1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // These classes wrap the information about a call or function
10 // definition used to handle ABI compliancy.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CGCall.h"
15 #include "ABIInfo.h"
16 #include "CGBlocks.h"
17 #include "CGCXXABI.h"
18 #include "CGCleanup.h"
19 #include "CGRecordLayout.h"
20 #include "CodeGenFunction.h"
21 #include "CodeGenModule.h"
22 #include "TargetInfo.h"
23 #include "clang/AST/Attr.h"
24 #include "clang/AST/Decl.h"
25 #include "clang/AST/DeclCXX.h"
26 #include "clang/AST/DeclObjC.h"
27 #include "clang/Basic/CodeGenOptions.h"
28 #include "clang/Basic/TargetBuiltins.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "clang/CodeGen/CGFunctionInfo.h"
31 #include "clang/CodeGen/SwiftCallingConv.h"
32 #include "llvm/ADT/StringExtras.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/IR/Assumptions.h"
35 #include "llvm/IR/Attributes.h"
36 #include "llvm/IR/CallingConv.h"
37 #include "llvm/IR/DataLayout.h"
38 #include "llvm/IR/InlineAsm.h"
39 #include "llvm/IR/IntrinsicInst.h"
40 #include "llvm/IR/Intrinsics.h"
41 #include "llvm/IR/Type.h"
42 #include "llvm/Transforms/Utils/Local.h"
43 #include <optional>
44 using namespace clang;
45 using namespace CodeGen;
46
47 /***/
48
ClangCallConvToLLVMCallConv(CallingConv CC)49 unsigned CodeGenTypes::ClangCallConvToLLVMCallConv(CallingConv CC) {
50 switch (CC) {
51 default: return llvm::CallingConv::C;
52 case CC_X86StdCall: return llvm::CallingConv::X86_StdCall;
53 case CC_X86FastCall: return llvm::CallingConv::X86_FastCall;
54 case CC_X86RegCall: return llvm::CallingConv::X86_RegCall;
55 case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall;
56 case CC_Win64: return llvm::CallingConv::Win64;
57 case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV;
58 case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS;
59 case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
60 case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI;
61 // TODO: Add support for __pascal to LLVM.
62 case CC_X86Pascal: return llvm::CallingConv::C;
63 // TODO: Add support for __vectorcall to LLVM.
64 case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall;
65 case CC_AArch64VectorCall: return llvm::CallingConv::AArch64_VectorCall;
66 case CC_AArch64SVEPCS: return llvm::CallingConv::AArch64_SVE_VectorCall;
67 case CC_AMDGPUKernelCall: return llvm::CallingConv::AMDGPU_KERNEL;
68 case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC;
69 case CC_OpenCLKernel: return CGM.getTargetCodeGenInfo().getOpenCLKernelCallingConv();
70 case CC_PreserveMost: return llvm::CallingConv::PreserveMost;
71 case CC_PreserveAll: return llvm::CallingConv::PreserveAll;
72 case CC_Swift: return llvm::CallingConv::Swift;
73 case CC_SwiftAsync: return llvm::CallingConv::SwiftTail;
74 }
75 }
76
77 /// Derives the 'this' type for codegen purposes, i.e. ignoring method CVR
78 /// qualification. Either or both of RD and MD may be null. A null RD indicates
79 /// that there is no meaningful 'this' type, and a null MD can occur when
80 /// calling a method pointer.
DeriveThisType(const CXXRecordDecl * RD,const CXXMethodDecl * MD)81 CanQualType CodeGenTypes::DeriveThisType(const CXXRecordDecl *RD,
82 const CXXMethodDecl *MD) {
83 QualType RecTy;
84 if (RD)
85 RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal();
86 else
87 RecTy = Context.VoidTy;
88
89 if (MD)
90 RecTy = Context.getAddrSpaceQualType(RecTy, MD->getMethodQualifiers().getAddressSpace());
91 return Context.getPointerType(CanQualType::CreateUnsafe(RecTy));
92 }
93
94 /// Returns the canonical formal type of the given C++ method.
GetFormalType(const CXXMethodDecl * MD)95 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) {
96 return MD->getType()->getCanonicalTypeUnqualified()
97 .getAs<FunctionProtoType>();
98 }
99
100 /// Returns the "extra-canonicalized" return type, which discards
101 /// qualifiers on the return type. Codegen doesn't care about them,
102 /// and it makes ABI code a little easier to be able to assume that
103 /// all parameter and return types are top-level unqualified.
GetReturnType(QualType RetTy)104 static CanQualType GetReturnType(QualType RetTy) {
105 return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType();
106 }
107
108 /// Arrange the argument and result information for a value of the given
109 /// unprototyped freestanding function type.
110 const CGFunctionInfo &
arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP)111 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) {
112 // When translating an unprototyped function type, always use a
113 // variadic type.
114 return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(),
115 /*instanceMethod=*/false,
116 /*chainCall=*/false, std::nullopt,
117 FTNP->getExtInfo(), {}, RequiredArgs(0));
118 }
119
addExtParameterInfosForCall(llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> & paramInfos,const FunctionProtoType * proto,unsigned prefixArgs,unsigned totalArgs)120 static void addExtParameterInfosForCall(
121 llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos,
122 const FunctionProtoType *proto,
123 unsigned prefixArgs,
124 unsigned totalArgs) {
125 assert(proto->hasExtParameterInfos());
126 assert(paramInfos.size() <= prefixArgs);
127 assert(proto->getNumParams() + prefixArgs <= totalArgs);
128
129 paramInfos.reserve(totalArgs);
130
131 // Add default infos for any prefix args that don't already have infos.
132 paramInfos.resize(prefixArgs);
133
134 // Add infos for the prototype.
135 for (const auto &ParamInfo : proto->getExtParameterInfos()) {
136 paramInfos.push_back(ParamInfo);
137 // pass_object_size params have no parameter info.
138 if (ParamInfo.hasPassObjectSize())
139 paramInfos.emplace_back();
140 }
141
142 assert(paramInfos.size() <= totalArgs &&
143 "Did we forget to insert pass_object_size args?");
144 // Add default infos for the variadic and/or suffix arguments.
145 paramInfos.resize(totalArgs);
146 }
147
148 /// Adds the formal parameters in FPT to the given prefix. If any parameter in
149 /// FPT has pass_object_size attrs, then we'll add parameters for those, too.
appendParameterTypes(const CodeGenTypes & CGT,SmallVectorImpl<CanQualType> & prefix,SmallVectorImpl<FunctionProtoType::ExtParameterInfo> & paramInfos,CanQual<FunctionProtoType> FPT)150 static void appendParameterTypes(const CodeGenTypes &CGT,
151 SmallVectorImpl<CanQualType> &prefix,
152 SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos,
153 CanQual<FunctionProtoType> FPT) {
154 // Fast path: don't touch param info if we don't need to.
155 if (!FPT->hasExtParameterInfos()) {
156 assert(paramInfos.empty() &&
157 "We have paramInfos, but the prototype doesn't?");
158 prefix.append(FPT->param_type_begin(), FPT->param_type_end());
159 return;
160 }
161
162 unsigned PrefixSize = prefix.size();
163 // In the vast majority of cases, we'll have precisely FPT->getNumParams()
164 // parameters; the only thing that can change this is the presence of
165 // pass_object_size. So, we preallocate for the common case.
166 prefix.reserve(prefix.size() + FPT->getNumParams());
167
168 auto ExtInfos = FPT->getExtParameterInfos();
169 assert(ExtInfos.size() == FPT->getNumParams());
170 for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) {
171 prefix.push_back(FPT->getParamType(I));
172 if (ExtInfos[I].hasPassObjectSize())
173 prefix.push_back(CGT.getContext().getSizeType());
174 }
175
176 addExtParameterInfosForCall(paramInfos, FPT.getTypePtr(), PrefixSize,
177 prefix.size());
178 }
179
180 /// Arrange the LLVM function layout for a value of the given function
181 /// type, on top of any implicit parameters already stored.
182 static const CGFunctionInfo &
arrangeLLVMFunctionInfo(CodeGenTypes & CGT,bool instanceMethod,SmallVectorImpl<CanQualType> & prefix,CanQual<FunctionProtoType> FTP)183 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod,
184 SmallVectorImpl<CanQualType> &prefix,
185 CanQual<FunctionProtoType> FTP) {
186 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
187 RequiredArgs Required = RequiredArgs::forPrototypePlus(FTP, prefix.size());
188 // FIXME: Kill copy.
189 appendParameterTypes(CGT, prefix, paramInfos, FTP);
190 CanQualType resultType = FTP->getReturnType().getUnqualifiedType();
191
192 return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod,
193 /*chainCall=*/false, prefix,
194 FTP->getExtInfo(), paramInfos,
195 Required);
196 }
197
198 /// Arrange the argument and result information for a value of the
199 /// given freestanding function type.
200 const CGFunctionInfo &
arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP)201 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) {
202 SmallVector<CanQualType, 16> argTypes;
203 return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes,
204 FTP);
205 }
206
getCallingConventionForDecl(const ObjCMethodDecl * D,bool IsWindows)207 static CallingConv getCallingConventionForDecl(const ObjCMethodDecl *D,
208 bool IsWindows) {
209 // Set the appropriate calling convention for the Function.
210 if (D->hasAttr<StdCallAttr>())
211 return CC_X86StdCall;
212
213 if (D->hasAttr<FastCallAttr>())
214 return CC_X86FastCall;
215
216 if (D->hasAttr<RegCallAttr>())
217 return CC_X86RegCall;
218
219 if (D->hasAttr<ThisCallAttr>())
220 return CC_X86ThisCall;
221
222 if (D->hasAttr<VectorCallAttr>())
223 return CC_X86VectorCall;
224
225 if (D->hasAttr<PascalAttr>())
226 return CC_X86Pascal;
227
228 if (PcsAttr *PCS = D->getAttr<PcsAttr>())
229 return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP);
230
231 if (D->hasAttr<AArch64VectorPcsAttr>())
232 return CC_AArch64VectorCall;
233
234 if (D->hasAttr<AArch64SVEPcsAttr>())
235 return CC_AArch64SVEPCS;
236
237 if (D->hasAttr<AMDGPUKernelCallAttr>())
238 return CC_AMDGPUKernelCall;
239
240 if (D->hasAttr<IntelOclBiccAttr>())
241 return CC_IntelOclBicc;
242
243 if (D->hasAttr<MSABIAttr>())
244 return IsWindows ? CC_C : CC_Win64;
245
246 if (D->hasAttr<SysVABIAttr>())
247 return IsWindows ? CC_X86_64SysV : CC_C;
248
249 if (D->hasAttr<PreserveMostAttr>())
250 return CC_PreserveMost;
251
252 if (D->hasAttr<PreserveAllAttr>())
253 return CC_PreserveAll;
254
255 return CC_C;
256 }
257
258 /// Arrange the argument and result information for a call to an
259 /// unknown C++ non-static member function of the given abstract type.
260 /// (A null RD means we don't have any meaningful "this" argument type,
261 /// so fall back to a generic pointer type).
262 /// The member function must be an ordinary function, i.e. not a
263 /// constructor or destructor.
264 const CGFunctionInfo &
arrangeCXXMethodType(const CXXRecordDecl * RD,const FunctionProtoType * FTP,const CXXMethodDecl * MD)265 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD,
266 const FunctionProtoType *FTP,
267 const CXXMethodDecl *MD) {
268 SmallVector<CanQualType, 16> argTypes;
269
270 // Add the 'this' pointer.
271 argTypes.push_back(DeriveThisType(RD, MD));
272
273 return ::arrangeLLVMFunctionInfo(
274 *this, true, argTypes,
275 FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>());
276 }
277
278 /// Set calling convention for CUDA/HIP kernel.
setCUDAKernelCallingConvention(CanQualType & FTy,CodeGenModule & CGM,const FunctionDecl * FD)279 static void setCUDAKernelCallingConvention(CanQualType &FTy, CodeGenModule &CGM,
280 const FunctionDecl *FD) {
281 if (FD->hasAttr<CUDAGlobalAttr>()) {
282 const FunctionType *FT = FTy->getAs<FunctionType>();
283 CGM.getTargetCodeGenInfo().setCUDAKernelCallingConvention(FT);
284 FTy = FT->getCanonicalTypeUnqualified();
285 }
286 }
287
288 /// Arrange the argument and result information for a declaration or
289 /// definition of the given C++ non-static member function. The
290 /// member function must be an ordinary function, i.e. not a
291 /// constructor or destructor.
292 const CGFunctionInfo &
arrangeCXXMethodDeclaration(const CXXMethodDecl * MD)293 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) {
294 assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!");
295 assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!");
296
297 CanQualType FT = GetFormalType(MD).getAs<Type>();
298 setCUDAKernelCallingConvention(FT, CGM, MD);
299 auto prototype = FT.getAs<FunctionProtoType>();
300
301 if (MD->isInstance()) {
302 // The abstract case is perfectly fine.
303 const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD);
304 return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD);
305 }
306
307 return arrangeFreeFunctionType(prototype);
308 }
309
inheritingCtorHasParams(const InheritedConstructor & Inherited,CXXCtorType Type)310 bool CodeGenTypes::inheritingCtorHasParams(
311 const InheritedConstructor &Inherited, CXXCtorType Type) {
312 // Parameters are unnecessary if we're constructing a base class subobject
313 // and the inherited constructor lives in a virtual base.
314 return Type == Ctor_Complete ||
315 !Inherited.getShadowDecl()->constructsVirtualBase() ||
316 !Target.getCXXABI().hasConstructorVariants();
317 }
318
319 const CGFunctionInfo &
arrangeCXXStructorDeclaration(GlobalDecl GD)320 CodeGenTypes::arrangeCXXStructorDeclaration(GlobalDecl GD) {
321 auto *MD = cast<CXXMethodDecl>(GD.getDecl());
322
323 SmallVector<CanQualType, 16> argTypes;
324 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
325
326 const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(GD);
327 argTypes.push_back(DeriveThisType(ThisType, MD));
328
329 bool PassParams = true;
330
331 if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) {
332 // A base class inheriting constructor doesn't get forwarded arguments
333 // needed to construct a virtual base (or base class thereof).
334 if (auto Inherited = CD->getInheritedConstructor())
335 PassParams = inheritingCtorHasParams(Inherited, GD.getCtorType());
336 }
337
338 CanQual<FunctionProtoType> FTP = GetFormalType(MD);
339
340 // Add the formal parameters.
341 if (PassParams)
342 appendParameterTypes(*this, argTypes, paramInfos, FTP);
343
344 CGCXXABI::AddedStructorArgCounts AddedArgs =
345 TheCXXABI.buildStructorSignature(GD, argTypes);
346 if (!paramInfos.empty()) {
347 // Note: prefix implies after the first param.
348 if (AddedArgs.Prefix)
349 paramInfos.insert(paramInfos.begin() + 1, AddedArgs.Prefix,
350 FunctionProtoType::ExtParameterInfo{});
351 if (AddedArgs.Suffix)
352 paramInfos.append(AddedArgs.Suffix,
353 FunctionProtoType::ExtParameterInfo{});
354 }
355
356 RequiredArgs required =
357 (PassParams && MD->isVariadic() ? RequiredArgs(argTypes.size())
358 : RequiredArgs::All);
359
360 FunctionType::ExtInfo extInfo = FTP->getExtInfo();
361 CanQualType resultType = TheCXXABI.HasThisReturn(GD)
362 ? argTypes.front()
363 : TheCXXABI.hasMostDerivedReturn(GD)
364 ? CGM.getContext().VoidPtrTy
365 : Context.VoidTy;
366 return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true,
367 /*chainCall=*/false, argTypes, extInfo,
368 paramInfos, required);
369 }
370
371 static SmallVector<CanQualType, 16>
getArgTypesForCall(ASTContext & ctx,const CallArgList & args)372 getArgTypesForCall(ASTContext &ctx, const CallArgList &args) {
373 SmallVector<CanQualType, 16> argTypes;
374 for (auto &arg : args)
375 argTypes.push_back(ctx.getCanonicalParamType(arg.Ty));
376 return argTypes;
377 }
378
379 static SmallVector<CanQualType, 16>
getArgTypesForDeclaration(ASTContext & ctx,const FunctionArgList & args)380 getArgTypesForDeclaration(ASTContext &ctx, const FunctionArgList &args) {
381 SmallVector<CanQualType, 16> argTypes;
382 for (auto &arg : args)
383 argTypes.push_back(ctx.getCanonicalParamType(arg->getType()));
384 return argTypes;
385 }
386
387 static llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16>
getExtParameterInfosForCall(const FunctionProtoType * proto,unsigned prefixArgs,unsigned totalArgs)388 getExtParameterInfosForCall(const FunctionProtoType *proto,
389 unsigned prefixArgs, unsigned totalArgs) {
390 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> result;
391 if (proto->hasExtParameterInfos()) {
392 addExtParameterInfosForCall(result, proto, prefixArgs, totalArgs);
393 }
394 return result;
395 }
396
397 /// Arrange a call to a C++ method, passing the given arguments.
398 ///
399 /// ExtraPrefixArgs is the number of ABI-specific args passed after the `this`
400 /// parameter.
401 /// ExtraSuffixArgs is the number of ABI-specific args passed at the end of
402 /// args.
403 /// PassProtoArgs indicates whether `args` has args for the parameters in the
404 /// given CXXConstructorDecl.
405 const CGFunctionInfo &
arrangeCXXConstructorCall(const CallArgList & args,const CXXConstructorDecl * D,CXXCtorType CtorKind,unsigned ExtraPrefixArgs,unsigned ExtraSuffixArgs,bool PassProtoArgs)406 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args,
407 const CXXConstructorDecl *D,
408 CXXCtorType CtorKind,
409 unsigned ExtraPrefixArgs,
410 unsigned ExtraSuffixArgs,
411 bool PassProtoArgs) {
412 // FIXME: Kill copy.
413 SmallVector<CanQualType, 16> ArgTypes;
414 for (const auto &Arg : args)
415 ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
416
417 // +1 for implicit this, which should always be args[0].
418 unsigned TotalPrefixArgs = 1 + ExtraPrefixArgs;
419
420 CanQual<FunctionProtoType> FPT = GetFormalType(D);
421 RequiredArgs Required = PassProtoArgs
422 ? RequiredArgs::forPrototypePlus(
423 FPT, TotalPrefixArgs + ExtraSuffixArgs)
424 : RequiredArgs::All;
425
426 GlobalDecl GD(D, CtorKind);
427 CanQualType ResultType = TheCXXABI.HasThisReturn(GD)
428 ? ArgTypes.front()
429 : TheCXXABI.hasMostDerivedReturn(GD)
430 ? CGM.getContext().VoidPtrTy
431 : Context.VoidTy;
432
433 FunctionType::ExtInfo Info = FPT->getExtInfo();
434 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> ParamInfos;
435 // If the prototype args are elided, we should only have ABI-specific args,
436 // which never have param info.
437 if (PassProtoArgs && FPT->hasExtParameterInfos()) {
438 // ABI-specific suffix arguments are treated the same as variadic arguments.
439 addExtParameterInfosForCall(ParamInfos, FPT.getTypePtr(), TotalPrefixArgs,
440 ArgTypes.size());
441 }
442 return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true,
443 /*chainCall=*/false, ArgTypes, Info,
444 ParamInfos, Required);
445 }
446
447 /// Arrange the argument and result information for the declaration or
448 /// definition of the given function.
449 const CGFunctionInfo &
arrangeFunctionDeclaration(const FunctionDecl * FD)450 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) {
451 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
452 if (MD->isInstance())
453 return arrangeCXXMethodDeclaration(MD);
454
455 CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
456
457 assert(isa<FunctionType>(FTy));
458 setCUDAKernelCallingConvention(FTy, CGM, FD);
459
460 // When declaring a function without a prototype, always use a
461 // non-variadic type.
462 if (CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>()) {
463 return arrangeLLVMFunctionInfo(
464 noProto->getReturnType(), /*instanceMethod=*/false,
465 /*chainCall=*/false, std::nullopt, noProto->getExtInfo(), {},
466 RequiredArgs::All);
467 }
468
469 return arrangeFreeFunctionType(FTy.castAs<FunctionProtoType>());
470 }
471
472 /// Arrange the argument and result information for the declaration or
473 /// definition of an Objective-C method.
474 const CGFunctionInfo &
arrangeObjCMethodDeclaration(const ObjCMethodDecl * MD)475 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) {
476 // It happens that this is the same as a call with no optional
477 // arguments, except also using the formal 'self' type.
478 return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType());
479 }
480
481 /// Arrange the argument and result information for the function type
482 /// through which to perform a send to the given Objective-C method,
483 /// using the given receiver type. The receiver type is not always
484 /// the 'self' type of the method or even an Objective-C pointer type.
485 /// This is *not* the right method for actually performing such a
486 /// message send, due to the possibility of optional arguments.
487 const CGFunctionInfo &
arrangeObjCMessageSendSignature(const ObjCMethodDecl * MD,QualType receiverType)488 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
489 QualType receiverType) {
490 SmallVector<CanQualType, 16> argTys;
491 SmallVector<FunctionProtoType::ExtParameterInfo, 4> extParamInfos(
492 MD->isDirectMethod() ? 1 : 2);
493 argTys.push_back(Context.getCanonicalParamType(receiverType));
494 if (!MD->isDirectMethod())
495 argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType()));
496 // FIXME: Kill copy?
497 for (const auto *I : MD->parameters()) {
498 argTys.push_back(Context.getCanonicalParamType(I->getType()));
499 auto extParamInfo = FunctionProtoType::ExtParameterInfo().withIsNoEscape(
500 I->hasAttr<NoEscapeAttr>());
501 extParamInfos.push_back(extParamInfo);
502 }
503
504 FunctionType::ExtInfo einfo;
505 bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows();
506 einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows));
507
508 if (getContext().getLangOpts().ObjCAutoRefCount &&
509 MD->hasAttr<NSReturnsRetainedAttr>())
510 einfo = einfo.withProducesResult(true);
511
512 RequiredArgs required =
513 (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All);
514
515 return arrangeLLVMFunctionInfo(
516 GetReturnType(MD->getReturnType()), /*instanceMethod=*/false,
517 /*chainCall=*/false, argTys, einfo, extParamInfos, required);
518 }
519
520 const CGFunctionInfo &
arrangeUnprototypedObjCMessageSend(QualType returnType,const CallArgList & args)521 CodeGenTypes::arrangeUnprototypedObjCMessageSend(QualType returnType,
522 const CallArgList &args) {
523 auto argTypes = getArgTypesForCall(Context, args);
524 FunctionType::ExtInfo einfo;
525
526 return arrangeLLVMFunctionInfo(
527 GetReturnType(returnType), /*instanceMethod=*/false,
528 /*chainCall=*/false, argTypes, einfo, {}, RequiredArgs::All);
529 }
530
531 const CGFunctionInfo &
arrangeGlobalDeclaration(GlobalDecl GD)532 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) {
533 // FIXME: Do we need to handle ObjCMethodDecl?
534 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
535
536 if (isa<CXXConstructorDecl>(GD.getDecl()) ||
537 isa<CXXDestructorDecl>(GD.getDecl()))
538 return arrangeCXXStructorDeclaration(GD);
539
540 return arrangeFunctionDeclaration(FD);
541 }
542
543 /// Arrange a thunk that takes 'this' as the first parameter followed by
544 /// varargs. Return a void pointer, regardless of the actual return type.
545 /// The body of the thunk will end in a musttail call to a function of the
546 /// correct type, and the caller will bitcast the function to the correct
547 /// prototype.
548 const CGFunctionInfo &
arrangeUnprototypedMustTailThunk(const CXXMethodDecl * MD)549 CodeGenTypes::arrangeUnprototypedMustTailThunk(const CXXMethodDecl *MD) {
550 assert(MD->isVirtual() && "only methods have thunks");
551 CanQual<FunctionProtoType> FTP = GetFormalType(MD);
552 CanQualType ArgTys[] = {DeriveThisType(MD->getParent(), MD)};
553 return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false,
554 /*chainCall=*/false, ArgTys,
555 FTP->getExtInfo(), {}, RequiredArgs(1));
556 }
557
558 const CGFunctionInfo &
arrangeMSCtorClosure(const CXXConstructorDecl * CD,CXXCtorType CT)559 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD,
560 CXXCtorType CT) {
561 assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure);
562
563 CanQual<FunctionProtoType> FTP = GetFormalType(CD);
564 SmallVector<CanQualType, 2> ArgTys;
565 const CXXRecordDecl *RD = CD->getParent();
566 ArgTys.push_back(DeriveThisType(RD, CD));
567 if (CT == Ctor_CopyingClosure)
568 ArgTys.push_back(*FTP->param_type_begin());
569 if (RD->getNumVBases() > 0)
570 ArgTys.push_back(Context.IntTy);
571 CallingConv CC = Context.getDefaultCallingConvention(
572 /*IsVariadic=*/false, /*IsCXXMethod=*/true);
573 return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true,
574 /*chainCall=*/false, ArgTys,
575 FunctionType::ExtInfo(CC), {},
576 RequiredArgs::All);
577 }
578
579 /// Arrange a call as unto a free function, except possibly with an
580 /// additional number of formal parameters considered required.
581 static const CGFunctionInfo &
arrangeFreeFunctionLikeCall(CodeGenTypes & CGT,CodeGenModule & CGM,const CallArgList & args,const FunctionType * fnType,unsigned numExtraRequiredArgs,bool chainCall)582 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT,
583 CodeGenModule &CGM,
584 const CallArgList &args,
585 const FunctionType *fnType,
586 unsigned numExtraRequiredArgs,
587 bool chainCall) {
588 assert(args.size() >= numExtraRequiredArgs);
589
590 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
591
592 // In most cases, there are no optional arguments.
593 RequiredArgs required = RequiredArgs::All;
594
595 // If we have a variadic prototype, the required arguments are the
596 // extra prefix plus the arguments in the prototype.
597 if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) {
598 if (proto->isVariadic())
599 required = RequiredArgs::forPrototypePlus(proto, numExtraRequiredArgs);
600
601 if (proto->hasExtParameterInfos())
602 addExtParameterInfosForCall(paramInfos, proto, numExtraRequiredArgs,
603 args.size());
604
605 // If we don't have a prototype at all, but we're supposed to
606 // explicitly use the variadic convention for unprototyped calls,
607 // treat all of the arguments as required but preserve the nominal
608 // possibility of variadics.
609 } else if (CGM.getTargetCodeGenInfo()
610 .isNoProtoCallVariadic(args,
611 cast<FunctionNoProtoType>(fnType))) {
612 required = RequiredArgs(args.size());
613 }
614
615 // FIXME: Kill copy.
616 SmallVector<CanQualType, 16> argTypes;
617 for (const auto &arg : args)
618 argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty));
619 return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()),
620 /*instanceMethod=*/false, chainCall,
621 argTypes, fnType->getExtInfo(), paramInfos,
622 required);
623 }
624
625 /// Figure out the rules for calling a function with the given formal
626 /// type using the given arguments. The arguments are necessary
627 /// because the function might be unprototyped, in which case it's
628 /// target-dependent in crazy ways.
629 const CGFunctionInfo &
arrangeFreeFunctionCall(const CallArgList & args,const FunctionType * fnType,bool chainCall)630 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args,
631 const FunctionType *fnType,
632 bool chainCall) {
633 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType,
634 chainCall ? 1 : 0, chainCall);
635 }
636
637 /// A block function is essentially a free function with an
638 /// extra implicit argument.
639 const CGFunctionInfo &
arrangeBlockFunctionCall(const CallArgList & args,const FunctionType * fnType)640 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args,
641 const FunctionType *fnType) {
642 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1,
643 /*chainCall=*/false);
644 }
645
646 const CGFunctionInfo &
arrangeBlockFunctionDeclaration(const FunctionProtoType * proto,const FunctionArgList & params)647 CodeGenTypes::arrangeBlockFunctionDeclaration(const FunctionProtoType *proto,
648 const FunctionArgList ¶ms) {
649 auto paramInfos = getExtParameterInfosForCall(proto, 1, params.size());
650 auto argTypes = getArgTypesForDeclaration(Context, params);
651
652 return arrangeLLVMFunctionInfo(GetReturnType(proto->getReturnType()),
653 /*instanceMethod*/ false, /*chainCall*/ false,
654 argTypes, proto->getExtInfo(), paramInfos,
655 RequiredArgs::forPrototypePlus(proto, 1));
656 }
657
658 const CGFunctionInfo &
arrangeBuiltinFunctionCall(QualType resultType,const CallArgList & args)659 CodeGenTypes::arrangeBuiltinFunctionCall(QualType resultType,
660 const CallArgList &args) {
661 // FIXME: Kill copy.
662 SmallVector<CanQualType, 16> argTypes;
663 for (const auto &Arg : args)
664 argTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
665 return arrangeLLVMFunctionInfo(
666 GetReturnType(resultType), /*instanceMethod=*/false,
667 /*chainCall=*/false, argTypes, FunctionType::ExtInfo(),
668 /*paramInfos=*/ {}, RequiredArgs::All);
669 }
670
671 const CGFunctionInfo &
arrangeBuiltinFunctionDeclaration(QualType resultType,const FunctionArgList & args)672 CodeGenTypes::arrangeBuiltinFunctionDeclaration(QualType resultType,
673 const FunctionArgList &args) {
674 auto argTypes = getArgTypesForDeclaration(Context, args);
675
676 return arrangeLLVMFunctionInfo(
677 GetReturnType(resultType), /*instanceMethod=*/false, /*chainCall=*/false,
678 argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All);
679 }
680
681 const CGFunctionInfo &
arrangeBuiltinFunctionDeclaration(CanQualType resultType,ArrayRef<CanQualType> argTypes)682 CodeGenTypes::arrangeBuiltinFunctionDeclaration(CanQualType resultType,
683 ArrayRef<CanQualType> argTypes) {
684 return arrangeLLVMFunctionInfo(
685 resultType, /*instanceMethod=*/false, /*chainCall=*/false,
686 argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All);
687 }
688
689 /// Arrange a call to a C++ method, passing the given arguments.
690 ///
691 /// numPrefixArgs is the number of ABI-specific prefix arguments we have. It
692 /// does not count `this`.
693 const CGFunctionInfo &
arrangeCXXMethodCall(const CallArgList & args,const FunctionProtoType * proto,RequiredArgs required,unsigned numPrefixArgs)694 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args,
695 const FunctionProtoType *proto,
696 RequiredArgs required,
697 unsigned numPrefixArgs) {
698 assert(numPrefixArgs + 1 <= args.size() &&
699 "Emitting a call with less args than the required prefix?");
700 // Add one to account for `this`. It's a bit awkward here, but we don't count
701 // `this` in similar places elsewhere.
702 auto paramInfos =
703 getExtParameterInfosForCall(proto, numPrefixArgs + 1, args.size());
704
705 // FIXME: Kill copy.
706 auto argTypes = getArgTypesForCall(Context, args);
707
708 FunctionType::ExtInfo info = proto->getExtInfo();
709 return arrangeLLVMFunctionInfo(
710 GetReturnType(proto->getReturnType()), /*instanceMethod=*/true,
711 /*chainCall=*/false, argTypes, info, paramInfos, required);
712 }
713
arrangeNullaryFunction()714 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() {
715 return arrangeLLVMFunctionInfo(
716 getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false,
717 std::nullopt, FunctionType::ExtInfo(), {}, RequiredArgs::All);
718 }
719
720 const CGFunctionInfo &
arrangeCall(const CGFunctionInfo & signature,const CallArgList & args)721 CodeGenTypes::arrangeCall(const CGFunctionInfo &signature,
722 const CallArgList &args) {
723 assert(signature.arg_size() <= args.size());
724 if (signature.arg_size() == args.size())
725 return signature;
726
727 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
728 auto sigParamInfos = signature.getExtParameterInfos();
729 if (!sigParamInfos.empty()) {
730 paramInfos.append(sigParamInfos.begin(), sigParamInfos.end());
731 paramInfos.resize(args.size());
732 }
733
734 auto argTypes = getArgTypesForCall(Context, args);
735
736 assert(signature.getRequiredArgs().allowsOptionalArgs());
737 return arrangeLLVMFunctionInfo(signature.getReturnType(),
738 signature.isInstanceMethod(),
739 signature.isChainCall(),
740 argTypes,
741 signature.getExtInfo(),
742 paramInfos,
743 signature.getRequiredArgs());
744 }
745
746 namespace clang {
747 namespace CodeGen {
748 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI);
749 }
750 }
751
752 /// Arrange the argument and result information for an abstract value
753 /// of a given function type. This is the method which all of the
754 /// above functions ultimately defer to.
