullptr, PreserveLCSSA);
991 }
992
993 auto UnrollResult = LoopUnrollResult::Unmodified;
994 if (remainderLoop && UnrollRemainder) {
995 LLVM_DEBUG(dbgs() << "Unrolling remainder loop\n");
996 UnrollResult =
997 UnrollLoop(remainderLoop,
998 {/*Count*/ Count - 1, /*Force*/ false, /*Runtime*/ false,
999 /*AllowExpensiveTripCount*/ false,
1000 /*UnrollRemainder*/ false, ForgetAllSCEV},
1001 LI, SE, DT, AC, TTI, /*ORE*/ nullptr, PreserveLCSSA);
1002 }
1003
1004 if (ResultLoop && UnrollResult != LoopUnrollResult::FullyUnrolled)
1005 *ResultLoop = remainderLoop;
1006 NumRuntimeUnrolled++;
1007 return true;
1008 }
1009