755 const CGFunctionInfo &
arrangeLLVMFunctionInfo(CanQualType resultType,bool instanceMethod,bool chainCall,ArrayRef<CanQualType> argTypes,FunctionType::ExtInfo info,ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos,RequiredArgs required)756 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType,
757 bool instanceMethod,
758 bool chainCall,
759 ArrayRef<CanQualType> argTypes,
760 FunctionType::ExtInfo info,
761 ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos,
762 RequiredArgs required) {
763 assert(llvm::all_of(argTypes,
764 [](CanQualType T) { return T.isCanonicalAsParam(); }));
765
766 // Lookup or create unique function info.
767 llvm::FoldingSetNodeID ID;
768 CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, paramInfos,
769 required, resultType, argTypes);
770
771 void *insertPos = nullptr;
772 CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos);
773 if (FI)
774 return *FI;
775
776 unsigned CC = ClangCallConvToLLVMCallConv(info.getCC());
777
778 // Construct the function info. We co-allocate the ArgInfos.
779 FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info,
780 paramInfos, resultType, argTypes, required);
781 FunctionInfos.InsertNode(FI, insertPos);
782
783 bool inserted = FunctionsBeingProcessed.insert(FI).second;
784 (void)inserted;
785 assert(inserted && "Recursively being processed?");
786
787 // Compute ABI information.
788 if (CC == llvm::CallingConv::SPIR_KERNEL) {
789 // Force target independent argument handling for the host visible
790 // kernel functions.
791 computeSPIRKernelABIInfo(CGM, *FI);
792 } else if (info.getCC() == CC_Swift || info.getCC() == CC_SwiftAsync) {
793 swiftcall::computeABIInfo(CGM, *FI);
794 } else {
795 getABIInfo().computeInfo(*FI);
796 }
797
798 // Loop over all of the computed argument and return value info. If any of
799 // them are direct or extend without a specified coerce type, specify the
800 // default now.
801 ABIArgInfo &retInfo = FI->getReturnInfo();
802 if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr)
803 retInfo.setCoerceToType(ConvertType(FI->getReturnType()));
804
805 for (auto &I : FI->arguments())
806 if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr)
807 I.info.setCoerceToType(ConvertType(I.type));
808
809 bool erased = FunctionsBeingProcessed.erase(FI); (void)erased;
810 assert(erased && "Not in set?");
811
812 return *FI;
813 }
814
create(unsigned llvmCC,bool instanceMethod,bool chainCall,const FunctionType::ExtInfo & info,ArrayRef<ExtParameterInfo> paramInfos,CanQualType resultType,ArrayRef<CanQualType> argTypes,RequiredArgs required)815 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC,
816 bool instanceMethod,
817 bool chainCall,
818 const FunctionType::ExtInfo &info,
819 ArrayRef<ExtParameterInfo> paramInfos,
820 CanQualType resultType,
821 ArrayRef<CanQualType> argTypes,
822 RequiredArgs required) {
823 assert(paramInfos.empty() || paramInfos.size() == argTypes.size());
824 assert(!required.allowsOptionalArgs() ||
825 required.getNumRequiredArgs() <= argTypes.size());
826
827 void *buffer =
828 operator new(totalSizeToAlloc<ArgInfo, ExtParameterInfo>(
829 argTypes.size() + 1, paramInfos.size()));
830
831 CGFunctionInfo *FI = new(buffer) CGFunctionInfo();
832 FI->CallingConvention = llvmCC;
833 FI->EffectiveCallingConvention = llvmCC;
834 FI->ASTCallingConvention = info.getCC();
835 FI->InstanceMethod = instanceMethod;
836 FI->ChainCall = chainCall;
837 FI->CmseNSCall = info.getCmseNSCall();
838 FI->NoReturn = info.getNoReturn();
839 FI->ReturnsRetained = info.getProducesResult();
840 FI->NoCallerSavedRegs = info.getNoCallerSavedRegs();
841 FI->NoCfCheck = info.getNoCfCheck();
842 FI->Required = required;
843 FI->HasRegParm = info.getHasRegParm();
844 FI->RegParm = info.getRegParm();
845 FI->ArgStruct = nullptr;
846 FI->ArgStructAlign = 0;
847 FI->NumArgs = argTypes.size();
848 FI->HasExtParameterInfos = !paramInfos.empty();
849 FI->getArgsBuffer()[0].type = resultType;
850 FI->MaxVectorWidth = 0;
851 for (unsigned i = 0, e = argTypes.size(); i != e; ++i)
852 FI->getArgsBuffer()[i + 1].type = argTypes[i];
853 for (unsigned i = 0, e = paramInfos.size(); i != e; ++i)
854 FI->getExtParameterInfosBuffer()[i] = paramInfos[i];
855 return FI;
856 }
857
858 /***/
859
860 namespace {
861 // ABIArgInfo::Expand implementation.
862
863 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded.
864 struct TypeExpansion {
865 enum TypeExpansionKind {
866 // Elements of constant arrays are expanded recursively.
867 TEK_ConstantArray,
868 // Record fields are expanded recursively (but if record is a union, only
869 // the field with the largest size is expanded).
870 TEK_Record,
871 // For complex types, real and imaginary parts are expanded recursively.
872 TEK_Complex,
873 // All other types are not expandable.
874 TEK_None
875 };
876
877 const TypeExpansionKind Kind;
878
TypeExpansion__anon4649c3d10211::TypeExpansion879 TypeExpansion(TypeExpansionKind K) : Kind(K) {}
~TypeExpansion__anon4649c3d10211::TypeExpansion880 virtual ~TypeExpansion() {}
881 };
882
883 struct ConstantArrayExpansion : TypeExpansion {
884 QualType EltTy;
885 uint64_t NumElts;
886
ConstantArrayExpansion__anon4649c3d10211::ConstantArrayExpansion887 ConstantArrayExpansion(QualType EltTy, uint64_t NumElts)
888 : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {}
classof__anon4649c3d10211::ConstantArrayExpansion889 static bool classof(const TypeExpansion *TE) {
890 return TE->Kind == TEK_ConstantArray;
891 }
892 };
893
894 struct RecordExpansion : TypeExpansion {
895 SmallVector<const CXXBaseSpecifier *, 1> Bases;
896
897 SmallVector<const FieldDecl *, 1> Fields;
898
RecordExpansion__anon4649c3d10211::RecordExpansion899 RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases,
900 SmallVector<const FieldDecl *, 1> &&Fields)
901 : TypeExpansion(TEK_Record), Bases(std::move(Bases)),
902 Fields(std::move(Fields)) {}
classof__anon4649c3d10211::RecordExpansion903 static bool classof(const TypeExpansion *TE) {
904 return TE->Kind == TEK_Record;
905 }
906 };
907
908 struct ComplexExpansion : TypeExpansion {
909 QualType EltTy;
910
ComplexExpansion__anon4649c3d10211::ComplexExpansion911 ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {}
classof__anon4649c3d10211::ComplexExpansion912 static bool classof(const TypeExpansion *TE) {
913 return TE->Kind == TEK_Complex;
914 }
915 };
916
917 struct NoExpansion : TypeExpansion {
NoExpansion__anon4649c3d10211::NoExpansion918 NoExpansion() : TypeExpansion(TEK_None) {}
classof__anon4649c3d10211::NoExpansion919 static bool classof(const TypeExpansion *TE) {
920 return TE->Kind == TEK_None;
921 }
922 };
923 } // namespace
924
925 static std::unique_ptr<TypeExpansion>
getTypeExpansion(QualType Ty,const ASTContext & Context)926 getTypeExpansion(QualType Ty, const ASTContext &Context) {
927 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
928 return std::make_unique<ConstantArrayExpansion>(
929 AT->getElementType(), AT->getSize().getZExtValue());
930 }
931 if (const RecordType *RT = Ty->getAs<RecordType>()) {
932 SmallVector<const CXXBaseSpecifier *, 1> Bases;
933 SmallVector<const FieldDecl *, 1> Fields;
934 const RecordDecl *RD = RT->getDecl();
935 assert(!RD->hasFlexibleArrayMember() &&
936 "Cannot expand structure with flexible array.");
937 if (RD->isUnion()) {
938 // Unions can be here only in degenerative cases - all the fields are same
939 // after flattening. Thus we have to use the "largest" field.
940 const FieldDecl *LargestFD = nullptr;
941 CharUnits UnionSize = CharUnits::Zero();
942
943 for (const auto *FD : RD->fields()) {
944 if (FD->isZeroLengthBitField(Context))
945 continue;
946 assert(!FD->isBitField() &&
947 "Cannot expand structure with bit-field members.");
948 CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType());
949 if (UnionSize < FieldSize) {
950 UnionSize = FieldSize;
951 LargestFD = FD;
952 }
953 }
954 if (LargestFD)
955 Fields.push_back(LargestFD);
956 } else {
957 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
958 assert(!CXXRD->isDynamicClass() &&
959 "cannot expand vtable pointers in dynamic classes");
960 llvm::append_range(Bases, llvm::make_pointer_range(CXXRD->bases()));
961 }
962
963 for (const auto *FD : RD->fields()) {
964 if (FD->isZeroLengthBitField(Context))
965 continue;
966 assert(!FD->isBitField() &&
967 "Cannot expand structure with bit-field members.");
968 Fields.push_back(FD);
969 }
970 }
971 return std::make_unique<RecordExpansion>(std::move(Bases),
972 std::move(Fields));
973 }
974 if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
975 return std::make_unique<ComplexExpansion>(CT->getElementType());
976 }
977 return std::make_unique<NoExpansion>();
978 }
979
getExpansionSize(QualType Ty,const ASTContext & Context)980 static int getExpansionSize(QualType Ty, const ASTContext &Context) {
981 auto Exp = getTypeExpansion(Ty, Context);
982 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
983 return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context);
984 }
985 if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
986 int Res = 0;
987 for (auto BS : RExp->Bases)
988 Res += getExpansionSize(BS->getType(), Context);
989 for (auto FD : RExp->Fields)
990 Res += getExpansionSize(FD->getType(), Context);
991 return Res;
992 }
993 if (isa<ComplexExpansion>(Exp.get()))
994 return 2;
995 assert(isa<NoExpansion>(Exp.get()));
996 return 1;
997 }
998
999 void
getExpandedTypes(QualType Ty,SmallVectorImpl<llvm::Type * >::iterator & TI)1000 CodeGenTypes::getExpandedTypes(QualType Ty,
1001 SmallVectorImpl<llvm::Type *>::iterator &TI) {
1002 auto Exp = getTypeExpansion(Ty, Context);
1003 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
1004 for (int i = 0, n = CAExp->NumElts; i < n; i++) {
1005 getExpandedTypes(CAExp->EltTy, TI);
1006 }
1007 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
1008 for (auto BS : RExp->Bases)
1009 getExpandedTypes(BS->getType(), TI);
1010 for (auto FD : RExp->Fields)
1011 getExpandedTypes(FD->getType(), TI);
1012 } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) {
1013 llvm::Type *EltTy = ConvertType(CExp->EltTy);
1014 *TI++ = EltTy;
1015 *TI++ = EltTy;
1016 } else {
1017 assert(isa<NoExpansion>(Exp.get()));
1018 *TI++ = ConvertType(Ty);
1019 }
1020 }
1021
forConstantArrayExpansion(CodeGenFunction & CGF,ConstantArrayExpansion * CAE,Address BaseAddr,llvm::function_ref<void (Address)> Fn)1022 static void forConstantArrayExpansion(CodeGenFunction &CGF,
1023 ConstantArrayExpansion *CAE,
1024 Address BaseAddr,
1025 llvm::function_ref<void(Address)> Fn) {
1026 CharUnits EltSize = CGF.getContext().getTypeSizeInChars(CAE->EltTy);
1027 CharUnits EltAlign =
1028 BaseAddr.getAlignment().alignmentOfArrayElement(EltSize);
1029 llvm::Type *EltTy = CGF.ConvertTypeForMem(CAE->EltTy);
1030
1031 for (int i = 0, n = CAE->NumElts; i < n; i++) {
1032 llvm::Value *EltAddr = CGF.Builder.CreateConstGEP2_32(
1033 BaseAddr.getElementType(), BaseAddr.getPointer(), 0, i);
1034 Fn(Address(EltAddr, EltTy, EltAlign));
1035 }
1036 }
1037
ExpandTypeFromArgs(QualType Ty,LValue LV,llvm::Function::arg_iterator & AI)1038 void CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV,
1039 llvm::Function::arg_iterator &AI) {
1040 assert(LV.isSimple() &&
1041 "Unexpected non-simple lvalue during struct expansion.");
1042
1043 auto Exp = getTypeExpansion(Ty, getContext());
1044 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
1045 forConstantArrayExpansion(
1046 *this, CAExp, LV.getAddress(*this), [&](Address EltAddr) {
1047 LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy);
1048 ExpandTypeFromArgs(CAExp->EltTy, LV, AI);
1049 });
1050 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
1051 Address This = LV.getAddress(*this);
1052 for (const CXXBaseSpecifier *BS : RExp->Bases) {
1053 // Perform a single step derived-to-base conversion.
1054 Address Base =
1055 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
1056 /*NullCheckValue=*/false, SourceLocation());
1057 LValue SubLV = MakeAddrLValue(Base, BS->getType());
1058
1059 // Recurse onto bases.
1060 ExpandTypeFromArgs(BS->getType(), SubLV, AI);
1061 }
1062 for (auto FD : RExp->Fields) {
1063 // FIXME: What are the right qualifiers here?
1064 LValue SubLV = EmitLValueForFieldInitialization(LV, FD);
1065 ExpandTypeFromArgs(FD->getType(), SubLV, AI);
1066 }
1067 } else if (isa<ComplexExpansion>(Exp.get())) {
1068 auto realValue = &*AI++;
1069 auto imagValue = &*AI++;
1070 EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true);
1071 } else {
1072 // Call EmitStoreOfScalar except when the lvalue is a bitfield to emit a
1073 // primitive store.
1074 assert(isa<NoExpansion>(Exp.get()));
1075 llvm::Value *Arg = &*AI++;
1076 if (LV.isBitField()) {
1077 EmitStoreThroughLValue(RValue::get(Arg), LV);
1078 } else {
1079 // TODO: currently there are some places are inconsistent in what LLVM
1080 // pointer type they use (see D118744). Once clang uses opaque pointers
1081 // all LLVM pointer types will be the same and we can remove this check.
1082 if (Arg->getType()->isPointerTy()) {
1083 Address Addr = LV.getAddress(*this);
1084 Arg = Builder.CreateBitCast(Arg, Addr.getElementType());
1085 }
1086 EmitStoreOfScalar(Arg, LV);
1087 }
1088 }
1089 }
1090
ExpandTypeToArgs(QualType Ty,CallArg Arg,llvm::FunctionType * IRFuncTy,SmallVectorImpl<llvm::Value * > & IRCallArgs,unsigned & IRCallArgPos)1091 void CodeGenFunction::ExpandTypeToArgs(
1092 QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy,
1093 SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) {
1094 auto Exp = getTypeExpansion(Ty, getContext());
1095 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
1096 Address Addr = Arg.hasLValue() ? Arg.getKnownLValue().getAddress(*this)
1097 : Arg.getKnownRValue().getAggregateAddress();
1098 forConstantArrayExpansion(
1099 *this, CAExp, Addr, [&](Address EltAddr) {
1100 CallArg EltArg = CallArg(
1101 convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation()),
1102 CAExp->EltTy);
1103 ExpandTypeToArgs(CAExp->EltTy, EltArg, IRFuncTy, IRCallArgs,
1104 IRCallArgPos);
1105 });
1106 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
1107 Address This = Arg.hasLValue() ? Arg.getKnownLValue().getAddress(*this)
1108 : Arg.getKnownRValue().getAggregateAddress();
1109 for (const CXXBaseSpecifier *BS : RExp->Bases) {
1110 // Perform a single step derived-to-base conversion.
1111 Address Base =
1112 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
1113 /*NullCheckValue=*/false, SourceLocation());
1114 CallArg BaseArg = CallArg(RValue::getAggregate(Base), BS->getType());
1115
1116 // Recurse onto bases.
1117 ExpandTypeToArgs(BS->getType(), BaseArg, IRFuncTy, IRCallArgs,
1118 IRCallArgPos);
1119 }
1120
1121 LValue LV = MakeAddrLValue(This, Ty);
1122 for (auto FD : RExp->Fields) {
1123 CallArg FldArg =
1124 CallArg(EmitRValueForField(LV, FD, SourceLocation()), FD->getType());
1125 ExpandTypeToArgs(FD->getType(), FldArg, IRFuncTy, IRCallArgs,
1126 IRCallArgPos);
1127 }
1128 } else if (isa<ComplexExpansion>(Exp.get())) {
1129 ComplexPairTy CV = Arg.getKnownRValue().getComplexVal();
1130 IRCallArgs[IRCallArgPos++] = CV.first;
1131 IRCallArgs[IRCallArgPos++] = CV.second;
1132 } else {
1133 assert(isa<NoExpansion>(Exp.get()));
1134 auto RV = Arg.getKnownRValue();
1135 assert(RV.isScalar() &&
1136 "Unexpected non-scalar rvalue during struct expansion.");
1137
1138 // Insert a bitcast as needed.
1139 llvm::Value *V = RV.getScalarVal();
1140 if (IRCallArgPos < IRFuncTy->getNumParams() &&
1141 V->getType() != IRFuncTy->getParamType(IRCallArgPos))
1142 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos));
1143
1144 IRCallArgs[IRCallArgPos++] = V;
1145 }
1146 }
1147
1148 /// Create a temporary allocation for the purposes of coercion.
CreateTempAllocaForCoercion(CodeGenFunction & CGF,llvm::Type * Ty,CharUnits MinAlign,const Twine & Name="tmp")1149 static Address CreateTempAllocaForCoercion(CodeGenFunction &CGF, llvm::Type *Ty,
1150 CharUnits MinAlign,
1151 const Twine &Name = "tmp") {
1152 // Don't use an alignment that's worse than what LLVM would prefer.
1153 auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlign(Ty);
1154 CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign));
1155
1156 return CGF.CreateTempAlloca(Ty, Align, Name + ".coerce");
1157 }
1158
1159 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
1160 /// accessing some number of bytes out of it, try to gep into the struct to get
1161 /// at its inner goodness. Dive as deep as possible without entering an element
1162 /// with an in-memory size smaller than DstSize.
1163 static Address
EnterStructPointerForCoercedAccess(Address SrcPtr,llvm::StructType * SrcSTy,uint64_t DstSize,CodeGenFunction & CGF)1164 EnterStructPointerForCoercedAccess(Address SrcPtr,
1165 llvm::StructType *SrcSTy,
1166 uint64_t DstSize, CodeGenFunction &CGF) {
1167 // We can't dive into a zero-element struct.
1168 if (SrcSTy->getNumElements() == 0) return SrcPtr;
1169
1170 llvm::Type *FirstElt = SrcSTy->getElementType(0);
1171
1172 // If the first elt is at least as large as what we're looking for, or if the
1173 // first element is the same size as the whole struct, we can enter it. The
1174 // comparison must be made on the store size and not the alloca size. Using
1175 // the alloca size may overstate the size of the load.
1176 uint64_t FirstEltSize =
1177 CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt);
1178 if (FirstEltSize < DstSize &&
1179 FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy))
1180 return SrcPtr;
1181
1182 // GEP into the first element.
1183 SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, "coerce.dive");
1184
1185 // If the first element is a struct, recurse.
1186 llvm::Type *SrcTy = SrcPtr.getElementType();
1187 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy))
1188 return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
1189
1190 return SrcPtr;
1191 }
1192
1193 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
1194 /// are either integers or pointers. This does a truncation of the value if it
1195 /// is too large or a zero extension if it is too small.
1196 ///
1197 /// This behaves as if the value were coerced through memory, so on big-endian
1198 /// targets the high bits are preserved in a truncation, while little-endian
1199 /// targets preserve the low bits.
CoerceIntOrPtrToIntOrPtr(llvm::Value * Val,llvm::Type * Ty,CodeGenFunction & CGF)1200 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val,
1201 llvm::Type *Ty,
1202 CodeGenFunction &CGF) {
1203 if (Val->getType() == Ty)
1204 return Val;
1205
1206 if (isa<llvm::PointerType>(Val->getType())) {
1207 // If this is Pointer->Pointer avoid conversion to and from int.
1208 if (isa<llvm::PointerType>(Ty))
1209 return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val");
1210
1211 // Convert the pointer to an integer so we can play with its width.
1212 Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi");
1213 }
1214
1215 llvm::Type *DestIntTy = Ty;
1216 if (isa<llvm::PointerType>(DestIntTy))
1217 DestIntTy = CGF.IntPtrTy;
1218
1219 if (Val->getType() != DestIntTy) {
1220 const llvm::DataLayout &DL = CGF.CGM.getDataLayout();
1221 if (DL.isBigEndian()) {
1222 // Preserve the high bits on big-endian targets.
1223 // That is what memory coercion does.
1224 uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType());
1225 uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy);
1226
1227 if (SrcSize > DstSize) {
1228 Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits");
1229 Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii");
1230 } else {
1231 Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii");
1232 Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits");
1233 }
1234 } else {
1235 // Little-endian targets preserve the low bits. No shifts required.
1236 Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii");
1237 }
1238 }
1239
1240 if (isa<llvm::PointerType>(Ty))
1241 Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip");
1242 return Val;
1243 }
1244
1245
1246
1247 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
1248 /// a pointer to an object of type \arg Ty, known to be aligned to
1249 /// \arg SrcAlign bytes.
1250 ///
1251 /// This safely handles the case when the src type is smaller than the
1252 /// destination type; in this situation the values of bits which not
1253 /// present in the src are undefined.
CreateCoercedLoad(Address Src,llvm::Type * Ty,CodeGenFunction & CGF)1254 static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty,
1255 CodeGenFunction &CGF) {
1256 llvm::Type *SrcTy = Src.getElementType();
1257
1258 // If SrcTy and Ty are the same, just do a load.
1259 if (SrcTy == Ty)
1260 return CGF.Builder.CreateLoad(Src);
1261
1262 llvm::TypeSize DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty);
1263
1264 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) {
1265 Src = EnterStructPointerForCoercedAccess(Src, SrcSTy,
1266 DstSize.getFixedValue(), CGF);
1267 SrcTy = Src.getElementType();
1268 }
1269
1270 llvm::TypeSize SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1271
1272 // If the source and destination are integer or pointer types, just do an
1273 // extension or truncation to the desired type.
1274 if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) &&
1275 (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) {
1276 llvm::Value *Load = CGF.Builder.CreateLoad(Src);
1277 return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF);
1278 }
1279
1280 // If load is legal, just bitcast the src pointer.
1281 if (!SrcSize.isScalable() && !DstSize.isScalable() &&
1282 SrcSize.getFixedValue() >= DstSize.getFixedValue()) {
1283 // Generally SrcSize is never greater than DstSize, since this means we are
1284 // losing bits. However, this can happen in cases where the structure has
1285 // additional padding, for example due to a user specified alignment.
1286 //
1287 // FIXME: Assert that we aren't truncating non-padding bits when have access
1288 // to that information.
1289 Src = CGF.Builder.CreateElementBitCast(Src, Ty);
1290 return CGF.Builder.CreateLoad(Src);
1291 }
1292
1293 // If coercing a fixed vector to a scalable vector for ABI compatibility, and
1294 // the types match, use the llvm.vector.insert intrinsic to perform the
1295 // conversion.
1296 if (auto *ScalableDst = dyn_cast<llvm::ScalableVectorType>(Ty)) {
1297 if (auto *FixedSrc = dyn_cast<llvm::FixedVectorType>(SrcTy)) {
1298 // If we are casting a fixed i8 vector to a scalable 16 x i1 predicate
1299 // vector, use a vector insert and bitcast the result.
1300 bool NeedsBitcast = false;
1301 auto PredType =
1302 llvm::ScalableVectorType::get(CGF.Builder.getInt1Ty(), 16);
1303 llvm::Type *OrigType = Ty;
1304 if (ScalableDst == PredType &&
1305 FixedSrc->getElementType() == CGF.Builder.getInt8Ty()) {
1306 ScalableDst = llvm::ScalableVectorType::get(CGF.Builder.getInt8Ty(), 2);
1307 NeedsBitcast = true;
1308 }
1309 if (ScalableDst->getElementType() == FixedSrc->getElementType()) {
1310 auto *Load = CGF.Builder.CreateLoad(Src);
1311 auto *UndefVec = llvm::UndefValue::get(ScalableDst);
1312 auto *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty);
1313 llvm::Value *Result = CGF.Builder.CreateInsertVector(
1314 ScalableDst, UndefVec, Load, Zero, "castScalableSve");
1315 if (NeedsBitcast)
1316 Result = CGF.Builder.CreateBitCast(Result, OrigType);
1317 return Result;
1318 }
1319 }
1320 }
1321
1322 // Otherwise do coercion through memory. This is stupid, but simple.
1323 Address Tmp =
1324 CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment(), Src.getName());
1325 CGF.Builder.CreateMemCpy(
1326 Tmp.getPointer(), Tmp.getAlignment().getAsAlign(), Src.getPointer(),
1327 Src.getAlignment().getAsAlign(),
1328 llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize.getKnownMinValue()));
1329 return CGF.Builder.CreateLoad(Tmp);
1330 }
1331
1332 // Function to store a first-class aggregate into memory. We prefer to
1333 // store the elements rather than the aggregate to be more friendly to
1334 // fast-isel.
1335 // FIXME: Do we need to recurse here?
EmitAggregateStore(llvm::Value * Val,Address Dest,bool DestIsVolatile)1336 void CodeGenFunction::EmitAggregateStore(llvm::Value *Val, Address Dest,
1337 bool DestIsVolatile) {
1338 // Prefer scalar stores to first-class aggregate stores.
1339 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(Val->getType())) {
1340 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1341 Address EltPtr = Builder.CreateStructGEP(Dest, i);
1342 llvm::Value *Elt = Builder.CreateExtractValue(Val, i);
1343 Builder.CreateStore(Elt, EltPtr, DestIsVolatile);
1344 }
1345 } else {
1346 Builder.CreateStore(Val, Dest, DestIsVolatile);
1347 }
1348 }
1349
1350 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
1351 /// where the source and destination may have different types. The
1352 /// destination is known to be aligned to \arg DstAlign bytes.
1353 ///
1354 /// This safely handles the case when the src type is larger than the
1355 /// destination type; the upper bits of the src will be lost.
CreateCoercedStore(llvm::Value * Src,Address Dst,bool DstIsVolatile,CodeGenFunction & CGF)1356 static void CreateCoercedStore(llvm::Value *Src,
1357 Address Dst,
1358 bool DstIsVolatile,
1359 CodeGenFunction &CGF) {
1360 llvm::Type *SrcTy = Src->getType();
1361 llvm::Type *DstTy = Dst.getElementType();
1362 if (SrcTy == DstTy) {
1363 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1364 return;
1365 }
1366
1367 llvm::TypeSize SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1368
1369 if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) {
1370 Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy,
1371 SrcSize.getFixedValue(), CGF);
1372 DstTy = Dst.getElementType();
1373 }
1374
1375 llvm::PointerType *SrcPtrTy = llvm::dyn_cast<llvm::PointerType>(SrcTy);
1376 llvm::PointerType *DstPtrTy = llvm::dyn_cast<llvm::PointerType>(DstTy);
1377 if (SrcPtrTy && DstPtrTy &&
1378 SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace()) {
1379 Src = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy);
1380 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1381 return;
1382 }
1383
1384 // If the source and destination are integer or pointer types, just do an
1385 // extension or truncation to the desired type.
1386 if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) &&
1387 (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) {
1388 Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF);
1389 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1390 return;
1391 }
1392
1393 llvm::TypeSize DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy);
1394
1395 // If store is legal, just bitcast the src pointer.
1396 if (isa<llvm::ScalableVectorType>(SrcTy) ||
1397 isa<llvm::ScalableVectorType>(DstTy) ||
1398 SrcSize.getFixedValue() <= DstSize.getFixedValue()) {
1399 Dst = CGF.Builder.CreateElementBitCast(Dst, SrcTy);
1400 CGF.EmitAggregateStore(Src, Dst, DstIsVolatile);
1401 } else {
1402 // Otherwise do coercion through memory. This is stupid, but
1403 // simple.
1404
1405 // Generally SrcSize is never greater than DstSize, since this means we are
1406 // losing bits. However, this can happen in cases where the structure has
1407 // additional padding, for example due to a user specified alignment.
1408 //
1409 // FIXME: Assert that we aren't truncating non-padding bits when have access
1410 // to that information.
1411 Address Tmp = CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment());
1412 CGF.Builder.CreateStore(Src, Tmp);
1413 CGF.Builder.CreateMemCpy(
1414 Dst.getPointer(), Dst.getAlignment().getAsAlign(), Tmp.getPointer(),
1415 Tmp.getAlignment().getAsAlign(),
1416 llvm::ConstantInt::get(CGF.IntPtrTy, DstSize.getFixedValue()));
1417 }
1418 }
1419
emitAddressAtOffset(CodeGenFunction & CGF,Address addr,const ABIArgInfo & info)1420 static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr,
1421 const ABIArgInfo &info) {
1422 if (unsigned offset = info.getDirectOffset()) {
1423 addr = CGF.Builder.CreateElementBitCast(addr, CGF.Int8Ty);
1424 addr = CGF.Builder.CreateConstInBoundsByteGEP(addr,
1425 CharUnits::fromQuantity(offset));
1426 addr = CGF.Builder.CreateElementBitCast(addr, info.getCoerceToType());
1427 }
1428 return addr;
1429 }
1430
1431 namespace {
1432
1433 /// Encapsulates information about the way function arguments from
1434 /// CGFunctionInfo should be passed to actual LLVM IR function.
1435 class ClangToLLVMArgMapping {
1436 static const unsigned InvalidIndex = ~0U;
1437 unsigned InallocaArgNo;
1438 unsigned SRetArgNo;
1439 unsigned TotalIRArgs;
1440
1441 /// Arguments of LLVM IR function corresponding to single Clang argument.
1442 struct IRArgs {
1443 unsigned PaddingArgIndex;
1444 // Argument is expanded to IR arguments at positions
1445 // [FirstArgIndex, FirstArgIndex + NumberOfArgs).
1446 unsigned FirstArgIndex;
1447 unsigned NumberOfArgs;
1448
IRArgs__anon4649c3d10511::ClangToLLVMArgMapping::IRArgs1449 IRArgs()
1450 : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex),
1451 NumberOfArgs(0) {}
1452 };
1453
1454 SmallVector<IRArgs, 8> ArgInfo;
1455
1456 public:
ClangToLLVMArgMapping(const ASTContext & Context,const CGFunctionInfo & FI,bool OnlyRequiredArgs=false)1457 ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI,
1458 bool OnlyRequiredArgs = false)
1459 : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0),
1460 ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) {
1461 construct(Context, FI, OnlyRequiredArgs);
1462 }
1463
hasInallocaArg() const1464 bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; }
getInallocaArgNo() const1465 unsigned getInallocaArgNo() const {
1466 assert(hasInallocaArg());
1467 return InallocaArgNo;
1468 }
1469
hasSRetArg() const1470 bool hasSRetArg() const { return SRetArgNo != InvalidIndex; }
getSRetArgNo() const1471 unsigned getSRetArgNo() const {
1472 assert(hasSRetArg());
1473 return SRetArgNo;
1474 }
1475
totalIRArgs() const1476 unsigned totalIRArgs() const { return TotalIRArgs; }
1477
hasPaddingArg(unsigned ArgNo) const1478 bool hasPaddingArg(unsigned ArgNo) const {
1479 assert(ArgNo < ArgInfo.size());
1480 return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex;
1481 }
getPaddingArgNo(unsigned ArgNo) const1482 unsigned getPaddingArgNo(unsigned ArgNo) const {
1483 assert(hasPaddingArg(ArgNo));
1484 return ArgInfo[ArgNo].PaddingArgIndex;
1485 }
1486
1487 /// Returns index of first IR argument corresponding to ArgNo, and their
1488 /// quantity.
getIRArgs(unsigned ArgNo) const1489 std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const {
1490 assert(ArgNo < ArgInfo.size());
1491 return std::make_pair(ArgInfo[ArgNo].FirstArgIndex,
1492 ArgInfo[ArgNo].NumberOfArgs);
1493 }
1494
1495 private:
1496 void construct(const ASTContext &Context, const CGFunctionInfo &FI,
1497 bool OnlyRequiredArgs);
1498 };
1499
construct(const ASTContext & Context,const CGFunctionInfo & FI,bool OnlyRequiredArgs)1500 void ClangToLLVMArgMapping::construct(const ASTContext &Context,
1501 const CGFunctionInfo &FI,
1502 bool OnlyRequiredArgs) {
1503 unsigned IRArgNo = 0;
1504 bool SwapThisWithSRet = false;
1505 const ABIArgInfo &RetAI = FI.getReturnInfo();
1506
1507 if (RetAI.getKind() == ABIArgInfo::Indirect) {
1508 SwapThisWithSRet = RetAI.isSRetAfterThis();
1509 SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++;
1510 }
1511
1512 unsigned ArgNo = 0;
1513 unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size();
1514 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs;
1515 ++I, ++ArgNo) {
1516 assert(I != FI.arg_end());
1517 QualType ArgType = I->type;
1518 const ABIArgInfo &AI = I->info;
1519 // Collect data about IR arguments corresponding to Clang argument ArgNo.
1520 auto &IRArgs = ArgInfo[ArgNo];
1521
1522 if (AI.getPaddingType())
1523 IRArgs.PaddingArgIndex = IRArgNo++;
1524
1525 switch (AI.getKind()) {
1526 case ABIArgInfo::Extend:
1527 case ABIArgInfo::Direct: {
1528 // FIXME: handle sseregparm someday...
1529 llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType());
1530 if (AI.isDirect() && AI.getCanBeFlattened() && STy) {
1531 IRArgs.NumberOfArgs = STy->getNumElements();
1532 } else {
1533 IRArgs.NumberOfArgs = 1;
1534 }
1535 break;
1536 }
1537 case ABIArgInfo::Indirect:
1538 case ABIArgInfo::IndirectAliased:
1539 IRArgs.NumberOfArgs = 1;
1540 break;
1541 case ABIArgInfo::Ignore:
1542 case ABIArgInfo::InAlloca:
1543 // ignore and inalloca doesn't have matching LLVM parameters.
1544 IRArgs.NumberOfArgs = 0;
1545 break;
1546 case ABIArgInfo::CoerceAndExpand:
1547 IRArgs.NumberOfArgs = AI.getCoerceAndExpandTypeSequence().size();
1548 break;
1549 case ABIArgInfo::Expand:
1550 IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context);
1551 break;
1552 }
1553
1554 if (IRArgs.NumberOfArgs > 0) {
1555 IRArgs.FirstArgIndex = IRArgNo;
1556 IRArgNo += IRArgs.NumberOfArgs;
1557 }
1558
1559 // Skip over the sret parameter when it comes second. We already handled it
1560 // above.
1561 if (IRArgNo == 1 && SwapThisWithSRet)
1562 IRArgNo++;
1563 }
1564 assert(ArgNo == ArgInfo.size());
1565
1566 if (FI.usesInAlloca())
1567 InallocaArgNo = IRArgNo++;
1568
1569 TotalIRArgs = IRArgNo;
1570 }
1571 } // namespace
1572
1573 /***/
1574
ReturnTypeUsesSRet(const CGFunctionInfo & FI)1575 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
1576 const auto &RI = FI.getReturnInfo();
1577 return RI.isIndirect() || (RI.isInAlloca() && RI.getInAllocaSRet());
1578 }
1579
ReturnSlotInterferesWithArgs(const CGFunctionInfo & FI)1580 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) {
1581 return ReturnTypeUsesSRet(FI) &&
1582 getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs();
1583 }
1584
ReturnTypeUsesFPRet(QualType ResultType)1585 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) {
1586 if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
1587 switch (BT->getKind()) {
1588 default:
1589 return false;
1590 case BuiltinType::Float:
1591 return getTarget().useObjCFPRetForRealType(FloatModeKind::Float);
1592 case BuiltinType::Double:
1593 return getTarget().useObjCFPRetForRealType(FloatModeKind::Double);
1594 case BuiltinType::LongDouble:
1595 return getTarget().useObjCFPRetForRealType(FloatModeKind::LongDouble);
1596 }
1597 }
1598
1599 return false;
1600 }
1601
ReturnTypeUsesFP2Ret(QualType ResultType)1602 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) {
1603 if (const ComplexType *CT = ResultType->getAs<ComplexType>()) {
1604 if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) {
1605 if (BT->getKind() == BuiltinType::LongDouble)
1606 return getTarget().useObjCFP2RetForComplexLongDouble();
1607 }
1608 }
1609
1610 return false;
1611 }
1612
GetFunctionType(GlobalDecl GD)1613 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
1614 const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD);
1615 return GetFunctionType(FI);
1616 }
1617
1618 llvm::FunctionType *
GetFunctionType(const CGFunctionInfo & FI)1619 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) {
1620
1621 bool Inserted = FunctionsBeingProcessed.insert(&FI).second;
1622 (void)Inserted;
1623 assert(Inserted && "Recursively being processed?");
1624
1625 llvm::Type *resultType = nullptr;
1626 const ABIArgInfo &retAI = FI.getReturnInfo();
1627 switch (retAI.getKind()) {
1628 case ABIArgInfo::Expand:
1629 case ABIArgInfo::IndirectAliased:
1630 llvm_unreachable("Invalid ABI kind for return argument");
1631
1632 case ABIArgInfo::Extend:
1633 case ABIArgInfo::Direct:
1634 resultType = retAI.getCoerceToType();
1635 break;
1636
1637 case ABIArgInfo::InAlloca:
1638 if (retAI.getInAllocaSRet()) {
1639 // sret things on win32 aren't void, they return the sret pointer.
1640 QualType ret = FI.getReturnType();
1641 llvm::Type *ty = ConvertType(ret);
1642 unsigned addressSpace = CGM.getTypes().getTargetAddressSpace(ret);
1643 resultType = llvm::PointerType::get(ty, addressSpace);
1644 } else {
1645 resultType = llvm::Type::getVoidTy(getLLVMContext());
1646 }
1647 break;
1648
1649 case ABIArgInfo::Indirect:
1650 case ABIArgInfo::Ignore:
1651 resultType = llvm::Type::getVoidTy(getLLVMContext());
1652 break;
1653
1654 case ABIArgInfo::CoerceAndExpand:
1655 resultType = retAI.getUnpaddedCoerceAndExpandType();
1656 break;
1657 }
1658
1659 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true);
1660 SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs());
1661
1662 // Add type for sret argument.
1663 if (IRFunctionArgs.hasSRetArg()) {
1664 QualType Ret = FI.getReturnType();
1665 llvm::Type *Ty = ConvertType(Ret);
1666 unsigned AddressSpace = CGM.getTypes().getTargetAddressSpace(Ret);
1667 ArgTypes[IRFunctionArgs.getSRetArgNo()] =
1668 llvm::PointerType::get(Ty, AddressSpace);
1669 }
1670
1671 // Add type for inalloca argument.
1672 if (IRFunctionArgs.hasInallocaArg()) {
1673 auto ArgStruct = FI.getArgStruct();
1674 assert(ArgStruct);
1675 ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo();
1676 }
1677
1678 // Add in all of the required arguments.
1679 unsigned ArgNo = 0;
1680 CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
1681 ie = it + FI.getNumRequiredArgs();
1682 for (; it != ie; ++it, ++ArgNo) {
1683 const ABIArgInfo &ArgInfo = it->info;
1684
1685 // Insert a padding type to ensure proper alignment.
1686 if (IRFunctionArgs.hasPaddingArg(ArgNo))
1687 ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
1688 ArgInfo.getPaddingType();
1689
1690 unsigned FirstIRArg, NumIRArgs;
1691 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
1692
1693 switch (ArgInfo.getKind()) {
1694 case ABIArgInfo::Ignore:
1695 case ABIArgInfo::InAlloca:
1696 assert(NumIRArgs == 0);
1697 break;
1698
1699 case ABIArgInfo::Indirect: {
1700 assert(NumIRArgs == 1);
1701 // indirect arguments are always on the stack, which is alloca addr space.
1702 llvm::Type *LTy = ConvertTypeForMem(it->type);
1703 ArgTypes[FirstIRArg] = LTy->getPointerTo(
1704 CGM.getDataLayout().getAllocaAddrSpace());
1705 break;
1706 }
1707 case ABIArgInfo::IndirectAliased: {
1708 assert(NumIRArgs == 1);
1709 llvm::Type *LTy = ConvertTypeForMem(it->type);
1710 ArgTypes[FirstIRArg] = LTy->getPointerTo(ArgInfo.getIndirectAddrSpace());
1711 break;
1712 }
1713 case ABIArgInfo::Extend:
1714 case ABIArgInfo::Direct: {
1715 // Fast-isel and the optimizer generally like scalar values better than
1716 // FCAs, so we flatten them if this is safe to do for this argument.
1717 llvm::Type *argType = ArgInfo.getCoerceToType();
1718 llvm::StructType *st = dyn_cast<llvm::StructType>(argType);
1719 if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
1720 assert(NumIRArgs == st->getNumElements());
1721 for (unsigned i = 0, e = st->getNumElements(); i != e; ++i)
1722 ArgTypes[FirstIRArg + i] = st->getElementType(i);
1723 } else {
1724 assert(NumIRArgs == 1);
1725 ArgTypes[FirstIRArg] = argType;
1726 }
1727 break;
1728 }
1729
1730 case ABIArgInfo::CoerceAndExpand: {
1731 auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1732 for (auto *EltTy : ArgInfo.getCoerceAndExpandTypeSequence()) {
1733 *ArgTypesIter++ = EltTy;
1734 }
1735 assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1736 break;
1737 }
1738
1739 case ABIArgInfo::Expand:
1740 auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1741 getExpandedTypes(it->type, ArgTypesIter);
1742 assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1743 break;
1744 }
1745 }
1746
1747 bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased;
1748 assert(Erased && "Not in set?");
1749
1750 return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic());
1751 }
1752
GetFunctionTypeForVTable(GlobalDecl GD)1753 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) {
1754 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
1755 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
1756
1757 if (!isFuncTypeConvertible(FPT))
1758 return llvm::StructType::get(getLLVMContext());
1759
1760 return GetFunctionType(GD);
1761 }
1762
AddAttributesFromFunctionProtoType(ASTContext & Ctx,llvm::AttrBuilder & FuncAttrs,const FunctionProtoType * FPT)1763 static void AddAttributesFromFunctionProtoType(ASTContext &Ctx,
1764 llvm::AttrBuilder &FuncAttrs,
1765 const FunctionProtoType *FPT) {
1766 if (!FPT)
1767 return;
1768
1769 if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) &&
1770 FPT->isNothrow())
1771 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1772 }
1773
AddAttributesFromAssumes(llvm::AttrBuilder & FuncAttrs,const Decl * Callee)1774 static void AddAttributesFromAssumes(llvm::AttrBuilder &FuncAttrs,
1775 const Decl *Callee) {
1776 if (!Callee)
1777 return;
1778
1779 SmallVector<StringRef, 4> Attrs;
1780
1781 for (const AssumptionAttr *AA : Callee->specific_attrs<AssumptionAttr>())
1782 AA->getAssumption().split(Attrs, ",");
1783
1784 if (!Attrs.empty())
1785 FuncAttrs.addAttribute(llvm::AssumptionAttrKey,
1786 llvm::join(Attrs.begin(), Attrs.end(), ","));
1787 }
1788
MayDropFunctionReturn(const ASTContext & Context,QualType ReturnType) const1789 bool CodeGenModule::MayDropFunctionReturn(const ASTContext &Context,
1790 QualType ReturnType) const {
1791 // We can't just discard the return value for a record type with a
1792 // complex destructor or a non-trivially copyable type.
1793 if (const RecordType *RT =
1794 ReturnType.getCanonicalType()->getAs<RecordType>()) {
1795 if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1796 return ClassDecl->hasTrivialDestructor();
1797 }
1798 return ReturnType.isTriviallyCopyableType(Context);
1799 }
1800
HasStrictReturn(const CodeGenModule & Module,QualType RetTy,const Decl * TargetDecl)1801 static bool HasStrictReturn(const CodeGenModule &Module, QualType RetTy,
1802 const Decl *TargetDecl) {
1803 // As-is msan can not tolerate noundef mismatch between caller and
1804 // implementation. Mismatch is possible for e.g. indirect calls from C-caller
1805 // into C++. Such mismatches lead to confusing false reports. To avoid
1806 // expensive workaround on msan we enforce initialization event in uncommon
1807 // cases where it's allowed.
1808 if (Module.getLangOpts().Sanitize.has(SanitizerKind::Memory))
1809 return true;
1810 // C++ explicitly makes returning undefined values UB. C's rule only applies
1811 // to used values, so we never mark them noundef for now.
1812 if (!Module.getLangOpts().CPlusPlus)
1813 return false;
1814 if (TargetDecl) {
1815 if (const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(TargetDecl)) {
1816 if (FDecl->isExternC())
1817 return false;
1818 } else if (const VarDecl *VDecl = dyn_cast<VarDecl>(TargetDecl)) {
1819 // Function pointer.
1820 if (VDecl->isExternC())
1821 return false;
1822 }
1823 }
1824
1825 // We don't want to be too aggressive with the return checking, unless
1826 // it's explicit in the code opts or we're using an appropriate sanitizer.
1827 // Try to respect what the programmer intended.
1828 return Module.getCodeGenOpts().StrictReturn ||
1829 !Module.MayDropFunctionReturn(Module.getContext(), RetTy) ||
1830 Module.getLangOpts().Sanitize.has(SanitizerKind::Return);
1831 }
1832
getDefaultFunctionAttributes(StringRef Name,bool HasOptnone,bool AttrOnCallSite,llvm::AttrBuilder & FuncAttrs)1833 void CodeGenModule::getDefaultFunctionAttributes(StringRef Name,
1834 bool HasOptnone,
1835 bool AttrOnCallSite,
1836 llvm::AttrBuilder &FuncAttrs) {
1837 // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed.
1838 if (!HasOptnone) {
1839 if (CodeGenOpts.OptimizeSize)
1840 FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize);
1841 if (CodeGenOpts.OptimizeSize == 2)
1842 FuncAttrs.addAttribute(llvm::Attribute::MinSize);
1843 }
1844
1845 if (CodeGenOpts.DisableRedZone)
1846 FuncAttrs.addAttribute(llvm::Attribute::NoRedZone);
1847 if (CodeGenOpts.IndirectTlsSegRefs)
1848 FuncAttrs.addAttribute("indirect-tls-seg-refs");
1849 if (CodeGenOpts.NoImplicitFloat)
1850 FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat);
1851
1852 if (AttrOnCallSite) {
1853 // Attributes that should go on the call site only.
1854 // FIXME: Look for 'BuiltinAttr' on the function rather than re-checking
1855 // the -fno-builtin-foo list.
1856 if (!CodeGenOpts.SimplifyLibCalls || LangOpts.isNoBuiltinFunc(Name))
1857 FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin);
1858 if (!CodeGenOpts.TrapFuncName.empty())
1859 FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName);
1860 } else {
1861 switch (CodeGenOpts.getFramePointer()) {
1862 case CodeGenOptions::FramePointerKind::None:
1863 // This is the default behavior.
1864 break;
1865 case CodeGenOptions::FramePointerKind::NonLeaf:
1866 case CodeGenOptions::FramePointerKind::All:
1867 FuncAttrs.addAttribute("frame-pointer",
1868 CodeGenOptions::getFramePointerKindName(
1869 CodeGenOpts.getFramePointer()));
1870 }
1871
1872 if (CodeGenOpts.LessPreciseFPMAD)
1873 FuncAttrs.addAttribute("less-precise-fpmad", "true");
1874
1875 if (CodeGenOpts.NullPointerIsValid)
1876 FuncAttrs.addAttribute(llvm::Attribute::NullPointerIsValid);
1877
1878 if (CodeGenOpts.FPDenormalMode != llvm::DenormalMode::getIEEE())
1879 FuncAttrs.addAttribute("denormal-fp-math",
1880 CodeGenOpts.FPDenormalMode.str());
1881 if (CodeGenOpts.FP32DenormalMode != CodeGenOpts.FPDenormalMode) {
1882 FuncAttrs.addAttribute(
1883 "denormal-fp-math-f32",
1884 CodeGenOpts.FP32DenormalMode.str());
1885 }
1886
1887 if (LangOpts.getDefaultExceptionMode() == LangOptions::FPE_Ignore)
1888 FuncAttrs.addAttribute("no-trapping-math", "true");
1889
1890 // TODO: Are these all needed?
1891 // unsafe/inf/nan/nsz are handled by instruction-level FastMathFlags.
1892 if (LangOpts.NoHonorInfs)
1893 FuncAttrs.addAttribute("no-infs-fp-math", "true");
1894 if (LangOpts.NoHonorNaNs)
1895 FuncAttrs.addAttribute("no-nans-fp-math", "true");
1896 if (LangOpts.ApproxFunc)
1897 FuncAttrs.addAttribute("approx-func-fp-math", "true");
1898 if (LangOpts.AllowFPReassoc && LangOpts.AllowRecip &&
1899 LangOpts.NoSignedZero && LangOpts.ApproxFunc &&
1900 (LangOpts.getDefaultFPContractMode() ==
1901 LangOptions::FPModeKind::FPM_Fast ||
1902 LangOpts.getDefaultFPContractMode() ==
1903 LangOptions::FPModeKind::FPM_FastHonorPragmas))
1904 FuncAttrs.addAttribute("unsafe-fp-math", "true");
1905 if (CodeGenOpts.SoftFloat)
1906 FuncAttrs.addAttribute("use-soft-float", "true");
1907 FuncAttrs.addAttribute("stack-protector-buffer-size",
1908 llvm::utostr(CodeGenOpts.SSPBufferSize));
1909 if (LangOpts.NoSignedZero)
1910 FuncAttrs.addAttribute("no-signed-zeros-fp-math", "true");
1911
1912 // TODO: Reciprocal estimate codegen options should apply to instructions?
1913 const std::vector<std::string> &Recips = CodeGenOpts.Reciprocals;
1914 if (!Recips.empty())
1915 FuncAttrs.addAttribute("reciprocal-estimates",
1916 llvm::join(Recips, ","));
1917
1918 if (!CodeGenOpts.PreferVectorWidth.empty() &&
1919 CodeGenOpts.PreferVectorWidth != "none")
1920 FuncAttrs.addAttribute("prefer-vector-width",
1921 CodeGenOpts.PreferVectorWidth);
1922
1923 if (CodeGenOpts.StackRealignment)
1924 FuncAttrs.addAttribute("stackrealign");
1925 if (CodeGenOpts.Backchain)
1926 FuncAttrs.addAttribute("backchain");
1927 if (CodeGenOpts.EnableSegmentedStacks)
1928 FuncAttrs.addAttribute("split-stack");
1929
1930 if (CodeGenOpts.SpeculativeLoadHardening)
1931 FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening);
1932
1933 // Add zero-call-used-regs attribute.
1934 switch (CodeGenOpts.getZeroCallUsedRegs()) {
1935 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::Skip:
1936 FuncAttrs.removeAttribute("zero-call-used-regs");
1937 break;
1938 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::UsedGPRArg:
1939 FuncAttrs.addAttribute("zero-call-used-regs", "used-gpr-arg");
1940 break;
1941 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::UsedGPR:
1942 FuncAttrs.addAttribute("zero-call-used-regs", "used-gpr");
1943 break;
1944 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::UsedArg:
1945 FuncAttrs.addAttribute("zero-call-used-regs", "used-arg");
1946 break;
1947 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::Used:
1948 FuncAttrs.addAttribute("zero-call-used-regs", "used");
1949 break;
1950 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::AllGPRArg:
1951 FuncAttrs.addAttribute("zero-call-used-regs", "all-gpr-arg");
1952 break;
1953 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::AllGPR:
1954 FuncAttrs.addAttribute("zero-call-used-regs", "all-gpr");
1955 break;
1956 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::AllArg:
1957 FuncAttrs.addAttribute("zero-call-used-regs", "all-arg");
1958 break;
1959 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::All:
1960 FuncAttrs.addAttribute("zero-call-used-regs", "all");
1961 break;
1962 }
1963 }
1964
1965 if (getLangOpts().assumeFunctionsAreConvergent()) {
1966 // Conservatively, mark all functions and calls in CUDA and OpenCL as
1967 // convergent (meaning, they may call an intrinsically convergent op, such
1968 // as __syncthreads() / barrier(), and so can't have certain optimizations
1969 // applied around them). LLVM will remove this attribute where it safely
1970 // can.
1971 FuncAttrs.addAttribute(llvm::Attribute::Convergent);
1972 }
1973
1974 // TODO: NoUnwind attribute should be added for other GPU modes HIP,
1975 // SYCL, OpenMP offload. AFAIK, none of them support exceptions in device
1976 // code.
1977 if ((getLangOpts().CUDA && getLangOpts().CUDAIsDevice) ||
1978 getLangOpts().OpenCL) {
1979 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1980 }
1981
1982 for (StringRef Attr : CodeGenOpts.DefaultFunctionAttrs) {
1983 StringRef Var, Value;
1984 std::tie(Var, Value) = Attr.split('=');
1985 FuncAttrs.addAttribute(Var, Value);
1986 }
1987 }
1988
addDefaultFunctionDefinitionAttributes(llvm::Function & F)1989 void CodeGenModule::addDefaultFunctionDefinitionAttributes(llvm::Function &F) {
1990 llvm::AttrBuilder FuncAttrs(F.getContext());
1991 getDefaultFunctionAttributes(F.getName(), F.hasOptNone(),
1992 /* AttrOnCallSite = */ false, FuncAttrs);
1993 // TODO: call GetCPUAndFeaturesAttributes?
1994 F.addFnAttrs(FuncAttrs);
1995 }
1996
addDefaultFunctionDefinitionAttributes(llvm::AttrBuilder & attrs)1997 void CodeGenModule::addDefaultFunctionDefinitionAttributes(
1998 llvm::AttrBuilder &attrs) {
1999 getDefaultFunctionAttributes(/*function name*/ "", /*optnone*/ false,
2000 /*for call*/ false, attrs);
2001 GetCPUAndFeaturesAttributes(GlobalDecl(), attrs);
2002 }
2003
addNoBuiltinAttributes(llvm::AttrBuilder & FuncAttrs,const LangOptions & LangOpts,const NoBuiltinAttr * NBA=nullptr)2004 static void addNoBuiltinAttributes(llvm::AttrBuilder &FuncAttrs,
2005 const LangOptions &LangOpts,
2006 const NoBuiltinAttr *NBA = nullptr) {
2007 auto AddNoBuiltinAttr = [&FuncAttrs](StringRef BuiltinName) {
2008 SmallString<32> AttributeName;
2009 AttributeName += "no-builtin-";
2010 AttributeName += BuiltinName;
2011 FuncAttrs.addAttribute(AttributeName);
2012 };
2013
2014 // First, handle the language options passed through -fno-builtin.
2015 if (LangOpts.NoBuiltin) {
2016 // -fno-builtin disables them all.
2017 FuncAttrs.addAttribute("no-builtins");
2018 return;
2019 }
2020
2021 // Then, add attributes for builtins specified through -fno-builtin-<name>.
2022 llvm::for_each(LangOpts.NoBuiltinFuncs, AddNoBuiltinAttr);
2023
2024 // Now, let's check the __attribute__((no_builtin("...")) attribute added to
2025 // the source.
2026 if (!NBA)
2027 return;
2028
2029 // If there is a wildcard in the builtin names specified through the
2030 // attribute, disable them all.
2031 if (llvm::is_contained(NBA->builtinNames(), "*")) {
2032 FuncAttrs.addAttribute("no-builtins");
2033 return;
2034 }
2035
2036 // And last, add the rest of the builtin names.
2037 llvm::for_each(NBA->builtinNames(), AddNoBuiltinAttr);
2038 }
2039
DetermineNoUndef(QualType QTy,CodeGenTypes & Types,const llvm::DataLayout & DL,const ABIArgInfo & AI,bool CheckCoerce=true)2040 static bool DetermineNoUndef(QualType QTy, CodeGenTypes &Types,
2041 const llvm::DataLayout &DL, const ABIArgInfo &AI,
2042 bool CheckCoerce = true) {
2043 llvm::Type *Ty = Types.ConvertTypeForMem(QTy);
2044 if (AI.getKind() == ABIArgInfo::Indirect)
2045 return true;
2046 if (AI.getKind() == ABIArgInfo::Extend)
2047 return true;
2048 if (!DL.typeSizeEqualsStoreSize(Ty))
2049 // TODO: This will result in a modest amount of values not marked noundef
2050 // when they could be. We care about values that *invisibly* contain undef
2051 // bits from the perspective of LLVM IR.
2052 return false;
2053 if (CheckCoerce && AI.canHaveCoerceToType()) {
2054 llvm::Type *CoerceTy = AI.getCoerceToType();
2055 if (llvm::TypeSize::isKnownGT(DL.getTypeSizeInBits(CoerceTy),
2056 DL.getTypeSizeInBits(Ty)))
2057 // If we're coercing to a type with a greater size than the canonical one,
2058 // we're introducing new undef bits.
2059 // Coercing to a type of smaller or equal size is ok, as we know that
2060 // there's no internal padding (typeSizeEqualsStoreSize).
2061 return false;
2062 }
2063 if (QTy->isBitIntType())
2064 return true;
2065 if (QTy->isReferenceType())
2066 return true;
2067 if (QTy->isNullPtrType())
2068 return false;
2069 if (QTy->isMemberPointerType())
2070 // TODO: Some member pointers are `noundef`, but it depends on the ABI. For
2071 // now, never mark them.
2072 return false;
2073 if (QTy->isScalarType()) {
2074 if (const ComplexType *Complex = dyn_cast<ComplexType>(QTy))
2075 return DetermineNoUndef(Complex->getElementType(), Types, DL, AI, false);
2076 return true;
2077 }
2078 if (const VectorType *Vector = dyn_cast<VectorType>(QTy))
2079 return DetermineNoUndef(Vector->getElementType(), Types, DL, AI, false);
2080 if (const MatrixType *Matrix = dyn_cast<MatrixType>(QTy))
2081 return DetermineNoUndef(Matrix->getElementType(), Types, DL, AI, false);
2082 if (const ArrayType *Array = dyn_cast<ArrayType>(QTy))
2083 return DetermineNoUndef(Array->getElementType(), Types, DL, AI, false);
2084
2085 // TODO: Some structs may be `noundef`, in specific situations.
2086 return false;
2087 }
2088
2089 /// Check if the argument of a function has maybe_undef attribute.
IsArgumentMaybeUndef(const Decl * TargetDecl,unsigned NumRequiredArgs,unsigned ArgNo)2090 static bool IsArgumentMaybeUndef(const Decl *TargetDecl,
2091 unsigned NumRequiredArgs, unsigned ArgNo) {
2092 const auto *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl);
2093 if (!FD)
2094 return false;
2095
2096 // Assume variadic arguments do not have maybe_undef attribute.
2097 if (ArgNo >= NumRequiredArgs)
2098 return false;
2099
2100 // Check if argument has maybe_undef attribute.
2101 if (ArgNo < FD->getNumParams()) {
2102 const ParmVarDecl *Param = FD->getParamDecl(ArgNo);
2103 if (Param && Param->hasAttr<MaybeUndefAttr>())
2104 return true;
2105 }
2106
2107 return false;
2108 }
2109
2110 /// Construct the IR attribute list of a function or call.
2111 ///
2112 /// When adding an attribute, please consider where it should be handled:
2113 ///
2114 /// - getDefaultFunctionAttributes is for attributes that are essentially
2115 /// part of the global target configuration (but perhaps can be
2116 /// overridden on a per-function basis). Adding attributes there
2117 /// will cause them to also be set in frontends that build on Clang's
2118 /// target-configuration logic, as well as for code defined in library
2119 /// modules such as CUDA's libdevice.
2120 ///
2121 /// - ConstructAttributeList builds on top of getDefaultFunctionAttributes
2122 /// and adds declaration-specific, convention-specific, and
2123 /// frontend-specific logic. The last is of particular importance:
2124 /// attributes that restrict how the frontend generates code must be
2125 /// added here rather than getDefaultFunctionAttributes.
2126 ///
ConstructAttributeList(StringRef Name,const CGFunctionInfo & FI,CGCalleeInfo CalleeInfo,llvm::AttributeList & AttrList,unsigned & CallingConv,bool AttrOnCallSite,bool IsThunk)2127 void CodeGenModule::ConstructAttributeList(StringRef Name,
2128 const CGFunctionInfo &FI,
2129 CGCalleeInfo CalleeInfo,
2130 llvm::AttributeList &AttrList,
2131 unsigned &CallingConv,
2132 bool AttrOnCallSite, bool IsThunk) {
2133 llvm::AttrBuilder FuncAttrs(getLLVMContext());
2134 llvm::AttrBuilder RetAttrs(getLLVMContext());
2135
2136 // Collect function IR attributes from the CC lowering.
2137 // We'll collect the paramete and result attributes later.
2138 CallingConv = FI.getEffectiveCallingConvention();
2139 if (FI.isNoReturn())
2140 FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
2141 if (FI.isCmseNSCall())
2142 FuncAttrs.addAttribute("cmse_nonsecure_call");
2143
2144 // Collect function IR attributes from the callee prototype if we have one.
2145 AddAttributesFromFunctionProtoType(getContext(), FuncAttrs,
2146 CalleeInfo.getCalleeFunctionProtoType());
2147
2148 const Decl *TargetDecl = CalleeInfo.getCalleeDecl().getDecl();
2149
2150 // Attach assumption attributes to the declaration. If this is a call
2151 // site, attach assumptions from the caller to the call as well.
2152 AddAttributesFromAssumes(FuncAttrs, TargetDecl);
2153
2154 bool HasOptnone = false;
2155 // The NoBuiltinAttr attached to the target FunctionDecl.
2156 const NoBuiltinAttr *NBA = nullptr;
2157
2158 // Some ABIs may result in additional accesses to arguments that may
2159 // otherwise not be present.
2160 auto AddPotentialArgAccess = [&]() {
2161 llvm::Attribute A = FuncAttrs.getAttribute(llvm::Attribute::Memory);
2162 if (A.isValid())
2163 FuncAttrs.addMemoryAttr(A.getMemoryEffects() |
2164 llvm::MemoryEffects::argMemOnly());
2165 };
2166
2167 // Collect function IR attributes based on declaration-specific
2168 // information.
2169 // FIXME: handle sseregparm someday...
2170 if (TargetDecl) {
2171 if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
2172 FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice);
2173 if (TargetDecl->hasAttr<NoThrowAttr>())
2174 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
2175 if (TargetDecl->hasAttr<NoReturnAttr>())
2176 FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
2177 if (TargetDecl->hasAttr<ColdAttr>())
2178 FuncAttrs.addAttribute(llvm::Attribute::Cold);
2179 if (TargetDecl->hasAttr<HotAttr>())
2180 FuncAttrs.addAttribute(llvm::Attribute::Hot);
2181 if (TargetDecl->hasAttr<NoDuplicateAttr>())
2182 FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate);
2183 if (TargetDecl->hasAttr<ConvergentAttr>())
2184 FuncAttrs.addAttribute(llvm::Attribute::Convergent);
2185
2186 if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
2187 AddAttributesFromFunctionProtoType(
2188 getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>());
2189 if (AttrOnCallSite && Fn->isReplaceableGlobalAllocationFunction()) {
2190 // A sane operator new returns a non-aliasing pointer.
2191 auto Kind = Fn->getDeclName().getCXXOverloadedOperator();
2192 if (getCodeGenOpts().AssumeSaneOperatorNew &&
2193 (Kind == OO_New || Kind == OO_Array_New))
2194 RetAttrs.addAttribute(llvm::Attribute::NoAlias);
2195 }
2196 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn);
2197 const bool IsVirtualCall = MD && MD->isVirtual();
2198 // Don't use [[noreturn]], _Noreturn or [[no_builtin]] for a call to a
2199 // virtual function. These attributes are not inherited by overloads.
2200 if (!(AttrOnCallSite && IsVirtualCall)) {
2201 if (Fn->isNoReturn())
2202 FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
2203 NBA = Fn->getAttr<NoBuiltinAttr>();
2204 }
2205 // Only place nomerge attribute on call sites, never functions. This
2206 // allows it to work on indirect virtual function calls.
2207 if (AttrOnCallSite && TargetDecl->hasAttr<NoMergeAttr>())
2208 FuncAttrs.addAttribute(llvm::Attribute::NoMerge);
2209 }
2210
2211 // 'const', 'pure' and 'noalias' attributed functions are also nounwind.
2212 if (TargetDecl->hasAttr<ConstAttr>()) {
2213 FuncAttrs.addMemoryAttr(llvm::MemoryEffects::none());
2214 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
2215 // gcc specifies that 'const' functions have greater restrictions than
2216 // 'pure' functions, so they also cannot have infinite loops.
2217 FuncAttrs.addAttribute(llvm::Attribute::WillReturn);
2218 } else if (TargetDecl->hasAttr<PureAttr>()) {
2219 FuncAttrs.addMemoryAttr(llvm::MemoryEffects::readOnly());
2220 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
2221 // gcc specifies that 'pure' functions cannot have infinite loops.
2222 FuncAttrs.addAttribute(llvm::Attribute::WillReturn);
2223 } else if (TargetDecl->hasAttr<NoAliasAttr>()) {
2224 FuncAttrs.addMemoryAttr(llvm::MemoryEffects::argMemOnly());
2225 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
2226 }
2227 if (TargetDecl->hasAttr<RestrictAttr>())
2228 RetAttrs.addAttribute(llvm::Attribute::NoAlias);
2229 if (TargetDecl->hasAttr<ReturnsNonNullAttr>() &&
2230 !CodeGenOpts.NullPointerIsValid)
2231 RetAttrs.addAttribute(llvm::Attribute::NonNull);
2232 if (TargetDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>())
2233 FuncAttrs.addAttribute("no_caller_saved_registers");
2234 if (TargetDecl->hasAttr<AnyX86NoCfCheckAttr>())
2235 FuncAttrs.addAttribute(llvm::Attribute::NoCfCheck);
2236 if (TargetDecl->hasAttr<LeafAttr>())
2237 FuncAttrs.addAttribute(llvm::Attribute::NoCallback);
2238
2239 HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>();
2240 if (auto *AllocSize = TargetDecl->getAttr<AllocSizeAttr>()) {
2241 std::optional<unsigned> NumElemsParam;
2242 if (AllocSize->getNumElemsParam().isValid())
2243 NumElemsParam = AllocSize->getNumElemsParam().getLLVMIndex();
2244 FuncAttrs.addAllocSizeAttr(AllocSize->getElemSizeParam().getLLVMIndex(),
2245 NumElemsParam);
2246 }
2247
2248 if (TargetDecl->hasAttr<OpenCLKernelAttr>()) {
2249 if (getLangOpts().OpenCLVersion <= 120) {
2250 // OpenCL v1.2 Work groups are always uniform
2251 FuncAttrs.addAttribute("uniform-work-group-size", "true");
2252 } else {
2253 // OpenCL v2.0 Work groups may be whether uniform or not.
2254 // '-cl-uniform-work-group-size' compile option gets a hint
2255 // to the compiler that the global work-size be a multiple of
2256 // the work-group size specified to clEnqueueNDRangeKernel
2257 // (i.e. work groups are uniform).
2258 FuncAttrs.addAttribute("uniform-work-group-size",
2259 llvm::toStringRef(CodeGenOpts.UniformWGSize));
2260 }
2261 }
2262 }
2263
2264 // Attach "no-builtins" attributes to:
2265 // * call sites: both `nobuiltin` and "no-builtins" or "no-builtin-<name>".
2266 // * definitions: "no-builtins" or "no-builtin-<name>" only.
2267 // The attributes can come from:
2268 // * LangOpts: -ffreestanding, -fno-builtin, -fno-builtin-<name>
2269 // * FunctionDecl attributes: __attribute__((no_builtin(...)))
2270 addNoBuiltinAttributes(FuncAttrs, getLangOpts(), NBA);
2271
2272 // Collect function IR attributes based on global settiings.
2273 getDefaultFunctionAttributes(Name, HasOptnone, AttrOnCallSite, FuncAttrs);
2274
2275 // Override some default IR attributes based on declaration-specific
2276 // information.
2277 if (TargetDecl) {
2278 if (TargetDecl->hasAttr<NoSpeculativeLoadHardeningAttr>())
2279 FuncAttrs.removeAttribute(llvm::Attribute::SpeculativeLoadHardening);
2280 if (TargetDecl->hasAttr<SpeculativeLoadHardeningAttr>())
2281 FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening);
2282 if (TargetDecl->hasAttr<NoSplitStackAttr>())
2283 FuncAttrs.removeAttribute("split-stack");
2284 if (TargetDecl->hasAttr<ZeroCallUsedRegsAttr>()) {
2285 // A function "__attribute__((...))" overrides the command-line flag.
2286 auto Kind =
2287 TargetDecl->getAttr<ZeroCallUsedRegsAttr>()->getZeroCallUsedRegs();
2288 FuncAttrs.removeAttribute("zero-call-used-regs");
2289 FuncAttrs.addAttribute(
2290 "zero-call-used-regs",
2291 ZeroCallUsedRegsAttr::ConvertZeroCallUsedRegsKindToStr(Kind));
2292 }
2293
2294 // Add NonLazyBind attribute to function declarations when -fno-plt
2295 // is used.
2296 // FIXME: what if we just haven't processed the function definition
2297 // yet, or if it's an external definition like C99 inline?
2298 if (CodeGenOpts.NoPLT) {
2299 if (auto *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
2300 if (!Fn->isDefined() && !AttrOnCallSite) {
2301 FuncAttrs.addAttribute(llvm::Attribute::NonLazyBind);
2302 }
2303 }
2304 }
2305 }
2306
2307 // Add "sample-profile-suffix-elision-policy" attribute for internal linkage
2308 // functions with -funique-internal-linkage-names.
2309 if (TargetDecl && CodeGenOpts.UniqueInternalLinkageNames) {
2310 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
2311 if (!FD->isExternallyVisible())
2312 FuncAttrs.addAttribute("sample-profile-suffix-elision-policy",
2313 "selected");
2314 }
2315 }
2316
2317 // Collect non-call-site function IR attributes from declaration-specific
2318 // information.
2319 if (!AttrOnCallSite) {
2320 if (TargetDecl && TargetDecl->hasAttr<CmseNSEntryAttr>())
2321 FuncAttrs.addAttribute("cmse_nonsecure_entry");
2322
2323 // Whether tail calls are enabled.
2324 auto shouldDisableTailCalls = [&] {
2325 // Should this be honored in getDefaultFunctionAttributes?
2326 if (CodeGenOpts.DisableTailCalls)
2327 return true;
2328
2329 if (!TargetDecl)
2330 return false;
2331
2332 if (TargetDecl->hasAttr<DisableTailCallsAttr>() ||
2333 TargetDecl->hasAttr<AnyX86InterruptAttr>())
2334 return true;
2335
2336 if (CodeGenOpts.NoEscapingBlockTailCalls) {
2337 if (const auto *BD = dyn_cast<BlockDecl>(TargetDecl))
2338 if (!BD->doesNotEscape())
2339 return true;
2340 }
2341
2342 return false;
2343 };
2344 if (shouldDisableTailCalls())
2345 FuncAttrs.addAttribute("disable-tail-calls", "true");
2346
2347 // CPU/feature overrides. addDefaultFunctionDefinitionAttributes
2348 // handles these separately to set them based on the global defaults.
2349 GetCPUAndFeaturesAttributes(CalleeInfo.getCalleeDecl(), FuncAttrs);
2350
2351 if (CodeGenOpts.ReturnProtector)
2352 FuncAttrs.addAttribute("ret-protector");
2353 }
2354
2355 // Collect attributes from arguments and return values.
2356 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI);
2357
2358 QualType RetTy = FI.getReturnType();
2359 const ABIArgInfo &RetAI = FI.getReturnInfo();
2360 const llvm::DataLayout &DL = getDataLayout();
2361
2362 // Determine if the return type could be partially undef
2363 if (CodeGenOpts.EnableNoundefAttrs &&
2364 HasStrictReturn(*this, RetTy, TargetDecl)) {
2365 if (!RetTy->isVoidType() && RetAI.getKind() != ABIArgInfo::Indirect &&
2366 DetermineNoUndef(RetTy, getTypes(), DL, RetAI))
2367 RetAttrs.addAttribute(llvm::Attribute::NoUndef);
2368 }
2369
2370 switch (RetAI.getKind()) {
2371 case ABIArgInfo::Extend:
2372 if (RetAI.isSignExt())
2373 RetAttrs.addAttribute(llvm::Attribute::SExt);
2374 else
2375 RetAttrs.addAttribute(llvm::Attribute::ZExt);
2376 [[fallthrough]];
2377 case ABIArgInfo::Direct:
2378 if (RetAI.getInReg())
2379 RetAttrs.addAttribute(llvm::Attribute::InReg);
2380 break;
2381 case ABIArgInfo::Ignore:
2382 break;
2383
2384 case ABIArgInfo::InAlloca:
2385 case ABIArgInfo::Indirect: {
2386 // inalloca and sret disable readnone and readonly
2387 AddPotentialArgAccess();
2388 break;
2389 }
2390
2391 case ABIArgInfo::CoerceAndExpand:
2392 break;
2393
2394 case ABIArgInfo::Expand:
2395 case ABIArgInfo::IndirectAliased:
2396 llvm_unreachable("Invalid ABI kind for return argument");
2397 }
2398
2399 if (!IsThunk) {
2400 // FIXME: fix this properly, https://reviews.llvm.org/D100388
2401 if (const auto *RefTy = RetTy->getAs<ReferenceType>()) {
2402 QualType PTy = RefTy->getPointeeType();
2403 if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
2404 RetAttrs.addDereferenceableAttr(
2405 getMinimumObjectSize(PTy).getQuantity());
2406 if (getTypes().getTargetAddressSpace(PTy) == 0 &&
2407 !CodeGenOpts.NullPointerIsValid)
2408 RetAttrs.addAttribute(llvm::Attribute::NonNull);
2409 if (PTy->isObjectType()) {
2410 llvm::Align Alignment =
2411 getNaturalPointeeTypeAlignment(RetTy).getAsAlign();
2412 RetAttrs.addAlignmentAttr(Alignment);
2413 }
2414 }
2415 }
2416
2417 bool hasUsedSRet = false;
2418 SmallVector<llvm::AttributeSet, 4> ArgAttrs(IRFunctionArgs.totalIRArgs());
2419
2420 // Attach attributes to sret.
2421 if (IRFunctionArgs.hasSRetArg()) {
2422 llvm::AttrBuilder SRETAttrs(getLLVMContext());
2423 SRETAttrs.addStructRetAttr(getTypes().ConvertTypeForMem(RetTy));
2424 hasUsedSRet = true;
2425 if (RetAI.getInReg())
2426 SRETAttrs.addAttribute(llvm::Attribute::InReg);
2427 SRETAttrs.addAlignmentAttr(RetAI.getIndirectAlign().getQuantity());
2428 ArgAttrs[IRFunctionArgs.getSRetArgNo()] =
2429 llvm::AttributeSet::get(getLLVMContext(), SRETAttrs);
2430 }
2431
2432 // Attach attributes to inalloca argument.
2433 if (IRFunctionArgs.hasInallocaArg()) {
2434 llvm::AttrBuilder Attrs(getLLVMContext());
2435 Attrs.addInAllocaAttr(FI.getArgStruct());
2436 ArgAttrs[IRFunctionArgs.getInallocaArgNo()] =
2437 llvm::AttributeSet::get(getLLVMContext(), Attrs);
2438 }
2439
2440 // Apply `nonnull`, `dereferencable(N)` and `align N` to the `this` argument,
2441 // unless this is a thunk function.
2442 // FIXME: fix this properly, https://reviews.llvm.org/D100388
2443 if (FI.isInstanceMethod() && !IRFunctionArgs.hasInallocaArg() &&
2444 !FI.arg_begin()->type->isVoidPointerType() && !IsThunk) {
2445 auto IRArgs = IRFunctionArgs.getIRArgs(0);
2446
2447 assert(IRArgs.second == 1 && "Expected only a single `this` pointer.");
2448
2449 llvm::AttrBuilder Attrs(getLLVMContext());
2450
2451 QualType ThisTy =
2452 FI.arg_begin()->type.castAs<PointerType>()->getPointeeType();
2453
2454 if (!CodeGenOpts.NullPointerIsValid &&
2455 getTypes().getTargetAddressSpace(FI.arg_begin()->type) == 0) {
2456 Attrs.addAttribute(llvm::Attribute::NonNull);
2457 Attrs.addDereferenceableAttr(getMinimumObjectSize(ThisTy).getQuantity());
2458 } else {
2459 // FIXME dereferenceable should be correct here, regardless of
2460 // NullPointerIsValid. However, dereferenceable currently does not always
2461 // respect NullPointerIsValid and may imply nonnull and break the program.
2462 // See https://reviews.llvm.org/D66618 for discussions.
2463 Attrs.addDereferenceableOrNullAttr(
2464 getMinimumObjectSize(
2465 FI.arg_begin()->type.castAs<PointerType>()->getPointeeType())
2466 .getQuantity());
2467 }
2468
2469 llvm::Align Alignment =
2470 getNaturalTypeAlignment(ThisTy, /*BaseInfo=*/nullptr,
2471 /*TBAAInfo=*/nullptr, /*forPointeeType=*/true)
2472 .getAsAlign();
2473 Attrs.addAlignmentAttr(Alignment);
2474
2475 ArgAttrs[IRArgs.first] = llvm::AttributeSet::get(getLLVMContext(), Attrs);
2476 }
2477
2478 unsigned ArgNo = 0;
2479 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(),
2480 E = FI.arg_end();
2481 I != E; ++I, ++ArgNo) {
2482 QualType ParamType = I->type;
2483 const ABIArgInfo &AI = I->info;
2484 llvm::AttrBuilder Attrs(getLLVMContext());
2485
2486 // Add attribute for padding argument, if necessary.
2487 if (IRFunctionArgs.hasPaddingArg(ArgNo)) {
2488 if (AI.getPaddingInReg()) {
2489 ArgAttrs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
2490 llvm::AttributeSet::get(
2491 getLLVMContext(),
2492 llvm::AttrBuilder(getLLVMContext()).addAttribute(llvm::Attribute::InReg));
2493 }
2494 }
2495
2496 // Decide whether the argument we're handling could be partially undef
2497 if (CodeGenOpts.EnableNoundefAttrs &&
2498 DetermineNoUndef(ParamType, getTypes(), DL, AI)) {
2499 Attrs.addAttribute(llvm::Attribute::NoUndef);
2500 }
2501
2502 // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
2503 // have the corresponding parameter variable. It doesn't make
2504 // sense to do it here because parameters are so messed up.
2505 switch (AI.getKind()) {
2506 case ABIArgInfo::Extend:
2507 if (AI.isSignExt())
2508 Attrs.addAttribute(llvm::Attribute::SExt);
2509 else
2510 Attrs.addAttribute(llvm::Attribute::ZExt);
2511 [[fallthrough]];
2512 case ABIArgInfo::Direct:
2513 if (ArgNo == 0 && FI.isChainCall())
2514 Attrs.addAttribute(llvm::Attribute::Nest);
2515 else if (AI.getInReg())
2516 Attrs.addAttribute(llvm::Attribute::InReg);
2517 Attrs.addStackAlignmentAttr(llvm::MaybeAlign(AI.getDirectAlign()));
2518 break;
2519
2520 case ABIArgInfo::Indirect: {
2521 if (AI.getInReg())
2522 Attrs.addAttribute(llvm::Attribute::InReg);
2523
2524 if (AI.getIndirectByVal())
2525 Attrs.addByValAttr(getTypes().ConvertTypeForMem(ParamType));
2526
2527 auto *Decl = ParamType->getAsRecordDecl();
2528 if (CodeGenOpts.PassByValueIsNoAlias && Decl &&
2529 Decl->getArgPassingRestrictions() == RecordDecl::APK_CanPassInRegs)
2530 // When calling the function, the pointer passed in will be the only
2531 // reference to the underlying object. Mark it accordingly.
2532 Attrs.addAttribute(llvm::Attribute::NoAlias);
2533
2534 // TODO: We could add the byref attribute if not byval, but it would
2535 // require updating many testcases.
2536
2537 CharUnits Align = AI.getIndirectAlign();
2538
2539 // In a byval argument, it is important that the required
2540 // alignment of the type is honored, as LLVM might be creating a
2541 // *new* stack object, and needs to know what alignment to give
2542 // it. (Sometimes it can deduce a sensible alignment on its own,
2543 // but not if clang decides it must emit a packed struct, or the
2544 // user specifies increased alignment requirements.)
2545 //
2546 // This is different from indirect *not* byval, where the object
2547 // exists already, and the align attribute is purely
2548 // informative.
2549 assert(!Align.isZero());
2550
2551 // For now, only add this when we have a byval argument.
2552 // TODO: be less lazy about updating test cases.
2553 if (AI.getIndirectByVal())
2554 Attrs.addAlignmentAttr(Align.getQuantity());
2555
2556 // byval disables readnone and readonly.
2557 AddPotentialArgAccess();
2558 break;
2559 }
2560 case ABIArgInfo::IndirectAliased: {
2561 CharUnits Align = AI.getIndirectAlign();
2562 Attrs.addByRefAttr(getTypes().ConvertTypeForMem(ParamType));
2563 Attrs.addAlignmentAttr(Align.getQuantity());
2564 break;
2565 }
2566 case ABIArgInfo::Ignore:
2567 case ABIArgInfo::Expand:
2568 case ABIArgInfo::CoerceAndExpand:
2569 break;
2570
2571 case ABIArgInfo::InAlloca:
2572 // inalloca disables readnone and readonly.
2573 AddPotentialArgAccess();
2574 continue;
2575 }
2576
2577 if (const auto *RefTy = ParamType->getAs<ReferenceType>()) {
2578 QualType PTy = RefTy->getPointeeType();
2579 if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
2580 Attrs.addDereferenceableAttr(
2581 getMinimumObjectSize(PTy).getQuantity());
2582 if (getTypes().getTargetAddressSpace(PTy) == 0 &&
2583 !CodeGenOpts.NullPointerIsValid)
2584 Attrs.addAttribute(llvm::Attribute::NonNull);
2585 if (PTy->isObjectType()) {
2586 llvm::Align Alignment =
2587 getNaturalPointeeTypeAlignment(ParamType).getAsAlign();
2588 Attrs.addAlignmentAttr(Alignment);
2589 }
2590 }
2591
2592 // From OpenCL spec v3.0.10 section 6.3.5 Alignment of Types:
2593 // > For arguments to a __kernel function declared to be a pointer to a
2594 // > data type, the OpenCL compiler can assume that the pointee is always
2595 // > appropriately aligned as required by the data type.
2596 if (TargetDecl && TargetDecl->hasAttr<OpenCLKernelAttr>() &&
2597 ParamType->isPointerType()) {
2598 QualType PTy = ParamType->getPointeeType();
2599 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) {
2600 llvm::Align Alignment =
2601 getNaturalPointeeTypeAlignment(ParamType).getAsAlign();
2602 Attrs.addAlignmentAttr(Alignment);
2603 }
2604 }
2605
2606 switch (FI.getExtParameterInfo(ArgNo).getABI()) {
2607 case ParameterABI::Ordinary:
2608 break;
2609
2610 case ParameterABI::SwiftIndirectResult: {
2611 // Add 'sret' if we haven't already used it for something, but
2612 // only if the result is void.
2613 if (!hasUsedSRet && RetTy->isVoidType()) {
2614 Attrs.addStructRetAttr(getTypes().ConvertTypeForMem(ParamType));
2615 hasUsedSRet = true;
2616 }
2617
2618 // Add 'noalias' in either case.
2619 Attrs.addAttribute(llvm::Attribute::NoAlias);
2620
2621 // Add 'dereferenceable' and 'alignment'.
2622 auto PTy = ParamType->getPointeeType();
2623 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) {
2624 auto info = getContext().getTypeInfoInChars(PTy);
2625 Attrs.addDereferenceableAttr(info.Width.getQuantity());
2626 Attrs.addAlignmentAttr(info.Align.getAsAlign());
2627 }
2628 break;
2629 }
2630
2631 case ParameterABI::SwiftErrorResult:
2632 Attrs.addAttribute(llvm::Attribute::SwiftError);
2633 break;
2634
2635 case ParameterABI::SwiftContext:
2636 Attrs.addAttribute(llvm::Attribute::SwiftSelf);
2637 break;
2638
2639 case ParameterABI::SwiftAsyncContext:
2640 Attrs.addAttribute(llvm::Attribute::SwiftAsync);
2641 break;
2642 }
2643
2644 if (FI.getExtParameterInfo(ArgNo).isNoEscape())
2645 Attrs.addAttribute(llvm::Attribute::NoCapture);
2646
2647 if (Attrs.hasAttributes()) {
2648 unsigned FirstIRArg, NumIRArgs;
2649 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
2650 for (unsigned i = 0; i < NumIRArgs; i++)
2651 ArgAttrs[FirstIRArg + i] = ArgAttrs[FirstIRArg + i].addAttributes(
2652 getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), Attrs));
2653 }
2654 }
2655 assert(ArgNo == FI.arg_size());
2656
2657 AttrList = llvm::AttributeList::get(
2658 getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), FuncAttrs),
2659 llvm::AttributeSet::get(getLLVMContext(), RetAttrs), ArgAttrs);
2660 }
2661
2662 /// An argument came in as a promoted argument; demote it back to its
2663 /// declared type.
emitArgumentDemotion(CodeGenFunction & CGF,const VarDecl * var,llvm::Value * value)2664 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF,
2665 const VarDecl *var,
2666 llvm::Value *value) {
2667 llvm::Type *varType = CGF.ConvertType(var->getType());
2668
2669 // This can happen with promotions that actually don't change the
2670 // underlying type, like the enum promotions.
2671 if (value->getType() == varType) return value;
2672
2673 assert((varType->isIntegerTy() || varType->isFloatingPointTy())
2674 && "unexpected promotion type");
2675
2676 if (isa<llvm::IntegerType>(varType))
2677 return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote");
2678
2679 return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote");
2680 }
2681
2682 /// Returns the attribute (either parameter attribute, or function
2683 /// attribute), which declares argument ArgNo to be non-null.
getNonNullAttr(const Decl * FD,const ParmVarDecl * PVD,QualType ArgType,unsigned ArgNo)2684 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD,
2685 QualType ArgType, unsigned ArgNo) {
2686 // FIXME: __attribute__((nonnull)) can also be applied to:
2687 // - references to pointers, where the pointee is known to be
2688 // nonnull (apparently a Clang extension)
2689 // - transparent unions containing pointers
2690 // In the former case, LLVM IR cannot represent the constraint. In
2691 // the latter case, we have no guarantee that the transparent union
2692 // is in fact passed as a pointer.
2693 if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType())
2694 return nullptr;
2695 // First, check attribute on parameter itself.
2696 if (PVD) {
2697 if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>())
2698 return ParmNNAttr;
2699 }
2700 // Check function attributes.
2701 if (!FD)
2702 return nullptr;
2703 for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) {
2704 if (NNAttr->isNonNull(ArgNo))
2705 return NNAttr;
2706 }
2707 return nullptr;
2708 }
2709
2710 namespace {
2711 struct CopyBackSwiftError final : EHScopeStack::Cleanup {
2712 Address Temp;
2713 Address Arg;
CopyBackSwiftError__anon4649c3d10911::CopyBackSwiftError2714 CopyBackSwiftError(Address temp, Address arg) : Temp(temp), Arg(arg) {}
Emit__anon4649c3d10911::CopyBackSwiftError2715 void Emit(CodeGenFunction &CGF, Flags flags) override {
2716 llvm::Value *errorValue = CGF.Builder.CreateLoad(Temp);
2717 CGF.Builder.CreateStore(errorValue, Arg);
2718 }
2719 };
2720 }
2721
EmitFunctionProlog(const CGFunctionInfo & FI,llvm::Function * Fn,const FunctionArgList & Args)2722 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
2723 llvm::Function *Fn,
2724 const FunctionArgList &Args) {
2725 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>())
2726 // Naked functions don't have prologues.
2727 return;
2728
2729 // If this is an implicit-return-zero function, go ahead and
2730 // initialize the return value. TODO: it might be nice to have
2731 // a more general mechanism for this that didn't require synthesized
2732 // return statements.
2733 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) {
2734 if (FD->hasImplicitReturnZero()) {
2735 QualType RetTy = FD->getReturnType().getUnqualifiedType();
2736 llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
2737 llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy);
2738 Builder.CreateStore(Zero, ReturnValue);
2739 }
2740 }
2741
2742 // FIXME: We no longer need the types from FunctionArgList; lift up and
2743 // simplify.
2744
2745 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI);
2746 assert(Fn->arg_size() == IRFunctionArgs.totalIRArgs());
2747
2748 // If we're using inalloca, all the memory arguments are GEPs off of the last
2749 // parameter, which is a pointer to the complete memory area.
2750 Address ArgStruct = Address::invalid();
2751 if (IRFunctionArgs.hasInallocaArg()) {
2752 ArgStruct = Address(Fn->getArg(IRFunctionArgs.getInallocaArgNo()),
2753 FI.getArgStruct(), FI.getArgStructAlignment());
2754
2755 assert(ArgStruct.getType() == FI.getArgStruct()->getPointerTo());
2756 }
2757
2758 // Name the struct return parameter.
2759 if (IRFunctionArgs.hasSRetArg()) {
2760 auto AI = Fn->getArg(IRFunctionArgs.getSRetArgNo());
2761 AI->setName("agg.result");
2762 AI->addAttr(llvm::Attribute::NoAlias);
2763 }
2764
2765 // Track if we received the parameter as a pointer (indirect, byval, or
2766 // inalloca). If already have a pointer, EmitParmDecl doesn't need to copy it
2767 // into a local alloca for us.
2768 SmallVector<ParamValue, 16> ArgVals;
2769 ArgVals.reserve(Args.size());
2770
2771 // Create a pointer value for every parameter declaration. This usually
2772 // entails copying one or more LLVM IR arguments into an alloca. Don't push
2773 // any cleanups or do anything that might unwind. We do that separately, so
2774 // we can push the cleanups in the correct order for the ABI.
2775 assert(FI.arg_size() == Args.size() &&
2776 "Mismatch between function signature & arguments.");
2777 unsigned ArgNo = 0;
2778 CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
2779 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
2780 i != e; ++i, ++info_it, ++ArgNo) {
2781 const VarDecl *Arg = *i;
2782 const ABIArgInfo &ArgI = info_it->info;
2783
2784 bool isPromoted =
2785 isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted();
2786 // We are converting from ABIArgInfo type to VarDecl type directly, unless
2787 // the parameter is promoted. In this case we convert to
2788 // CGFunctionInfo::ArgInfo type with subsequent argument demotion.
2789 QualType Ty = isPromoted ? info_it->type : Arg->getType();
2790 assert(hasScalarEvaluationKind(Ty) ==
2791 hasScalarEvaluationKind(Arg->getType()));
2792
2793 unsigned FirstIRArg, NumIRArgs;
2794 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
2795
2796 switch (ArgI.getKind()) {
2797 case ABIArgInfo::InAlloca: {
2798 assert(NumIRArgs == 0);
2799 auto FieldIndex = ArgI.getInAllocaFieldIndex();
2800 Address V =
2801 Builder.CreateStructGEP(ArgStruct, FieldIndex, Arg->getName());
2802 if (ArgI.getInAllocaIndirect())
2803 V = Address(Builder.CreateLoad(V), ConvertTypeForMem(Ty),
2804 getContext().getTypeAlignInChars(Ty));
2805 ArgVals.push_back(ParamValue::forIndirect(V));
2806 break;
2807 }
2808
2809 case ABIArgInfo::Indirect:
2810 case ABIArgInfo::IndirectAliased: {
2811 assert(NumIRArgs == 1);
2812 Address ParamAddr = Address(Fn->getArg(FirstIRArg), ConvertTypeForMem(Ty),
2813 ArgI.getIndirectAlign());
2814
2815 if (!hasScalarEvaluationKind(Ty)) {
2816 // Aggregates and complex variables are accessed by reference. All we
2817 // need to do is realign the value, if requested. Also, if the address
2818 // may be aliased, copy it to ensure that the parameter variable is
2819 // mutable and has a unique adress, as C requires.
2820 Address V = ParamAddr;
2821 if (ArgI.getIndirectRealign() || ArgI.isIndirectAliased()) {
2822 Address AlignedTemp = CreateMemTemp(Ty, "coerce");
2823
2824 // Copy from the incoming argument pointer to the temporary with the
2825 // appropriate alignment.
2826 //
2827 // FIXME: We should have a common utility for generating an aggregate
2828 // copy.
2829 CharUnits Size = getContext().getTypeSizeInChars(Ty);
2830 Builder.CreateMemCpy(
2831 AlignedTemp.getPointer(), AlignedTemp.getAlignment().getAsAlign(),
2832 ParamAddr.getPointer(), ParamAddr.getAlignment().getAsAlign(),
2833 llvm::ConstantInt::get(IntPtrTy, Size.getQuantity()));
2834 V = AlignedTemp;
2835 }
2836 ArgVals.push_back(ParamValue::forIndirect(V));
2837 } else {
2838 // Load scalar value from indirect argument.
2839 llvm::Value *V =
2840 EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getBeginLoc());
2841
2842 if (isPromoted)
2843 V = emitArgumentDemotion(*this, Arg, V);
2844 ArgVals.push_back(ParamValue::forDirect(V));
2845 }
2846 break;
2847 }
2848
2849 case ABIArgInfo::Extend:
2850 case ABIArgInfo::Direct: {
2851 auto AI = Fn->getArg(FirstIRArg);
2852 llvm::Type *LTy = ConvertType(Arg->getType());
2853
2854 // Prepare parameter attributes. So far, only attributes for pointer
2855 // parameters are prepared. See
2856 // http://llvm.org/docs/LangRef.html#paramattrs.
2857 if (ArgI.getDirectOffset() == 0 && LTy->isPointerTy() &&
2858 ArgI.getCoerceToType()->isPointerTy()) {
2859 assert(NumIRArgs == 1);
2860
2861 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) {
2862 // Set `nonnull` attribute if any.
2863 if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(),
2864 PVD->getFunctionScopeIndex()) &&
2865 !CGM.getCodeGenOpts().NullPointerIsValid)
2866 AI->addAttr(llvm::Attribute::NonNull);
2867
2868 QualType OTy = PVD->getOriginalType();
2869 if (const auto *ArrTy =
2870 getContext().getAsConstantArrayType(OTy)) {
2871 // A C99 array parameter declaration with the static keyword also
2872 // indicates dereferenceability, and if the size is constant we can
2873 // use the dereferenceable attribute (which requires the size in
2874 // bytes).
2875 if (ArrTy->getSizeModifier() == ArrayType::Static) {
2876 QualType ETy = ArrTy->getElementType();
2877 llvm::Align Alignment =
2878 CGM.getNaturalTypeAlignment(ETy).getAsAlign();
2879 AI->addAttrs(llvm::AttrBuilder(getLLVMContext()).addAlignmentAttr(Alignment));
2880 uint64_t ArrSize = ArrTy->getSize().getZExtValue();
2881 if (!ETy->isIncompleteType() && ETy->isConstantSizeType() &&
2882 ArrSize) {
2883 llvm::AttrBuilder Attrs(getLLVMContext());
2884 Attrs.addDereferenceableAttr(
2885 getContext().getTypeSizeInChars(ETy).getQuantity() *
2886 ArrSize);
2887 AI->addAttrs(Attrs);
2888 } else if (getContext().getTargetInfo().getNullPointerValue(
2889 ETy.getAddressSpace()) == 0 &&
2890 !CGM.getCodeGenOpts().NullPointerIsValid) {
2891 AI->addAttr(llvm::Attribute::NonNull);
2892 }
2893 }
2894 } else if (const auto *ArrTy =
2895 getContext().getAsVariableArrayType(OTy)) {
2896 // For C99 VLAs with the static keyword, we don't know the size so
2897 // we can't use the dereferenceable attribute, but in addrspace(0)
2898 // we know that it must be nonnull.
2899 if (ArrTy->getSizeModifier() == VariableArrayType::Static) {
2900 QualType ETy = ArrTy->getElementType();
2901 llvm::Align Alignment =
2902 CGM.getNaturalTypeAlignment(ETy).getAsAlign();
2903 AI->addAttrs(llvm::AttrBuilder(getLLVMContext()).addAlignmentAttr(Alignment));
2904 if (!getTypes().getTargetAddressSpace(ETy) &&
2905 !CGM.getCodeGenOpts().NullPointerIsValid)
2906 AI->addAttr(llvm::Attribute::NonNull);
2907 }
2908 }
2909
2910 // Set `align` attribute if any.
2911 const auto *AVAttr = PVD->getAttr<AlignValueAttr>();
2912 if (!AVAttr)
2913 if (const auto *TOTy = OTy->getAs<TypedefType>())
2914 AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>();
2915 if (AVAttr && !SanOpts.has(SanitizerKind::Alignment)) {
2916 // If alignment-assumption sanitizer is enabled, we do *not* add
2917 // alignment attribute here, but emit normal alignment assumption,
2918 // so the UBSAN check could function.
2919 llvm::ConstantInt *AlignmentCI =
2920 cast<llvm::ConstantInt>(EmitScalarExpr(AVAttr->getAlignment()));
2921 uint64_t AlignmentInt =
2922 AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment);
2923 if (AI->getParamAlign().valueOrOne() < AlignmentInt) {
2924 AI->removeAttr(llvm::Attribute::AttrKind::Alignment);
2925 AI->addAttrs(llvm::AttrBuilder(getLLVMContext()).addAlignmentAttr(
2926 llvm::Align(AlignmentInt)));
2927 }
2928 }
2929 }
2930
2931 // Set 'noalias' if an argument type has the `restrict` qualifier.
2932 if (Arg->getType().isRestrictQualified())
2933 AI->addAttr(llvm::Attribute::NoAlias);
2934 }
2935
2936 // Prepare the argument value. If we have the trivial case, handle it
2937 // with no muss and fuss.
2938 if (!isa<llvm::StructType>(ArgI.getCoerceToType()) &&
2939 ArgI.getCoerceToType() == ConvertType(Ty) &&
2940 ArgI.getDirectOffset() == 0) {
2941 assert(NumIRArgs == 1);
2942
2943 // LLVM expects swifterror parameters to be used in very restricted
2944 // ways. Copy the value into a less-restricted temporary.
2945 llvm::Value *V = AI;
2946 if (FI.getExtParameterInfo(ArgNo).getABI()
2947 == ParameterABI::SwiftErrorResult) {
2948 QualType pointeeTy = Ty->getPointeeType();
2949 assert(pointeeTy->isPointerType());
2950 Address temp =
2951 CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
2952 Address arg(V, ConvertTypeForMem(pointeeTy),
2953 getContext().getTypeAlignInChars(pointeeTy));
2954 llvm::Value *incomingErrorValue = Builder.CreateLoad(arg);
2955 Builder.CreateStore(incomingErrorValue, temp);
2956 V = temp.getPointer();
2957
2958 // Push a cleanup to copy the value back at the end of the function.
2959 // The convention does not guarantee that the value will be written
2960 // back if the function exits with an unwind exception.
2961 EHStack.pushCleanup<CopyBackSwiftError>(NormalCleanup, temp, arg);
2962 }
2963
2964 // Ensure the argument is the correct type.
2965 if (V->getType() != ArgI.getCoerceToType())
2966 V = Builder.CreateBitCast(V, ArgI.getCoerceToType());
2967
2968 if (isPromoted)
2969 V = emitArgumentDemotion(*this, Arg, V);
2970
2971 // Because of merging of function types from multiple decls it is
2972 // possible for the type of an argument to not match the corresponding
2973 // type in the function type. Since we are codegening the callee
2974 // in here, add a cast to the argument type.
2975 llvm::Type *LTy = ConvertType(Arg->getType());
2976 if (V->getType() != LTy)
2977 V = Builder.CreateBitCast(V, LTy);
2978
2979 ArgVals.push_back(ParamValue::forDirect(V));
2980 break;
2981 }
2982
2983 // VLST arguments are coerced to VLATs at the function boundary for
2984 // ABI consistency. If this is a VLST that was coerced to
2985 // a VLAT at the function boundary and the types match up, use
2986 // llvm.vector.extract to convert back to the original VLST.
2987 if (auto *VecTyTo = dyn_cast<llvm::FixedVectorType>(ConvertType(Ty))) {
2988 llvm::Value *Coerced = Fn->getArg(FirstIRArg);
2989 if (auto *VecTyFrom =
2990 dyn_cast<llvm::ScalableVectorType>(Coerced->getType())) {
2991 // If we are casting a scalable 16 x i1 predicate vector to a fixed i8
2992 // vector, bitcast the source and use a vector extract.
2993 auto PredType =
2994 llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16);
2995 if (VecTyFrom == PredType &&
2996 VecTyTo->getElementType() == Builder.getInt8Ty()) {
2997 VecTyFrom = llvm::ScalableVectorType::get(Builder.getInt8Ty(), 2);
2998 Coerced = Builder.CreateBitCast(Coerced, VecTyFrom);
2999 }
3000 if (VecTyFrom->getElementType() == VecTyTo->getElementType()) {
3001 llvm::Value *Zero = llvm::Constant::getNullValue(CGM.Int64Ty);
3002
3003 assert(NumIRArgs == 1);
3004 Coerced->setName(Arg->getName() + ".coerce");
3005 ArgVals.push_back(ParamValue::forDirect(Builder.CreateExtractVector(
3006 VecTyTo, Coerced, Zero, "castFixedSve")));
3007 break;
3008 }
3009 }
3010 }
3011
3012 Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg),
3013 Arg->getName());
3014
3015 // Pointer to store into.
3016 Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI);
3017
3018 // Fast-isel and the optimizer generally like scalar values better than
3019 // FCAs, so we flatten them if this is safe to do for this argument.
3020 llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType());
3021 if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy &&
3022 STy->getNumElements() > 1) {
3023 uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy);
3024 llvm::Type *DstTy = Ptr.getElementType();
3025 uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy);
3026
3027 Address AddrToStoreInto = Address::invalid();
3028 if (SrcSize <= DstSize) {
3029 AddrToStoreInto = Builder.CreateElementBitCast(Ptr, STy);
3030 } else {
3031 AddrToStoreInto =
3032 CreateTempAlloca(STy, Alloca.getAlignment(), "coerce");
3033 }
3034
3035 assert(STy->getNumElements() == NumIRArgs);
3036 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
3037 auto AI = Fn->getArg(FirstIRArg + i);
3038 AI->setName(Arg->getName() + ".coerce" + Twine(i));
3039 Address EltPtr = Builder.CreateStructGEP(AddrToStoreInto, i);
3040 Builder.CreateStore(AI, EltPtr);
3041 }
3042
3043 if (SrcSize > DstSize) {
3044 Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize);
3045 }
3046
3047 } else {
3048 // Simple case, just do a coerced store of the argument into the alloca.
3049 assert(NumIRArgs == 1);
3050 auto AI = Fn->getArg(FirstIRArg);
3051 AI->setName(Arg->getName() + ".coerce");
3052 CreateCoercedStore(AI, Ptr, /*DstIsVolatile=*/false, *this);
3053 }
3054
3055 // Match to what EmitParmDecl is expecting for this type.
3056 if (CodeGenFunction::hasScalarEvaluationKind(Ty)) {
3057 llvm::Value *V =
3058 EmitLoadOfScalar(Alloca, false, Ty, Arg->getBeginLoc());
3059 if (isPromoted)
3060 V = emitArgumentDemotion(*this, Arg, V);
3061 ArgVals.push_back(ParamValue::forDirect(V));
3062 } else {
3063 ArgVals.push_back(ParamValue::forIndirect(Alloca));
3064 }
3065 break;
3066 }
3067
3068 case ABIArgInfo::CoerceAndExpand: {
3069 // Reconstruct into a temporary.
3070 Address alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
3071 ArgVals.push_back(ParamValue::forIndirect(alloca));
3072
3073 auto coercionType = ArgI.getCoerceAndExpandType();
3074 alloca = Builder.CreateElementBitCast(alloca, coercionType);
3075
3076 unsigned argIndex = FirstIRArg;
3077 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
3078 llvm::Type *eltType = coercionType->getElementType(i);
3079 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType))
3080 continue;
3081
3082 auto eltAddr = Builder.CreateStructGEP(alloca, i);
3083 auto elt = Fn->getArg(argIndex++);
3084 Builder.CreateStore(elt, eltAddr);
3085 }
3086 assert(argIndex == FirstIRArg + NumIRArgs);
3087 break;
3088 }
3089
3090 case ABIArgInfo::Expand: {
3091 // If this structure was expanded into multiple arguments then
3092 // we need to create a temporary and reconstruct it from the
3093 // arguments.
3094 Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
3095 LValue LV = MakeAddrLValue(Alloca, Ty);
3096 ArgVals.push_back(ParamValue::forIndirect(Alloca));
3097
3098 auto FnArgIter = Fn->arg_begin() + FirstIRArg;
3099 ExpandTypeFromArgs(Ty, LV, FnArgIter);
3100 assert(FnArgIter == Fn->arg_begin() + FirstIRArg + NumIRArgs);
3101 for (unsigned i = 0, e = NumIRArgs; i != e; ++i) {
3102 auto AI = Fn->getArg(FirstIRArg + i);
3103 AI->setName(Arg->getName() + "." + Twine(i));
3104 }
3105 break;
3106 }
3107
3108 case ABIArgInfo::Ignore:
3109 assert(NumIRArgs == 0);
3110 // Initialize the local variable appropriately.
3111 if (!hasScalarEvaluationKind(Ty)) {
3112 ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty)));
3113 } else {
3114 llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType()));
3115 ArgVals.push_back(ParamValue::forDirect(U));
3116 }
3117 break;
3118 }
3119 }
3120
3121 if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
3122 for (int I = Args.size() - 1; I >= 0; --I)
3123 EmitParmDecl(*Args[I], ArgVals[I], I + 1);
3124 } else {
3125 for (unsigned I = 0, E = Args.size(); I != E; ++I)
3126 EmitParmDecl(*Args[I], ArgVals[I], I + 1);
3127 }
3128 }
3129
eraseUnusedBitCasts(llvm::Instruction * insn)3130 static void eraseUnusedBitCasts(llvm::Instruction *insn) {
3131 while (insn->use_empty()) {
3132 llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn);
3133 if (!bitcast) return;
3134
3135 // This is "safe" because we would have used a ConstantExpr otherwise.
3136 insn = cast<llvm::Instruction>(bitcast->getOperand(0));
3137 bitcast->eraseFromParent();
3138 }
3139 }
3140
3141 /// Try to emit a fused autorelease of a return result.
tryEmitFusedAutoreleaseOfResult(CodeGenFunction & CGF,llvm::Value * result)3142 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF,
3143 llvm::Value *result) {
3144 // We must be immediately followed the cast.
3145 llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock();
3146 if (BB->empty()) return nullptr;
3147 if (&BB->back() != result) return nullptr;
3148
3149 llvm::Type *resultType = result->getType();
3150
3151 // result is in a BasicBlock and is therefore an Instruction.
3152 llvm::Instruction *generator = cast<llvm::Instruction>(result);
3153
3154 SmallVector<llvm::Instruction *, 4> InstsToKill;
3155
3156 // Look for:
3157 // %generator = bitcast %type1* %generator2 to %type2*
3158 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) {
3159 // We would have emitted this as a constant if the operand weren't
3160 // an Instruction.
3161 generator = cast<llvm::Instruction>(bitcast->getOperand(0));
3162
3163 // Require the generator to be immediately followed by the cast.
3164 if (generator->getNextNode() != bitcast)
3165 return nullptr;
3166
3167 InstsToKill.push_back(bitcast);
3168 }
3169
3170 // Look for:
3171 // %generator = call i8* @objc_retain(i8* %originalResult)
3172 // or
3173 // %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult)
3174 llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator);
3175 if (!call) return nullptr;
3176
3177 bool doRetainAutorelease;
3178
3179 if (call->getCalledOperand() == CGF.CGM.getObjCEntrypoints().objc_retain) {
3180 doRetainAutorelease = true;
3181 } else if (call->getCalledOperand() ==
3182 CGF.CGM.getObjCEntrypoints().objc_retainAutoreleasedReturnValue) {
3183 doRetainAutorelease = false;
3184
3185 // If we emitted an assembly marker for this call (and the
3186 // ARCEntrypoints field should have been set if so), go looking
3187 // for that call. If we can't find it, we can't do this
3188 // optimization. But it should always be the immediately previous
3189 // instruction, unless we needed bitcasts around the call.
3190 if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) {
3191 llvm::Instruction *prev = call->getPrevNode();
3192 assert(prev);
3193 if (isa<llvm::BitCastInst>(prev)) {
3194 prev = prev->getPrevNode();
3195 assert(prev);
3196 }
3197 assert(isa<llvm::CallInst>(prev));
3198 assert(cast<llvm::CallInst>(prev)->getCalledOperand() ==
3199 CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker);
3200 InstsToKill.push_back(prev);
3201 }
3202 } else {
3203 return nullptr;
3204 }
3205
3206 result = call->getArgOperand(0);
3207 InstsToKill.push_back(call);
3208
3209 // Keep killing bitcasts, for sanity. Note that we no longer care
3210 // about precise ordering as long as there's exactly one use.
3211 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) {
3212 if (!bitcast->hasOneUse()) break;
3213 InstsToKill.push_back(bitcast);
3214 result = bitcast->getOperand(0);
3215 }
3216
3217 // Delete all the unnecessary instructions, from latest to earliest.
3218 for (auto *I : InstsToKill)
3219 I->eraseFromParent();
3220
3221 // Do the fused retain/autorelease if we were asked to.
3222 if (doRetainAutorelease)
3223 result = CGF.EmitARCRetainAutoreleaseReturnValue(result);
3224
3225 // Cast back to the result type.
3226 return CGF.Builder.CreateBitCast(result, resultType);
3227 }
3228
3229 /// If this is a +1 of the value of an immutable 'self', remove it.
tryRemoveRetainOfSelf(CodeGenFunction & CGF,llvm::Value * result)3230 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF,
3231 llvm::Value *result) {
3232 // This is only applicable to a method with an immutable 'self'.
3233 const ObjCMethodDecl *method =
3234 dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl);
3235 if (!method) return nullptr;
3236 const VarDecl *self = method->getSelfDecl();
3237 if (!self->getType().isConstQualified()) return nullptr;
3238
3239 // Look for a retain call.
3240 llvm::CallInst *retainCall =
3241 dyn_cast<llvm::CallInst>(result->stripPointerCasts());
3242 if (!retainCall || retainCall->getCalledOperand() !=
3243 CGF.CGM.getObjCEntrypoints().objc_retain)
3244 return nullptr;
3245
3246 // Look for an ordinary load of 'self'.
3247 llvm::Value *retainedValue = retainCall->getArgOperand(0);
3248 llvm::LoadInst *load =
3249 dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts());
3250 if (!load || load->isAtomic() || load->isVolatile() ||
3251 load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getPointer())
3252 return nullptr;
3253
3254 // Okay! Burn it all down. This relies for correctness on the
3255 // assumption that the retain is emitted as part of the return and
3256 // that thereafter everything is used "linearly".
3257 llvm::Type *resultType = result->getType();
3258 eraseUnusedBitCasts(cast<llvm::Instruction>(result));
3259 assert(retainCall->use_empty());
3260 retainCall->eraseFromParent();
3261 eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue));
3262
3263 return CGF.Builder.CreateBitCast(load, resultType);
3264 }
3265
3266 /// Emit an ARC autorelease of the result of a function.
3267 ///
3268 /// \return the value to actually return from the function
emitAutoreleaseOfResult(CodeGenFunction & CGF,llvm::Value * result)3269 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF,
3270 llvm::Value *result) {
3271 // If we're returning 'self', kill the initial retain. This is a
3272 // heuristic attempt to "encourage correctness" in the really unfortunate
3273 // case where we have a return of self during a dealloc and we desperately
3274 // need to avoid the possible autorelease.
3275 if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result))
3276 return self;
3277
3278 // At -O0, try to emit a fused retain/autorelease.
3279 if (CGF.shouldUseFusedARCCalls())
3280 if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result))
3281 return fused;
3282
3283 return CGF.EmitARCAutoreleaseReturnValue(result);
3284 }
3285
3286 /// Heuristically search for a dominating store to the return-value slot.
findDominatingStoreToReturnValue(CodeGenFunction & CGF)3287 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) {
3288 // Check if a User is a store which pointerOperand is the ReturnValue.
3289 // We are looking for stores to the ReturnValue, not for stores of the
3290 // ReturnValue to some other location.
3291 auto GetStoreIfValid = [&CGF](llvm::User *U) -> llvm::StoreInst * {
3292 auto *SI = dyn_cast<llvm::StoreInst>(U);
3293 if (!SI || SI->getPointerOperand() != CGF.ReturnValue.getPointer() ||
3294 SI->getValueOperand()->getType() != CGF.ReturnValue.getElementType())
3295 return nullptr;
3296 // These aren't actually possible for non-coerced returns, and we
3297 // only care about non-coerced returns on this code path.
3298 assert(!SI->isAtomic() && !SI->isVolatile());
3299 return SI;
3300 };
3301 // If there are multiple uses of the return-value slot, just check
3302 // for something immediately preceding the IP. Sometimes this can
3303 // happen with how we generate implicit-returns; it can also happen
3304 // with noreturn cleanups.
3305 if (!CGF.ReturnValue.getPointer()->hasOneUse()) {
3306 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
3307 if (IP->empty()) return nullptr;
3308
3309 // Look at directly preceding instruction, skipping bitcasts and lifetime
3310 // markers.
3311 for (llvm::Instruction &I : make_range(IP->rbegin(), IP->rend())) {
3312 if (isa<llvm::BitCastInst>(&I))
3313 continue;
3314 if (auto *II = dyn_cast<llvm::IntrinsicInst>(&I))
3315 if (II->getIntrinsicID() == llvm::Intrinsic::lifetime_end)
3316 continue;
3317
3318 return GetStoreIfValid(&I);
3319 }
3320 return nullptr;
3321 }
3322
3323 llvm::StoreInst *store =
3324 GetStoreIfValid(CGF.ReturnValue.getPointer()->user_back());
3325 if (!store) return nullptr;
3326
3327 // Now do a first-and-dirty dominance check: just walk up the
3328 // single-predecessors chain from the current insertion point.
3329 llvm::BasicBlock *StoreBB = store->getParent();
3330 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
3331 while (IP != StoreBB) {
3332 if (!(IP = IP->getSinglePredecessor()))
3333 return nullptr;
3334 }
3335
3336 // Okay, the store's basic block dominates the insertion point; we
3337 // can do our thing.
3338 return store;
3339 }
3340
3341 // Helper functions for EmitCMSEClearRecord
3342
3343 // Set the bits corresponding to a field having width `BitWidth` and located at
3344 // offset `BitOffset` (from the least significant bit) within a storage unit of
3345 // `Bits.size()` bytes. Each element of `Bits` corresponds to one target byte.
3346 // Use little-endian layout, i.e.`Bits[0]` is the LSB.
setBitRange(SmallVectorImpl<uint64_t> & Bits,int BitOffset,int BitWidth,int CharWidth)3347 static void setBitRange(SmallVectorImpl<uint64_t> &Bits, int BitOffset,
3348 int BitWidth, int CharWidth) {
3349 assert(CharWidth <= 64);
3350 assert(static_cast<unsigned>(BitWidth) <= Bits.size() * CharWidth);
3351
3352 int Pos = 0;
3353 if (BitOffset >= CharWidth) {
3354 Pos += BitOffset / CharWidth;
3355 BitOffset = BitOffset % CharWidth;
3356 }
3357
3358 const uint64_t Used = (uint64_t(1) << CharWidth) - 1;
3359 if (BitOffset + BitWidth >= CharWidth) {
3360 Bits[Pos++] |= (Used << BitOffset) & Used;
3361 BitWidth -= CharWidth - BitOffset;
3362 BitOffset = 0;
3363 }
3364
3365 while (BitWidth >= CharWidth) {
3366 Bits[Pos++] = Used;
3367 BitWidth -= CharWidth;
3368 }
3369
3370 if (BitWidth > 0)
3371 Bits[Pos++] |= (Used >> (CharWidth - BitWidth)) << BitOffset;
3372 }
3373
3374 // Set the bits corresponding to a field having width `BitWidth` and located at
3375 // offset `BitOffset` (from the least significant bit) within a storage unit of
3376 // `StorageSize` bytes, located at `StorageOffset` in `Bits`. Each element of
3377 // `Bits` corresponds to one target byte. Use target endian layout.
setBitRange(SmallVectorImpl<uint64_t> & Bits,int StorageOffset,int StorageSize,int BitOffset,int BitWidth,int CharWidth,bool BigEndian)3378 static void setBitRange(SmallVectorImpl<uint64_t> &Bits, int StorageOffset,
3379 int StorageSize, int BitOffset, int BitWidth,
3380 int CharWidth, bool BigEndian) {
3381
3382 SmallVector<uint64_t, 8> TmpBits(StorageSize);
3383 setBitRange(TmpBits, BitOffset, BitWidth, CharWidth);
3384
3385 if (BigEndian)
3386 std::reverse(TmpBits.begin(), TmpBits.end());
3387
3388 for (uint64_t V : TmpBits)
3389 Bits[StorageOffset++] |= V;
3390 }
3391
3392 static void setUsedBits(CodeGenModule &, QualType, int,
3393 SmallVectorImpl<uint64_t> &);
3394
3395 // Set the bits in `Bits`, which correspond to the value representations of
3396 // the actual members of the record type `RTy`. Note that this function does
3397 // not handle base classes, virtual tables, etc, since they cannot happen in
3398 // CMSE function arguments or return. The bit mask corresponds to the target
3399 // memory layout, i.e. it's endian dependent.
setUsedBits(CodeGenModule & CGM,const RecordType * RTy,int Offset,SmallVectorImpl<uint64_t> & Bits)3400 static void setUsedBits(CodeGenModule &CGM, const RecordType *RTy, int Offset,
3401 SmallVectorImpl<uint64_t> &Bits) {
3402 ASTContext &Context = CGM.getContext();
3403 int CharWidth = Context.getCharWidth();
3404 const RecordDecl *RD = RTy->getDecl()->getDefinition();
3405 const ASTRecordLayout &ASTLayout = Context.getASTRecordLayout(RD);
3406 const CGRecordLayout &Layout = CGM.getTypes().getCGRecordLayout(RD);
3407
3408 int Idx = 0;
3409 for (auto I = RD->field_begin(), E = RD->field_end(); I != E; ++I, ++Idx) {
3410 const FieldDecl *F = *I;
3411
3412 if (F->isUnnamedBitfield() || F->isZeroLengthBitField(Context) ||
3413 F->getType()->isIncompleteArrayType())
3414 continue;
3415
3416 if (F->isBitField()) {
3417 const CGBitFieldInfo &BFI = Layout.getBitFieldInfo(F);
3418 setBitRange(Bits, Offset + BFI.StorageOffset.getQuantity(),
3419 BFI.StorageSize / CharWidth, BFI.Offset,
3420 BFI.Size, CharWidth,
3421 CGM.getDataLayout().isBigEndian());
3422 continue;
3423 }
3424
3425 setUsedBits(CGM, F->getType(),
3426 Offset + ASTLayout.getFieldOffset(Idx) / CharWidth, Bits);
3427 }
3428 }
3429
3430 // Set the bits in `Bits`, which correspond to the value representations of
3431 // the elements of an array type `ATy`.
setUsedBits(CodeGenModule & CGM,const ConstantArrayType * ATy,int Offset,SmallVectorImpl<uint64_t> & Bits)3432 static void setUsedBits(CodeGenModule &CGM, const ConstantArrayType *ATy,
3433 int Offset, SmallVectorImpl<uint64_t> &Bits) {
3434 const ASTContext &Context = CGM.getContext();
3435
3436 QualType ETy = Context.getBaseElementType(ATy);
3437 int Size = Context.getTypeSizeInChars(ETy).getQuantity();
3438 SmallVector<uint64_t, 4> TmpBits(Size);
3439 setUsedBits(CGM, ETy, 0, TmpBits);
3440
3441 for (int I = 0, N = Context.getConstantArrayElementCount(ATy); I < N; ++I) {
3442 auto Src = TmpBits.begin();
3443 auto Dst = Bits.begin() + Offset + I * Size;
3444 for (int J = 0; J < Size; ++J)
3445 *Dst++ |= *Src++;
3446 }
3447 }
3448
3449 // Set the bits in `Bits`, which correspond to the value representations of
3450 // the type `QTy`.
setUsedBits(CodeGenModule & CGM,QualType QTy,int Offset,SmallVectorImpl<uint64_t> & Bits)3451 static void setUsedBits(CodeGenModule &CGM, QualType QTy, int Offset,
3452 SmallVectorImpl<uint64_t> &Bits) {
3453 if (const auto *RTy = QTy->getAs<RecordType>())
3454 return setUsedBits(CGM, RTy, Offset, Bits);
3455
3456 ASTContext &Context = CGM.getContext();
3457 if (const auto *ATy = Context.getAsConstantArrayType(QTy))
3458 return setUsedBits(CGM, ATy, Offset, Bits);
3459
3460 int Size = Context.getTypeSizeInChars(QTy).getQuantity();
3461 if (Size <= 0)
3462 return;
3463
3464 std::fill_n(Bits.begin() + Offset, Size,
3465 (uint64_t(1) << Context.getCharWidth()) - 1);
3466 }
3467
buildMultiCharMask(const SmallVectorImpl<uint64_t> & Bits,int Pos,int Size,int CharWidth,bool BigEndian)3468 static uint64_t buildMultiCharMask(const SmallVectorImpl<uint64_t> &Bits,
3469 int Pos, int Size, int CharWidth,
3470 bool BigEndian) {
3471 assert(Size > 0);
3472 uint64_t Mask = 0;
3473 if (BigEndian) {
3474 for (auto P = Bits.begin() + Pos, E = Bits.begin() + Pos + Size; P != E;
3475 ++P)
3476 Mask = (Mask << CharWidth) | *P;
3477 } else {
3478 auto P = Bits.begin() + Pos + Size, End = Bits.begin() + Pos;
3479 do
3480 Mask = (Mask << CharWidth) | *--P;
3481 while (P != End);
3482 }
3483 return Mask;
3484 }
3485
3486 // Emit code to clear the bits in a record, which aren't a part of any user
3487 // declared member, when the record is a function return.
EmitCMSEClearRecord(llvm::Value * Src,llvm::IntegerType * ITy,QualType QTy)3488 llvm::Value *CodeGenFunction::EmitCMSEClearRecord(llvm::Value *Src,
3489 llvm::IntegerType *ITy,
3490 QualType QTy) {
3491 assert(Src->getType() == ITy);
3492 assert(ITy->getScalarSizeInBits() <= 64);
3493
3494 const llvm::DataLayout &DataLayout = CGM.getDataLayout();
3495 int Size = DataLayout.getTypeStoreSize(ITy);
3496 SmallVector<uint64_t, 4> Bits(Size);
3497 setUsedBits(CGM, QTy->castAs<RecordType>(), 0, Bits);
3498
3499 int CharWidth = CGM.getContext().getCharWidth();
3500 uint64_t Mask =
3501 buildMultiCharMask(Bits, 0, Size, CharWidth, DataLayout.isBigEndian());
3502
3503 return Builder.CreateAnd(Src, Mask, "cmse.clear");
3504 }
3505
3506 // Emit code to clear the bits in a record, which aren't a part of any user
3507 // declared member, when the record is a function argument.
EmitCMSEClearRecord(llvm::Value * Src,llvm::ArrayType * ATy,QualType QTy)3508 llvm::Value *CodeGenFunction::EmitCMSEClearRecord(llvm::Value *Src,
3509 llvm::ArrayType *ATy,
3510 QualType QTy) {
3511 const llvm::DataLayout &DataLayout = CGM.getDataLayout();
3512 int Size = DataLayout.getTypeStoreSize(ATy);
3513 SmallVector<uint64_t, 16> Bits(Size);
3514 setUsedBits(CGM, QTy->castAs<RecordType>(), 0, Bits);
3515
3516 // Clear each element of the LLVM array.
3517 int CharWidth = CGM.getContext().getCharWidth();
3518 int CharsPerElt =
3519 ATy->getArrayElementType()->getScalarSizeInBits() / CharWidth;
3520 int MaskIndex = 0;
3521 llvm::Value *R = llvm::PoisonValue::get(ATy);
3522 for (int I = 0, N = ATy->getArrayNumElements(); I != N; ++I) {
3523 uint64_t Mask = buildMultiCharMask(Bits, MaskIndex, CharsPerElt, CharWidth,
3524 DataLayout.isBigEndian());
3525 MaskIndex += CharsPerElt;
3526 llvm::Value *T0 = Builder.CreateExtractValue(Src, I);
3527 llvm::Value *T1 = Builder.CreateAnd(T0, Mask, "cmse.clear");
3528 R = Builder.CreateInsertValue(R, T1, I);
3529 }
3530
3531 return R;
3532 }
3533
EmitFunctionEpilog(const CGFunctionInfo & FI,bool EmitRetDbgLoc,SourceLocation EndLoc)3534 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI,
3535 bool EmitRetDbgLoc,
3536 SourceLocation EndLoc) {
3537 if (FI.isNoReturn()) {
3538 // Noreturn functions don't return.
3539 EmitUnreachable(EndLoc);
3540 return;
3541 }
3542
3543 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) {
3544 // Naked functions don't have epilogues.
3545 Builder.CreateUnreachable();
3546 return;
3547 }
3548
3549 // Functions with no result always return void.
3550 if (!ReturnValue.isValid()) {
3551 Builder.CreateRetVoid();
3552 return;
3553 }
3554
3555 llvm::DebugLoc RetDbgLoc;
3556 llvm::Value *RV = nullptr;
3557 QualType RetTy = FI.getReturnType();
3558 const ABIArgInfo &RetAI = FI.getReturnInfo();
3559
3560 switch (RetAI.getKind()) {
3561 case ABIArgInfo::InAlloca:
3562 // Aggregates get evaluated directly into the destination. Sometimes we
3563 // need to return the sret value in a register, though.
3564 assert(hasAggregateEvaluationKind(RetTy));
3565 if (RetAI.getInAllocaSRet()) {
3566 llvm::Function::arg_iterator EI = CurFn->arg_end();
3567 --EI;
3568 llvm::Value *ArgStruct = &*EI;
3569 llvm::Value *SRet = Builder.CreateStructGEP(
3570 FI.getArgStruct(), ArgStruct, RetAI.getInAllocaFieldIndex());
3571 llvm::Type *Ty =
3572 cast<llvm::GetElementPtrInst>(SRet)->getResultElementType();
3573 RV = Builder.CreateAlignedLoad(Ty, SRet, getPointerAlign(), "sret");
3574 }
3575 break;
3576
3577 case ABIArgInfo::Indirect: {
3578 auto AI = CurFn->arg_begin();
3579 if (RetAI.isSRetAfterThis())
3580 ++AI;
3581 switch (getEvaluationKind(RetTy)) {
3582 case TEK_Complex: {
3583 ComplexPairTy RT =
3584 EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc);
3585 EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy),
3586 /*isInit*/ true);
3587 break;
3588 }
3589 case TEK_Aggregate:
3590 // Do nothing; aggregates get evaluated directly into the destination.
3591 break;
3592 case TEK_Scalar: {
3593 LValueBaseInfo BaseInfo;
3594 TBAAAccessInfo TBAAInfo;
3595 CharUnits Alignment =
3596 CGM.getNaturalTypeAlignment(RetTy, &BaseInfo, &TBAAInfo);
3597 Address ArgAddr(&*AI, ConvertType(RetTy), Alignment);
3598 LValue ArgVal =
3599 LValue::MakeAddr(ArgAddr, RetTy, getContext(), BaseInfo, TBAAInfo);
3600 EmitStoreOfScalar(
3601 Builder.CreateLoad(ReturnValue), ArgVal, /*isInit*/ true);
3602 break;
3603 }
3604 }
3605 break;
3606 }
3607
3608 case ABIArgInfo::Extend:
3609 case ABIArgInfo::Direct:
3610 if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
3611 RetAI.getDirectOffset() == 0) {
3612 // The internal return value temp always will have pointer-to-return-type
3613 // type, just do a load.
3614
3615 // If there is a dominating store to ReturnValue, we can elide
3616 // the load, zap the store, and usually zap the alloca.
3617 if (llvm::StoreInst *SI =
3618 findDominatingStoreToReturnValue(*this)) {
3619 // Reuse the debug location from the store unless there is
3620 // cleanup code to be emitted between the store and return
3621 // instruction.
3622 if (EmitRetDbgLoc && !AutoreleaseResult)
3623 RetDbgLoc = SI->getDebugLoc();
3624 // Get the stored value and nuke the now-dead store.
3625 RV = SI->getValueOperand();
3626 SI->eraseFromParent();
3627
3628 // Otherwise, we have to do a simple load.
3629 } else {
3630 RV = Builder.CreateLoad(ReturnValue);
3631 }
3632 } else {
3633 // If the value is offset in memory, apply the offset now.
3634 Address V = emitAddressAtOffset(*this, ReturnValue, RetAI);
3635
3636 RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this);
3637 }
3638
3639 // In ARC, end functions that return a retainable type with a call
3640 // to objc_autoreleaseReturnValue.
3641 if (AutoreleaseResult) {
3642 #ifndef NDEBUG
3643 // Type::isObjCRetainabletype has to be called on a QualType that hasn't
3644 // been stripped of the typedefs, so we cannot use RetTy here. Get the
3645 // original return type of FunctionDecl, CurCodeDecl, and BlockDecl from
3646 // CurCodeDecl or BlockInfo.
3647 QualType RT;
3648
3649 if (auto *FD = dyn_cast<FunctionDecl>(CurCodeDecl))
3650 RT = FD->getReturnType();
3651 else if (auto *MD = dyn_cast<ObjCMethodDecl>(CurCodeDecl))
3652 RT = MD->getReturnType();
3653 else if (isa<BlockDecl>(CurCodeDecl))
3654 RT = BlockInfo->BlockExpression->getFunctionType()->getReturnType();
3655 else
3656 llvm_unreachable("Unexpected function/method type");
3657
3658 assert(getLangOpts().ObjCAutoRefCount &&
3659 !FI.isReturnsRetained() &&
3660 RT->isObjCRetainableType());
3661 #endif
3662 RV = emitAutoreleaseOfResult(*this, RV);
3663 }
3664
3665 break;
3666
3667 case ABIArgInfo::Ignore:
3668 break;
3669
3670 case ABIArgInfo::CoerceAndExpand: {
3671 auto coercionType = RetAI.getCoerceAndExpandType();
3672
3673 // Load all of the coerced elements out into results.
3674 llvm::SmallVector<llvm::Value*, 4> results;
3675 Address addr = Builder.CreateElementBitCast(ReturnValue, coercionType);
3676 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
3677 auto coercedEltType = coercionType->getElementType(i);
3678 if (ABIArgInfo::isPaddingForCoerceAndExpand(coercedEltType))
3679 continue;
3680
3681 auto eltAddr = Builder.CreateStructGEP(addr, i);
3682 auto elt = Builder.CreateLoad(eltAddr);
3683 results.push_back(elt);
3684 }
3685
3686 // If we have one result, it's the single direct result type.
3687 if (results.size() == 1) {
3688 RV = results[0];
3689
3690 // Otherwise, we need to make a first-class aggregate.
3691 } else {
3692 // Construct a return type that lacks padding elements.
3693 llvm::Type *returnType = RetAI.getUnpaddedCoerceAndExpandType();
3694
3695 RV = llvm::PoisonValue::get(returnType);
3696 for (unsigned i = 0, e = results.size(); i != e; ++i) {
3697 RV = Builder.CreateInsertValue(RV, results[i], i);
3698 }
3699 }
3700 break;
3701 }
3702 case ABIArgInfo::Expand:
3703 case ABIArgInfo::IndirectAliased:
3704 llvm_unreachable("Invalid ABI kind for return argument");
3705 }
3706
3707 llvm::Instruction *Ret;
3708 if (RV) {
3709 if (CurFuncDecl && CurFuncDecl->hasAttr<CmseNSEntryAttr>()) {
3710 // For certain return types, clear padding bits, as they may reveal
3711 // sensitive information.
3712 // Small struct/union types are passed as integers.
3713 auto *ITy = dyn_cast<llvm::IntegerType>(RV->getType());
3714 if (ITy != nullptr && isa<RecordType>(RetTy.getCanonicalType()))
3715 RV = EmitCMSEClearRecord(RV, ITy, RetTy);
3716 }
3717 EmitReturnValueCheck(RV);
3718 Ret = Builder.CreateRet(RV);
3719 } else {
3720 Ret = Builder.CreateRetVoid();
3721 }
3722
3723 if (RetDbgLoc)
3724 Ret->setDebugLoc(std::move(RetDbgLoc));
3725 }
3726
EmitReturnValueCheck(llvm::Value * RV)3727 void CodeGenFunction::EmitReturnValueCheck(llvm::Value *RV) {
3728 // A current decl may not be available when emitting vtable thunks.
3729 if (!CurCodeDecl)
3730 return;
3731
3732 // If the return block isn't reachable, neither is this check, so don't emit
3733 // it.
3734 if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty())
3735 return;
3736
3737 ReturnsNonNullAttr *RetNNAttr = nullptr;
3738 if (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute))
3739 RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>();
3740
3741 if (!RetNNAttr && !requiresReturnValueNullabilityCheck())
3742 return;
3743
3744 // Prefer the returns_nonnull attribute if it's present.
3745 SourceLocation AttrLoc;
3746 SanitizerMask CheckKind;
3747 SanitizerHandler Handler;
3748 if (RetNNAttr) {
3749 assert(!requiresReturnValueNullabilityCheck() &&
3750 "Cannot check nullability and the nonnull attribute");
3751 AttrLoc = RetNNAttr->getLocation();
3752 CheckKind = SanitizerKind::ReturnsNonnullAttribute;
3753 Handler = SanitizerHandler::NonnullReturn;
3754 } else {
3755 if (auto *DD = dyn_cast<DeclaratorDecl>(CurCodeDecl))
3756 if (auto *TSI = DD->getTypeSourceInfo())
3757 if (auto FTL = TSI->getTypeLoc().getAsAdjusted<FunctionTypeLoc>())
3758 AttrLoc = FTL.getReturnLoc().findNullabilityLoc();
3759 CheckKind = SanitizerKind::NullabilityReturn;
3760 Handler = SanitizerHandler::NullabilityReturn;
3761 }
3762
3763 SanitizerScope SanScope(this);
3764
3765 // Make sure the "return" source location is valid. If we're checking a
3766 // nullability annotation, make sure the preconditions for the check are met.
3767 llvm::BasicBlock *Check = createBasicBlock("nullcheck");
3768 llvm::BasicBlock *NoCheck = createBasicBlock("no.nullcheck");
3769 llvm::Value *SLocPtr = Builder.CreateLoad(ReturnLocation, "return.sloc.load");
3770 llvm::Value *CanNullCheck = Builder.CreateIsNotNull(SLocPtr);
3771 if (requiresReturnValueNullabilityCheck())
3772 CanNullCheck =
3773 Builder.CreateAnd(CanNullCheck, RetValNullabilityPrecondition);
3774 Builder.CreateCondBr(CanNullCheck, Check, NoCheck);
3775 EmitBlock(Check);
3776
3777 // Now do the null check.
3778 llvm::Value *Cond = Builder.CreateIsNotNull(RV);
3779 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(AttrLoc)};
3780 llvm::Value *DynamicData[] = {SLocPtr};
3781 EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, DynamicData);
3782
3783 EmitBlock(NoCheck);
3784
3785 #ifndef NDEBUG
3786 // The return location should not be used after the check has been emitted.
3787 ReturnLocation = Address::invalid();
3788 #endif
3789 }
3790
isInAllocaArgument(CGCXXABI & ABI,QualType type)3791 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) {
3792 const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
3793 return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory;
3794 }
3795
createPlaceholderSlot(CodeGenFunction & CGF,QualType Ty)3796 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF,
3797 QualType Ty) {
3798 // FIXME: Generate IR in one pass, rather than going back and fixing up these
3799 // placeholders.
3800 llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty);
3801 llvm::Type *IRPtrTy = IRTy->getPointerTo();
3802 llvm::Value *Placeholder = llvm::PoisonValue::get(IRPtrTy->getPointerTo());
3803
3804 // FIXME: When we generate this IR in one pass, we shouldn't need
3805 // this win32-specific alignment hack.
3806 CharUnits Align = CharUnits::fromQuantity(4);
3807 Placeholder = CGF.Builder.CreateAlignedLoad(IRPtrTy, Placeholder, Align);
3808
3809 return AggValueSlot::forAddr(Address(Placeholder, IRTy, Align),
3810 Ty.getQualifiers(),
3811 AggValueSlot::IsNotDestructed,
3812 AggValueSlot::DoesNotNeedGCBarriers,
3813 AggValueSlot::IsNotAliased,
3814 AggValueSlot::DoesNotOverlap);
3815 }
3816
EmitDelegateCallArg(CallArgList & args,const VarDecl * param,SourceLocation loc)3817 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args,
3818 const VarDecl *param,
3819 SourceLocation loc) {
3820 // StartFunction converted the ABI-lowered parameter(s) into a
3821 // local alloca. We need to turn that into an r-value suitable
3822 // for EmitCall.
3823 Address local = GetAddrOfLocalVar(param);
3824
3825 QualType type = param->getType();
3826
3827 if (isInAllocaArgument(CGM.getCXXABI(), type)) {
3828 CGM.ErrorUnsupported(param, "forwarded non-trivially copyable parameter");
3829 }
3830
3831 // GetAddrOfLocalVar returns a pointer-to-pointer for references,
3832 // but the argument needs to be the original pointer.
3833 if (type->isReferenceType()) {
3834 args.add(RValue::get(Builder.CreateLoad(local)), type);
3835
3836 // In ARC, move out of consumed arguments so that the release cleanup
3837 // entered by StartFunction doesn't cause an over-release. This isn't
3838 // optimal -O0 code generation, but it should get cleaned up when
3839 // optimization is enabled. This also assumes that delegate calls are
3840 // performed exactly once for a set of arguments, but that should be safe.
3841 } else if (getLangOpts().ObjCAutoRefCount &&
3842 param->hasAttr<NSConsumedAttr>() &&
3843 type->isObjCRetainableType()) {
3844 llvm::Value *ptr = Builder.CreateLoad(local);
3845 auto null =
3846 llvm::ConstantPointerNull::get(cast<llvm::PointerType>(ptr->getType()));
3847 Builder.CreateStore(null, local);
3848 args.add(RValue::get(ptr), type);
3849
3850 // For the most part, we just need to load the alloca, except that
3851 // aggregate r-values are actually pointers to temporaries.
3852 } else {
3853 args.add(convertTempToRValue(local, type, loc), type);
3854 }
3855
3856 // Deactivate the cleanup for the callee-destructed param that was pushed.
3857 if (type->isRecordType() && !CurFuncIsThunk &&
3858 type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee() &&
3859 param->needsDestruction(getContext())) {
3860 EHScopeStack::stable_iterator cleanup =
3861 CalleeDestructedParamCleanups.lookup(cast<ParmVarDecl>(param));
3862 assert(cleanup.isValid() &&
3863 "cleanup for callee-destructed param not recorded");
3864 // This unreachable is a temporary marker which will be removed later.
3865 llvm::Instruction *isActive = Builder.CreateUnreachable();
3866 args.addArgCleanupDeactivation(cleanup, isActive);
3867 }
3868 }
3869
isProvablyNull(llvm::Value * addr)3870 static bool isProvablyNull(llvm::Value *addr) {
3871 return isa<llvm::ConstantPointerNull>(addr);
3872 }
3873
3874 /// Emit the actual writing-back of a writeback.
emitWriteback(CodeGenFunction & CGF,const CallArgList::Writeback & writeback)3875 static void emitWriteback(CodeGenFunction &CGF,
3876 const CallArgList::Writeback &writeback) {
3877 const LValue &srcLV = writeback.Source;
3878 Address srcAddr = srcLV.getAddress(CGF);
3879 assert(!isProvablyNull(srcAddr.getPointer()) &&
3880 "shouldn't have writeback for provably null argument");
3881
3882 llvm::BasicBlock *contBB = nullptr;
3883
3884 // If the argument wasn't provably non-null, we need to null check
3885 // before doing the store.
3886 bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(),
3887 CGF.CGM.getDataLayout());
3888 if (!provablyNonNull) {
3889 llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback");
3890 contBB = CGF.createBasicBlock("icr.done");
3891
3892 llvm::Value *isNull =
3893 CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
3894 CGF.Builder.CreateCondBr(isNull, contBB, writebackBB);
3895 CGF.EmitBlock(writebackBB);
3896 }
3897
3898 // Load the value to writeback.
3899 llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary);
3900
3901 // Cast it back, in case we're writing an id to a Foo* or something.
3902 value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(),
3903 "icr.writeback-cast");
3904
3905 // Perform the writeback.
3906
3907 // If we have a "to use" value, it's something we need to emit a use
3908 // of. This has to be carefully threaded in: if it's done after the
3909 // release it's potentially undefined behavior (and the optimizer
3910 // will ignore it), and if it happens before the retain then the
3911 // optimizer could move the release there.
3912 if (writeback.ToUse) {
3913 assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong);
3914
3915 // Retain the new value. No need to block-copy here: the block's
3916 // being passed up the stack.
3917 value = CGF.EmitARCRetainNonBlock(value);
3918
3919 // Emit the intrinsic use here.
3920 CGF.EmitARCIntrinsicUse(writeback.ToUse);
3921
3922 // Load the old value (primitively).
3923 llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation());
3924
3925 // Put the new value in place (primitively).
3926 CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false);
3927
3928 // Release the old value.
3929 CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime());
3930
3931 // Otherwise, we can just do a normal lvalue store.
3932 } else {
3933 CGF.EmitStoreThroughLValue(RValue::get(value), srcLV);
3934 }
3935
3936 // Jump to the continuation block.
3937 if (!provablyNonNull)
3938 CGF.EmitBlock(contBB);
3939 }
3940
emitWritebacks(CodeGenFunction & CGF,const CallArgList & args)3941 static void emitWritebacks(CodeGenFunction &CGF,
3942 const CallArgList &args) {
3943 for (const auto &I : args.writebacks())
3944 emitWriteback(CGF, I);
3945 }
3946
deactivateArgCleanupsBeforeCall(CodeGenFunction & CGF,const CallArgList & CallArgs)3947 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF,
3948 const CallArgList &CallArgs) {
3949 ArrayRef<CallArgList::CallArgCleanup> Cleanups =
3950 CallArgs.getCleanupsToDeactivate();
3951 // Iterate in reverse to increase the likelihood of popping the cleanup.
3952 for (const auto &I : llvm::reverse(Cleanups)) {
3953 CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP);
3954 I.IsActiveIP->eraseFromParent();
3955 }
3956 }
3957
maybeGetUnaryAddrOfOperand(const Expr * E)3958 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) {
3959 if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens()))
3960 if (uop->getOpcode() == UO_AddrOf)
3961 return uop->getSubExpr();
3962 return nullptr;
3963 }
3964
3965 /// Emit an argument that's being passed call-by-writeback. That is,
3966 /// we are passing the address of an __autoreleased temporary; it
3967 /// might be copy-initialized with the current value of the given
3968 /// address, but it will definitely be copied out of after the call.
emitWritebackArg(CodeGenFunction & CGF,CallArgList & args,const ObjCIndirectCopyRestoreExpr * CRE)3969 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args,
3970 const ObjCIndirectCopyRestoreExpr *CRE) {
3971 LValue srcLV;
3972
3973 // Make an optimistic effort to emit the address as an l-value.
3974 // This can fail if the argument expression is more complicated.
3975 if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) {
3976 srcLV = CGF.EmitLValue(lvExpr);
3977
3978 // Otherwise, just emit it as a scalar.
3979 } else {
3980 Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr());
3981
3982 QualType srcAddrType =
3983 CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
3984 srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType);
3985 }
3986 Address srcAddr = srcLV.getAddress(CGF);
3987
3988 // The dest and src types don't necessarily match in LLVM terms
3989 // because of the crazy ObjC compatibility rules.
3990
3991 llvm::PointerType *destType =
3992 cast<llvm::PointerType>(CGF.ConvertType(CRE->getType()));
3993 llvm::Type *destElemType =
3994 CGF.ConvertTypeForMem(CRE->getType()->getPointeeType());
3995
3996 // If the address is a constant null, just pass the appropriate null.
3997 if (isProvablyNull(srcAddr.getPointer())) {
3998 args.add(RValue::get(llvm::ConstantPointerNull::get(destType)),
3999 CRE->getType());
4000 return;
4001 }
4002
4003 // Create the temporary.
4004 Address temp =
4005 CGF.CreateTempAlloca(destElemType, CGF.getPointerAlign(), "icr.temp");
4006 // Loading an l-value can introduce a cleanup if the l-value is __weak,
4007 // and that cleanup will be conditional if we can't prove that the l-value
4008 // isn't null, so we need to register a dominating point so that the cleanups
4009 // system will make valid IR.
4010 CodeGenFunction::ConditionalEvaluation condEval(CGF);
4011
4012 // Zero-initialize it if we're not doing a copy-initialization.
4013 bool shouldCopy = CRE->shouldCopy();
4014 if (!shouldCopy) {
4015 llvm::Value *null =
4016 llvm::ConstantPointerNull::get(cast<llvm::PointerType>(destElemType));
4017 CGF.Builder.CreateStore(null, temp);
4018 }
4019
4020 llvm::BasicBlock *contBB = nullptr;
4021 llvm::BasicBlock *originBB = nullptr;
4022
4023 // If the address is *not* known to be non-null, we need to switch.
4024 llvm::Value *finalArgument;
4025
4026 bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(),
4027 CGF.CGM.getDataLayout());
4028 if (provablyNonNull) {
4029 finalArgument = temp.getPointer();
4030 } else {
4031 llvm::Value *isNull =
4032 CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
4033
4034 finalArgument = CGF.Builder.CreateSelect(isNull,
4035 llvm::ConstantPointerNull::get(destType),
4036 temp.getPointer(), "icr.argument");
4037
4038 // If we need to copy, then the load has to be conditional, which
4039 // means we need control flow.
4040 if (shouldCopy) {
4041 originBB = CGF.Builder.GetInsertBlock();
4042 contBB = CGF.createBasicBlock("icr.cont");
4043 llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy");
4044 CGF.Builder.CreateCondBr(isNull, contBB, copyBB);
4045 CGF.EmitBlock(copyBB);
4046 condEval.begin(CGF);
4047 }
4048 }
4049
4050 llvm::Value *valueToUse = nullptr;
4051
4052 // Perform a copy if necessary.
4053 if (shouldCopy) {
4054 RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation());
4055 assert(srcRV.isScalar());
4056
4057 llvm::Value *src = srcRV.getScalarVal();
4058 src = CGF.Builder.CreateBitCast(src, destElemType, "icr.cast");
4059
4060 // Use an ordinary store, not a store-to-lvalue.
4061 CGF.Builder.CreateStore(src, temp);
4062
4063 // If optimization is enabled, and the value was held in a
4064 // __strong variable, we need to tell the optimizer that this
4065 // value has to stay alive until we're doing the store back.
4066 // This is because the temporary is effectively unretained,
4067 // and so otherwise we can violate the high-level semantics.
4068 if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 &&
4069 srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) {
4070 valueToUse = src;
4071 }
4072 }
4073
4074 // Finish the control flow if we needed it.
4075 if (shouldCopy && !provablyNonNull) {
4076 llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock();
4077 CGF.EmitBlock(contBB);
4078
4079 // Make a phi for the value to intrinsically use.
4080 if (valueToUse) {
4081 llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2,
4082 "icr.to-use");
4083 phiToUse->addIncoming(valueToUse, copyBB);
4084 phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()),
4085 originBB);
4086 valueToUse = phiToUse;
4087 }
4088
4089 condEval.end(CGF);
4090 }
4091
4092 args.addWriteback(srcLV, temp, valueToUse);
4093 args.add(RValue::get(finalArgument), CRE->getType());
4094 }
4095
allocateArgumentMemory(CodeGenFunction & CGF)4096 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) {
4097 assert(!StackBase);
4098
4099 // Save the stack.
4100 llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave);
4101 StackBase = CGF.Builder.CreateCall(F, {}, "inalloca.save");
4102 }
4103
freeArgumentMemory(CodeGenFunction & CGF) const4104 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const {
4105 if (StackBase) {
4106 // Restore the stack after the call.
4107 llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
4108 CGF.Builder.CreateCall(F, StackBase);
4109 }
4110 }
4111
EmitNonNullArgCheck(RValue RV,QualType ArgType,SourceLocation ArgLoc,AbstractCallee AC,unsigned ParmNum)4112 void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType,
4113 SourceLocation ArgLoc,
4114 AbstractCallee AC,
4115 unsigned ParmNum) {
4116 if (!AC.getDecl() || !(SanOpts.has(SanitizerKind::NonnullAttribute) ||
4117 SanOpts.has(SanitizerKind::NullabilityArg)))
4118 return;
4119
4120 // The param decl may be missing in a variadic function.
4121 auto PVD = ParmNum < AC.getNumParams() ? AC.getParamDecl(ParmNum) : nullptr;
4122 unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum;
4123
4124 // Prefer the nonnull attribute if it's present.
4125 const NonNullAttr *NNAttr = nullptr;
4126 if (SanOpts.has(SanitizerKind::NonnullAttribute))
4127 NNAttr = getNonNullAttr(AC.getDecl(), PVD, ArgType, ArgNo);
4128
4129 bool CanCheckNullability = false;
4130 if (SanOpts.has(SanitizerKind::NullabilityArg) && !NNAttr && PVD) {
4131 auto Nullability = PVD->getType()->getNullability();
4132 CanCheckNullability = Nullability &&
4133 *Nullability == NullabilityKind::NonNull &&
4134 PVD->getTypeSourceInfo();
4135 }
4136
4137 if (!NNAttr && !CanCheckNullability)
4138 return;
4139
4140 SourceLocation AttrLoc;
4141 SanitizerMask CheckKind;
4142 SanitizerHandler Handler;
4143 if (NNAttr) {
4144 AttrLoc = NNAttr->getLocation();
4145 CheckKind = SanitizerKind::NonnullAttribute;
4146 Handler = SanitizerHandler::NonnullArg;
4147 } else {
4148 AttrLoc = PVD->getTypeSourceInfo()->getTypeLoc().findNullabilityLoc();
4149 CheckKind = SanitizerKind::NullabilityArg;
4150 Handler = SanitizerHandler::NullabilityArg;
4151 }
4152
4153 SanitizerScope SanScope(this);
4154 llvm::Value *Cond = EmitNonNullRValueCheck(RV, ArgType);
4155 llvm::Constant *StaticData[] = {
4156 EmitCheckSourceLocation(ArgLoc), EmitCheckSourceLocation(AttrLoc),
4157 llvm::ConstantInt::get(Int32Ty, ArgNo + 1),
4158 };
4159 EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, std::nullopt);
4160 }
4161
4162 // Check if the call is going to use the inalloca convention. This needs to
4163 // agree with CGFunctionInfo::usesInAlloca. The CGFunctionInfo is arranged
4164 // later, so we can't check it directly.
hasInAllocaArgs(CodeGenModule & CGM,CallingConv ExplicitCC,ArrayRef<QualType> ArgTypes)4165 static bool hasInAllocaArgs(CodeGenModule &CGM, CallingConv ExplicitCC,
4166 ArrayRef<QualType> ArgTypes) {
4167 // The Swift calling conventions don't go through the target-specific
4168 // argument classification, they never use inalloca.
4169 // TODO: Consider limiting inalloca use to only calling conventions supported
4170 // by MSVC.
4171 if (ExplicitCC == CC_Swift || ExplicitCC == CC_SwiftAsync)
4172 return false;
4173 if (!CGM.getTarget().getCXXABI().isMicrosoft())
4174 return false;
4175 return llvm::any_of(ArgTypes, [&](QualType Ty) {
4176 return isInAllocaArgument(CGM.getCXXABI(), Ty);
4177 });
4178 }
4179
4180 #ifndef NDEBUG
4181 // Determine whether the given argument is an Objective-C method
4182 // that may have type parameters in its signature.
isObjCMethodWithTypeParams(const ObjCMethodDecl * method)4183 static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) {
4184 const DeclContext *dc = method->getDeclContext();
4185 if (const ObjCInterfaceDecl *classDecl = dyn_cast<ObjCInterfaceDecl>(dc)) {
4186 return classDecl->getTypeParamListAsWritten();
4187 }
4188
4189 if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) {
4190 return catDecl->getTypeParamList();
4191 }
4192
4193 return false;
4194 }
4195 #endif
4196
4197 /// EmitCallArgs - Emit call arguments for a function.
EmitCallArgs(CallArgList & Args,PrototypeWrapper Prototype,llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,AbstractCallee AC,unsigned ParamsToSkip,EvaluationOrder Order)4198 void CodeGenFunction::EmitCallArgs(
4199 CallArgList &Args, PrototypeWrapper Prototype,
4200 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
4201 AbstractCallee AC, unsigned ParamsToSkip, EvaluationOrder Order) {
4202 SmallVector<QualType, 16> ArgTypes;
4203
4204 assert((ParamsToSkip == 0 || Prototype.P) &&
4205 "Can't skip parameters if type info is not provided");
4206
4207 // This variable only captures *explicitly* written conventions, not those
4208 // applied by default via command line flags or target defaults, such as
4209 // thiscall, aapcs, stdcall via -mrtd, etc. Computing that correctly would
4210 // require knowing if this is a C++ instance method or being able to see
4211 // unprototyped FunctionTypes.
4212 CallingConv ExplicitCC = CC_C;
4213
4214 // First, if a prototype was provided, use those argument types.
4215 bool IsVariadic = false;
4216 if (Prototype.P) {
4217 const auto *MD = Prototype.P.dyn_cast<const ObjCMethodDecl *>();
4218 if (MD) {
4219 IsVariadic = MD->isVariadic();
4220 ExplicitCC = getCallingConventionForDecl(
4221 MD, CGM.getTarget().getTriple().isOSWindows());
4222 ArgTypes.assign(MD->param_type_begin() + ParamsToSkip,
4223 MD->param_type_end());
4224 } else {
4225 const auto *FPT = Prototype.P.get<const FunctionProtoType *>();
4226 IsVariadic = FPT->isVariadic();
4227 ExplicitCC = FPT->getExtInfo().getCC();
4228 ArgTypes.assign(FPT->param_type_begin() + ParamsToSkip,
4229 FPT->param_type_end());
4230 }
4231
4232 #ifndef NDEBUG
4233 // Check that the prototyped types match the argument expression types.
4234 bool isGenericMethod = MD && isObjCMethodWithTypeParams(MD);
4235 CallExpr::const_arg_iterator Arg = ArgRange.begin();
4236 for (QualType Ty : ArgTypes) {
4237 assert(Arg != ArgRange.end() && "Running over edge of argument list!");
4238 assert(
4239 (isGenericMethod || Ty->isVariablyModifiedType() ||
4240 Ty.getNonReferenceType()->isObjCRetainableType() ||
4241 getContext()
4242 .getCanonicalType(Ty.getNonReferenceType())
4243 .getTypePtr() ==
4244 getContext().getCanonicalType((*Arg)->getType()).getTypePtr()) &&
4245 "type mismatch in call argument!");
4246 ++Arg;
4247 }
4248
4249 // Either we've emitted all the call args, or we have a call to variadic
4250 // function.
4251 assert((Arg == ArgRange.end() || IsVariadic) &&
4252 "Extra arguments in non-variadic function!");
4253 #endif
4254 }
4255
4256 // If we still have any arguments, emit them using the type of the argument.
4257 for (auto *A : llvm::drop_begin(ArgRange, ArgTypes.size()))
4258 ArgTypes.push_back(IsVariadic ? getVarArgType(A) : A->getType());
4259 assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin()));
4260
4261 // We must evaluate arguments from right to left in the MS C++ ABI,
4262 // because arguments are destroyed left to right in the callee. As a special
4263 // case, there are certain language constructs that require left-to-right
4264 // evaluation, and in those cases we consider the evaluation order requirement
4265 // to trump the "destruction order is reverse construction order" guarantee.
4266 bool LeftToRight =
4267 CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()
4268 ? Order == EvaluationOrder::ForceLeftToRight
4269 : Order != EvaluationOrder::ForceRightToLeft;
4270
4271 auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg,
4272 RValue EmittedArg) {
4273 if (!AC.hasFunctionDecl() || I >= AC.getNumParams())
4274 return;
4275 auto *PS = AC.getParamDecl(I)->getAttr<PassObjectSizeAttr>();
4276 if (PS == nullptr)
4277 return;
4278
4279 const auto &Context = getContext();
4280 auto SizeTy = Context.getSizeType();
4281 auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy));
4282 assert(EmittedArg.getScalarVal() && "We emitted nothing for the arg?");
4283 llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T,
4284 EmittedArg.getScalarVal(),
4285 PS->isDynamic());
4286 Args.add(RValue::get(V), SizeTy);
4287 // If we're emitting args in reverse, be sure to do so with
4288 // pass_object_size, as well.
4289 if (!LeftToRight)
4290 std::swap(Args.back(), *(&Args.back() - 1));
4291 };
4292
4293 // Insert a stack save if we're going to need any inalloca args.
4294 if (hasInAllocaArgs(CGM, ExplicitCC, ArgTypes)) {
4295 assert(getTarget().getTriple().getArch() == llvm::Triple::x86 &&
4296 "inalloca only supported on x86");
4297 Args.allocateArgumentMemory(*this);
4298 }
4299
4300 // Evaluate each argument in the appropriate order.
4301 size_t CallArgsStart = Args.size();
4302 for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) {
4303 unsigned Idx = LeftToRight ? I : E - I - 1;
4304 CallExpr::const_arg_iterator Arg = ArgRange.begin() + Idx;
4305 unsigned InitialArgSize = Args.size();
4306 // If *Arg is an ObjCIndirectCopyRestoreExpr, check that either the types of
4307 // the argument and parameter match or the objc method is parameterized.
4308 assert((!isa<ObjCIndirectCopyRestoreExpr>(*Arg) ||
4309 getContext().hasSameUnqualifiedType((*Arg)->getType(),
4310 ArgTypes[Idx]) ||
4311 (isa<ObjCMethodDecl>(AC.getDecl()) &&
4312 isObjCMethodWithTypeParams(cast<ObjCMethodDecl>(AC.getDecl())))) &&
4313 "Argument and parameter types don't match");
4314 EmitCallArg(Args, *Arg, ArgTypes[Idx]);
4315 // In particular, we depend on it being the last arg in Args, and the
4316 // objectsize bits depend on there only being one arg if !LeftToRight.
4317 assert(InitialArgSize + 1 == Args.size() &&
4318 "The code below depends on only adding one arg per EmitCallArg");
4319 (void)InitialArgSize;
4320 // Since pointer argument are never emitted as LValue, it is safe to emit
4321 // non-null argument check for r-value only.
4322 if (!Args.back().hasLValue()) {
4323 RValue RVArg = Args.back().getKnownRValue();
4324 EmitNonNullArgCheck(RVArg, ArgTypes[Idx], (*Arg)->getExprLoc(), AC,
4325 ParamsToSkip + Idx);
4326 // @llvm.objectsize should never have side-effects and shouldn't need
4327 // destruction/cleanups, so we can safely "emit" it after its arg,
4328 // regardless of right-to-leftness
4329 MaybeEmitImplicitObjectSize(Idx, *Arg, RVArg);
4330 }
4331 }
4332
4333 if (!LeftToRight) {
4334 // Un-reverse the arguments we just evaluated so they match up with the LLVM
4335 // IR function.
4336 std::reverse(Args.begin() + CallArgsStart, Args.end());
4337 }
4338 }
4339
4340 namespace {
4341
4342 struct DestroyUnpassedArg final : EHScopeStack::Cleanup {
DestroyUnpassedArg__anon4649c3d10d11::DestroyUnpassedArg4343 DestroyUnpassedArg(Address Addr, QualType Ty)
4344 : Addr(Addr), Ty(Ty) {}
4345
4346 Address Addr;
4347 QualType Ty;
4348
Emit__anon4649c3d10d11::DestroyUnpassedArg4349 void Emit(CodeGenFunction &CGF, Flags flags) override {
4350 QualType::DestructionKind DtorKind = Ty.isDestructedType();
4351 if (DtorKind == QualType::DK_cxx_destructor) {
4352 const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor();
4353 assert(!Dtor->isTrivial());
4354 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false,
4355 /*Delegating=*/false, Addr, Ty);
4356 } else {
4357 CGF.callCStructDestructor(CGF.MakeAddrLValue(Addr, Ty));
4358 }
4359 }
4360 };
4361
4362 struct DisableDebugLocationUpdates {
4363 CodeGenFunction &CGF;
4364 bool disabledDebugInfo;
DisableDebugLocationUpdates__anon4649c3d10d11::DisableDebugLocationUpdates4365 DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) {
4366 if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo()))
4367 CGF.disableDebugInfo();
4368 }
~DisableDebugLocationUpdates__anon4649c3d10d11::DisableDebugLocationUpdates4369 ~DisableDebugLocationUpdates() {
4370 if (disabledDebugInfo)
4371 CGF.enableDebugInfo();
4372 }
4373 };
4374
4375 } // end anonymous namespace
4376
getRValue(CodeGenFunction & CGF) const4377 RValue CallArg::getRValue(CodeGenFunction &CGF) const {
4378 if (!HasLV)
4379 return RV;
4380 LValue Copy = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty), Ty);
4381 CGF.EmitAggregateCopy(Copy, LV, Ty, AggValueSlot::DoesNotOverlap,
4382 LV.isVolatile());
4383 IsUsed = true;
4384 return RValue::getAggregate(Copy.getAddress(CGF));
4385 }
4386
copyInto(CodeGenFunction & CGF,Address Addr) const4387 void CallArg::copyInto(CodeGenFunction &CGF, Address Addr) const {
4388 LValue Dst = CGF.MakeAddrLValue(Addr, Ty);
4389 if (!HasLV && RV.isScalar())
4390 CGF.EmitStoreOfScalar(RV.getScalarVal(), Dst, /*isInit=*/true);
4391 else if (!HasLV && RV.isComplex())
4392 CGF.EmitStoreOfComplex(RV.getComplexVal(), Dst, /*init=*/true);
4393 else {
4394 auto Addr = HasLV ? LV.getAddress(CGF) : RV.getAggregateAddress();
4395 LValue SrcLV = CGF.MakeAddrLValue(Addr, Ty);
4396 // We assume that call args are never copied into subobjects.
4397 CGF.EmitAggregateCopy(Dst, SrcLV, Ty, AggValueSlot::DoesNotOverlap,
4398 HasLV ? LV.isVolatileQualified()
4399 : RV.isVolatileQualified());
4400 }
4401 IsUsed = true;
4402 }
4403
EmitCallArg(CallArgList & args,const Expr * E,QualType type)4404 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
4405 QualType type) {
4406 DisableDebugLocationUpdates Dis(*this, E);
4407 if (const ObjCIndirectCopyRestoreExpr *CRE
4408 = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) {
4409 assert(getLangOpts().ObjCAutoRefCount);
4410 return emitWritebackArg(*this, args, CRE);
4411 }
4412
4413 assert(type->isReferenceType() == E->isGLValue() &&
4414 "reference binding to unmaterialized r-value!");
4415
4416 if (E->isGLValue()) {
4417 assert(E->getObjectKind() == OK_Ordinary);
4418 return args.add(EmitReferenceBindingToExpr(E), type);
4419 }
4420
4421 bool HasAggregateEvalKind = hasAggregateEvaluationKind(type);
4422
4423 // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee.
4424 // However, we still have to push an EH-only cleanup in case we unwind before
4425 // we make it to the call.
4426 if (type->isRecordType() &&
4427 type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) {
4428 // If we're using inalloca, use the argument memory. Otherwise, use a
4429 // temporary.
4430 AggValueSlot Slot = args.isUsingInAlloca()
4431 ? createPlaceholderSlot(*this, type) : CreateAggTemp(type, "agg.tmp");
4432
4433 bool DestroyedInCallee = true, NeedsEHCleanup = true;
4434 if (const auto *RD = type->getAsCXXRecordDecl())
4435 DestroyedInCallee = RD->hasNonTrivialDestructor();
4436 else
4437 NeedsEHCleanup = needsEHCleanup(type.isDestructedType());
4438
4439 if (DestroyedInCallee)
4440 Slot.setExternallyDestructed();
4441
4442 EmitAggExpr(E, Slot);
4443 RValue RV = Slot.asRValue();
4444 args.add(RV, type);
4445
4446 if (DestroyedInCallee && NeedsEHCleanup) {
4447 // Create a no-op GEP between the placeholder and the cleanup so we can
4448 // RAUW it successfully. It also serves as a marker of the first
4449 // instruction where the cleanup is active.
4450 pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddress(),
4451 type);
4452 // This unreachable is a temporary marker which will be removed later.
4453 llvm::Instruction *IsActive = Builder.CreateUnreachable();
4454 args.addArgCleanupDeactivation(EHStack.stable_begin(), IsActive);
4455 }
4456 return;
4457 }
4458
4459 if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) &&
4460 cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) {
4461 LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr());
4462 assert(L.isSimple());
4463 args.addUncopiedAggregate(L, type);
4464 return;
4465 }
4466
4467 args.add(EmitAnyExprToTemp(E), type);
4468 }
4469
getVarArgType(const Expr * Arg)4470 QualType CodeGenFunction::getVarArgType(const Expr *Arg) {
4471 // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC
4472 // implicitly widens null pointer constants that are arguments to varargs
4473 // functions to pointer-sized ints.
4474 if (!getTarget().getTriple().isOSWindows())
4475 return Arg->getType();
4476
4477 if (Arg->getType()->isIntegerType() &&
4478 getContext().getTypeSize(Arg->getType()) <
4479 getContext().getTargetInfo().getPointerWidth(LangAS::Default) &&
4480 Arg->isNullPointerConstant(getContext(),
4481 Expr::NPC_ValueDependentIsNotNull)) {
4482 return getContext().getIntPtrType();
4483 }
4484
4485 return Arg->getType();
4486 }
4487
4488 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
4489 // optimizer it can aggressively ignore unwind edges.
4490 void
AddObjCARCExceptionMetadata(llvm::Instruction * Inst)4491 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) {
4492 if (CGM.getCodeGenOpts().OptimizationLevel != 0 &&
4493 !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions)
4494 Inst->setMetadata("clang.arc.no_objc_arc_exceptions",
4495 CGM.getNoObjCARCExceptionsMetadata());
4496 }
4497
4498 /// Emits a call to the given no-arguments nounwind runtime function.
4499 llvm::CallInst *
EmitNounwindRuntimeCall(llvm::FunctionCallee callee,const llvm::Twine & name)4500 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
4501 const llvm::Twine &name) {
4502 return EmitNounwindRuntimeCall(callee, std::nullopt, name);
4503 }
4504
4505 /// Emits a call to the given nounwind runtime function.
4506 llvm::CallInst *
EmitNounwindRuntimeCall(llvm::FunctionCallee callee,ArrayRef<llvm::Value * > args,const llvm::Twine & name)4507 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
4508 ArrayRef<llvm::Value *> args,
4509 const llvm::Twine &name) {
4510 llvm::CallInst *call = EmitRuntimeCall(callee, args, name);
4511 call->setDoesNotThrow();
4512 return call;
4513 }
4514
4515 /// Emits a simple call (never an invoke) to the given no-arguments
4516 /// runtime function.
EmitRuntimeCall(llvm::FunctionCallee callee,const llvm::Twine & name)4517 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee,
4518 const llvm::Twine &name) {
4519 return EmitRuntimeCall(callee, std::nullopt, name);
4520 }
4521
4522 // Calls which may throw must have operand bundles indicating which funclet
4523 // they are nested within.
4524 SmallVector<llvm::OperandBundleDef, 1>
getBundlesForFunclet(llvm::Value * Callee)4525 CodeGenFunction::getBundlesForFunclet(llvm::Value *Callee) {
4526 // There is no need for a funclet operand bundle if we aren't inside a
4527 // funclet.
4528 if (!CurrentFuncletPad)
4529 return (SmallVector<llvm::OperandBundleDef, 1>());
4530
4531 // Skip intrinsics which cannot throw (as long as they don't lower into
4532 // regular function calls in the course of IR transformations).
4533 if (auto *CalleeFn = dyn_cast<llvm::Function>(Callee->stripPointerCasts())) {
4534 if (CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow()) {
4535 auto IID = CalleeFn->getIntrinsicID();
4536 if (!llvm::IntrinsicInst::mayLowerToFunctionCall(IID))
4537 return (SmallVector<llvm::OperandBundleDef, 1>());
4538 }
4539 }
4540
4541 SmallVector<llvm::OperandBundleDef, 1> BundleList;
4542 BundleList.emplace_back("funclet", CurrentFuncletPad);
4543 return BundleList;
4544 }
4545
4546 /// Emits a simple call (never an invoke) to the given runtime function.
EmitRuntimeCall(llvm::FunctionCallee callee,ArrayRef<llvm::Value * > args,const llvm::Twine & name)4547 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee,
4548 ArrayRef<llvm::Value *> args,
4549 const llvm::Twine &name) {
4550 llvm::CallInst *call = Builder.CreateCall(
4551 callee, args, getBundlesForFunclet(callee.getCallee()), name);
4552 call->setCallingConv(getRuntimeCC());
4553 return call;
4554 }
4555
4556 /// Emits a call or invoke to the given noreturn runtime function.
EmitNoreturnRuntimeCallOrInvoke(llvm::FunctionCallee callee,ArrayRef<llvm::Value * > args)4557 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(
4558 llvm::FunctionCallee callee, ArrayRef<llvm::Value *> args) {
4559 SmallVector<llvm::OperandBundleDef, 1> BundleList =
4560 getBundlesForFunclet(callee.getCallee());
4561
4562 if (getInvokeDest()) {
4563 llvm::InvokeInst *invoke =
4564 Builder.CreateInvoke(callee,
4565 getUnreachableBlock(),
4566 getInvokeDest(),
4567 args,
4568 BundleList);
4569 invoke->setDoesNotReturn();
4570 invoke->setCallingConv(getRuntimeCC());
4571 } else {
4572 llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList);
4573 call->setDoesNotReturn();
4574 call->setCallingConv(getRuntimeCC());
4575 Builder.CreateUnreachable();
4576 }
4577 }
4578
4579 /// Emits a call or invoke instruction to the given nullary runtime function.
4580 llvm::CallBase *
EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,const Twine & name)4581 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4582 const Twine &name) {
4583 return EmitRuntimeCallOrInvoke(callee, std::nullopt, name);
4584 }
4585
4586 /// Emits a call or invoke instruction to the given runtime function.
4587 llvm::CallBase *
EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,ArrayRef<llvm::Value * > args,const Twine & name)4588 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4589 ArrayRef<llvm::Value *> args,
4590 const Twine &name) {
4591 llvm::CallBase *call = EmitCallOrInvoke(callee, args, name);
4592 call->setCallingConv(getRuntimeCC());
4593 return call;
4594 }
4595
4596 /// Emits a call or invoke instruction to the given function, depending
4597 /// on the current state of the EH stack.
EmitCallOrInvoke(llvm::FunctionCallee Callee,ArrayRef<llvm::Value * > Args,const Twine & Name)4598 llvm::CallBase *CodeGenFunction::EmitCallOrInvoke(llvm::FunctionCallee Callee,
4599 ArrayRef<llvm::Value *> Args,
4600 const Twine &Name) {
4601 llvm::BasicBlock *InvokeDest = getInvokeDest();
4602 SmallVector<llvm::OperandBundleDef, 1> BundleList =
4603 getBundlesForFunclet(Callee.getCallee());
4604
4605 llvm::CallBase *Inst;
4606 if (!InvokeDest)
4607 Inst = Builder.CreateCall(Callee, Args, BundleList, Name);
4608 else {
4609 llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont");
4610 Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, BundleList,
4611 Name);
4612 EmitBlock(ContBB);
4613 }
4614
4615 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
4616 // optimizer it can aggressively ignore unwind edges.
4617 if (CGM.getLangOpts().ObjCAutoRefCount)
4618 AddObjCARCExceptionMetadata(Inst);
4619
4620 return Inst;
4621 }
4622
deferPlaceholderReplacement(llvm::Instruction * Old,llvm::Value * New)4623 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old,
4624 llvm::Value *New) {
4625 DeferredReplacements.push_back(
4626 std::make_pair(llvm::WeakTrackingVH(Old), New));
4627 }
4628
4629 namespace {
4630
4631 /// Specify given \p NewAlign as the alignment of return value attribute. If
4632 /// such attribute already exists, re-set it to the maximal one of two options.
4633 [[nodiscard]] llvm::AttributeList
maybeRaiseRetAlignmentAttribute(llvm::LLVMContext & Ctx,const llvm::AttributeList & Attrs,llvm::Align NewAlign)4634 maybeRaiseRetAlignmentAttribute(llvm::LLVMContext &Ctx,
4635 const llvm::AttributeList &Attrs,
4636 llvm::Align NewAlign) {
4637 llvm::Align CurAlign = Attrs.getRetAlignment().valueOrOne();
4638 if (CurAlign >= NewAlign)
4639 return Attrs;
4640 llvm::Attribute AlignAttr = llvm::Attribute::getWithAlignment(Ctx, NewAlign);
4641 return Attrs.removeRetAttribute(Ctx, llvm::Attribute::AttrKind::Alignment)
4642 .addRetAttribute(Ctx, AlignAttr);
4643 }
4644
4645 template <typename AlignedAttrTy> class AbstractAssumeAlignedAttrEmitter {
4646 protected:
4647 CodeGenFunction &CGF;
4648
4649 /// We do nothing if this is, or becomes, nullptr.
4650 const AlignedAttrTy *AA = nullptr;
4651
4652 llvm::Value *Alignment = nullptr; // May or may not be a constant.
4653 llvm::ConstantInt *OffsetCI = nullptr; // Constant, hopefully zero.
4654
AbstractAssumeAlignedAttrEmitter(CodeGenFunction & CGF_,const Decl * FuncDecl)4655 AbstractAssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl)
4656 : CGF(CGF_) {
4657 if (!FuncDecl)
4658 return;
4659 AA = FuncDecl->getAttr<AlignedAttrTy>();
4660 }
4661
4662 public:
4663 /// If we can, materialize the alignment as an attribute on return value.
4664 [[nodiscard]] llvm::AttributeList
TryEmitAsCallSiteAttribute(const llvm::AttributeList & Attrs)4665 TryEmitAsCallSiteAttribute(const llvm::AttributeList &Attrs) {
4666 if (!AA || OffsetCI || CGF.SanOpts.has(SanitizerKind::Alignment))
4667 return Attrs;
4668 const auto *AlignmentCI = dyn_cast<llvm::ConstantInt>(Alignment);
4669 if (!AlignmentCI)
4670 return Attrs;
4671 // We may legitimately have non-power-of-2 alignment here.
4672 // If so, this is UB land, emit it via `@llvm.assume` instead.
4673 if (!AlignmentCI->getValue().isPowerOf2())
4674 return Attrs;
4675 llvm::AttributeList NewAttrs = maybeRaiseRetAlignmentAttribute(
4676 CGF.getLLVMContext(), Attrs,
4677 llvm::Align(
4678 AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment)));
4679 AA = nullptr; // We're done. Disallow doing anything else.
4680 return NewAttrs;
4681 }
4682
4683 /// Emit alignment assumption.
4684 /// This is a general fallback that we take if either there is an offset,
4685 /// or the alignment is variable or we are sanitizing for alignment.
EmitAsAnAssumption(SourceLocation Loc,QualType RetTy,RValue & Ret)4686 void EmitAsAnAssumption(SourceLocation Loc, QualType RetTy, RValue &Ret) {
4687 if (!AA)
4688 return;
4689 CGF.emitAlignmentAssumption(Ret.getScalarVal(), RetTy, Loc,
4690 AA->getLocation(), Alignment, OffsetCI);
4691 AA = nullptr; // We're done. Disallow doing anything else.
4692 }
4693 };
4694
4695 /// Helper data structure to emit `AssumeAlignedAttr`.
4696 class AssumeAlignedAttrEmitter final
4697 : public AbstractAssumeAlignedAttrEmitter<AssumeAlignedAttr> {
4698 public:
AssumeAlignedAttrEmitter(CodeGenFunction & CGF_,const Decl * FuncDecl)4699 AssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl)
4700 : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) {
4701 if (!AA)
4702 return;
4703 // It is guaranteed that the alignment/offset are constants.
4704 Alignment = cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AA->getAlignment()));
4705 if (Expr *Offset = AA->getOffset()) {
4706 OffsetCI = cast<llvm::ConstantInt>(CGF.EmitScalarExpr(Offset));
4707 if (OffsetCI->isNullValue()) // Canonicalize zero offset to no offset.
4708 OffsetCI = nullptr;
4709 }
4710 }
4711 };
4712
4713 /// Helper data structure to emit `AllocAlignAttr`.
4714 class AllocAlignAttrEmitter final
4715 : public AbstractAssumeAlignedAttrEmitter<AllocAlignAttr> {
4716 public:
AllocAlignAttrEmitter(CodeGenFunction & CGF_,const Decl * FuncDecl,const CallArgList & CallArgs)4717 AllocAlignAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl,
4718 const CallArgList &CallArgs)
4719 : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) {
4720 if (!AA)
4721 return;
4722 // Alignment may or may not be a constant, and that is okay.
4723 Alignment = CallArgs[AA->getParamIndex().getLLVMIndex()]
4724 .getRValue(CGF)
4725 .getScalarVal();
4726 }
4727 };
4728
4729 } // namespace
4730
getMaxVectorWidth(const llvm::Type * Ty)4731 static unsigned getMaxVectorWidth(const llvm::Type *Ty) {
4732 if (auto *VT = dyn_cast<llvm::VectorType>(Ty))
4733 return VT->getPrimitiveSizeInBits().getKnownMinValue();
4734 if (auto *AT = dyn_cast<llvm::ArrayType>(Ty))
4735 return getMaxVectorWidth(AT->getElementType());
4736
4737 unsigned MaxVectorWidth = 0;
4738 if (auto *ST = dyn_cast<llvm::StructType>(Ty))
4739 for (auto *I : ST->elements())
4740 MaxVectorWidth = std::max(MaxVectorWidth, getMaxVectorWidth(I));
4741 return MaxVectorWidth;
4742 }
4743
EmitCall(const CGFunctionInfo & CallInfo,const CGCallee & Callee,ReturnValueSlot ReturnValue,const CallArgList & CallArgs,llvm::CallBase ** callOrInvoke,bool IsMustTail,SourceLocation Loc)4744 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
4745 const CGCallee &Callee,
4746 ReturnValueSlot ReturnValue,
4747 const CallArgList &CallArgs,
4748 llvm::CallBase **callOrInvoke, bool IsMustTail,
4749 SourceLocation Loc) {
4750 // FIXME: We no longer need the types from CallArgs; lift up and simplify.
4751
4752 assert(Callee.isOrdinary() || Callee.isVirtual());
4753
4754 // Handle struct-return functions by passing a pointer to the
4755 // location that we would like to return into.
4756 QualType RetTy = CallInfo.getReturnType();
4757 const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
4758
4759 llvm::FunctionType *IRFuncTy = getTypes().GetFunctionType(CallInfo);
4760
4761 const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl().getDecl();
4762 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
4763 // We can only guarantee that a function is called from the correct
4764 // context/function based on the appropriate target attributes,
4765 // so only check in the case where we have both always_inline and target
4766 // since otherwise we could be making a conditional call after a check for
4767 // the proper cpu features (and it won't cause code generation issues due to
4768 // function based code generation).
4769 if (TargetDecl->hasAttr<AlwaysInlineAttr>() &&
4770 TargetDecl->hasAttr<TargetAttr>())
4771 checkTargetFeatures(Loc, FD);
4772
4773 // Some architectures (such as x86-64) have the ABI changed based on
4774 // attribute-target/features. Give them a chance to diagnose.
4775 CGM.getTargetCodeGenInfo().checkFunctionCallABI(
4776 CGM, Loc, dyn_cast_or_null<FunctionDecl>(CurCodeDecl), FD, CallArgs);
4777 }
4778
4779 #ifndef NDEBUG
4780 if (!(CallInfo.isVariadic() && CallInfo.getArgStruct())) {
4781 // For an inalloca varargs function, we don't expect CallInfo to match the
4782 // function pointer's type, because the inalloca struct a will have extra
4783 // fields in it for the varargs parameters. Code later in this function
4784 // bitcasts the function pointer to the type derived from CallInfo.
4785 //
4786 // In other cases, we assert that the types match up (until pointers stop
4787 // having pointee types).
4788 if (Callee.isVirtual())
4789 assert(IRFuncTy == Callee.getVirtualFunctionType());
4790 else {
4791 llvm::PointerType *PtrTy =
4792 llvm::cast<llvm::PointerType>(Callee.getFunctionPointer()->getType());
4793 assert(PtrTy->isOpaqueOrPointeeTypeMatches(IRFuncTy));
4794 }
4795 }
4796 #endif
4797
4798 // 1. Set up the arguments.
4799
4800 // If we're using inalloca, insert the allocation after the stack save.
4801 // FIXME: Do this earlier rather than hacking it in here!
4802 Address ArgMemory = Address::invalid();
4803 if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) {
4804 const llvm::DataLayout &DL = CGM.getDataLayout();
4805 llvm::Instruction *IP = CallArgs.getStackBase();
4806 llvm::AllocaInst *AI;
4807 if (IP) {
4808 IP = IP->getNextNode();
4809 AI = new llvm::AllocaInst(ArgStruct, DL.getAllocaAddrSpace(),
4810 "argmem", IP);
4811 } else {
4812 AI = CreateTempAlloca(ArgStruct, "argmem");
4813 }
4814 auto Align = CallInfo.getArgStructAlignment();
4815 AI->setAlignment(Align.getAsAlign());
4816 AI->setUsedWithInAlloca(true);
4817 assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca());
4818 ArgMemory = Address(AI, ArgStruct, Align);
4819 }
4820
4821 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo);
4822 SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs());
4823
4824 // If the call returns a temporary with struct return, create a temporary
4825 // alloca to hold the result, unless one is given to us.
4826 Address SRetPtr = Address::invalid();
4827 Address SRetAlloca = Address::invalid();
4828 llvm::Value *UnusedReturnSizePtr = nullptr;
4829 if (RetAI.isIndirect() || RetAI.isInAlloca() || RetAI.isCoerceAndExpand()) {
4830 if (!ReturnValue.isNull()) {
4831 SRetPtr = ReturnValue.getValue();
4832 } else {
4833 SRetPtr = CreateMemTemp(RetTy, "tmp", &SRetAlloca);
4834 if (HaveInsertPoint() && ReturnValue.isUnused()) {
4835 llvm::TypeSize size =
4836 CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy));
4837 UnusedReturnSizePtr = EmitLifetimeStart(size, SRetAlloca.getPointer());
4838 }
4839 }
4840 if (IRFunctionArgs.hasSRetArg()) {
4841 IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr.getPointer();
4842 } else if (RetAI.isInAlloca()) {
4843 Address Addr =
4844 Builder.CreateStructGEP(ArgMemory, RetAI.getInAllocaFieldIndex());
4845 Builder.CreateStore(SRetPtr.getPointer(), Addr);
4846 }
4847 }
4848
4849 Address swiftErrorTemp = Address::invalid();
4850 Address swiftErrorArg = Address::invalid();
4851
4852 // When passing arguments using temporary allocas, we need to add the
4853 // appropriate lifetime markers. This vector keeps track of all the lifetime
4854 // markers that need to be ended right after the call.
4855 SmallVector<CallLifetimeEnd, 2> CallLifetimeEndAfterCall;
4856
4857 // Translate all of the arguments as necessary to match the IR lowering.
4858 assert(CallInfo.arg_size() == CallArgs.size() &&
4859 "Mismatch between function signature & arguments.");
4860 unsigned ArgNo = 0;
4861 CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
4862 for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
4863 I != E; ++I, ++info_it, ++ArgNo) {
4864 const ABIArgInfo &ArgInfo = info_it->info;
4865
4866 // Insert a padding argument to ensure proper alignment.
4867 if (IRFunctionArgs.hasPaddingArg(ArgNo))
4868 IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
4869 llvm::UndefValue::get(ArgInfo.getPaddingType());
4870
4871 unsigned FirstIRArg, NumIRArgs;
4872 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
4873
4874 bool ArgHasMaybeUndefAttr =
4875 IsArgumentMaybeUndef(TargetDecl, CallInfo.getNumRequiredArgs(), ArgNo);
4876
4877 switch (ArgInfo.getKind()) {
4878 case ABIArgInfo::InAlloca: {
4879 assert(NumIRArgs == 0);
4880 assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
4881 if (I->isAggregate()) {
4882 Address Addr = I->hasLValue()
4883 ? I->getKnownLValue().getAddress(*this)
4884 : I->getKnownRValue().getAggregateAddress();
4885 llvm::Instruction *Placeholder =
4886 cast<llvm::Instruction>(Addr.getPointer());
4887
4888 if (!ArgInfo.getInAllocaIndirect()) {
4889 // Replace the placeholder with the appropriate argument slot GEP.
4890 CGBuilderTy::InsertPoint IP = Builder.saveIP();
4891 Builder.SetInsertPoint(Placeholder);
4892 Addr = Builder.CreateStructGEP(ArgMemory,
4893 ArgInfo.getInAllocaFieldIndex());
4894 Builder.restoreIP(IP);
4895 } else {
4896 // For indirect things such as overaligned structs, replace the
4897 // placeholder with a regular aggregate temporary alloca. Store the
4898 // address of this alloca into the struct.
4899 Addr = CreateMemTemp(info_it->type, "inalloca.indirect.tmp");
4900 Address ArgSlot = Builder.CreateStructGEP(
4901 ArgMemory, ArgInfo.getInAllocaFieldIndex());
4902 Builder.CreateStore(Addr.getPointer(), ArgSlot);
4903 }
4904 deferPlaceholderReplacement(Placeholder, Addr.getPointer());
4905 } else if (ArgInfo.getInAllocaIndirect()) {
4906 // Make a temporary alloca and store the address of it into the argument
4907 // struct.
4908 Address Addr = CreateMemTempWithoutCast(
4909 I->Ty, getContext().getTypeAlignInChars(I->Ty),
4910 "indirect-arg-temp");
4911 I->copyInto(*this, Addr);
4912 Address ArgSlot =
4913 Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex());
4914 Builder.CreateStore(Addr.getPointer(), ArgSlot);
4915 } else {
4916 // Store the RValue into the argument struct.
4917 Address Addr =
4918 Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex());
4919 // There are some cases where a trivial bitcast is not avoidable. The
4920 // definition of a type later in a translation unit may change it's type
4921 // from {}* to (%struct.foo*)*.
4922 Addr = Builder.CreateElementBitCast(Addr, ConvertTypeForMem(I->Ty));
4923 I->copyInto(*this, Addr);
4924 }
4925 break;
4926 }
4927
4928 case ABIArgInfo::Indirect:
4929 case ABIArgInfo::IndirectAliased: {
4930 assert(NumIRArgs == 1);
4931 if (!I->isAggregate()) {
4932 // Make a temporary alloca to pass the argument.
4933 Address Addr = CreateMemTempWithoutCast(
4934 I->Ty, ArgInfo.getIndirectAlign(), "indirect-arg-temp");
4935
4936 llvm::Value *Val = Addr.getPointer();
4937 if (ArgHasMaybeUndefAttr)
4938 Val = Builder.CreateFreeze(Addr.getPointer());
4939 IRCallArgs[FirstIRArg] = Val;
4940
4941 I->copyInto(*this, Addr);
4942 } else {
4943 // We want to avoid creating an unnecessary temporary+copy here;
4944 // however, we need one in three cases:
4945 // 1. If the argument is not byval, and we are required to copy the
4946 // source. (This case doesn't occur on any common architecture.)
4947 // 2. If the argument is byval, RV is not sufficiently aligned, and
4948 // we cannot force it to be sufficiently aligned.
4949 // 3. If the argument is byval, but RV is not located in default
4950 // or alloca address space.
4951 Address Addr = I->hasLValue()
4952 ? I->getKnownLValue().getAddress(*this)
4953 : I->getKnownRValue().getAggregateAddress();
4954 llvm::Value *V = Addr.getPointer();
4955 CharUnits Align = ArgInfo.getIndirectAlign();
4956 const llvm::DataLayout *TD = &CGM.getDataLayout();
4957
4958 assert((FirstIRArg >= IRFuncTy->getNumParams() ||
4959 IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace() ==
4960 TD->getAllocaAddrSpace()) &&
4961 "indirect argument must be in alloca address space");
4962
4963 bool NeedCopy = false;
4964
4965 if (Addr.getAlignment() < Align &&
4966 llvm::getOrEnforceKnownAlignment(V, Align.getAsAlign(), *TD) <
4967 Align.getAsAlign()) {
4968 NeedCopy = true;
4969 } else if (I->hasLValue()) {
4970 auto LV = I->getKnownLValue();
4971 auto AS = LV.getAddressSpace();
4972
4973 if (!ArgInfo.getIndirectByVal() ||
4974 (LV.getAlignment() < getContext().getTypeAlignInChars(I->Ty))) {
4975 NeedCopy = true;
4976 }
4977 if (!getLangOpts().OpenCL) {
4978 if ((ArgInfo.getIndirectByVal() &&
4979 (AS != LangAS::Default &&
4980 AS != CGM.getASTAllocaAddressSpace()))) {
4981 NeedCopy = true;
4982 }
4983 }
4984 // For OpenCL even if RV is located in default or alloca address space
4985 // we don't want to perform address space cast for it.
4986 else if ((ArgInfo.getIndirectByVal() &&
4987 Addr.getType()->getAddressSpace() != IRFuncTy->
4988 getParamType(FirstIRArg)->getPointerAddressSpace())) {
4989 NeedCopy = true;
4990 }
4991 }
4992
4993 if (NeedCopy) {
4994 // Create an aligned temporary, and copy to it.
4995 Address AI = CreateMemTempWithoutCast(
4996 I->Ty, ArgInfo.getIndirectAlign(), "byval-temp");
4997 llvm::Value *Val = AI.getPointer();
4998 if (ArgHasMaybeUndefAttr)
4999 Val = Builder.CreateFreeze(AI.getPointer());
5000 IRCallArgs[FirstIRArg] = Val;
5001
5002 // Emit lifetime markers for the temporary alloca.
5003 llvm::TypeSize ByvalTempElementSize =
5004 CGM.getDataLayout().getTypeAllocSize(AI.getElementType());
5005 llvm::Value *LifetimeSize =
5006 EmitLifetimeStart(ByvalTempElementSize, AI.getPointer());
5007
5008 // Add cleanup code to emit the end lifetime marker after the call.
5009 if (LifetimeSize) // In case we disabled lifetime markers.
5010 CallLifetimeEndAfterCall.emplace_back(AI, LifetimeSize);
5011
5012 // Generate the copy.
5013 I->copyInto(*this, AI);
5014 } else {
5015 // Skip the extra memcpy call.
5016 auto *T = llvm::PointerType::getWithSamePointeeType(
5017 cast<llvm::PointerType>(V->getType()),
5018 CGM.getDataLayout().getAllocaAddrSpace());
5019
5020 llvm::Value *Val = getTargetHooks().performAddrSpaceCast(
5021 *this, V, LangAS::Default, CGM.getASTAllocaAddressSpace(), T,
5022 true);
5023 if (ArgHasMaybeUndefAttr)
5024 Val = Builder.CreateFreeze(Val);
5025 IRCallArgs[FirstIRArg] = Val;
5026 }
5027 }
5028 break;
5029 }
5030
5031 case ABIArgInfo::Ignore:
5032 assert(NumIRArgs == 0);
5033 break;
5034
5035 case ABIArgInfo::Extend:
5036 case ABIArgInfo::Direct: {
5037 if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) &&
5038 ArgInfo.getCoerceToType() == ConvertType(info_it->type) &&
5039 ArgInfo.getDirectOffset() == 0) {
5040 assert(NumIRArgs == 1);
5041 llvm::Value *V;
5042 if (!I->isAggregate())
5043 V = I->getKnownRValue().getScalarVal();
5044 else
5045 V = Builder.CreateLoad(
5046 I->hasLValue() ? I->getKnownLValue().getAddress(*this)
5047 : I->getKnownRValue().getAggregateAddress());
5048
5049 // Implement swifterror by copying into a new swifterror argument.
5050 // We'll write back in the normal path out of the call.
5051 if (CallInfo.getExtParameterInfo(ArgNo).getABI()
5052 == ParameterABI::SwiftErrorResult) {
5053 assert(!swiftErrorTemp.isValid() && "multiple swifterror args");
5054
5055 QualType pointeeTy = I->Ty->getPointeeType();
5056 swiftErrorArg = Address(V, ConvertTypeForMem(pointeeTy),
5057 getContext().getTypeAlignInChars(pointeeTy));
5058
5059 swiftErrorTemp =
5060 CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
5061 V = swiftErrorTemp.getPointer();
5062 cast<llvm::AllocaInst>(V)->setSwiftError(true);
5063
5064 llvm::Value *errorValue = Builder.CreateLoad(swiftErrorArg);
5065 Builder.CreateStore(errorValue, swiftErrorTemp);
5066 }
5067
5068 // We might have to widen integers, but we should never truncate.
5069 if (ArgInfo.getCoerceToType() != V->getType() &&
5070 V->getType()->isIntegerTy())
5071 V = Builder.CreateZExt(V, ArgInfo.getCoerceToType());
5072
5073 // If the argument doesn't match, perform a bitcast to coerce it. This
5074 // can happen due to trivial type mismatches.
5075 if (FirstIRArg < IRFuncTy->getNumParams() &&
5076 V->getType() != IRFuncTy->getParamType(FirstIRArg))
5077 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg));
5078
5079 if (ArgHasMaybeUndefAttr)
5080 V = Builder.CreateFreeze(V);
5081 IRCallArgs[FirstIRArg] = V;
5082 break;
5083 }
5084
5085 // FIXME: Avoid the conversion through memory if possible.
5086 Address Src = Address::invalid();
5087 if (!I->isAggregate()) {
5088 Src = CreateMemTemp(I->Ty, "coerce");
5089 I->copyInto(*this, Src);
5090 } else {
5091 Src = I->hasLValue() ? I->getKnownLValue().getAddress(*this)
5092 : I->getKnownRValue().getAggregateAddress();
5093 }
5094
5095 // If the value is offset in memory, apply the offset now.
5096 Src = emitAddressAtOffset(*this, Src, ArgInfo);
5097
5098 // Fast-isel and the optimizer generally like scalar values better than
5099 // FCAs, so we flatten them if this is safe to do for this argument.
5100 llvm::StructType *STy =
5101 dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType());
5102 if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
5103 llvm::Type *SrcTy = Src.getElementType();
5104 uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy);
5105 uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy);
5106
5107 // If the source type is smaller than the destination type of the
5108 // coerce-to logic, copy the source value into a temp alloca the size
5109 // of the destination type to allow loading all of it. The bits past
5110 // the source value are left undef.
5111 if (SrcSize < DstSize) {
5112 Address TempAlloca
5113 = CreateTempAlloca(STy, Src.getAlignment(),
5114 Src.getName() + ".coerce");
5115 Builder.CreateMemCpy(TempAlloca, Src, SrcSize);
5116 Src = TempAlloca;
5117 } else {
5118 Src = Builder.CreateElementBitCast(Src, STy);
5119 }
5120
5121 assert(NumIRArgs == STy->getNumElements());
5122 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
5123 Address EltPtr = Builder.CreateStructGEP(Src, i);
5124 llvm::Value *LI = Builder.CreateLoad(EltPtr);
5125 if (ArgHasMaybeUndefAttr)
5126 LI = Builder.CreateFreeze(LI);
5127 IRCallArgs[FirstIRArg + i] = LI;
5128 }
5129 } else {
5130 // In the simple case, just pass the coerced loaded value.
5131 assert(NumIRArgs == 1);
5132 llvm::Value *Load =
5133 CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this);
5134
5135 if (CallInfo.isCmseNSCall()) {
5136 // For certain parameter types, clear padding bits, as they may reveal
5137 // sensitive information.
5138 // Small struct/union types are passed as integer arrays.
5139 auto *ATy = dyn_cast<llvm::ArrayType>(Load->getType());
5140 if (ATy != nullptr && isa<RecordType>(I->Ty.getCanonicalType()))
5141 Load = EmitCMSEClearRecord(Load, ATy, I->Ty);
5142 }
5143
5144 if (ArgHasMaybeUndefAttr)
5145 Load = Builder.CreateFreeze(Load);
5146 IRCallArgs[FirstIRArg] = Load;
5147 }
5148
5149 break;
5150 }
5151
5152 case ABIArgInfo::CoerceAndExpand: {
5153 auto coercionType = ArgInfo.getCoerceAndExpandType();
5154 auto layout = CGM.getDataLayout().getStructLayout(coercionType);
5155
5156 llvm::Value *tempSize = nullptr;
5157 Address addr = Address::invalid();
5158 Address AllocaAddr = Address::invalid();
5159 if (I->isAggregate()) {
5160 addr = I->hasLValue() ? I->getKnownLValue().getAddress(*this)
5161 : I->getKnownRValue().getAggregateAddress();
5162
5163 } else {
5164 RValue RV = I->getKnownRValue();
5165 assert(RV.isScalar()); // complex should always just be direct
5166
5167 llvm::Type *scalarType = RV.getScalarVal()->getType();
5168 auto scalarSize = CGM.getDataLayout().getTypeAllocSize(scalarType);
5169 auto scalarAlign = CGM.getDataLayout().getPrefTypeAlign(scalarType);
5170
5171 // Materialize to a temporary.
5172 addr = CreateTempAlloca(
5173 RV.getScalarVal()->getType(),
5174 CharUnits::fromQuantity(std::max(layout->getAlignment(), scalarAlign)),
5175 "tmp",
5176 /*ArraySize=*/nullptr, &AllocaAddr);
5177 tempSize = EmitLifetimeStart(scalarSize, AllocaAddr.getPointer());
5178
5179 Builder.CreateStore(RV.getScalarVal(), addr);
5180 }
5181
5182 addr = Builder.CreateElementBitCast(addr, coercionType);
5183
5184 unsigned IRArgPos = FirstIRArg;
5185 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
5186 llvm::Type *eltType = coercionType->getElementType(i);
5187 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
5188 Address eltAddr = Builder.CreateStructGEP(addr, i);
5189 llvm::Value *elt = Builder.CreateLoad(eltAddr);
5190 if (ArgHasMaybeUndefAttr)
5191 elt = Builder.CreateFreeze(elt);
5192 IRCallArgs[IRArgPos++] = elt;
5193 }
5194 assert(IRArgPos == FirstIRArg + NumIRArgs);
5195
5196 if (tempSize) {
5197 EmitLifetimeEnd(tempSize, AllocaAddr.getPointer());
5198 }
5199
5200 break;
5201 }
5202
5203 case ABIArgInfo::Expand: {
5204 unsigned IRArgPos = FirstIRArg;
5205 ExpandTypeToArgs(I->Ty, *I, IRFuncTy, IRCallArgs, IRArgPos);
5206 assert(IRArgPos == FirstIRArg + NumIRArgs);
5207 break;
5208 }
5209 }
5210 }
5211
5212 const CGCallee &ConcreteCallee = Callee.prepareConcreteCallee(*this);
5213 llvm::Value *CalleePtr = ConcreteCallee.getFunctionPointer();
5214
5215 // If we're using inalloca, set up that argument.
5216 if (ArgMemory.isValid()) {
5217 llvm::Value *Arg = ArgMemory.getPointer();
5218 if (CallInfo.isVariadic()) {
5219 // When passing non-POD arguments by value to variadic functions, we will
5220 // end up with a variadic prototype and an inalloca call site. In such
5221 // cases, we can't do any parameter mismatch checks. Give up and bitcast
5222 // the callee.
5223 unsigned CalleeAS = CalleePtr->getType()->getPointerAddressSpace();
5224 CalleePtr =
5225 Builder.CreateBitCast(CalleePtr, IRFuncTy->getPointerTo(CalleeAS));
5226 } else {
5227 llvm::Type *LastParamTy =
5228 IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1);
5229 if (Arg->getType() != LastParamTy) {
5230 #ifndef NDEBUG
5231 // Assert that these structs have equivalent element types.
5232 llvm::StructType *FullTy = CallInfo.getArgStruct();
5233 if (!LastParamTy->isOpaquePointerTy()) {
5234 llvm::StructType *DeclaredTy = cast<llvm::StructType>(
5235 LastParamTy->getNonOpaquePointerElementType());
5236 assert(DeclaredTy->getNumElements() == FullTy->getNumElements());
5237 for (auto DI = DeclaredTy->element_begin(),
5238 DE = DeclaredTy->element_end(),
5239 FI = FullTy->element_begin();
5240 DI != DE; ++DI, ++FI)
5241 assert(*DI == *FI);
5242 }
5243 #endif
5244 Arg = Builder.CreateBitCast(Arg, LastParamTy);
5245 }
5246 }
5247 assert(IRFunctionArgs.hasInallocaArg());
5248 IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg;
5249 }
5250
5251 // 2. Prepare the function pointer.
5252
5253 // If the callee is a bitcast of a non-variadic function to have a
5254 // variadic function pointer type, check to see if we can remove the
5255 // bitcast. This comes up with unprototyped functions.
5256 //
5257 // This makes the IR nicer, but more importantly it ensures that we
5258 // can inline the function at -O0 if it is marked always_inline.
5259 auto simplifyVariadicCallee = [](llvm::FunctionType *CalleeFT,
5260 llvm::Value *Ptr) -> llvm::Function * {
5261 if (!CalleeFT->isVarArg())
5262 return nullptr;
5263
5264 // Get underlying value if it's a bitcast
5265 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Ptr)) {
5266 if (CE->getOpcode() == llvm::Instruction::BitCast)
5267 Ptr = CE->getOperand(0);
5268 }
5269
5270 llvm::Function *OrigFn = dyn_cast<llvm::Function>(Ptr);
5271 if (!OrigFn)
5272 return nullptr;
5273
5274 llvm::FunctionType *OrigFT = OrigFn->getFunctionType();
5275
5276 // If the original type is variadic, or if any of the component types
5277 // disagree, we cannot remove the cast.
5278 if (OrigFT->isVarArg() ||
5279 OrigFT->getNumParams() != CalleeFT->getNumParams() ||
5280 OrigFT->getReturnType() != CalleeFT->getReturnType())
5281 return nullptr;
5282
5283 for (unsigned i = 0, e = OrigFT->getNumParams(); i != e; ++i)
5284 if (OrigFT->getParamType(i) != CalleeFT->getParamType(i))
5285 return nullptr;
5286
5287 return OrigFn;
5288 };
5289
5290 if (llvm::Function *OrigFn = simplifyVariadicCallee(IRFuncTy, CalleePtr)) {
5291 CalleePtr = OrigFn;
5292 IRFuncTy = OrigFn->getFunctionType();
5293 }
5294
5295 // 3. Perform the actual call.
5296
5297 // Deactivate any cleanups that we're supposed to do immediately before
5298 // the call.
5299 if (!CallArgs.getCleanupsToDeactivate().empty())
5300 deactivateArgCleanupsBeforeCall(*this, CallArgs);
5301
5302 // Assert that the arguments we computed match up. The IR verifier
5303 // will catch this, but this is a common enough source of problems
5304 // during IRGen changes that it's way better for debugging to catch
5305 // it ourselves here.
5306 #ifndef NDEBUG
5307 assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg());
5308 for (unsigned i = 0; i < IRCallArgs.size(); ++i) {
5309 // Inalloca argument can have different type.
5310 if (IRFunctionArgs.hasInallocaArg() &&
5311 i == IRFunctionArgs.getInallocaArgNo())
5312 continue;
5313 if (i < IRFuncTy->getNumParams())
5314 assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i));
5315 }
5316 #endif
5317
5318 // Update the largest vector width if any arguments have vector types.
5319 for (unsigned i = 0; i < IRCallArgs.size(); ++i)
5320 LargestVectorWidth = std::max(LargestVectorWidth,
5321 getMaxVectorWidth(IRCallArgs[i]->getType()));
5322
5323 // Compute the calling convention and attributes.
5324 unsigned CallingConv;
5325 llvm::AttributeList Attrs;
5326 CGM.ConstructAttributeList(CalleePtr->getName(), CallInfo,
5327 Callee.getAbstractInfo(), Attrs, CallingConv,
5328 /*AttrOnCallSite=*/true,
5329 /*IsThunk=*/false);
5330
5331 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl))
5332 if (FD->hasAttr<StrictFPAttr>())
5333 // All calls within a strictfp function are marked strictfp
5334 Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::StrictFP);
5335
5336 // Add call-site nomerge attribute if exists.
5337 if (InNoMergeAttributedStmt)
5338 Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::NoMerge);
5339
5340 // Add call-site noinline attribute if exists.
5341 if (InNoInlineAttributedStmt)
5342 Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::NoInline);
5343
5344 // Add call-site always_inline attribute if exists.
5345 if (InAlwaysInlineAttributedStmt)
5346 Attrs =
5347 Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::AlwaysInline);
5348
5349 // Apply some call-site-specific attributes.
5350 // TODO: work this into building the attribute set.
5351
5352 // Apply always_inline to all calls within flatten functions.
5353 // FIXME: should this really take priority over __try, below?
5354 if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() &&
5355 !InNoInlineAttributedStmt &&
5356 !(TargetDecl && TargetDecl->hasAttr<NoInlineAttr>())) {
5357 Attrs =
5358 Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::AlwaysInline);
5359 }
5360
5361 // Disable inlining inside SEH __try blocks.
5362 if (isSEHTryScope()) {
5363 Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::NoInline);
5364 }
5365
5366 // Decide whether to use a call or an invoke.
5367 bool CannotThrow;
5368 if (currentFunctionUsesSEHTry()) {
5369 // SEH cares about asynchronous exceptions, so everything can "throw."
5370 CannotThrow = false;
5371 } else if (isCleanupPadScope() &&
5372 EHPersonality::get(*this).isMSVCXXPersonality()) {
5373 // The MSVC++ personality will implicitly terminate the program if an
5374 // exception is thrown during a cleanup outside of a try/catch.
5375 // We don't need to model anything in IR to get this behavior.
5376 CannotThrow = true;
5377 } else {
5378 // Otherwise, nounwind call sites will never throw.
5379 CannotThrow = Attrs.hasFnAttr(llvm::Attribute::NoUnwind);
5380
5381 if (auto *FPtr = dyn_cast<llvm::Function>(CalleePtr))
5382 if (FPtr->hasFnAttribute(llvm::Attribute::NoUnwind))
5383 CannotThrow = true;
5384 }
5385
5386 // If we made a temporary, be sure to clean up after ourselves. Note that we
5387 // can't depend on being inside of an ExprWithCleanups, so we need to manually
5388 // pop this cleanup later on. Being eager about this is OK, since this
5389 // temporary is 'invisible' outside of the callee.
5390 if (UnusedReturnSizePtr)
5391 pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, SRetAlloca,
5392 UnusedReturnSizePtr);
5393
5394 llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest();
5395
5396 SmallVector<llvm::OperandBundleDef, 1> BundleList =
5397 getBundlesForFunclet(CalleePtr);
5398
5399 if (SanOpts.has(SanitizerKind::KCFI) &&
5400 !isa_and_nonnull<FunctionDecl>(TargetDecl))
5401 EmitKCFIOperandBundle(ConcreteCallee, BundleList);
5402
5403 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl))
5404 if (FD->hasAttr<StrictFPAttr>())
5405 // All calls within a strictfp function are marked strictfp
5406 Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::StrictFP);
5407
5408 AssumeAlignedAttrEmitter AssumeAlignedAttrEmitter(*this, TargetDecl);
5409 Attrs = AssumeAlignedAttrEmitter.TryEmitAsCallSiteAttribute(Attrs);
5410
5411 AllocAlignAttrEmitter AllocAlignAttrEmitter(*this, TargetDecl, CallArgs);
5412 Attrs = AllocAlignAttrEmitter.TryEmitAsCallSiteAttribute(Attrs);
5413
5414 // Emit the actual call/invoke instruction.
5415 llvm::CallBase *CI;
5416 if (!InvokeDest) {
5417 CI = Builder.CreateCall(IRFuncTy, CalleePtr, IRCallArgs, BundleList);
5418 } else {
5419 llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
5420 CI = Builder.CreateInvoke(IRFuncTy, CalleePtr, Cont, InvokeDest, IRCallArgs,
5421 BundleList);
5422 EmitBlock(Cont);
5423 }
5424 if (callOrInvoke)
5425 *callOrInvoke = CI;
5426
5427 // If this is within a function that has the guard(nocf) attribute and is an
5428 // indirect call, add the "guard_nocf" attribute to this call to indicate that
5429 // Control Flow Guard checks should not be added, even if the call is inlined.
5430 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) {
5431 if (const auto *A = FD->getAttr<CFGuardAttr>()) {
5432 if (A->getGuard() == CFGuardAttr::GuardArg::nocf && !CI->getCalledFunction())
5433 Attrs = Attrs.addFnAttribute(getLLVMContext(), "guard_nocf");
5434 }
5435 }
5436
5437 // Apply the attributes and calling convention.
5438 CI->setAttributes(Attrs);
5439 CI->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
5440
5441 // Apply various metadata.
5442
5443 if (!CI->getType()->isVoidTy())
5444 CI->setName("call");
5445
5446 // Update largest vector width from the return type.
5447 LargestVectorWidth =
5448 std::max(LargestVectorWidth, getMaxVectorWidth(CI->getType()));
5449
5450 // Insert instrumentation or attach profile metadata at indirect call sites.
5451 // For more details, see the comment before the definition of
5452 // IPVK_IndirectCallTarget in InstrProfData.inc.
5453 if (!CI->getCalledFunction())
5454 PGO.valueProfile(Builder, llvm::IPVK_IndirectCallTarget,
5455 CI, CalleePtr);
5456
5457 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
5458 // optimizer it can aggressively ignore unwind edges.
5459 if (CGM.getLangOpts().ObjCAutoRefCount)
5460 AddObjCARCExceptionMetadata(CI);
5461
5462 // Set tail call kind if necessary.
5463 if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) {
5464 if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>())
5465 Call->setTailCallKind(llvm::CallInst::TCK_NoTail);
5466 else if (IsMustTail)
5467 Call->setTailCallKind(llvm::CallInst::TCK_MustTail);
5468 }
5469
5470 // Add metadata for calls to MSAllocator functions
5471 if (getDebugInfo() && TargetDecl &&
5472 TargetDecl->hasAttr<MSAllocatorAttr>())
5473 getDebugInfo()->addHeapAllocSiteMetadata(CI, RetTy->getPointeeType(), Loc);
5474
5475 // Add metadata if calling an __attribute__((error(""))) or warning fn.
5476 if (TargetDecl && TargetDecl->hasAttr<ErrorAttr>()) {
5477 llvm::ConstantInt *Line =
5478 llvm::ConstantInt::get(Int32Ty, Loc.getRawEncoding());
5479 llvm::ConstantAsMetadata *MD = llvm::ConstantAsMetadata::get(Line);
5480 llvm::MDTuple *MDT = llvm::MDNode::get(getLLVMContext(), {MD});
5481 CI->setMetadata("srcloc", MDT);
5482 }
5483
5484 // 4. Finish the call.
5485
5486 // If the call doesn't return, finish the basic block and clear the
5487 // insertion point; this allows the rest of IRGen to discard
5488 // unreachable code.
5489 if (CI->doesNotReturn()) {
5490 if (UnusedReturnSizePtr)
5491 PopCleanupBlock();
5492
5493 // Strip away the noreturn attribute to better diagnose unreachable UB.
5494 if (SanOpts.has(SanitizerKind::Unreachable)) {
5495 // Also remove from function since CallBase::hasFnAttr additionally checks
5496 // attributes of the called function.
5497 if (auto *F = CI->getCalledFunction())
5498 F->removeFnAttr(llvm::Attribute::NoReturn);
5499 CI->removeFnAttr(llvm::Attribute::NoReturn);
5500
5501 // Avoid incompatibility with ASan which relies on the `noreturn`
5502 // attribute to insert handler calls.
5503 if (SanOpts.hasOneOf(SanitizerKind::Address |
5504 SanitizerKind::KernelAddress)) {
5505 SanitizerScope SanScope(this);
5506 llvm::IRBuilder<>::InsertPointGuard IPGuard(Builder);
5507 Builder.SetInsertPoint(CI);
5508 auto *FnType = llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false);
5509 llvm::FunctionCallee Fn =
5510 CGM.CreateRuntimeFunction(FnType, "__asan_handle_no_return");
5511 EmitNounwindRuntimeCall(Fn);
5512 }
5513 }
5514
5515 EmitUnreachable(Loc);
5516 Builder.ClearInsertionPoint();
5517
5518 // FIXME: For now, emit a dummy basic block because expr emitters in
5519 // generally are not ready to handle emitting expressions at unreachable
5520 // points.
5521 EnsureInsertPoint();
5522
5523 // Return a reasonable RValue.
5524 return GetUndefRValue(RetTy);
5525 }
5526
5527 // If this is a musttail call, return immediately. We do not branch to the
5528 // epilogue in this case.
5529 if (IsMustTail) {
5530 for (auto it = EHStack.find(CurrentCleanupScopeDepth); it != EHStack.end();
5531 ++it) {
5532 EHCleanupScope *Cleanup = dyn_cast<EHCleanupScope>(&*it);
5533 if (!(Cleanup && Cleanup->getCleanup()->isRedundantBeforeReturn()))
5534 CGM.ErrorUnsupported(MustTailCall, "tail call skipping over cleanups");
5535 }
5536 if (CI->getType()->isVoidTy())
5537 Builder.CreateRetVoid();
5538 else
5539 Builder.CreateRet(CI);
5540 Builder.ClearInsertionPoint();
5541 EnsureInsertPoint();
5542 return GetUndefRValue(RetTy);
5543 }
5544
5545 // Perform the swifterror writeback.
5546 if (swiftErrorTemp.isValid()) {
5547 llvm::Value *errorResult = Builder.CreateLoad(swiftErrorTemp);
5548 Builder.CreateStore(errorResult, swiftErrorArg);
5549 }
5550
5551 // Emit any call-associated writebacks immediately. Arguably this
5552 // should happen after any return-value munging.
5553 if (CallArgs.hasWritebacks())
5554 emitWritebacks(*this, CallArgs);
5555
5556 // The stack cleanup for inalloca arguments has to run out of the normal
5557 // lexical order, so deactivate it and run it manually here.
5558 CallArgs.freeArgumentMemory(*this);
5559
5560 // Extract the return value.
5561 RValue Ret = [&] {
5562 switch (RetAI.getKind()) {
5563 case ABIArgInfo::CoerceAndExpand: {
5564 auto coercionType = RetAI.getCoerceAndExpandType();
5565
5566 Address addr = SRetPtr;
5567 addr = Builder.CreateElementBitCast(addr, coercionType);
5568
5569 assert(CI->getType() == RetAI.getUnpaddedCoerceAndExpandType());
5570 bool requiresExtract = isa<llvm::StructType>(CI->getType());
5571
5572 unsigned unpaddedIndex = 0;
5573 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
5574 llvm::Type *eltType = coercionType->getElementType(i);
5575 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
5576 Address eltAddr = Builder.CreateStructGEP(addr, i);
5577 llvm::Value *elt = CI;
5578 if (requiresExtract)
5579 elt = Builder.CreateExtractValue(elt, unpaddedIndex++);
5580 else
5581 assert(unpaddedIndex == 0);
5582 Builder.CreateStore(elt, eltAddr);
5583 }
5584 // FALLTHROUGH
5585 [[fallthrough]];
5586 }
5587
5588 case ABIArgInfo::InAlloca:
5589 case ABIArgInfo::Indirect: {
5590 RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation());
5591 if (UnusedReturnSizePtr)
5592 PopCleanupBlock();
5593 return ret;
5594 }
5595
5596 case ABIArgInfo::Ignore:
5597 // If we are ignoring an argument that had a result, make sure to
5598 // construct the appropriate return value for our caller.
5599 return GetUndefRValue(RetTy);
5600
5601 case ABIArgInfo::Extend:
5602 case ABIArgInfo::Direct: {
5603 llvm::Type *RetIRTy = ConvertType(RetTy);
5604 if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) {
5605 switch (getEvaluationKind(RetTy)) {
5606 case TEK_Complex: {
5607 llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
5608 llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
5609 return RValue::getComplex(std::make_pair(Real, Imag));
5610 }
5611 case TEK_Aggregate: {
5612 Address DestPtr = ReturnValue.getValue();
5613 bool DestIsVolatile = ReturnValue.isVolatile();
5614
5615 if (!DestPtr.isValid()) {
5616 DestPtr = CreateMemTemp(RetTy, "agg.tmp");
5617 DestIsVolatile = false;
5618 }
5619 EmitAggregateStore(CI, DestPtr, DestIsVolatile);
5620 return RValue::getAggregate(DestPtr);
5621 }
5622 case TEK_Scalar: {
5623 // If the argument doesn't match, perform a bitcast to coerce it. This
5624 // can happen due to trivial type mismatches.
5625 llvm::Value *V = CI;
5626 if (V->getType() != RetIRTy)
5627 V = Builder.CreateBitCast(V, RetIRTy);
5628 return RValue::get(V);
5629 }
5630 }
5631 llvm_unreachable("bad evaluation kind");
5632 }
5633
5634 Address DestPtr = ReturnValue.getValue();
5635 bool DestIsVolatile = ReturnValue.isVolatile();
5636
5637 if (!DestPtr.isValid()) {
5638 DestPtr = CreateMemTemp(RetTy, "coerce");
5639 DestIsVolatile = false;
5640 }
5641
5642 // If the value is offset in memory, apply the offset now.
5643 Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI);
5644 CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this);
5645
5646 return convertTempToRValue(DestPtr, RetTy, SourceLocation());
5647 }
5648
5649 case ABIArgInfo::Expand:
5650 case ABIArgInfo::IndirectAliased:
5651 llvm_unreachable("Invalid ABI kind for return argument");
5652 }
5653
5654 llvm_unreachable("Unhandled ABIArgInfo::Kind");
5655 } ();
5656
5657 // Emit the assume_aligned check on the return value.
5658 if (Ret.isScalar() && TargetDecl) {
5659 AssumeAlignedAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret);
5660 AllocAlignAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret);
5661 }
5662
5663 // Explicitly call CallLifetimeEnd::Emit just to re-use the code even though
5664 // we can't use the full cleanup mechanism.
5665 for (CallLifetimeEnd &LifetimeEnd : CallLifetimeEndAfterCall)
5666 LifetimeEnd.Emit(*this, /*Flags=*/{});
5667
5668 if (!ReturnValue.isExternallyDestructed() &&
5669 RetTy.isDestructedType() == QualType::DK_nontrivial_c_struct)
5670 pushDestroy(QualType::DK_nontrivial_c_struct, Ret.getAggregateAddress(),
5671 RetTy);
5672
5673 return Ret;
5674 }
5675
prepareConcreteCallee(CodeGenFunction & CGF) const5676 CGCallee CGCallee::prepareConcreteCallee(CodeGenFunction &CGF) const {
5677 if (isVirtual()) {
5678 const CallExpr *CE = getVirtualCallExpr();
5679 return CGF.CGM.getCXXABI().getVirtualFunctionPointer(
5680 CGF, getVirtualMethodDecl(), getThisAddress(), getVirtualFunctionType(),
5681 CE ? CE->getBeginLoc() : SourceLocation());
5682 }
5683
5684 return *this;
5685 }
5686
5687 /* VarArg handling */
5688
EmitVAArg(VAArgExpr * VE,Address & VAListAddr)5689 Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) {
5690 VAListAddr = VE->isMicrosoftABI()
5691 ? EmitMSVAListRef(VE->getSubExpr())
5692 : EmitVAListRef(VE->getSubExpr());
5693 QualType Ty = VE->getType();
5694 if (VE->isMicrosoftABI())
5695 return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty);
5696 return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty);
5697 }
5698